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Almost duality for Saito structure and complex
reflection groups II: the case of Coxeter and Shephard

groups
Yukiko Konishi

∗
and Satoshi Minabe

†

Abstract: This article is a sequel to [6]. It is known that the orbit
spaces of the finite Coxeter groups and the Shephard groups admit
two types of Saito structures without metric. One is the under-
lying structures of the Frobenius structures constructed by Saito
[12] and Dubrovin [4]. The other is the natural Saito structures
constructed by Kato–Mano–Sekiguchi [5] and by Arsie–Lorenzoni
[1]. We study the relationship between these two Saito structures
from the viewpoint of almost duality.
Keywords: Frobenius structures, Saito structures, Coxeter groups,
Shephard groups.

1. Introduction

In 1979, K. Saito constructed flat structures on the orbit spaces of the fi-
nite Coxeter groups (i.e. the finite real reflection groups) [12]. See also [11].
Nowadays, his flat structure is called the Frobenius structure [3]. Generalizing
Saito’s results, Dubrovin constructed Frobenius structures on the orbit spaces
of the Shephard groups [4]. (A Shephard group is the symmetric group of a
regular complex polytope.) We call these Frobenius structures the Coxeter–
Shephard (or CS) Frobenius structures. Dubrovin gave a characterization of
the CS Frobenius structures using his almost duality for Frobenius structures
[4].

In this article, we call the Saito structure without metric the Saito struc-
ture for short. A Frobenius structure has a Saito structure as an underlying
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structure [10]. In other words, a Frobenius structure is a Saito structure to-
gether with a compatible metric.

There is a distinguished class of finite complex reflection groups called
the duality groups. It includes the finite Coxeter groups and the Shephard
groups. See [9, §B.4] and also Table 1. Recently, Kato, Mano and Sekiguchi
showed the existence of Saito structures on the orbit spaces of the duality
groups [5]. Arsie and Lorenzoni also studied the same Saito structures for the
duality groups of rank n = 2, 3 [1]. In [6], we formulated the almost duality
for the Saito structure and characterized their Saito structure. We call it the
natural Saito structure because it comes from the trivial connection.

So the orbit space of a finite Coxeter group or a Shephard group has
both the CS Frobenius structure and the natural Saito structure. A natural
question is that whether the latter is the underlying Saito structure of the
former. Arsie and Lorenzoni obtained results on this problem for rank n = 2, 3
[1].

In this article, we revisit the construction of the CS Frobenius structure
from the viewpoint of the almost duality of the Saito structure (Theorem 4.4)
and show that the multiplication of the natural Saito structure and that of
the CS Frobenius structure agree for all the finite Coxeter groups and all the
Shephard groups (Corollary 5.3). To prove this, we do not use the classification
of these groups explicitly, but use their characterization by degrees (see the
condition (CS3) in §4). We also compare the connections and find that they
coincide only for all the finite Coxeter groups and some of the Shephard
groups (Theorem 5.4). We need the classification to prove this theorem. In
the case of rank n = 2, 3, our results are in accord with [1].

Moreover we find that the natural Saito structure admits a compatible
metric if and only if it agrees with the underlying Saito structure of the
CS Frobenius structure (Theorem 5.5). Again, the proof does not use the
classification explicitly.

The article is organized as follows. In §2, we first recall the definitions of
the Saito structure, the Frobenius structure and the almost duality. Then in
§3, we summarize the natural (almost) Saito structure for the duality groups.
In §4, we explain the CS Frobenius structure for the finite Coxeter groups
and the Shephard groups from the viewpoint of the almost duality for Saito
structures (Theorem 4.4). §5 contains the main results of this article, Theorem
5.4 and Theorem 5.5. The remaining sections are devoted to proofs. §6 is a
preliminary: we write down conditions in the matrix form with respect to flat
coordinates of the natural Saito structure. In §7, we give a proof of Theorem
4.4 and Theorem 5.1. In §8, we prove Theorem 5.5. In §A, we describes some
technical details of the example G(m, 1, n).
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� �
G(m, p, n) (1 < p < m,n ≥ 2), G7, G11, G12, G13, G15, G19, G22, G31

Duality groups

� �

��
G(m,m, n) (m,n ≥ 3), G24, G27, G29, G33, G34

finite Coxeter groups

�

�

�

�
G(2, 2, n) = Dn (n ≥ 4)

G35 = E6, G36 = E7, G37 = E8

An−1 (n ≥ 2), G(2, 1, n) = Bn (n ≥ 2)

G(m,m, 2) = I2(m) (m ≥ 5)

G23 = H3, G28 = F4, G30 = H4

Shephard groups� �

��

G3 = Zm (m ≥ 2), G(m, 1, n) (m ≥ 3, n ≥ 2)

G4, G5, G6, G8, G9, G10, G14, G16, G17, G18, G20, G21, G25, G26, G32

Table 1: Irreducible finite complex reflection groups [9, §B.4]. Notations follow [13].
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2. (Almost) Saito structure and (almost) Frobenius
structure

The definition of Saito structure (without metric) can be found in [10]. See
also [6] for almost Saito structures.

Definition 2.1. A Saito structure (SS for short) on a manifold M consists
of

• a torsion-free flat connection ∇ on TM ,
• an associative commutative multiplication ∗ on TM with a unit e ∈

Γ(M, TM ),
• a vector field E ∈ Γ(M, TM ) called the Euler vector field,

satisfying the following conditions. Let X, Y, Z ∈ TM :

(SS1) ∇X(Y ∗ Z) − Y ∗ ∇X Z −∇Y (X ∗ Z) + X ∗ ∇Y Z = [X, Y ] ∗ Z .

(SS2) [E,X ∗ Y ] − [E,X] ∗ Y −X ∗ [E, Y ] = X ∗ Y .

(SS3) ∇e = 0 .

(SS4) ∇X∇YE −∇∇XYE = 0 .

Definition 2.2. An almost Saito structure (ASS for short) on a manifold N
with parameter r ∈ C consists of

• a torsion-free flat connection ∇ on TN ,
• an associative commutative multiplication � on TN with a unit E ∈

Γ(N, TN ),
• a nonzero vector field e ∈ Γ(N, TN )

satisfying the following conditions. Let X, Y, Z ∈ TN :

(ASS1) ∇X(Y � Z) − Y �∇X Z −∇Y (X � Z) + X �∇Y Z = [X, Y ] � Z .

(ASS2) [e,X � Y ] − [e,X] � Y −X � [e, Y ] + e � X � Y = 0 .

(ASS3) ∇XE = rX .

(ASS4) ∇X∇Y e−∇∇XY e + ∇X�Y e = 0 .

There is a following relationship between the Saito structure and the
almost Saito structure [6, Proposition 3.7]. Let (∇, �, e) be an ASS on N with
the unit E and parameter r. For a point p ∈ N , let Pp = e� : TpN → TpN
and

N0 := {p ∈ N | Pp is invertible} .
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Then if we define a multiplication ∗ and a connection ∇ by

e � (X ∗ Y ) = X � Y ,(2.1)
∇X Y = ∇X Y −∇X∗Y e ,(2.2)

then e is the unit of ∗ and (∇, ∗, E) is a SS on N0. Moreover, it holds that

E ∗ (X � Y ) = X ∗ Y ,(2.3)
∇X Y = ∇X Y + rX � Y −∇X�Y E .(2.4)

We say that the SS (∇, ∗, E) is dual to the ASS (∇, �, e).

Remark 2.3. Given a SS (∇, ∗, E) with the unit e, one can make a dual
ASS (∇, �, e) with the unit E by (2.3) and (2.4). Notice that there exists a
one-parameter family of dual ASS’s depending on the choice of the parameter
r ∈ C.

A Frobenius structure [3] on a manifold M of charge D ∈ C is a Saito
structure (∇, ∗, E) on M together with a nondegenerate symmetric bilinear
form (“metric”) η on TM satisfying the following conditions. Let X, Y, Z ∈
TM :

X(η(Y, Z)) = η(∇X Y, Z) + η(Y,∇X Z) .(2.5)
η(X ∗ Y, Z) = η(X, Y ∗ Z) .(2.6)
Eη(X, Y ) − η([E,X], Y ) − η(X, [E, Y ]) = (2 −D)η(X, Y ) .(2.7)

Note that (2.5) means that ∇ is the Levi–Civita connection of η (i.e. the
unique torsion free connection on TM compatible with η).

An almost Frobenius structure [4, §3] of charge D ∈ C on a manifold N
is an almost Saito structure (∇, �, e) with parameter

r = 1 −D

2

together with a metric g on TN satisfying the following conditions. Let
X, Y, Z ∈ TN :

X(g(Y, Z)) = g(∇X Y, Z) + g(Y,∇X Z) .(2.8)
g(X � Y,Z) = g(X, Y � Z) .(2.9)
e g(X, Y ) − g([e,X], Y ) − g(X, [e, Y ]) + g(e � X, Y ) = 0 .(2.10)
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There is a following relationship between the Frobenius structure and the
almost Frobenius structure [4]. Let (g, �, e) be an almost Frobenius structure
on N of charge D with the unit E. Let us define a multiplication ∗ by (2.1).
If we define a metric η by

(2.11) η(X, Y ) = g(X,E ∗ Y ) ,

then (∇, ∗, E) is a Frobenius structure on N0 of the same charge D. Moreover,
the Levi–Civita connections ∇ and ∇ of g and η are related by (2.2). We say
that (η, ∗, E) is dual to the almost Frobenius structure (g, �, e).

3. The natural Saito structure for duality groups

3.1. Finite complex reflection groups

For finite complex reflection groups, see [7] and [9].
Let V = C

n and denote by u1, . . . , un the standard coordinates of V . Let
G be a finite complex reflection group acting on V . It is well known that the
ring of G-invariant polynomials C[V ]G = C[u]G is generated by n G-invariant
homogeneous polynomials. Such a set of generators x1, . . . , xn is called a set
of basic invariants for G. We assume that x1, . . . , xn are ordered so that the
degrees dα = deg xα (1 ≤ α ≤ n) are in descending order, i.e.,

d1 ≥ d2 ≥ d3 ≥ . . . ≥ dn .

The C[V ]G-module of G-invariant differential 1-forms on V is denoted
ΩG

C[V ]. It is a free C[V ]G-module of rank n and dx1, . . . , dxn form its basis
(see [9, Theorem 6.49]). The C[V ]G-module of G-invariant derivations on V
is denoted DerGC[V ]. It is also a free C[V ]G-module of rank n (see [9, Lemma
6.48]). A homogeneous basis {X1, . . . , Xn} of DerGC[V ] is called a set of basic
derivations for G. The degrees1 d∗1, . . . , d

∗
n of X1, . . . , Xn are called the code-

grees of G. When necessary, we order X1, . . . , Xn so that the codegrees are in
ascending order:

0 = d∗1 ≤ d∗2 ≤ . . . ≤ d∗n .

A polynomial f ∈ C[V ] defines a homomorphism Hess(f) from the C[V ]-
module of derivations to the C[V ]-module of differential 1-forms by

Hess(f)
(

∂

∂ui

)
=

n∑
j=1

∂2f

∂ui∂uj
duj .

1In this article, the degree of ∂
∂uα is counted as −deg uα = −1. If f ∈ C[u] is a

homogeneous polynomial of degree d, the degree of the vector field f ∂
∂uα is d− 1.
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If f is G-invariant, this homomorphism induces a map from ΩG
C[V ] to DerGC[V ]

(see [9, Lemma 6.9]).
Let M = SpecC[V ]G = SpecC[x] ∼= C

n be the orbit space of G and let
π : V → M be the orbit map. The complement of reflection hyperplanes is
denoted V ◦ and its image π(V ) is denoted M◦. The orbit map π : V ◦ → M◦

is an unbranched covering map. So we can regard the standard coordinates
u1, . . . , un of V as local coordinates of M◦. We will use the two (local) coor-
dinate systems x = (x1, . . . , xn) and u = (u1, . . . , un) on M◦.

Since π : V ◦ → M◦ is locally a homeomorphism, the trivial connection on
TV induces a connection ∇V on TM◦. In the local u-coordinates, it is given
by

(3.1) ∇V
∂

∂ui

∂

∂uj
= 0 (1 ≤ i, j ≤ n) .

By definition, ∇V is flat and torsion free.
In this article, we only treat the finite complex reflection groups G which

are irreducible (i.e. G acting on V irreducibly) and which satisfy the strict
inequality d1 > d2. The irreducibility implies dα ≥ 2 (1 ≤ α ≤ n). The
inequality d1 > d2 implies that the vector field

(3.2) e := ∂

∂x1

(
=

n∑
i=1

∂ui

∂x1
∂

∂ui

)

on M is independent of the choice of the set of basic invariants x1, . . . , xn up
to scalar multiplication.2 We also set

(3.3) E = 1
d1

Edeg , Edeg =
n∑

i=1
ui

∂

∂ui
=

n∑
α=1

dαx
α ∂

∂xα
.

2Assume that d1 > d2 and that x̃ = (x̃1, . . . , x̃n) is another set of basic invariants
for G. Then by degree consideration,

x̃1 = ax1 + a polynomial in x2, . . . , xn (a ∈ C, a 	= 0)

and x̃2, . . . , x̃n are polynomials in x2, . . . , xn. Therefore by the chain rule, we have

∂

∂x1 =
n∑

α=1

∂x̃α

∂x1
∂

∂x̃α
= a

∂

∂x̃1 .
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Notice that the derivation Edeg acts on a homogeneous polynomial f ∈ C[u]
or f ∈ C[u]G = C[x] as

(3.4) Edeg(f) = (deg f)f .

3.2. The natural Saito structure for the duality groups

For an irreducible finite complex reflection group G of rank n, the following
conditions are equivalent. See e.g. [2, Theorem 2.14].

(D1) dα + d∗α = d1(1 ≤ α ≤ n).
(D2) G is generated by n reflections.
(D3) There exists a set of basic invariants such that the discriminant Δ ∈

C[x] of G is a monic polynomial of degree n as a polynomial in x1.

An irreducible finite complex reflection group G satisfying these conditions is
called a duality group.

Let G be a duality group and let x1, . . . , xn be a set of basic invariants
for G. For a duality group, d1 > d2 holds. This follows from the classification.
Recall that ∇V given in (3.1) is flat and torsion free. In [6], the followings
are proved using the property (D3).

Theorem 3.1. 1. The endomorphism

TpM
◦ → TpM

◦ , X 
→ ∇V
X e

of the tangent space TpM
◦ is invertible at every point p ∈ M◦ [6, Corol-

lary 7.3]. Therefore the following condition (ASS4) uniquely determines
the multiplication � on TM◦:

(3.5) ∇V
X∇V

Y e−∇V
∇V

XY e + ∇V
X�Y e = 0 (X, Y ∈ TM◦) .

2. The multiplication � is associative and commutative and has the unit
E.

3. (∇V , �, e) is an ASS of parameter 1
d1

on M◦ [6, Corollary 7.6].

Definition 3.2. (∇V , �, e) is called a natural ASS for the duality group G.

For convenience of the next examples, let us write the statements (1) and
(2) in Theorem 3.1 in the u-coordinates. Denote the structure constants of
the multiplication � with respect to ∂

∂u1 , . . . ,
∂

∂un by B̃k
ij , i.e.

∂

∂ui
�

∂

∂uj
=

n∑
k=1

B̃k
ij

∂

∂uk
(1 ≤ i, j ≤ n) .
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Let us set

ek = ∂uk

∂x1 , Qk
j = ∂ek

∂uj
.

The matrix Q = (Qk
j) is nothing but the representation matrix of the map

X 
→ ∇V
X e with respect to the basis ∂

∂u1 , . . . ,
∂

∂un . Therefore the statement
(1) is equivalent to the condition detQ 	= 0. Eq. (3.5) is equivalent to

(3.6) ∂2ek

∂ui∂uj
+

n∑
l=1

∂ek

∂ul
B̃l

ij =
∂Qk

j

∂ui
+

n∑
l=1

Qk
lB̃

l
ij = 0 (1 ≤ i, j, k ≤ n) .

Example 3.3. For G = Zm (m ≥ 2), n = 1, x1 = (u1)m, d1 = m. Therefore

e1 = 1
m(u1)m−1 , B̃1

11 = m

u1
.

Example 3.4. For G = G(m, 1, n) (m ≥ 3, n ≥ 2),

xα = en+1−α((u1)m, . . . , (un)m) (1 ≤ α ≤ n) ,

where eα denotes the α-th elementary symmetric polynomial. The vector field
e = ∂

∂x1 is given by

e =
n∑

k=1
ek

∂

∂uk
, ek = (−1)n+1

m(uk)m−1

∏
1≤j≤n;
j �=k

((uk)m − (uj)m)−1 .

See Corollary A.5. Then it is not difficult to check that the following B̃k
ij ’s

satisfy (3.6):

B̃i
ii =

∑
l �=i

m(ui)m−1

((ui)m − (ul)m) + m

ui
,

B̃k
ii = − m(ui)m−2uk

((ui)m − (uk)m) (i 	= k)

B̃i
ij = B̃i

ji = − m(uj)m−1

(ui)m − (uj)m (i 	= j)

B̃k
ij = 0 (i 	= j 	= k 	= i) .

These are the structure constants of � with respect to the u-coordinates.
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Now, let ∗ and ∇ be the multiplication and the connection on TM◦ dual
to � and ∇V (see (2.1) and (2.2)):

(3.7) e � (X ∗ Y ) = X � Y , ∇X Y = ∇V
X Y −∇V

X∗Y e .

Then (∇, ∗, E) is a SS on M◦ and called a natural SS for G. Notice that for
this case, the converse relations (2.3) and (2.4) become

(3.8) E ∗ (X � Y ) = X ∗ Y , ∇V
X Y = ∇X Y + 1

d1
X � Y −∇X�Y E .

In [6, Theorem 7.5 (3)], the following theorem is proved.

Theorem 3.5. The natural SS (∇, ∗, E) for G is polynomial i.e.,

(i) there exists a system of ∇-flat coordinates t = (t1, t2, . . . , tn) which is a
set of basic invariants for G, and

(ii) the structure constants of the multiplication with respect to the basis
∂
∂t1 , . . . ,

∂
∂tn are polynomials in t.

Therefore the natural SS (∇, ∗, E) is canonically extended to the whole
orbit space M .

4. The Coxeter–Shephard Frobenius structures

4.1. The finite Coxeter groups and the Shephard groups

The duality groups include the finite Coxeter groups3 and the Shephard
groups. For an irreducible finite complex reflection group G, the following
conditions are equivalent (see [9, Theorem 6.121]):

(CS1) G is a finite Coxeter group or a Shephard group.
(CS2) Hess(xn) : DerGC[V ] → ΩG

C[V ] is an isomorphism.
(CS3) dα + dn+1−α = d1 + dn (1 ≤ α ≤ n).

In this section, G is a finite Coxeter group or a Shephard group. Let
x1, . . . , xn be a set of basic invariants for G.

From the classification, we can see that the strict inequalities

(4.1) d1 > d2 > . . . > dn

3Among the duality groups, the finite Coxeter groups are characterized by the
property that dn = 2.
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hold for a finite Coxeter group or a Shephard group G. The condition (CS3)
and eq. (4.1) together imply that

(4.2) dα+dβ > d1+dn (α+β < n+1) , dα+dβ < d1+dn (α+β > n+1) .

Now let h be a symmetric bilinear form on TM◦ corresponding to the
map Hess(xn), i.e.

(4.3) h(·, ·) = 〈Hess(xn)(·), ·〉 .

The condition (CS2) implies that h is a metric on TM◦. Let ∇cs be the
Levi–Civita connection for the metric h. In the local u-coordinates, h is given
by

(4.4) H̃ij := h

(
∂

∂ui
,

∂

∂uj

)
=

〈
Hess(xn)

(
∂

∂ui

)
,

∂

∂uj

〉
= ∂2xn

∂ui∂uj
,

where 〈 , 〉 is the canonical pairing. The Levi–Civita connection ∇cs is
expressed as

∇cs
∂

∂ui

(
∂

∂uj

)
=

n∑
k=1

S̃k
ij

∂

∂uk
, S̃k

ij = 1
2

n∑
l=1

H̃kl ∂3xn

∂ui∂uj∂ul
(4.5)

Here H̃ ij (1 ≤ i, j ≤ n) denotes the (i, j) entry of the inverse matrix H̃−1 of
H̃ = (H̃ij). From this expression, we can immediately see that S̃k

ij = 0 holds
if dn = 2. In other words, ∇cs = ∇V if G is a finite Coxeter group.

Example 4.1. For G = Zm (m ≥ 2), n = 1, x1 = (u1)m, d1 = m. Therefore

H̃11 = m(m− 1)(u1)m−2 , S̃1
11 = m− 2

2u1 .

Example 4.2. For G = G(m, 1, n) (m ≥ 3, n ≥ 2), xn = (u1)m+ · · ·+(un)m.
Therefore

H̃ij =
{
m(m− 1)(ui)m−2 (i = j)
0 (i 	= j)

,

and

S̃k
ij =

{
m−2
2ui (i = j = k)

0 (otherwise)
.

Lemma 4.3. 1. ∇cs is flat.
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2. ∇cs and E (given in (3.4)) satisfy (ASS3) with r = dn
2d1

:

∇cs
XE = dn

2d1
X (X ∈ TM◦) .

Proof. Let us set
(S̃i)kj = S̃k

ij (1 ≤ i ≤ n) .

(1) The flatness is equivalent to

(4.6) ∂S̃j

∂ui
− ∂S̃i

∂uj
+ S̃iS̃j − S̃jS̃i

(4.5)= −(S̃iS̃j − S̃jS̃i) = O .

If G is a finite Coxeter group (i.e. if dn = 2), then S̃i = O (1 ≤ i ≤ n) by
(4.5). In the cases G = G3 ∼= Zm (m ≥ 1) and G = G(m, 1, n) (m ≥ 3, n ≥ 2),
it is easy to check that S̃k

ij ’s obtained in Example 4.1 and Example 4.2 satisfy
(4.6). For the remaining exceptional groups, xn can be found in [7, Chapter
6], [9, §B.3]. We checked that (4.6) holds using Mathematica.

(2) Recall that the derivation Edeg in (3.3) acts on a homogeneous poly-
nomial f ∈ C[x] = C[u]G by Edeg(f) = (deg f) f (see (3.4)). So we have

∇cs
∂

∂ui
E = 1

d1

⎛
⎝ ∂

∂ui
+ 1

2

n∑
j,k=1

ujS̃k
ij

∂

∂uk

⎞
⎠

(4.5)= 1
d1

⎛
⎝ ∂

∂ui
+ 1

2

n∑
j,k,l=1

uj
∂H̃il

∂uj
· H̃kl ∂

∂uk

⎞
⎠

= 1
d1

⎛
⎝ ∂

∂ui
+ dn − 2

2

n∑
k,l=1

H̃ilH̃
kl ∂

∂uk

⎞
⎠

= 1
d1

(
∂

∂ui
+ dn − 2

2
∂

∂ui

)
= dn

2d1

∂

∂ui
.

Theorem 4.4. 1. The endomorphism

TpM
◦ → TpM

◦ , X 
→ ∇cs
X e

of the tangent space TpM
◦ is invertible at every point p ∈ M◦. There-

fore the following condition uniquely determines the multiplication  on
TM◦:

(4.6) ∇cs
X∇cs

Y e−∇cs
∇cs

XY e + ∇cs
X�Y e = 0 (X, Y ∈ TM◦) .
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2. The multiplication  is associative and commutative and has the unit E.
3. (∇cs, , e) is an ASS with parameter dn

2d1
on M◦.

4. (h, , e) is an almost Frobenius structure of charge 1 − dn
d1

on M◦.

The proof of Theorem 4.4 will be given in §7.
Now let � be the multiplication dual to  and let ∇cs be the connection

dual to ∇cs (see (2.1), (2.2)):

(4.7) e  (X � Y ) = X  Y , ∇cs
X Y = ∇cs

X Y −∇cs
X�Y e .

Notice that the converse relations (2.3) and (2.4) become

(4.8) E � (X  Y ) = X � Y , ∇cs
X Y = ∇cs

X Y + dn
2d1

X  Y −∇X�Y E .

Then the multiplication � has e as the unit. Moreover, by the almost duality,
(∇cs,�, E) is a SS on M◦. The following theorem says that this SS can be
extended to M .

Theorem 4.5. The SS (∇cs,�, E) is a polynomial SS on M .

The proof will be given in §7.4.
Let η be the metric dual to h (see (2.11)):

(4.9) η(X, Y ) = h(X,E � Y ) .

Then (η,�, E) is a Frobenius structure on M of charge D = 1− dn
d1

which has
(∇cs,�, E) as the underlying Saito structure. In this article, we call (η,�, E)
the Coxeter–Shephard (CS) Frobenius structure.

5. Relationship between the two Saito structures

Let G be a finite Coxeter group or a Shephard group.
Recall that a finite Coxeter group or a Shephard group is a duality group.

Therefore we have two ASS’s for G. The one is the natural ASS (∇V , �, e) with
parameter 1

d1
explained in §3.2 and the other is (∇cs, , e) with parameter

dn
2d1

explained in §4. So it is natural to ask whether they are the same or not.
It is clear that the parameters dn

2d1
and 1

d1
agree if and only if dn = 2 i.e. G is

a finite Coxeter group. The connection ∇cs agree with ∇V agree if and only
if (H̃ij) is a constant matrix, i.e. dn = 2. As for the multiplication, for any
finite Coxeter group or any Shephard group G, we have the following
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Theorem 5.1. The multiplication � and the multiplication  are the same.

The proof of Theorem 5.1 will be given in §7.1.

Corollary 5.2. The two ASS’s (∇V , �, e) and (∇cs, , e) for G agree if and
only if dn = 2, i.e. if and only if G is a finite Coxeter group.

Similarly, we may ask whether the two dual Saito structures (∇, ∗, E) and
(∇cs,�, E) are the same or not. Theorem 5.1 and the first equations of (3.7),
(4.7) imply the following

Corollary 5.3. The multiplication � and the multiplication ∗ are the same.

As for the connections, the second equations of (3.7), (3.8), (4.7), (4.8)
imply that ∇cs = ∇ holds if and only if

∇cs
XY = ∇V

XY + dn − 2
2d1

X � Y (X, Y ∈ TM ) .

In the u-coordinates, the above relation can be expressed as

(5.1) S̃k
ij = dn − 2

2d1
B̃k

ij .

Using the classification of the Shepard groups, we obtain the following

Theorem 5.4. 1. ∇ = ∇cs holds if and only if G is a finite Coxeter group
or one of the following groups:

G3 ∼= Zm, G4, G5, G8, G16, G20, G25, G32 .

2. The Saito structures (∇, ∗, E) and (∇cs,�, E) for G agree if and only
if G is a finite Coxeter group or one of the above groups.

Proof. If G is a finite Coxeter group, (5.1) is true since S̃k
ij = 0 and dn = 2. For

G = Zm (m ≥ 2), we can see (5.1) holds by comparing Examples 3.3 and 4.1.
For G = G(m, 1, n) (m ≥ 3, n ≥ 2), we see (5.1) does not hold by comparing
Examples 3.4 and 4.2. For the remaining exceptional Shephard groups, we
checked whether (5.1) holds or not using Mathematica4 and obtained the
result.

4Given a set of basic invariants, it is not difficult to compute S̃k
ij and B̃k

ij using
Mathematica. See (3.6) and (4.5). Formulas for basic invariants can be found, e.g.,
in [7, 9]. For G32, see [8].
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Studying the condition ∇ = ∇cs in the x-coordinates, we are led to the
following

Theorem 5.5. The natural SS (∇, ∗, E) admits a compatible Frobenius struc-
ture if and only if ∇ = ∇cs. Moreover, a compatible metric is a constant
multiple of η and the charge is D = 1 − dn

d1
.

The proof will be given in §8.

6. The matrix representation with respect to ∇-flat
coordinates

Let G be a finite Coxeter group or a Shephard group of rank n and let
x1, . . . , xn be a set of basic invariants for G. We take e and h as in (3.2)
and (4.3). Denote by (∇, ∗, E) the natural Saito structure for G with the
unit e. For the sake of convenience, we take a system of ∇-flat coordinates
t = (t1, . . . , tn) satisfying (i) and (ii) in Theorem 3.5. Here we choose the
normalization t1 = x1 +C[x2, . . . , xn], tn = xn so that e and h are unchanged,
i.e.

e = ∂

∂t1
, h(·, ·) = 〈Hess(tn)(·), ·〉 .

Notice that Edeg and E defined in (3.3) is also written as

(6.1) Edeg =
n∑

α=1
dαt

α ∂

∂tα
, E = 1

d1
Edeg .

Below we write C[t1, t2, . . . tn] = C[t], C[t′] = C[t2, . . . , tn] and

∂α = ∂

∂tα
(1 ≤ α ≤ n).

The ∇-flatness is expressed as ∇(∂α) = 0 (1 ≤ α ≤ n).

6.1. Matrix representations

In this subsection, we write down the conditions for the natural SS (∇, ∗, E)
and the natural ASS (∇V , �, e) in the the matrix form with respect to the
∇-flat coordinates t. (See also [6, §5]).

For two n×n matrices A and B, [A,B] := AB−BA. The identity matrix
and the zero matrix are denoted I and O. Mn(C[t]) denote the space of n×n
matrices whose entries are polynomials in t.
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First, let us consider the conditions for the natural SS (∇, ∗, E) for G.
Denote by Cγ

αβ (1 ≤ α, β, γ ≤ n) the structure constants of the multiplica-
tion ∗:

∂α ∗ ∂β =
n∑

γ=1
Cγ

αβ∂γ , (Cα)γβ := Cγ
αβ .

The matrix Cα is the matrix representation of ∂α∗ with respect to the basis
(∂1, . . . , ∂n). Since the multiplication ∗ is commutative, associative, and has
e = ∂1 as the unit, we have

(6.2) Cγ
αβ = Cγ

βα , [Cα, Cβ] = O , C1 = I .

Denote by U the representation matrix of E∗ with respect to the basis
∂1, . . . , ∂n:

(6.3) E ∗ ∂β =
n∑

γ=1
Uγ

β∂γ , U =
n∑

α=1

dα
d1

tαCα .

Notice that the second equation of (6.2) implies

(6.4) [U,Cα] = O (1 ≤ α ≤ n) .

Given that ∇(∂α) = 0, the conditions (SS1), (SS2) are written as follows.

(6.5) ∂αCβ = ∂βCα , ∂αU = WCα − CαW + Cα (1 ≤ α, β ≤ n) ,

where

W = 1
d1

diag(d1, . . . , dn) .

It is clear that e = ∂1 and E satisfy the conditions (SS3), (SS4).
Recall that the natural SS (∇, ∗, E) is polynomial, i.e., Cγ

αβ ∈ C[t]. By the
first equation of (6.5) and by C1 = I, we have ∂1Cα = ∂αC1 = O. Therefore

(6.6) Cα ∈ Mn(C[t′]) , U − t1I ∈ Mn(C[t′]) .

So detU ∈ C[t] is a monic of degree n as a polynomial in t1. In fact, detU
agrees with the discriminant polynomial of G and

M \M◦ = {t ∈ M | detU = 0} .
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Applying the derivation Edeg to Cγ
αβ, we obtain

(degCγ
αβ)Cγ

αβ

(3.4)= EdegC
γ
αβ =

n∑
μ=1

dμt
μ∂μC

γ
αβ

(6.5)=
n∑

μ=1
dμt

μ∂αC
γ
μβ

= d1∂αU − dαC
γ
αβ

(6.5)= (d1 + dγ − dα − dβ)Cγ
αβ.

Therefore

(6.7) degCγ
αβ = d1 + dγ − dα − dβ , degUγ

β = d1 + dγ − dβ .

Next let us consider the ASS (∇V , �, e) with parameter r = 1
d1

which is
dual to (∇, ∗E). Denote by Bγ

αβ (1 ≤ α, β, γ ≤ 1) the structure constants of
the multiplication �:

∂α � ∂β =
n∑

γ=1
Bγ

αβ∂γ , (Bα)γβ = Bγ
αβ .

Substituting X = ∂α and Y = ∂β into the first equation of (3.8), we have

n∑
δ=1

Uγ
δB

δ
αβ = Cγ

αβ ,

or UBα = Cα. Thus,

(6.8) Bα = U−1Cα
(6.4)= CαU

−1 .

(Therefore the entries of Bα are homogeneous rational functions in t with the
denominator detU . Bα is only defined on M◦.)

Eqs. (6.2) and (6.4) imply

(6.9) Bγ
αβ = Bγ

βα , [Bα, Cβ] = O , [Bα, Bβ] = O , [Bα, U ] = O .

Eq. (6.5) together with (6.9) implies that

∂αBβ = ∂α(CβU
−1) = (∂αCβ)U−1 − CβU

−1(∂αU)U−1

= (∂αCβ)U−1 −BβWBα + U−1CβCαWU−1 −BβBα .
(6.10)

Especially, if α = 1, C1 = I and ∂1Cβ = ∂βI = O. So we have

(6.11) ∂1Bβ = −BβU
−1 .
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Now let Ωα be the connection matrix of ∇V :

∇V
∂α(∂β) =

n∑
γ=1

Ωγ
αβ∂γ , (Ωα)γβ = Ωγ

αβ .

Substituting X = ∂α, Y = ∂β into the second equation of (3.8), we obtain

(6.12) Ωγ
αβ = 1 − dγ

d1
Bγ

αβ .

Moreover, (3.1) implies that

(6.13) Ωγ
αβ = −

n∑
i,j=1

∂ui

∂tα
∂uj

∂tβ
∂2tγ

∂ui∂uj
.

6.2. Representation matrix of the metric h

In the t-coordinates, the metric h is given by

Hαβ := h(∂α, ∂β) (4.4)=
n∑

i,j=1

∂ui

∂tα
∂uj

∂tβ
∂2tn

∂ui∂uj
, H = (Hαβ) .

Comparing this with (6.13), we have

Hαβ = −Ωn
αβ .

Therefore from (6.12), we obtain a key relation

(6.14) Hαβ = −Ωn
αβ = dn − 1

d1
Bn

αβ .

6.3. Representation matrix of Hess(tn)

Define vector fields Xβ (1 ≤ β ≤ n) on M by

(6.15) Xβ = E ∗ ∂β =
n∑

γ=1
Uγ

β∂γ

They are G-invariant vector fields on V and form a basis of the C[V ]G-module
DerGC[V ] of G-invariant vector fields on V [6, §7.3]. Take dt1, . . . , dtn as a basis
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of the C[V ]G-module ΩG
C[V ] of G-invariant 1-forms on V . Let A = (Aαβ) be

the representation matrix of Hess(tn) with respect to them:

(6.16) Hess(tn)(Xβ) =
n∑

α=1
Aαβ dt

α .

Notice that
Aαβ ∈ C[t] , detA 	= 0 ,

since Hess(tn) is the isomorphism (see (CS2) in §4).

Lemma 6.1. A = HU and

Aαβ = dn − 1
d1

Cn
αβ ∈ C[t′]

Proof. First we show A = HU . By definition of Aαβ,

Aαβ =〈Hess(tn)(Xβ), ∂α〉
(6.15)=

n∑
γ=1

Uγ
β〈Hess(tn)(∂γ), ∂α〉

=
n∑

γ=1
Uγ

β h(∂γ , ∂α) =
n∑

γ=1
Uγ

βHγα =
n∑

γ=1
Uγ

βHαγ

= (HU)αβ .

To show the second statement, recall (6.14).

Aαβ =
n∑

γ=1
HαγU

γ
β

(6.14)= dn − 1
d1

(BαU)nβ
(6.8)= dn − 1

d1
Cn

αβ .

Then Aαβ ∈ C[t′] follows from (6.6).

Lemma 6.2. 1. degAαβ = d1 + dn − dα − dβ and⎧⎪⎪⎨
⎪⎪⎩
Aαβ = 0 (α + β < n + 1)
Aαβ ∈ C \ {0} (α + β = n + 1)
Aαβ ∈ C[t′] (α + β > n + 1)

2. A−1 ∈ Mn(C[t′]).
3. A−1WA ∈ Mn(C[t′]) is upper triangular and its diagonal entries are

(A−1WA)μμ = dn+1−μ

d1
= d1 + dn − dμ

d1
.
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4. A−1∂αA ∈ Mn(C[t′]) is strictly upper triangular.

Proof. (1) By Lemma 6.1 and (6.7), the degree of Aαβ is

degAαβ = degCn
αβ = d1 + dn − dα − dβ .

Recall that dα + dβ > d1 + dn holds if α + β < n + 1 (see (4.2)). Therefore if
α+β < n+1, degAαβ < 0, hence Aαβ = 0. Recall also that dα+dβ = d1 +dn
if α+β = n+1 (see (CS3) in §4). Therefore Aαβ is a constant if α+β = n+1.
Then we have

detA = (−1)
n(n−1)

2

n∏
α=1

Aα,n+1−α .

Since detA 	= 0, Aα,n+1−α 	= 0.
(2) Let us put

T =

⎛
⎜⎜⎝

1

. .
.

1

⎞
⎟⎟⎠ .

Then TA is the matrix obtained by exchanging the i-th row and the (n +
1 − i)-th row (1 ≤ i ≤ n) of A. So TA ∈ Mn(C[t′]) is upper triangular
and its diagonal entries are nonzero constants An1, . . . , A1n. Therefore TA is
invertible, (TA)−1 = A−1T ∈ Mn(C[t′]) is upper triangular and its diagonal
entries are nonzero constants. A−1 is obtained from A−1T by exchanging
the j-th column and the (n + 1 − j)-th column (1 ≤ j ≤ n). Therefore
A−1 ∈ Mn(C[t′]).

(3) and (4) immediately follow from A−1WA = (TA)−1(TWT )(TA) and
A−1∂αA = (TA)−1∂α(TA).

Lemma 6.3. A = tA and

ACα = tCαA , ABα = tBαA (1 ≤ α ≤ n) , AU = tUA .

Proof. By Lemma 6.1, we have

Aμν = dn − 1
d1

Cn
μν

(6.2)= dn − 1
d1

Cn
νμ = Aνμ .

We also have

(ACα)μν = dn − 1
d1

(CμCα)nν
(6.2)= dn − 1

d1
(CαCμ)nν = dn − 1

d1

n∑
λ=1

Cn
αλC

λ
μν ,
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and

(ABα)μν = dn − 1
d1

(CμBα)nν
(6.9)= dn − 1

d1
(BαCμ)nν = dn − 1

d1

n∑
λ=1

Bn
αλC

λ
μν .

In all of the above equations, the RHS’s are symmetric with respect to the
exchange of μ and ν. So A, ACα and ABα are symmetric matrices. Therefore
A = tA, ACα = t(ACα) = tCαA and ABα = t(ABα) = tBαA. The remaining
equation AU = tUA easily follows from ACα = tCαA and (6.3).

6.4. Levi–Civita connections for Shephard groups

In the t-coordinates, the Levi–Civita connection ∇cs of the metric h is ex-
pressed as

∇cs
∂α(∂β) =

n∑
γ=1

Sγ
αβ∂γ , Sγ

αβ = 1
2

n∑
δ=1

Hγδ (∂αHδβ + ∂βHδα − ∂δHαβ) .

Here H = (Hαβ) is the representation matrix of the metric h defined in §6.2
and Hαβ (1 ≤ α, β ≤ n) denotes the (α, β) entry of the inverse matrix H−1.
We put

(Sα)γβ = Sγ
αβ .

Lemma 6.4.

2Sα = A−1∂αA + (−I −W + A−1WA)Bα .

Proof. With (6.14) and (6.10), we have

∂αHδβ = dn − 1
d1

∂αB
n
δβ

= dn − 1
d1

(
(∂αCδ)U−1 −BδWBα + U−1CδCαWU−1 −BδBα

)n
β
.

Therefore

∂αHδβ − ∂δHαβ
(6.2)(6.9)= dn − 1

d1
(BαWBδ −BδWBα)nβ

(6.14)= (HWBδ)αβ − (HWBα)δβ
(6.9)= (HWBβ)αδ − (HWBα)δβ .
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On the other hand, by (6.14) and Lemma 6.1,

∂βHδα = ∂βHαδ = dn − 1
d1

∂βB
n
αδ

= dn − 1
d1

(∂βCα U
−1 −BαWBβ + U−1CαCβWU−1 −BαBβ)nδ

= dn − 1
d1

(∂αCβ U
−1 −BαWBβ + CβBαWU−1 − CβBαU

−1)nδ

= ((∂αA)U−1)βδ − (HWBβ)αδ + (ABαWU−1)βδ − (ABαU
−1)βδ

Adding these two equations, we obtain

∂αHδβ + ∂βHδα − ∂δHαβ =
(
(∂αA + ABα(W − I))U−1)

βδ
− (HWBα)δβ .

Therefore

2Sγ
αβ =

n∑
δ=1

Hγδ((∂αA + ABα(W − I))U−1)
βδ

−
n∑

δ=1
Hγδ(HWBα)δβ

=
(
(∂αA + ABα(W − I))U−1H−1)

β

γ − (WBα)γβ
=

(
(∂αA + ABα(W − I))A−1)

β

γ − (WBα)γβ .

Using Lemma 6.3, we see that the matrix in the first term is the transpose of

A−1∂αA + A−1(W − I)ABα .

Therefore

2Sγ
αβ = (A−1∂αA + (−I −W + A−1WA)Bα)γβ .

7. Proofs of Theorem 4.4, Theorem 4.5 and Theorem 5.1

7.1. Proofs of Theorem 4.4-(1)(2) and Theorem 5.1

First we show that
detS1 	= 0

holds on M◦. Substituting ∂1A = O and B1 = U−1 into Lemma 6.4, we have

(7.1) 2S1 = (−I −W + A−1WA)U−1 .
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By Lemma 6.2 (3), −I −W + A−1WA is upper triangular and

(−I −W + A−1WA)μμ = −1 − dμ
d1

+ d1 + dn − dμ
d1

= −2dμ + dn
d1

(4.1)
< 0 .

This implies det(−I −W +A−1WA) 	= 0. Since detU 	= 0 on M◦, detS1 	= 0
on M◦. The representation matrix of the map X → ∇cs

Xe is given by S1.
Therefore detS1 	= 0 implies that this map is invertible. This proves Theorem
4.4-(1). Thus (4.6) determines the multiplication .

Next we prove Theorem 5.1. Let Bcs
α (1 ≤ α ≤ n) denote the represen-

tation matrix of ∂α. To show that the multiplication  agrees with �, it is
enough to show that Bcs

α = Bα. Notice that (4.6) is written as follows.

O = ∂αS1 + SαS1 − S1Sα + S1B
cs
α = ∂1Sα + S1B

cs
α .

In the last line, we used the flatness of ∇cs. Therefore

(7.2) Bcs
α = −S−1

1 ∂1Sα .

Since A is independent of t1 (Lemma 6.2), we have

2∂1Sα = (−I −W + A−1WA)∂1Bα
(6.11)= −(−I −W + A−1WA)U−1Bα .

Substituting this equation and (7.1) into (7.2), we obtain Bcs
α = Bα.

Theorem 4.4-(2) immediately follows from Theorem 5.1.

7.2. Proof of Theorem 4.4 (3)

We show that (∇cs,  = �, E) satisfies (ASS1)–(ASS4). We already showed
that ∇cs and E satisfy (ASS3) in Lemma 4.3. It is clear that  satisfies
(ASS2) since � =  satisfies (ASS2). It is also clear that (ASS4) holds since
the multiplication  is made from ∇cs and e by the condition (ASS4). So we
only have to check the condition (ASS1).

In the matrix representation, (ASS1) is equivalent to

∂αBβ + [Sα, Bβ] = ∂βBα + [Sβ, Bα].

Using Lemma 6.4, this is equivalent to

2 (∂αBβ − ∂βBα) = −[A−1∂αA,Bβ] + [A−1∂βA,Bα]
+ Bβ(−W + A−1WA)Bα −Bα(−W + A−1WA)Bβ .

(7.3)
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To show (7.3), let us compute ∂αBβ − ∂βBα in two ways. By (6.10), we have

∂αBβ − ∂βBα = −BβWBα + BαWBβ .

On the other hand, using Bα = A−1(tBα)A (Lemma 6.3), we have

∂αBβ − ∂βBα = ∂α(A−1 tBβA) − ∂β(A−1 tBαA)
= −A−1∂αAA−1tBβA︸ ︷︷ ︸

=Bβ

+A−1∂α
tBβA + A−1Bβ︸ ︷︷ ︸

=BβA−1

∂αA− (α ↔ β)

= −[A−1∂αA,Bβ ] + [A−1∂βA,Bα] + A−1t(∂αBβ − ∂βBα)A−1

= −[A−1∂αA,Bβ ] + [A−1∂βA,Bα] −BαA
−1WABβ + BβA

−1WABα .

Adding these two equations, we obtain (7.3).

7.3. Proof of Theorem 4.4 (4)

To show that (h, �, e) is an almost Frobenius structure, we have to check (2.8),
(2.9), (2.10) with ∇, g replaced by ∇cs, h. Eq. (2.8) trivially holds since ∇cs

is the Levi–Civita connection of h. In the matrix form, (2.9) and (2.10) are
equivalent to the followings.

n∑
λ=1

Bλ
αβHλγ =

n∑
λ=1

Bλ
βγHαλ , ∂1H + HB1 = O .

But these immediately follows from (6.14), (6.9) and (6.11).

7.4. Proof of Theorem 4.5

The proof is almost the same as the proof of [6, Theorem 7.5-(3)].
Consider the Saito structure (∇cs,�, e) dual to (∇cs,  = �, E). Compar-

ing the first equations of (3.7) and (4.7), we see that the multiplication �
agrees with the multiplication ∗ of the natural Saito structure for G. To show
that (∇cs,� = ∗, e) is a polynomial Saito structure, we will find a set of basic
invariants s = (s1, . . . , sn) satisfying the following (i) and (ii):

(i) s = (s1, s2, . . . , sn) is a system of ∇cs-flat coordinates.
(ii) The structure constants of the multiplication � = ∗ with respect to the

basis ∂
∂s1 , . . . ,

∂
∂sn are polynomials in s.
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Since � = ∗, the representation matrix of ∂α� is Cα. Let

∇cs
∂α(∂β) =

n∑
γ=1

Υγ
αβ , (Υα)γβ = Υγ

αβ .

Then by the second relation of (4.7) and Lemma 6.4,

(7.4) Υα = Sα − S1Cα = 1
2A

−1∂αA (1 ≤ α ≤ n) .

Notice that Lemma 6.2 implies that Υα is strictly upper triangular and that
deg Υγ

αβ = dγ − dα − dβ. Moreover, the flatness5 of ∇cs implies that

(7.5) ∂αΥβ − ∂βΥα + [Υα,Υβ] = O .

Lemma 7.1. There exists a unique upper unitriangular matrix X ∈Mn(C[t′])
with homogeneous entries satisfying

(7.6) ∂αX + ΥαX = O (1 ≤ α ≤ n) .

Moreover degXγ
β = dγ − dβ.

Proof. Let us set

Xγ
γ = 1 (1 ≤ γ ≤ n) , Xγ

β = 0 (1 ≤ β < γ ≤ n) .

We will solve the equation (7.6). Component-wise, it is written as

(7.7) ∂αX
γ
β = −

n∑
δ=1

Υγ
αδX

δ
β (1 ≤ α ≤ n) .

Notice that the sum in the RHS is taken for γ < δ ≤ β since Υγ
αδ = 0 if γ ≥ δ

and Xδ
β = 0 if δ > β.

Now let us fix 1 ≤ β ≤ n. If γ ≥ β, the RHS of (7.7) is zero because δ
satisfying γ < δ ≤ β does not exist. The LHS is also zero since Xγ

β = 0 or
1. So (7.7) holds.

Consider the case γ = β − 1. The system of partial differential equations
(7.7) for Xβ−1

β becomes

∂αX
β−1

β = −Υβ−1
αβ (1 ≤ α ≤ n) .

5The connection ∇cs is flat since it is constructed from ∇cs by (4.7). See [6,
Proposition 3.7].
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The homogeneous polynomial solution Xβ−1
β ∈ C[t] uniquely exists due to

(7.5). Its degree is

degXβ−1
β = deg Υβ−1

αβ + dα = (dβ−1 − dα − dβ) + dα = dβ−1 − dβ .

For γ = β − 2, (7.7) becomes

∂αX
β−2

β = −Υβ−2
αβ − Υβ−2

α,β−1X
β−1

β (1 ≤ α ≤ n) .

The homogeneous polynomial solution Xβ−2
β ∈ C[t] uniquely exists due to

(7.5) and its degree is dβ−2−dβ . For γ = β−3, . . . , 2, 1, the similar argument
shows the existence of homogeneous polynomial solution Xγ

β ∈ C[t] of degree
dγ − dβ.

Since degXγ
β < dγ ≤ d1, Xγ

β is independent of t1, i.e. Xγ
β ∈ C[t′].

Now let X ∈ Mn(C[t′]) be the matrix in Lemma 7.1. Since X ∈ Mn(C[t′])
is upper unitriangular, X is invertible and X−1 ∈ Mn(C[t′]) is also upper uni-
triangular. Moreover deg(X−1)γβ = dγ − dβ. Then we can find homogeneous
polynomials s1, . . . , sn ∈ C[t] satisfying

dsα =
n∑

β=1
(X−1)αβdt

β , deg sα = dα (1 ≤ α ≤ n) .

By degree consideration, s1, . . . , sn are of the following forms:

sn = tn , sn−1 = tn−1 + Fn−1(tn) , . . . , s1 = t1 + F1(t2, . . . , tn) .

We can solve these equations for t and express t1, . . . , tn as polynomials in
s1, . . . , sn. Therefore s = (s1, . . . , sn) is a set of basic invariants. We obtain
C[s] = C[t] and C[s′] = C[t′].

Next let us show (i). Taking the dual of ds1, . . . , dsn, we obtain

(7.8) ∂

∂sβ
=

n∑
γ=1

Xγ
β∂γ (1 ≤ β ≤ n) .

Applying ∇cs
∂α

, we have

∇cs
∂α

∂

∂sβ
=

n∑
δ=1

(∂αX + ΥαX)δβ∂δ
(7.6)= 0 .

Thus s = (s1, . . . , sn) is a system of ∇cs-flat coordinates.
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Finally we show (ii). Denote by Ĉγ
αβ the structure constants of � = ∗

with respect to the new basis ∂
∂s1 , . . . ,

∂
∂sn :

∂

∂sα
∗ ∂

∂sβ
=

n∑
γ=1

Ĉγ
αβ

∂

∂sγ
.

Then by (7.8),

Ĉγ
αβ =

∑
μ,ν,λ

Xμ
αX

ν
βC

λ
μν(X−1)γλ .

Since X,X−1, Cμ ∈ Mn(C[t′]), Ĉγ
αβ ∈ C[t′] = C[s′]. Theorem 4.5 is proved.

8. Proof of Theorem 5.5

The notations are the same as §7.

Lemma 8.1. ∇cs = ∇ holds if and only if A is an anti-diagonal constant
matrix.

Proof. The condition ∇cs = ∇ is equivalent to Υα = O (1 ≤ α ≤ n). There-
fore by (7.4) ∇cs = ∇ holds if and only if A is a constant matrix. By Lemma
6.2, A is a constant matrix if and only if it is anti-diagonal.

Remark 8.2. In the case n = 2, A is given by

A = d2 − 1
d1

(
0 1
1 C2

22

)
.

Therefore by Lemma 8.1, A is an anti-diagonal if and only if C2
22 = 0. It

is not difficult to compute C2
22. See [1, §5], [6, Tables C6, C7, C8]. Among

exceptional Shephard groups of rank 2, C2
22 	= 0 holds only for G4, G5, G8,

G16, G20. This result agrees with Theorem 5.4 proved by the calculation using
the u-coordinates.

Next we consider the metric η defined by (4.9).

Lemma 8.3. The matrix A defined in (6.16) is the representation matrix of
the metric η with respect to ∂α (1 ≤ α ≤ n):

η(∂α, ∂β) = Aαβ (1 ≤ α, β ≤ n).
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Proof. Substituting � = ∗, X = ∂α and Y = ∂β into (4.9), we obtain

η(∂α, ∂β) = h(∂α, E ∗ ∂β) = h

⎛
⎝∂α,

n∑
γ=1

Uγ
β∂γ

⎞
⎠ = (HU)αβ .

Since A = HU (see Lemma 6.1), η(∂α, ∂β) = Aαβ.

Now we prove Theorem 5.5. Assume that θ is a metric on M compatible
with the natural Saito structure (∇, ∗, E). Then θ must satisfy (2.5), (2.6),
(2.7) (with η replaced by θ). Let Θ be the representation matrix of θ with
respect to ∂α (1 ≤ α ≤ n), i.e.

Θαβ = θ(∂α, ∂β) .

Then (2.5) is equivalent to

∂αΘβγ = 0 (1 ≤ α, β, γ ≤ n) .

Therefore Θ must be a constant matrix.
Eq. (2.7) is equivalent to

dα + dβ
d1

Θαβ = (2 −D)Θαβ (1 ≤ α, β ≤ n) .

Since Θ 	= O, it follows that 2−D = (dα +dβ)/d1 must holds for some (α, β).
Let us show that

2 −D = d1 + dn
d1

.

First assume that d1(2 −D) > d1 + dn holds. Then by (4.2),

dα + dβ
d1

≤ d1 + dn
d1

< 2 −D (α + β ≥ n + 1) .

So Θαβ = 0 must hold for α + β ≥ n + 1, which implies det Θ = 0. This
contradicts the nondegeneracy of the metric θ. Therefore d1(2−D) ≤ d1 +dn.
By a similar argument, we can show d1(2 −D) ≥ d1 + dn. Thus we have

(8.1) 2−D = d1 + dn
d1

, Θαβ = 0 (α+β 	= n+1) , Θα,n+1−α ∈ C\{0} .
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Finally, the condition (2.6) implies θ(∂α, ∂β) = θ(∂α ∗ ∂β , ∂1). So

Θαβ =
n∑

γ=1
Cγ

αβΘγ,1
(8.1)= Cn

αβΘn,1
Lemma6.1= d1Θn,1

dn − 1Aαβ .

Since Θ is anti-diagonal, this equation implies that A must be an anti-diagonal
matrix. Hence by by Lemma 8.1, ∇ = ∇cs must hold. Moreover θ must be a
constant multiple of η since A is the representation matrix of η (Lemma 8.3).

The proof of the converse is immediate. If we assume that ∇ = ∇cs, then
it is clear that the constant multiple of η is compatible with (∇cs,� = ∗, E)
since η is a metric compatible with (∇cs,� = ∗, E). (See the last paragraph
in §4.) This finishes the proof of Theorem 5.5.

Appendix A. Vector field e for G(m, 1, n)

A.1. Preliminary

For a tuple of variables v = (v1, . . . , vn), let

eα(v) =
∑

1≤i1<i2<...<iα≤n

vi1vi2 · · · viα

be the α-th elementary symmetric polynomial in v. We use the notation

v(i,j,...,k) = v \ {vi, vj , . . . , vk} .

Notice that

(A.1) eα(v(i,j,...,k)) = vleα−1(v(i,j,...,k,l)) + eα(v(i,j,...,k,l)) (l 	= i, j, . . . , k) .

We set

E(v) = E(v1, . . . , vn) =

⎛
⎜⎜⎜⎜⎝

1 . . . 1
e1(v(1)) . . . e1(v(n))

...
...

en−1(v(1)) . . . en−1(v(n))

⎞
⎟⎟⎟⎟⎠ .

Lemma A.1. The determinant of E(v) is given by

|E(v)| =
∏

1≤k<l≤n

(vk − vl) .
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Proof. Subtracting the first column from the k-th column (k > 1) and using
(A.1), we have

|E(v1, . . . , vn)| =

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0
e1(v(1)) v1 − v2 · · · v1 − vn

e2(v(2)) (v1 − v2)e1(v(1,2)) · · · (v1 − vn)e1(v(1,n))
...

...
...

en(v(n)) (v1 − v2)en−1(v(1,2)) · · · (v1 − vn)en−1(v(1,n))

∣∣∣∣∣∣∣∣∣∣∣∣
=

∏
2≤k≤n

(v1 − vk) ·
∣∣∣E(v2, . . . , vn)

∣∣∣ .
The claim follows by induction.

Next we calculate the (α, j) minor of E(v). Let E(v)α,j be the matrix
obtained by deleting the α-th row and the j-th column of E(v).

Lemma A.2. The determinant of E(v)α,j is given by

|E(v)α,j | = (vj)n−α
∏

1≤k<l≤n;
k,l �=j

(vk − vl) .

Proof. We may assume j = 1, since∣∣∣E(v1, v2, . . . , vn)α,j
∣∣∣ = (−1)j−2

∣∣∣E(vj , v2, . . . , vj−1, v1, vj+1, vn)α,1
∣∣∣ .

First we consider the case α = 1. Subtract the first column of E(v)1,1 from
the k-th column (k > 1). Then subtract the second column from the k-th
column (k > 2). Continuing this process, we have

|E(v)1,1| =

∣∣∣∣∣∣∣∣∣∣

e1(v(2)) e1(v(3)) · · · e1(v(n))
e2(v(2)) e2(v(3)) · · · e2(v(n))

...
...

. . .
...

en−1(v(2)) en−1(v(3)) · · · en−1(v(n))

∣∣∣∣∣∣∣∣∣∣

=
∏

3≤k≤n

(v2 − vk)

∣∣∣∣∣∣∣∣∣∣

e1(v(2)) 1 · · · 1
e2(v(2)) e1(v(2,3)) · · · e1(v(2,n))

...
...

. . .
...

en−1(v(2)) en−2(v(2,3)) · · · en−2(v(2,n))

∣∣∣∣∣∣∣∣∣∣
=

∏
3≤k≤n

(v2 − vk)
∏

4≤k≤n

(v3 − vk)
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×

∣∣∣∣∣∣∣∣∣∣

e1(v(2)) 1 0 · · · 0
e2(v(2)) e1(v(2,3)) 1 · · · 1

...
...

. . .
...

en−1(v(2)) en−2(v(2,3)) en−3(v(2,3,4)) · · · en−3(v(2,3,n))

∣∣∣∣∣∣∣∣∣∣
...

=
∏

2≤i<j≤n

(vi − vj)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1(v(2)) 1 0 · · · 0 0
e2(v(2)) e1(v(2,3)) 1 · · · 0 0
e3(v(2)) e2(v(2,3)) e1(v(2,3,4)) · · · 0 0

...
...

...
. . .

...
...

en−2(v(2)) en−3(v(2,3)) en−4(v(2,3,4)) · · · e1(v(2,...,n−1)) 1
en−1(v(2)) en−2(v(2,3)) en−3(v(2,3,4)) · · · e2(v(2,...,n−1)) e1(v(2,...,n))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
(♠)

.

Next we eliminate the entries below the diagonal of (♠) by column operations.
We start from the bottom row. For k < n− 1, eliminate the (n− 1, k) entry
en−k(v(2,...,k+1)) = v1vk+2 · · · vn using the (n−1, n−1) entry e1(v(2,...,n)) = v1.
Then (n−2, n−2) entry becomes e1(v(2,...,n−1))−vn = v1 and all the (n−2, k)
entries for k < n − 2 are divisible by v1. Repeating the elimination process,
we obtain

(♠) =

∣∣∣∣∣∣∣∣∣∣

v1 1 O
.. .

. . .

v1 1
O v1

∣∣∣∣∣∣∣∣∣∣
= (v1)n−1 .

This proves the formula for α = 1. The cases α > 1 may be reduced to the
case α = 1 as follows. By column operations similar to those in Lemma A.1,
we have

|E(v)α,1| =
∏

2≤i≤α

( ∏
i<j≤n

(vi − vj)
)
·

∣∣∣∣∣∣∣∣
e1(v(2,··· ,α,α+1)) · · · e1(v(2,··· ,α,n))

...
. . .

...
en−α(v(2,··· ,α,α+1)) · · · en−α(v(2,··· ,α,n))

∣∣∣∣∣∣∣∣
=

∏
2≤i≤α

( ∏
i<j≤n

(vi − vj)
)
·
∣∣∣E(v1, vα+1, . . . , vn)1,1

∣∣∣ .

Thus the formula for α > 1 follows from that for α = 1.
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From the above two lemmas, we obtain the following

Lemma A.3. The (i, α) entry of E(v)−1 is given by

(E(v)−1)iα = (−1)α+1(vi)n−α
∏

1≤l≤n;
l �=i

(vi − vl)−1 .

Proof. Substitute the formulas in Lemmas A.1 and A.2 into

(E(v)−1)iα = (−1)i+α|E(v)α,i|
|E(v)| .

A.2. The vector field e for G(m, 1, n)

If we set

vi = (ui)m (1 ≤ i ≤ n) ,

then a set of basic invariants for G(m, 1, n) is given by

xα = en+1−α(v) (1 ≤ α ≤ n) .

Proposition A.4. We have

∂ui

∂xα
= (−1)n+α(ui)m(α−2)+1

m

∏
1≤l≤n;
l �=i

(vi − vl)−1 .

Proof. From (A.1), it is immediate to see that

∂

∂vi
eα(v) = eα−1(v(i)) .

Therefore, using the chain rule, we have
⎛
⎜⎜⎝

∂xn

∂u1 . . . ∂xn

∂un

...
...

∂x1

∂u1 . . . ∂x1

∂un

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

∂xn

∂v1 . . . ∂xn

∂vn

...
...

∂x1

∂v1 . . . ∂v1

∂un

⎞
⎟⎟⎠

⎛
⎜⎜⎝

∂v1

∂u1 . . . ∂v1

∂un

...
...

∂vn

∂u1 . . . ∂vn

∂un

⎞
⎟⎟⎠

= mE(v) diag((u1)m−1, . . . , (un)m−1)
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Therefore by the inverse function theorem,⎛
⎜⎜⎝

∂u1

∂xn . . . ∂u1

∂x1

...
...

∂un

∂xn . . . ∂un

∂x1

⎞
⎟⎟⎠ = 1

m
diag((u1)1−m, . . . , (un)1−m)E(v)−1 .

Comparing the (i, n + 1 − α) entries of the both sides, we obtain

∂ui

∂xα
= (ui)1−m

m
(E(v)−1)i,n+1−α

Thus the statement follows from Lemma A.3.

Corollary A.5. The vector field e = ∂
∂x1 is given as follows.

e =
n∑

k=1
ek

∂

∂uk
, ek = (−1)n+1

m(uk)m−1

∏
1≤l≤n;
l �=k

(vk − vl)−1 .
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