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Abstract: The question of vanishing of the BV operator on the
cohomology of the moduli space of Riemann surfaces is investi-
gated. The BV structure, which comprises a BV operator and an
antibracket, is identified, vanishing theorems are proven, and a
counterexample is provided.
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Introduction

Since the early nineties, there has been considerable interest in nonperturba-
tive methods in string field theory, in particular, setting up a quantum master
equation (QME)

(1) dS + �ΔS + 1
2{S, S} = 0

in the dg-BV-algebra C•
c (M) of compactly supported cochains with rational

coefficients on the moduli space M of Riemann surfaces and describing a
solution S of the QME, see, for example, [44, 45, 39, 24, 10, 30, 6, 7, 16, 22,
20, 32, 23, 9, 5]. One work that caught the eye was that of Kevin Costello [7],
in which he used homotopical-algebraic methods and certain elementary facts
about the cohomology of moduli spaces to prove the existence and uniqueness,
up to homotopy, of a solution S of the QME. The proof consisted in a clever
reduction of the QME to a linear equation

(2) d̂S′ = 0

on a related S′ in a homotopy abelian subquotient of C•
c (M) for the differ-

ential d̂ = d + �Δ and transferring the problem to cohomology.
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Note that the QME (1) is actually a Maurer-Cartan equation

d̂S + 1
2{S, S} = 0

in the dg-Lie algebra of cochains on the moduli space and if this dg-Lie
algebra is homotopy abelian, then the Maurer-Cartan equation is equivalent
to the cocycle equation (2). It is known, see [40, 21], that in a dg-BV-algebra,
the homotopy abelianness of the underlying dg-Lie algebra may be derived
from the degeneration at E1 of a spectral sequence associated to the double
complex (C•

c (M), d,Δ), which entails the vanishing of the differential d1 = Δ
on the cohomology H•

c (M).
Given Costello’s homotopy abelianness result, one might hope that ho-

motopy abelianness takes place for the whole dg-Lie algebra C•
c (M) and that

the general argument of [40, 21] would imply Costello’s existence and unique-
ness result. On the other hand, any general statement, such as the vanishing
of a cohomology operation, Δ in particular, on the cohomology of the moduli
space is extremely interesting, given how little is still known about it.

This paper grew out of our investigation of the vanishing of Δ on the
cohomology H•

c (M) of the moduli space. It has turned out that Δ vanishes
on vast ranges of these cohomology groups, appearing to provide convincing
evidence for vanishing everywhere, see Section 2 below. On the other hand, we
have found out that total vanishing does not actually take place. We provide
a counterexample in Corollary 2.7. In the process, we obtain useful descrip-
tion of the BV operator Δ and the antibracket {−,−}, relating them to the
differential d1 in the spectral sequence associated to the topological filtra-
tion on the compactified moduli space M. This differential may be expressed
as the Gysin homomorphism given by Poincaré residue, see Section 1.3. It is
somewhat surprising that the differentials on the first terms of the spectral se-
quences associated to the double complex (C•

c (M), d,Δ) and the topological
filtration on M are closely related, see Theorem 1.2.

Conventions

In this paper, Mg,n denotes the (usual) moduli space of smooth, connected,
compact, genus g Riemann surfaces with n labeled punctures. Here and
throughout the paper, we assume that our Riemann surfaces are stable, i.e.,
n ≥ 3 if g = 0 and n ≥ 1 if g = 1; otherwise g, n ≥ 0. Let Sn be the group of
permutations of n objects. Then Mg(n) := Mg,n/Sn is the moduli space of
compact Riemann surfaces with n unlabeled punctures.
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We work with homology H•(X) := H•(X,Q) and cohomology H•(X) :=
H•(X,Q) with rational coefficients. Vector spaces are also assumed to be
over Q.

1. The BV structure on the (co)homology of moduli spaces

1.1. Operations on the homology H•(Mg(n),Q)

The following operations have been originally defined by Zwiebach [45] and
modified by Costello [7].

1. For n ≥ 0, define the BV operator

(3) Δ : Hk(Mg(n + 2)) → Hk+1(Mg+1(n))

as follows. If Z ∈ Hk(Mg(n+2)) is a homology class represented by a singular
cycle Z =

∑m
i=1 ciσi for σi : Δk → Mg(n + 2), then set

Δ(Z) :=
∑
i

ci
∑
{β,γ}

(twist-gluing of σi at punctures {β, γ}
)
,

where the summation runs over unordered pairs {β, γ} of punctures and twist-
gluing is cutting out small holomorphic disks around the punctures {β, γ},
and gluing their complement(s) along the boundaries. More precisely, we con-
sider holomorphic disks at each puncture (i.e., holomorphic embeddings of the
standard disk |z| < 1 centered at the puncture and not containing other punc-
tures). Then we cut out the disks |z| ≤ r and |w| ≤ r for some r = 1 − ε at
sewn punctures and identify the annuli r < |z| < 1/r and r < |w| < 1/r via
w = eit/z, with t running over the interval [0, 2π], and thereby increasing the
degree of the chain σi. This gives a new chain S1 ×Δk → Mg+1(n), resulting
in a new cycle Δ(Z). Moreover, the map Δ is well-defined on H•(Mg(n+2)),
i.e., it is independent of the choice of holomorphic disks involved in twist-
gluing (see [45, 7]).

2. Similarly, for n1, n2 ≥ 0, define the antibracket

(4) {−,−} : Hk1(Mg1(n1 + 1)) ⊗Hk2(Mg2(n2 + 1))
→ Hk1+k2+1(Mg1+g2(n1 + n2))

as follows. If Z1 ∈ Hk1(Mg1(n1+1)) and Z2 ∈ Hk2(Mg2(n2+1)) are homology
classes represented by singular cycles Z1 =

∑m
i=1 ciσi for σi : Δk1 → Mg1(n1+
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1) and Z2 =
∑m

j=1 djτj for τj : Δk2 → Mg2(n2 + 1), then set

{Z1, Z2} :=
∑
i,j

cidj
∑
β,γ

(twist-gluing of σi with τj at punctures β, γ) ,

where β runs over the punctures of the surface in Mg1(n1 + 1) and γ runs
over the punctures of the surface in Mg2(n2 + 1). This gives a new chain
S1 × Δk1 × Δk2 → Mg1+g2(n1 + n2), resulting in a new cycle {Z1, Z2} ∈
Hk1+k2+1(Mg1+g2(n1 + n2)), independent of the choices made along the way
(see ibid.).

The reason why these homology operations are introduced is to set up a
quantum master equation, actually, at the chain, rather than homology level:

dS + �ΔS + 1
2{S, S} = 0

on a formal power series S =
∑

g,n≥0
2g−2+n>0

Sg,nλ
2g−2+n�g with coefficients Sg,n

being chains in C6g−6+2n(Mg(n)) and d denoting chain boundary. However,
for the above equation to be sensible, degree considerations suggest to change
grading on chains and homology to grading by codimension, as well as as-
sume that the formal variables λ and � have degree zero. This change of
grading may be regarded as the application of canonical Poincaré-Lefschetz
duality

Hk(Mg(n)) = H6g−6+2n−k
c (Mg(n)),

where H•
c denotes cohomology with compact support. Thus, under Poincaré-

Lefschetz duality, the BV operator (3) and antibracket (4) turn into

(5) Δ : Hk
c (Mg(n + 2)) → Hk+1

c (Mg+1(n))

and

(6) {−,−} : Hk1
c (Mg1(n1 + 1)) ⊗Hk2

c (Mg2(n2 + 1))
→ Hk1+k2+1

c (Mg1+g2(n1 + n2)),

respectively. We hope that, given that Poincaré-Lefschetz duality identifies
these operations (5) and (6) with (3) and (4), respectively, our use of the
same notation, Δ and {−,−}, will not create serious confusion.
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From [2, 45] we know that these two operations define the structure of a
dg-Lie algebra with a differential Δ of degree 1 on

(7) g :=
⊕
g,n≥0

2g−2+n>0

H•
c (Mg(n))[1],

where V [1] denotes the desuspension of a graded vector space V : V [1]k :=
V k+1.

Remark 1.1. The graded symmetric algebra S(g[−1]) on the suspension of
a dg-Lie algebra g is known to carry the structure of a BV-algebra, see [42,
Example 2.5], which uses a slightly different grading convention: deg Δ = −1
and deg � = 2. In the case of our dg-Lie algebra g as in (7), the graded
symmetric algebra S(g[−1]) is isomorphic to the (co)homology H•

c (M) of
Zwiebach’s dg-BV-algebra C•

c (M) of compactly supported chains in the moduli
space M of not necessarily connected, closed Riemann surfaces with unlabeled
punctures.

1.2. Construction via the real Deligne-Mumford compactification

Let Mg(n) be the real Deligne-Mumford compactification of Mg(n) to an
orbifold with corners (see [24]). It is known that Mg(n) is homotopy equiv-
alent to Mg(n) and H•(Mg(n)) ∼= H•(Mg(n)). In this construction, Δ uses
twist-attaching (in which there are S1 ways of attaching a pair of punctures
on a Riemann surface Σ ∈ Mg(n), or S1 worth of choices of real rays in the
tensor product (over C) of the tangent spaces to Σ at these two punctures).
The antibracket {−,−} uses twist-attaching in a similar way.

1.3. Construction via the Deligne-Mumford compactification

1.3.1. The “topological” spectral sequence Let Mg(n) denote the
Deligne-Mumford (DM) compactification of Mg(n) and Mg(n)(p) be the
moduli space of Riemann surfaces with at least p double points (also known
as nodes). Then we have a decreasing filtration

· · · ⊂ Mg(n)(p+1) ⊂ Mg(n)(p) · · · ⊂ Mg(n)(0) = Mg(n).

It generates a spectral sequence satisfying

(8) E1
p,q = Hp+q(Mg(n)(−p),Mg(n)(−p+1)) ⇒ H•(Mg(n))
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with E1
p,q = 0 unless q ≥ −p ≥ 0 and a differential

d1
p,q :Hp+q(Mg(n)(−p),Mg(n)(−p+1)) → Hp+q−1(Mg(n)(−p+1),Mg(n)(−p+2)),

given by the boundary map in the long exact sequence of the triple
(Mg(n)(−p),Mg(n)(−p+1),Mg(n)(−p+2)). We will also utilize a coboundary
map, the linear dual

(d1
p,q)∗ : Hp+q−1

c (Mg(n)(−p+1) \Mg(n)(−p+2))(9)
→ Hp+q

c (Mg(n)(−p) \Mg(n)(−p+1))

of d1
p,q later on.
After applying Poincaré-Lefschetz duality and a linear change of variables

p, q to the spectral sequence (8), we get a cohomological spectral sequence
with

(10) Ep,q
1 = Hq−p(Mg(n)(p) \Mg(n)(p+1)) ⇒ H•(Mg(n))

with q ≥ p ≥ 0 and a differential

dp,q1 : Hq−p(Mg(n)(p) \Mg(n)(p+1)) → Hq−p−1(Mg(n)(p+1) \Mg(n)(p+2)).

This is the Poincaré residue map (see [8, 11, 25]), which might be thought
of as a Gysin homomorphism, integration along the boundary of the tubular
neighborhood of Mg(n)(p+1) inside Mg(n)(p). The linear dual is

(dp,q1 )∗ : Hq−p−1(Mg(n)(p+1) \Mg(n)(p+2)) → Hq−p(Mg(n)(p) \Mg(n)(p+1))
(11)

may also be thought of as a Gysin homomorphism in homology. We will now
demonstrate that the BV operator (3) and antibracket (4) are essentially these
Gysin homomorphisms (dp,q1 )∗, see (11), for p = 0. This will imply that the
corresponding operators (5) and (6) on the compactly supported cohomology
are essentially the coboundary homomorphisms (d1

p,q)∗, see (9), for p = 0.

1.3.2. Identification of the BV operator Let

αp : H•(Mg(n + 2)(p) \Mg(n + 2)(p+1))
→ H•(Mg+1(n)(p+1) \Mg+1(n)(p+2))
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be the composition αp := π∗ρ
!, where π∗ is the pushforward of the map π

attaching the last two punctures and ρ! is the transfer map for ρ from the
following diagram of étale morphisms:

(M(p)
g,n+2 \M

(p+1)
g,n+2)/Sn × S2 Mg+1(n)(p+1) \Mg+1(n)(p+2)

Mg(n + 2)(p) \Mg(n + 2)(p+1),

π

ρ

in which M(p)
g,n+2 is the moduli space of Riemann surfaces with n+ 2 labeled

punctures and at least p nodes, Sn permutes the first n punctures in Mg,n+2,
whereas S2 permutes the last two punctures, and ρ forgets the division of the
punctures into two groups: the first n ones and the last two.

Let us consider the particular case p = 0, where Mg(n + 2)(0) \Mg(n +
2)(1) = Mg(n + 2) and Mg+1(n)(1) \Mg+1(n)(2) is the moduli space of Rie-
mann surfaces with exactly one node. Then we have

α0 : H•(Mg(n + 2)) → H•(Mg+1(n)(1) \Mg+1(n)(2)),

where α0 = π∗ρ
! for the diagram

(12)
Mg,n+2/Sn × S2 Mg+1(n)(1) \Mg+1(n)(2)

Mg(n + 2)

π

ρ

of étale morphisms.

Theorem 1.2. 1. The BV operator Δ as in Eq. (3) is equal to the com-
position (d0,•

1 )∗α0 below:

H•(Mg(n + 2)) α0−→ H•(Mg+1(n)(1) \Mg+1(n)(2))
(d0,•

1 )∗−−−−→ H•+1(Mg+1(n)).

2. The BV operator Δ as in Eq. (5) is equal to the composition (d1
0,•)∗α0

below:

H•
c (Mg(n + 2)) α0−→ H•

c (Mg+1(n)(1) \Mg+1(n)(2))
(d1

0,•)∗−−−−→ H•+1
c (Mg+1(n)),
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where α0 = π∗ρ
! is the morphism induced by the étale morphisms π and

ρ from (12) on cohomology with compact support.

Proof. Claims (1) and (2) are equivalent by Poincaré-Lefschetz duality. To
prove claim (1), let us trace what happens under the maps ρ! and π∗ map-
king up the map α0, as well as under the map (d0,•

1 )∗. Given a singular chain
of smooth Riemann surfaces of genus g with n + 2 unlabeled punctures, the
transfer map ρ! sums up all possible ways of picking a pair of punctures,
whereas the map π∗ attaches these two punctures to form a node and thereby
places this chain within the part Mg+1(n)(1) \ Mg+1(n)(2) of the Deligne-
Mumford compactification Mg+1(n) which corresponds to stable curves with
exactly one node. This is exactly what the BV operator Δ does, except that
twist-gluing at the chosen pair of punctures is replaced so far with attach-
ing. Now, the map (d0,•

1 )∗ in homology linear dual to the Poincaré residue
map d0,•

1 in cohomology is the umkehr map, which associates to a cycle in
Mg+1(n)(1) \Mg+1(n)(2) its pre-image in the boundary of the tubular neigh-
borhood of Mg+1(n)(1) \Mg+1(n)(2) inside Mg+1(n). The tubular neighbor-
hood forms an S1-bundle over Mg+1(n)(1) \Mg+1(n)(2) and may locally be
built out of Riemann surfaces obtained by twist-gluing at the node of a sur-
face in Mg+1(n)(1) \Mg+1(n)(2). Thus, composing the map (d0,•

1 )∗ sends the
homology class of stable curves with one node to the homology class obtained
by twist-gluing of stable curves at the node. This reconciles the composition
(d0,•

1 )∗α0 with Δ.

1.3.3. Identification of the antibracket Given that the antibracket has
the same nature as the BV operator and is, namely, the derived bracket for
the BV operator Δ on S(g[−1]) ∼= H•(M), see Remark 1.1, it is not sur-
prising that there is a similar identification of the antibracket via the Gysin
homomorphisms, coming from the topological spectral sequences.

A diagram analogous to diagram (12), which defines the homomorphism
α0, is the following pair of étale morphisms:
(13)

Mg1,n1+1/Sn1 ×Mg2,n2+1/Sn2 Mg1+g2(n1 + n2)(1) \Mg1+g2(n1 + n2)(2)

Mg1(n1 + 1) ×Mg2(n2 + 1).

π

ρ

Here Sni permutes the first ni punctures in Mgi,ni+1, i = 1, 2, and π attaches
the last, n1 + 1st puncture on the Riemann surface representing a point in
Mg1,n1+1/Sn1 to the last, n2+1st puncture on the Riemann surface represent-
ing a point in Mg2,n2+1/Sn2 . A diagram analogous to the one defining αp may
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be written down similarly, but we are skipping it for the sake of simplicity.
Define a map

β0 : H•(Mg1(n1 + 1)) ⊗H•(Mg2(n2 + 1))
→ H•(Mg1+g2(n1 + n2)(1) \Mg1+g2(n1 + n2)(2))

as β0 = π∗ρ
! for π and ρ from the previous diagram. The following theorem

is proven exactly in the same way as Theorem 1.2.

Theorem 1.3. 1. The antibracket {−,−} as in Eq. (4) is equal to the
composition (d0,•

1 )∗β0 below:

H•(Mg1(n1 + 1)) ⊗H•(Mg2(n2 + 1))
β0−→ H•(Mg1+g2(n1 + n2)(1) \Mg1+g2(n1 + n2)(2))

(d0,•
1 )∗−−−−→ H•+1(Mg1+g2(n1 + n2)).

2. The antibracket {−,−} as in Eq. (6) is equal to the composition (d1
0,•)∗β0

below:

H•
c (Mg1(n1 + 1)) ⊗H•

c (Mg2(n2 + 1))
β0−→ H•

c (Mg1+g2(n1 + n2)(1) \Mg1+g2(n1 + n2)(2))
(d1

0,•)∗−−−−→ H•+1
c (Mg1+g2(n1 + n2)),

where β0 = π∗ρ
! is the morphism induced by the étale morphisms π and

ρ from (13) on cohomology with compact support.

2. Vanishing results for the BV operator and antibracket

2.1. The genus g = 0 case

Let us consider the case g = 0 first, as the BV operator and antibracket vanish
on the moduli space of genus-zero Riemann surfaces for the trivial reason of
it being rationally acyclic.

Theorem 2.1.

Hk(M0(n)) =
{
Q, if k = 0,
0, otherwise.
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This theorem follows from Arnold’s computation [1, 4] of the rational
cohomology of the braid group, as observed by Looijenga [27]. See also a
different argument of Westerland [43]. We also need the following classical
result.

Theorem 2.2 (Mumford [31]). H1(M1,n) = 0.

These results imply the desired vanishing.

Corollary 2.3. 1. The BV operator

Hk(M0(n + 2)) Δ−→ Hk+1(M1(n))

vanishes for all k ≥ 0, n ≥ 1. In cohomology with compact support,

H l
c(M0(n + 2)) Δ−→ H l+1

c (M1(n))

vanishes for all l ≥ 0, n ≥ 1. 2. The antibracket

Hk1(M0(n1 + 1)) ⊗Hk2(M0(n2 + 1)) {−,−}−−−−→ Hk1+k2+1(M0(n1 + n2))

vanishes for k1, k2 ≥ 0, n1, n2 ≥ 1. In cohomology with compact support, the
antibracket

H l1
c (M0(n1 + 1)) ⊗H l2

c (M0(n2 + 1)) {−,−}−−−−→ H l1+l2+1
c (M0(n1 + n2))

vanishes when l1, l2 ≥ 0, n1, n2 ≥ 1.

2.2. The genus g > 0 case

From [14] we have the following bounds on homology:

Hk(Mg,n) = 0 for

⎧⎪⎪⎨
⎪⎪⎩
g = 0, k > n− 3,
n = 0, k > 4g − 5,
n > 0, g > 0, k > 4g − 4 + n.

Equivalently,

H l
c(Mg,n) = 0 for

⎧⎪⎪⎨
⎪⎪⎩
g = 0, l < n− 3,
n = 0, l < 2g − 1,
n > 0, g > 0, l < 2g − 2 + n.

These above bounds imply the following. For the BV operator
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Hk(Mg(n + 2)) Δ−→ Hk+1(Mg+1(n))

as in Equation (3), the left-hand side vanishes for k > 4g − 2 + n, n ≥ 0,
while the right-hand side is zero for k > 4g− 1 + n, if n > 0, and k > 4g− 2,
if n = 0. On the other hand, for the antibracket

Hk1(Mg1(n1 + 1)) ⊗Hk2(Mg2(n2 + 1)) {−,−}−−−−→ Hk1+k2+1(Mg1+g2(n1 + n2))

as in Equation (4), the left-hand side is zero for k1 > 4g1 − 3 + n1 or k2 >
4g2−3+n2, but the right-hand side vanishes for k1+k2 > 4g1+4g2−5+n1+n2,
if n1 +n2 > 0, and k1 + k2 > 4g1 +4g2 − 6, if n1 +n2 = 0. Therefore, we have

Theorem 2.4. 1. The BV operator

Hk(Mg(n + 2)) Δ−→ Hk+1(Mg+1(n))

vanishes for k > 4g − 2 + n, g > 0, n ≥ 0. In cohomology with compact
support,

H l
c(Mg(n + 2)) Δ−→ H l+1

c (Mg+1(n))
vanishes for l < 2g + n, g > 0, n ≥ 0. In particular, Δ = 0 on compactly
supported cohomology as g → ∞ or n → ∞ and l being fixed, i.e., stably

2. The antibracket

Hk1(Mg1(n1 + 1)) ⊗Hk2(Mg2(n2 + 1)) {−,−}−−−−→ Hk1+k2+1(Mg1+g2(n1 + n2))

vanishes for k1 > 4g1−3+n1 or k2 > 4g2−3+n2, g1, g2 > 0 and n1, n2 ≥ 0.
In cohomology with compact support, the antibracket

H l1
c (Mg1(n1 + 1)) ⊗H l2

c (Mg2(n2 + 1)) {−,−}−−−−→ H l1+l2+1
c (Mg1+g2(n1 + n2))

vanishes when l1 < 2g1−1+n1 or l2 < 2g2−1+n2, g1, g2 > 0 and n1, n2 ≥ 0.

Likewise, homological stability implies the vanishing of the BV operator
and antibracket within the stable range k < 2

3(g−1). Indeed, Harer’s stability
theorem [13], as improved by Ivanov [17, 18, 19], Harer himself [15], Boldsen
[3], and Randal-Williams [34]:

Hk(Mg) ∼= Hk(Mg+1) for k <
2
3(g − 1),

combined with Madsen and Weiss’s proof [29] of Mumford’s conjecture, stat-
ing that

Q[κ1, κ2, . . . ] → H•(Mg),
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where κi ∈ H2i(Mg) is the ith “tautological” κ class, i = 1, 2, . . . , is an
isomorphism in degree ≤ 2

3(g−1), and Looijenga’s relation [28] with the case
of pointed Riemann surfaces, which asserts that

H•(Mg)[ψ1, ψ2, . . . , ψn] → H•(Mg,n),

where ψi ∈ H2(Mg) is the ith “tautological” ψ class, i = 1, . . . , n, is an
isomorphism in degree ≤ 2

3(g − 1), implies that

Q[ψ1, . . . , ψn, κ1, κ2, . . . ] → H•(Mg,n)

is an isomorphism in degree ≤ 2
3(g−1). This, in particular, forces the rational

cohomology H•(Mg,n) in the stable range to be concentrated in even degrees.
Taking invariants of the Sn-action on cohomology does not affect these state-
ments. Now, given that the BV operator and antibracket have degree 1, we
obtain the following vanishing result.

Theorem 2.5. 1. The BV operator

Hk(Mg(n + 2)) Δ−→ Hk+1(Mg+1(n))

vanishes for k ≤ 2
3(g− 1), g > 0, n ≥ 0. In particular, Δ = 0 on homology as

g → ∞ or n → ∞ and k being fixed, i.e., stably. In cohomology with compact
support,

H l
c(Mg(n + 2)) Δ−→ H l+1

c (Mg+1(n))

vanishes for l ≥ 16
3 g −

4
3 + 2n, g > 0, n ≥ 0.

2. The antibracket

Hk1(Mg1(n1 + 1)) ⊗Hk2(Mg2(n2 + 1)) {−,−}−−−−→ Hk1+k2+1(Mg1+g2(n1 + n2))

vanishes for k1 ≤ 2
3(g1−1), k2 ≤ 2

3(g2−1), k1+k2 ≤ 2
3(g1+g2)− 5

3 , g1, g2 > 0,
and n1, n2 ≥ 0. In cohomology with compact support, the antibracket

H l1
c (Mg1(n1 + 1)) ⊗H l2

c (Mg2(n2 + 1)) {−,−}−−−−→ H l1+l2+1
c (Mg1+g2(n1 + n2))

vanishes when l1 ≥ 16
3 g1 − 10

3 + 2n1, l2 ≥ 16
3 g2 − 10

3 + 2n2, l1 + l2 ≥ 16
3 (g1 +

g2) − 19
3 + 2(n1 + n2), g1, g2 > 0, and n1, n2 ≥ 0.
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2.3. A nonvanishing example

Given a vanishing range of the BV operator and antibracket on rational ho-
mology, one may wonder if they vanish identically. Concrete computations
with moduli spaces are quite hard in general, and we do not have an example
of nonvanishing of the antibracket. Here we present an example of nonvanish-
ing of the BV operator. First off, let us analyze the differential in the spectral
sequence (10).

Proposition 2.6. The differential d0,6
1 : H6(M3) → H5(M(1)

3 \ M(2)
3 ) is

nontrivial. Moreover, so is its projection to H5(M2(2)).

Proof. It suffices to prove the second statement. By Looijenga’s computation
[27] of the rational cohomology of M3, its Poincaré-Serre polynomial, in which
the coefficient by tkul is the dimension of the subquotient Hk(M3) of weight l,
is equal to 1+t2u2+t6u12. This implies that H6(M3) ∼= Q of weight 12. Since
the weight is not equal to the cohomology degree, the corresponding element
in E0,6

1 will not survive to H6(M3) in the limit E0,6
∞ . If all the differentials d0,6

r ,
r ≥ 1, were zero on H6(M3), then H6(M3) would contribute nontrivially to
E0,6

∞ ⊂ H6(M3) and thereby have weight 6, which would be contradiction.
The plan is to show that all the higher differentials d0,6

r , r ≥ 2, vanish. This
would force d0,6

1 to be nontrivial.
Now, looking at different components of the boundary ∂M3, we find that

they all have a trivial cohomology group H5, except possibly M2(2). Indeed,
M(1)

3 \ M(2)
3 = M2(2)

∐M2,1 × M1,1. The space M1,1 of elliptic curves is
known to be isomorphic to the affine line C, whereas the following argument,
borrowed from Dan Petersen [33], shows that M2,1 has the rational homology
of CP1. Indeed, consider the Leray-Serre spectral sequence for the forgetful
map π : M2,1 → M2. The base M2 is isomorphic to M0(6), because every
curve of genus 2 is hyperelliptic. We know from Theorem 2.1 that it has the
cohomology of a singleton. On the other hand, the local systems R0π∗Q and
R2π∗Q are trivial, while R1π∗Q has no rational cohomology, as the curve
representing a point of M2 has the hyperelliptic involution, which acts on
the fiber of R1π∗Q by −1.

We conclude that the projection of d0,6
1 : H6(M3) → H5(M(1)

3 \ M(2)
3 )

onto H5(M2,1 ×M1,1) = 0 must be zero. If we show that the higher differen-
tials d0,6

r , r ≥ 2, vanish, it will imply that the projection of d0,6
1 : H6(M3) →

H5(M(1)
3 \M(2)

3 ) to H5(M2(2)) is nontrivial.
For each r ≥ 2, the higher differential d0,6

r maps E0,6
r , which is a subspace

of E0,6
1 , to Er,5+r

r , which is a subquotient of Er,5+r
1 . We claim that all these
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terms Er,5+r
1 are zero. For r = 2, the term Er,5+r

1 = E2,7
1 = H5(M(2)

3 \
M(3)

3 ) is the direct sum of the cohomology groups of connected components
of M(2)

3 \M(3)
3 ). These components are quotients under finite group actions

of the following spaces:

M1,4, M2,1 ×M0,3, M1,3 ×M1,1, M1,2 ×M1,1 ×M1,1.

Looking at the forgetful map M1,4 → M1,1, which is topologically a fiber
bundle with fiber of the homotopy type of a three-dimensional CW complex
and base having the homotopy type of a point, we see that H5(M1,4) = 0.
We have already seen that M2,1 has the rational homology of CP1, and so
does M2,1 ×M0,3. Similar to M1,4, the space M1,3 has the homotopy type
of a CW complex of dimension two, and so does M1,3 × M1,1. A similiar
argument works for M1,2 ×M1,1 ×M1,1.

Analyzing similarly the groups Er,5+r
1 = H5(M(r)

3 \ M(r+1)
3 ) for r ≥ 3,

we quickly see that all of them vanish for dimensional reasons.

Corollary 2.7. The BV operator

Δ : H5(M2(2)) → H6(M3)

does not vanish and is moreover an isomorphism between these one-dimen-
sional vector spaces over Q.

Proof. Working at the dual, cohomology level in the proof of Proposition 2.6,
we have seen that H6(M3) is one-dimensional. We also have H5(M2(2)) = Q,
given Tommasi’s computation [41, Corollary III.2.2] of the Poincaré-Serre
polynomial of M2(2) as 1 + t2u2 + t5u10.

Thus, to prove our claim, we only need to see that Δ �= 0. By Theorem 1.2,
we know that Δ = (d0,6

1 )∗α0. Recall that α0 = π∗ρ!, where π and ρ were given
in diagram (12). Note that in this particular case, ρ = id and π is the inclusion
of M2(2) as a connected component of M(1)

3 \ M(2)
3 . Thus, Δ = (d0,6

1 )∗π∗,
which is exactly the linear dual of the projection of d0,6

1 to H5(M2(2)), whose
nonvanishing is proven in Proposition 2.6.
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