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A view on elliptic integrals from primitive forms
(Period integrals of type A2,B2 and G2)

Kyoji Saito

Abstract: Elliptic integrals, since Euler’s finding of addition the-
orem 1751, has been studied extensively from various view points.
The present paper gives a view point from primitive integrals of
types A2,B2 and G2. We solve Jacobi inversion problem for the
period maps by introducing generalized Eisenstein series of types
A2,B2 and G2, which generate the ring of invariants functions on
the period domain for the congruence subgroups Γ1(N) (N = 1, 2
and 3). Type A2 case is classical. Type B2 and type G2 cases seems
to be new. The goal of the paper is a partial answer to the discrim-
inant conjecture: to show an existence of the cusp form of weight
1 with character of topological origin, which is a power root of the
discriminant form (Aspects Math., E36, p. 265–320. 2004).
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1. Introduction

We study period integrals for three families of elliptic curves: Weierstrass
family, Legendre-Jacobi family and Hesse family. According to the lattice
structure of vanishing cycles studied in §3, we call the families of type A2,B2
and G2, respectively. In order to treat these three types simultaneously, we use
notation I2(p) for the dihedral groups [4] and identify A2 = I2(3), B2 = I2(4)
and G2 = I2(6). The theory, we will study, for the type A2 is nothing but the
classical well-known theory of elliptic integrals for the Weierstrass family of
elliptic curves. The purpose of the present paper is to show that there exist
some parallel worlds for types B2 and G2, even in a somewhat deeper manner.

We refer the reader to §12 Concluding Remarks for the motivation and
the background of the present study. Therefore, in the present introduction,
we restrict ourselves to explanations of the contents down to the earth.

As mentioned above, we study the three families of types A2, B2 and G2,
which are introducd in §2 as the families of affine elliptic curves Eg, punctured
by N :=[p/2]-points at infinity, parametrized by the two dimensional space g∈
SI2(p) containing the discriminant loci DI2(p). Here, the number N of punctures
is equal to 1,2 and 3 according to the types A2, B2 and G2, respectively.

Then in §3, by the help of some real structure of the families, the lattice Lg

of vanishing cycles in the fiber Eg is described in terms of classical root lattice
of type A2, B2 and G2. The fundamental group of the complement SI2(p)\DI2(p)
is described in §4 in terms of the Artin group of type A2, B2 and G2. Then,
the image of the monodromy action of the Artin groups on the lattice of
vanishing cycles becomes the congruence modular group Γ1(N) of level N =
1, 2 and 3. The description of the modular group also gives a construction
of its character ϑI2(p) (4.10), which takes values in 2k(I2(p))(= 6, 4, 3 for
p = 3, 4, 6 (4.8))th roots of unity such that ϑ

k(I2(p))
I2(p) is the sign character:

Γ1(N) → {±1}. We shall come back to ϑI2(p) at the final Theorem 11.1 of
the present paper.

The primitive form ζ, as a relative de Rham cohomology class of degree
1 on the total space of the family, is introduced in §5. Then the period map
associates to each point g ∈ SI2(p)\DI2(p) a homomorphism in HomZ(Lg,C),
γ �→

∮
γ ζ. Actually, the period map is a multivalued map from SI2(p)\DI2(p) to a
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half subspace H̃ in C2, called the period domain. We ask to give a description
of the univalent inversion map from the period domain H̃ to SI2(p). In the
present paper, we shall call this question Jacobi inversion problem, whose
answer will be given in §9.

In §§6–9, we study the analytic aspects of the theory. Namely, we con-
sider the indefinite integral of the primitive form over open paths on the
elliptic curve Eg starting from any fixed point at infinity as a map from the
end-points of paths to the integral values in the complex plane C. Actually,
regarding this integral value z as the time variable, the inverse map of the
integral (a pair of meromorphic doubly periodic functions in z) becomes a
solution of the Hamilton equation (6.3) of the motion equipped with the en-
ergy constraint (6.4). Conversely, any formal meromorphic Laurent solution
of the Hamilton equation is convergent. This gives a bijection between the set
of formal solutions of the Hamilton equation with the set of points at infinity
(§7 Lemma (7.1)).

This bijection between the sets of geometric solutions and formal solutions
is a key step to solve the Jacobi inversion problem. Namely, in the next section
§8, by a help of the Hamilton equations (6.3) and (6.4), we can expand those
global meromorphic solutions on the full z-plane into partial fractions by the
help of Weierstrass p-functions or zeta-functions, which depends only on the
period variable (ω1, ω0) ∈ H̃. Then in §9, again by expanding these global
meromorphic functions into Laurent series at the origin z = 0, as coefficients
of the expansion, we obtain an infinite sequence of functions in (ω1, ω0) ∈ H̃,
which we call the Eisenstein series of type I2(p). Comparing this expansion
with that already given in §7, we see that the ring of Eisenstein series, as
functions defined on H̃, by pulling back by the period map, is identified with
ring of the Cartesian coordinates (gs, gl) of the space SI2(p) (Theorem 9.2).
Thus, those Eisenstein series enable us to construct the inversion map H̃ →
SI2(p), which gives the solution to the Jacobi inversion problem.

Next in the section §10, we identify the ring of Eisenstein series of types
A2,B2 and G2 with the ring of modular forms of the congruence group Γ1(N),
where the ring of modular forms were already determined explicitly by Aoki-
Ibukiyama [2]. In order to determine the homomorphism exactly, we have to
determine the exact values of the Eisenstein series at cusps of the modular
group. Actually, Eisenstein series of type A2 are classical, whose Fourier ex-
pansions are well known. Eisenstein series of types B2 and G2 are no-longer
classical. However, when their weights are larger or equal than 3, then their
expressions are still obtained by a “shift” of the constant term of the classical
Eisenstein series (see (9.1)). Then, it is still possible to evaluate the values
of the shifted classical Eisenstein series at cusps by using either the classical
Riemann zeta function or Dirichlet’s L-function (see §10, Table 3).
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However, Eisenstein series of types B2 and G2 of weights less than or
equal to 2 have expression by special values of Weierstrass p-functions or by
difference of special values of Weierstrass zeta-functions, which seem to be
less known. We determine their values at cusps in a separate note joint with
Aoki [2] (cf. [9, 16]). These determinations lead us to the identification of the
ring Eisenstein series of types A2,B2 and G2 with the ring of modular forms
of Γ1(N) (N = 1, 2 and 3) (Theorem 10.1). It is marvelous that this identi-
fication induces further a one to one correspondence of the set of irreducible
components of the discriminant of our family of elliptic curves with the set
of modular form (up to constant factors) which vanishes exactly once at one
Γ1(N)-orbit of cusps (§10 Lemma 10.3).

This modular form, generating the ideal vanishing at an equivalence class
of cusps, on one hand as an equation for an irreducible component of the
discriminant, is nowhere vanishing on H̃. On the other hand as a modular
form described by theta-series, it has integral Fourier coefficients. Such form
can be expressed as suitable quotient of products of shifted Dedekind eta-
functions (see Table 7). Doing this for all cusps, we determine the eta-product
expressions of the discriminant (11.1) and the reduced discriminant (11.2) of
our family of elliptic curves.

These expressions lead us to the final goal Theorem 11.1:

(1) There exists a cusp form λI2(p)(τ) of weight 1 of the congruence group
Γ1(N) with respect to the character ϑI2(p) in §4 such the reduced discrimi-
nant of the family of elliptic curves for the type I2(p) is identified with the
2k(I2(p))th power of this cusp form (p = 3, 4 and 6).

(2) The non-reduced discriminants of the families of elliptic curves of
all types A2, B2 and G2, up to a rational constant times the power π12, are
identified with the modular discriminant q

∏∞
n=1(1 − qn)24 of weight 12.

These two statements give positive answers in our toy model cases to the
general discriminant conjecture 6 in [23, §6], and we close the present paper.

2. Families of elliptic curves of type A2, B2 and G2

We start with the three families, defined by the equations (2.1), of affine
elliptic curves in the (x, y)-plane parametrized by two weighted homogeneous
coordinates g = (gs, gl) (where s and l stands for small or large weights of the
coordinates so that the equations become weighted homogeneous polynomials.
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See Table 1).

(2.1)

A2 : FA2(x, y, g) := y2 − (4x3 − gsx− gl)

B2 : FB2(x, y, g) := y2 − (x4 − gsx
2 + gl + g2

s/8)

G2 : FG2(x, y, g) := x(y2 − x2) + gs(3x2 + y2) − gl − 2g3
s .

Historically, they are called Weierstrass, Legendre-Jacobi and Hesse family
of elliptic curves (To be exact, compared with historical expressions, some
coordinate change is done from a view point of primitive forms. See Footnote 1
and 2).

As given in the left side of the equations, we call the families by the
names of root systems of rank 2, i.e. by A2,B2 and G2.1 We shall justify this
renaming of the families in §3 from a view point of vanishing cycles. In order
to treat these three cases simultaneously, let us use the notation I2(p) for
dihedral groups [4]. Namely, let us recall the following identifications.

(2.2) A2 = I2(3), B2 = I2(4), G2 = I2(6)

These three cases are exactly the cases when the dihedral group of type I2(p)
is crystallographic, corresponding to classical root systems defined over Z
which shall play crucial roles in the present paper.

Let us give Table of weights of the variables in the equation FI2(p). We
normalize them so that the total weight of the equation FI2(p) is equal to 1.

Table 1: Weights of functions and coordinates
Type wt(FI2(p)) wt(x) wt(y) s=wt(gs) l=wt(gl) wt(ΔI2(p)) wt(z)

A2 1 1/3 1/2 2/3 1 2 −1/6
B2 1 1/4 1/2 1/2 1 3 −1/4
G2 1 1/3 1/3 1/3 1 4 −1/3

1To be exact, when we call a family of type A2,B2 or G2, we shall mean the
family given in the equation (2.1) together with an action of an automorphism given
in (3.11) of the family. They are subfamilies of the bigger families of affine elliptic
curves of type A2,A3 and D4 which admits an automorphism σ of order 1, 2 and 3,
respectively, so that the present family is the subfamilies over the parameters which
are fixed by σ (see Footnote 8). The study of the periods for the types A3 and D4
(unpublished) are beyond the scope of present paper and shall appear elsewhere.
See also Footnote 10 and 18.
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Here, ΔI2(p) and z are the discriminant introduced below (2.5) and the Hamil-
ton time coordinate z of the elliptic curve ẼI2(p) introduced in §6 (6.1), re-
spectively. Note that the weight wt(z) := wt(x)+wt(y)−wt(FI2(p)) of the
variable z is negative caused from a classification of vanishing cycles, where
the negativity plays an essential role in the present paper.

The equations (2.1) define geometric families of affine elliptic curves.
Namely, let us consider the morphisms:

(2.3) πI2(p) : XI2(p) −→ SI2(p), p = 3, 4 or 6

where SI2(p) is the two dimensional complex parameter space of the coordi-
nates g = (gs, gl),2 XI2(p) is the affine subvariety in C2 ×SI2(p) defined by the
equation FI2(p) = 0, and πI2(p) is the morphism induced on XI2(p) from the
projection: C2 × SI2(p) → SI2(p), respectively.

The relative critical point set CF of the map πI2(p) defied by ∂FI2(p)
∂x =

∂FI2(p)
∂y = 0 lies in XI2(p) proper finite over the base parameter space SI2(p).

The image set πI2(p)(CF ) in SI2(p) is a one codimensional subvariety

(2.4) DI2(p) ⊂ SI2(p),

called the discriminant loci, which is parametrizing singular elliptic curves in
the family. The non-reduced defining equation ΔI2(p) of the discriminant loci
together its multiplicity (up to a constant factor) is given by (cf. [19])

(2.5)
ΔA2 = −27g2

l + g3
s = (

√
27gl + g

3/2
s )(−

√
27gl + g

3/2
s ),

ΔB2 = (8gl + g2
s)(−8gl + g2

s)2,
ΔG2 = (gl + 2g3

s)(−gl + 2g3
s)3.3

The fiber EI2(p),g := π−1
I2(p)(g) over a point g in SI2(p) is an affine open

curve in the (x, y)-plane which is compactified to an elliptic curve by adding
a single, two or three points at infinity according as the types A2, B2 or G2.4

2The coordinates g = (gs, gl) are, up to constant factor, flat coordinates of the
family [20, 23], whose weights are equal to exponents of I2(p) plus 1/p [4].

4A compactification of EI2(p),g is obtained by the curve defined in P2 by the
homogenization of the equation FI2(p). In case of type A2, it is tangent of order
3 to the infinite line at a single infinite point. In case of B2, it is twice tangent
to the infinite line at the same infinite point (so that we need to normalize the
compactified curve at the point to separate branches). In case of type G2, it is
intersecting transversally with the infinite line at three distinct infinite points.
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Using the index p in (2.2), we see that the number of the points at infinity
for the family of the type I2(p) is given by [p/2](= 1, 2 and 3).

Let us denote the points at infinity by

(2.6) ∞1, · · · ,∞[p/2]

(where exact labeling of them is fixed in §3), the compactified curve by

(2.7) EI2(p),g = EI2(p),g ∪
[p/2]
∪
i=1

{∞i} and EI2(p),g ∩XI2(p) = EI2(p),g

and the fiberwise compactified family by

(2.8) πI2(p) : XI2(p) = XI2(p) ∪
[p/2]
∪
i=1

{∞i × SI2(p)} −→ SI2(p).

Actually, XI2(p) is smooth at the points ∞i and πI2(p) is transversal to the di-
visors ∞i×SI2(p) (see Footnote 4). The weighted homogeneity of the equation
FI2(p) implies that there is the t ∈ C×-action (x, y, gs, gl) �→ (twt(x)x, twt(y)y,

twt(gs)gs, t
wt(gl)gl) leaving the space XI2(p) invariant so that the family (2.3)

is equivariant with the action. We note that that action on XI2(p) extends
to XI2(p) continuously so that the divisor ∞i × SI2(p) is invariant and the
morphism (2.8) is still equivariant.

The restriction of the family (2.3) over the complement SI2(p) \ DI2(p)
of the discriminant loci (i.e. the space of regular values of the family (2.3))
gives a locally topologically trivial family of punctured elliptic curves, which
is relatively compactified to a topologically locally trivial family of compact
smooth elliptic curves.

Note Compact elliptic curve has well-known abelian group structure (after
choosing the origin). Then, we have the following elementary, but important
fact, which we shall reformulate in (5.10) §5.

Fact 1. The difference of two infinite points [∞i] and [∞j ] (1 ≤ i, j ≤ [p/2])
is a torsion element of order [p/2].

3. Real elliptic curves and vanishing cycles

We study some real geometry of the family (2.3). It provides a description of
the middle (i.e. one dimensional) homology groups of the affine elliptic curves
EI2(p),g in terms of vanishing cycles of root systems of types A2,B2 and G2.
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Let us denote by XR
I2(p) and SR

I2(p) the subsets of XI2(p) and SI2(p) consist-
ings of the points where the coordinates (x, y) and g take real values, and call
them the real total space and the real parameter space of the family (2.3),
respectively. In the real parameter space, we are interested in a particular con-
nected component of the compliment SR

I2(p) \ DI2(p) of the real discriminant
loci DI2(p) ∩ SR

I2(p), called the totally real component ΓI2(p)
5, defined by

(3.1) ΓI2(p) : −|gs|p/2 < cgl < |gs|p/2 and gs > 0,

and its boundary as the union of two edges

(3.2) ∂±ΓI2(p) : cgl = ±|gs|p/2 and gs > 0

and the origin {0} (here c =
√

27, 8 or 1/2 according as p = 3, 4 or 6 (2.5)).
See Figure 1 and following explanation (see §4 for explanation of a, b and J).

Explanation The union of edges pathing through the origin 0 is a part of the
real discriminant DI2(p)∩SR

I2(p). The union of the lightly and darkly shaded ar-
eas, bounded by the edges, is the totally real component ΓI2(p). The boundary
∂ΓI2(p) is the union of the upper boundary ∂+ΓI2(p), lower boundary ∂−ΓI2(p)
and the origin 0. We choose points g0 and g± generically in ΓI2(p) and in

Figure 1: Real discriminant DR
I2(p), totally real component ΓI2(p) and JI2(p).

5Actually, the discriminant loci DI2(p) of the family (2.3) is identified with the
discriminant loci in the quotient space of a vector space by the irreducible finite
reflection group action of type I2(p). Then, there is the unique connected component
Γ of the complement of the real discriminant loci such that the inverse image of a
point in Γ is totally real in the original vector space of the representation [22]. Then,
Γ is homeomorphic to a chamber of type I2(p) and ∂±ΓI2(p) are homeomorphic to its
walls. These facts are used for a calculation of fundamental group of the compliment
of the discriminant loci in the next 4.
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∂±ΓI2(p), respectively. See §4 for the role of the other curves, the dark shaded
area, called J , and its boundary component a and b.

We observe the following Facts 1–5. of vanishing cycles in the family of
affine elliptic curves EI2(p). Proof is achieved by explicit direct calculations
(see Figure 2), and we omit the details of the proof.

Choose a generic point g0 ∈ ΓI2(p) as the base point (recall Figure 1), and
consider the complex affine elliptic curve EI2(p),g0

= π−1
I2(p)(g).

Fact 1. The real affine elliptic curve ER
I2(p),g0

:= EI2(p),g0
∩XR

I2(p) (exhibited in
the first row of Figure 2) consists of a single compact component (=an oval),
which we shall call

(3.3) γ0

and [p/2]-number of non-compact connected components (arcs), which we
shall call δ1, · · · , δ[p/2]. The non-compact components are bounded by the
points at infinity in the compactification EI2(p),g0 . We fix orientations of the
arcs δi’s and the numbering of the points at infinity such that the cyclic union:

(3.4) {∞1} ∪ δ1 ∪ {∞2} ∪ δ2 ∪ · · · ∪ δ[p/2] ∪ {∞1}

form an oriented closed cycle (i.e. ∂δ1 = ∞2−∞1, · · · , ∂δ[p/2] = ∞1−∞[p/2]).
Then, this cycle is homologous to γ0 after choosing an orientation of γ0 ac-
cordingly. However, this condition determine only a cyclic ordering of arcs. So,
there still remains also an ambiguity of reversing the orientation. We resolve
this ambiguity in the following observation.

Fact 2. There exists a unique choice of an orientation and a cyclic numbering
of arcs δi’s which satisfies the initial direction condition

(3.5) (δ1,∞1) ⊂ (R>0,+∞) × (R<0,−∞)

Here, (δ1,∞1) in LHS means the germ of the arc δ1 at ∞1, and the
(R>0,+∞) × (R<0,−∞) in RHS means a neighborhood of (+∞,−∞) in
the real space R>0 × R<0 ⊂ C× C.6

6A priori, there exists neither a guarantee that there exists such pair (δi,∞i)
satisfying the condition (3.5), nor a guarantee that the condition (3.5) choose the
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Figure 2: Real elliptic curves of type A2, B2 and G2 The curves in the second
and the third column of the table, called of type B2 and G2, are also regarded
as the real affine elliptic curve of type A3 and D4 (see Footnote 1) together
with the action of an automorphism σI2(p) (3.11).

pair (δi,∞i) uniquely. Therefore, Fact 2. claims that the conditiion actually choose
the unique one (δ1,∞1). This is easily confirmed from Figure 2. Further more, we
remark that the choice (3.5) in the real blow up space of P2(R), in case of type B2,
separates two infinity points ∞1 and ∞2, which the P2(C)-compactification did not
separate (recall Footnote 3). Indeed, we have (δ2,∞2) ⊂ (R<0,−∞) × (R>0,+∞).
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Fact 3. Let us consider to move the point g0 inside ΓI2(p) to a point g+ on the
upper boundary edge ∂+ΓI2(p) (e.g. move along the path a in Figure 1). Then,
accordingly, the cycle γ0 and each arc δi in the fiber EI2(p),g0

are getting close
to each other, and, finally at g+ ∈ ∂+ΓI2(p) on the boundary, they intersect
to a node pi of the curve EI2(p),g+

(i = 1, · · · , [p/2]) (see the second row of
Figure 2).

Fact 4. Let us consider to move the point g0 inside ΓI2(p) to a point g− on the
lower boundary edge ∂−ΓI2(p) (e.g. move along the path b in Figure 1). Then,
accordingly, the cycle γ0 in the fiber EI2(p),g0

pinches to a Morse singularity
p0 in the fiber EI2(p),g−

(see the third row of Figure 2). This implies that the
cycle γ0 is the vanishing cycle generated by the Morse singularity p0.

Fact 5. The vanishing cycle genrated by the nodal point pi in EI2(p),g0
shall

be denoted by

(3.6) γi

i = 1, · · · , [p/2]. It intersects with γ0 and δi (recall Fact 1.) transversally.
Since γi lies in the complex curve EI2(p),g, we do not exhibit it in Figure 2,
but its conceptual expression shall be given in the first row of Figure 3. We
choose the orientation of γi by the following sign condition on the intersection:

(3.7) 〈γ0, γi〉 = 〈δi, γi〉 = 1 (i = 1, · · · , [p/2])
〈γi, γj〉 = 〈γj , γi〉 = 0 (i, j = 1, · · · , [p/2]).

Here we denote by 〈γ, γ′〉 the intersection number of paths γ and γ′ whose
sign convention is fixed as follows: The orientation of EI2(p),g0

as a real surface
is fixed by its complex structure. If a path γ′ crosses another path γ counter-
clockwisely,7 then the local intersection number is 〈γ, γ′〉 = +1.

Remark 3.1. The most degenerated real curve ER
I2(p),0 is exhibited in the

last row of Figure 2.

As a consequence of Facts 1–5, we obtain the following description of the
homology group of the affine elliptic curve EI2(p),g0

.

Fact 6. The classes of γ0 and γi (i = 1, .., [p/2]) in the first homology group of
EI2(p),g0

form free basis (see the first row of Figure 3). We denote the classes

7A path in the complex-plane crosses other path counter-clockwisely, if and only
if their tangent vectors a and b at the crossing point satisfies Im(a/b) > 0.
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by the same notation γi since we shall use notation [γi] for another meaning
below.

(3.8) L := H1(EI2(p),g0
,Z) = Zγ0 ⊕

[p/2]⊕
i=1

Zγi.

The open embedding EI2(p),g0
⊂ EI2(p),g0

induces a surjective homomorphism

(3.9) L −→ H1(EI2(p),g0
,Z)

whose kernel is the radical

rad(L) = {γ ∈ L | 〈γ, δ〉 = 0, ∀δ ∈ L}

of the lattice L which is additively generated by homologous relations

γ1 ∼ · · · ∼ γ[p/2].

in the compactification EI2(p),g. Hence, L/rad(L) is a rank 2 free abelian group
generated by the equivalence classes [γ0] and [γ1] = · · · = [γ[p/2]].

(3.10) L/rad(L) = Z[γ1] ⊕ Z[γ0].

Here, we denote by [γ] the equivalence class of γ ∈ L in the quotient mod-
ule. The map (3.9) preserves the intersection form, since it is the quotient
morphism by the radical.

We next consider a SL2-linear automorphism of the (x, y)-plane by8

(3.11)
σA2(x, y) := (x, y),
σB2(x, y) := (−x,−y),
σG2(x, y) := (y−x

2 , −3x−y
2 ).

It fixes the equation FI2(p) and, hence, induces an automorphism of order [p/2]
of the fibers of the family (2.3) where the base space SI2(p) is point-wisely

8There is an SL2-linear automorphism σ of order 1, 2 and 3 on bigger families
of type A2,A3 and D4 (see Footnote 1). Then, the action (3.11) is induced from
σ as fiber-wise action on the subfamilies of type A2, B2 and G2, respectively. The
σ-action has not only homological implications as discussed in this section, it has
another important implication on a certain cohomology class called the primitive
form (see Footnote 17).
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fixed. Since σI2(p) leaves the real subspace XR
I2(p) invariant, it acts on each

complex and real curve EI2(p),g. One checks directly that σI2(p)-action induces
the cyclic permutation of the cycles γi, oriented arcs δi and the points ∞i at
infinity for i ∈ Z/[p/2]Z, respectively. However, the cycle γ0 is invariant by
the σI2(p)-action.

Let us consider the sub-lattice of H1(EI2(p),g0
,Z) consisting of σI2(p)-fixed

elements.

(3.12) LI2(p) := LσI2(p) = H1(EI2(p),g0
,Z)σI2(p)

It is immediate to see that LI2(p) is a rank 2 sub-lattice generated by

(3.13) α :=
∑[p/2]

i=1 γi and β := γ0,

whose intersection number is counted by (3.7) as

(3.14) 〈α , β〉 = −[p/2], 〈α , α〉 = 0 and 〈β , β〉 = 0.

The composition of the embedding LI2(p) ⊂ L with the radical quotient
map (3.9) is again an isometric embedding of lattices:9

(3.15) LI2(p) ⊂ L/rad(L), α �→ [p/2][γ1], β �→ [γ0]

of finite index [p/2].
We give below a root lattice theoretic interpretation of what we have cal-

culated above (see also Footnotes 8, 9 and 11), which answers to the question
on the naming: A2,B2 and G2 of the family (2.1), posed in §2.

In the following Figure 3, we exhibit:

(1) The first row exhibits a conceptual description of the cycles γ0 and γi
(i = 1, · · · , [p/2]) in the surface EI2(p),g0

. Here, EI2(p),g0
is a complexification

of the real curve ER
I2(p),g0

in the first row of Figure 2. Complexfication of real
curves in the second and the third row of Figure 2 can be obtained from this
surface EI2(p),g0

by pinching either the cycles γi (i = 1, · · · , [p/2]) or the cycle
γ0 to points, respectively.

(2) The second row exhibits the intersection diagram of the basis γ0 and γi
(i = 1, · · · , [p/2]) of the homology group L := H1(EI2(p),g0

,Z) (actually, they
are known as diagrams of types A2,A3 and D4, respectively (note Footnote 1
and 10)).

9Since we shall no-longer use the lattice L in the present paper, so far as there
is a no-confusion, we shall regard LI2(p) as a sub-lattice of L/rad(L) (e.g. (4.4)).
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Figure 3: Vanishing cycles and associated diagrams.

(3) The third row exhibits the folding of the intersection diagram in pre-
vious (2) by the action of the automorphism σI2(p) which is the intersection
diagram for the invariant basis α, β of the invariant homology group (3.12).
Actually, they are known as diagrams of types A2,B2 and G2, respectively.

Consequently, we observe that the σI2(p)-invariant 1-cycles of the fami-
lies (2.1) are indexed by the lattices of types A2,B2 and G2, respectively.
This is the reason why we call the families according to the type of the root
systems.10 The singularity at the origin 0 ∈ C2 of the curve EI2(p),0 for g = 0

10To be exact, what we wrote here needs more explanations in the following
sense. The intersection form 〈·, ·〉 on the free abelian group L :=

∑[p/2]
i=0 Zγi is skew-

symmetric so that the pair (L, 〈·, ·〉) is not a root lattice. In order to justify what
we wrote above, we consider a pair (L, J) of the abelian group L with the non-

symmetric Seifert form J on it defined by the Seifert matrices
[
1 −1
0 1

]
,

⎡⎣1 −1 −1
0 1 0
0 0 1

⎤⎦
or

⎡⎢⎢⎣
1 −1 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (which is the table of linking numbers between the ordered basis

γi (3.8)) according to p = 3, 4 or 6, respectively. Then, the difference JI2(p)−tJI2(p)
is a skew symmetric form on L which is identified with the intersection form 〈·, ·〉
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(exhibited in the 4th row of Figure 2) equipped with the action of σI2(p) is
called the singularity of type I2(p) (i.e. of type A2, B2 and G2 according as
p = 3, 4 and 6) and the lattice LI2(p) is called the lattice of vanishing cycles
for the singularity. Then, the family (2.3) is the universal unfolding (by the
parameter space SI2(p)) of the singularity of type I2(p).

4. Fundamental group and monodromy representation

We describe the fundamental group of the compliment of discriminant loci
SI2(p) \DI2(p), and its monodromy representation in the first homology groups
of EI2(p),g and that of its compactification EI2(p),g.

First, we sketch a geometric description of the fundamental group which
is valid not only for types A2,B2 and G2 but also for the regular orbit space
of any type finite reflection group [5, 8, 22]. Since the formulation of [22] is
suitable to the present work, we briefly recall it by specializing the setting.

Consider a translation action τε : SI2(p) → SI2(p), (gs, gl) �→ (gs, gl + ε)
for ε ∈ C.11 If ε ∈ R, then the action preserves the real space SR

I2(p). In

on H1(EI2(p),g0
,Z). On the other hand, the sum I := J + tJ is a symmetric bilinear

form so that the pair (L, I) is isomorphic to the root lattice of type A2, A3 and
D4 with the simple root basis γ0, · · · , γ[p/2]. The geometric automorphism (3.11)
induces an automorphism of the lattice (L, J), denoted again by σI2(p). Then the
invariant sub-lattice LI2(p) := LσI2(p) is spanned by α :=

∑[p/2]
i=1 γi and β := γ0

so that the Seifert form JI2(p) on the basis gives the matrix
[
[p/2]−[p/2]

0 1

]
. Then

(LI2(p), I|LI2(p)) is isomorphic to the root lattice of type A2,B2 and G2 with the
simple root basis α and β according as p = 3, 4 or 6.

There are two constructions which realize the above formal justification (they
are called mirror symmetric to each other): (1) Consider the category of matrix
factorization of the singularity FI2(p)(x, y, 0) (see [14]). Since the simple singularities
are self-mirror, the category is isomorphic to the category of vanishing cycles in the
Milnor fiber FI2(p)(x, y, g0) = 0. Actually, one finds strongly exceptional collections
generating the category such that their images γi in the K-group of the category
(� the middle homology group of the Milnor fiber) gives the simple basis where
the Euler form

∑
k(−1)kExtk(γi,γj) is identified with the Seifert form. (2) Consider

the equation FI2(p)(x, y, g0)+z2 in three variables (x, y, z). Then the suspensions,
denoted by Σγi, of the basis γi (0 ≤ i ≤ [p/2]) of the vanishing cycles in the complex
affine curve FI2(p)(x, y, g0) = 0 form vanishing cycle basis of the second homology
group of the complex affine surface FI2(p)(x, y, g0) + z2 = 0. Then the intersection
form −〈Σγi,Σγj〉 of the homology classes coincides with the symmetric form I.

11The action τ is naturally obtained by integrating the vector field ∂gl , called
the primitive vector field, which is, up to constant factor well-defined (see [22]).
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Figure 1, we draw, together with the original discriminant loci DI2(p), two
shifted discriminant loci τε(DI2(p)) and τ−ε(DI2(p)) for some ε ∈ R>0. Then,
the darkly shaded area J in ΓI2(p) ⊂ SR

I2(p) exhibit the component (which is
homeomorphic to a rhombus) in ΓI2(p) cut by the shifted discriminant loci
τε(DI2(p)) and τ−ε(DI2(p)), where its boundary edges a and b are segments on
τε(DI2(p)) and τ−ε(DI2(p)), respectively.

Let ã and b̃ be the path in SI2(p) \ DI2(p) defined as follows. We choose
the base point g0 ∈ ΓI2(p) at the intersecting point of a and b as in Figure 1.
Let aC and bC be complexfications of the real segments a and b, embedded in
the complex shifted discriminants τεDI2(p) and τ−εDI2(p), respectively. They
intersect with the discriminant DI2(p) in SI2(p) transversally: aC∩DI2(p) = {g+}
and bC ∩DI2(p) = {g−}. The Figure 4 shows how to choose paths ã and b̃ in
the complexification aC and in bC (regarded as closed paths in SI2(p) \DI2(p)).

Figure 4: Homotopy classes ã and b̃.

Fact 7. The fundamental group π1(SI2(p) \ DI2(p), g0) =: GI2(p) is generated
by the homotopy classes of ã and b̃ and determined by the relation

(4.1) ãb̃ · · · = b̃ã · · ·

where the both hand sides are words of alternating sequences of ã, b̃ of length
p, which start either with ã or with b̃.

Sketch of proof. 1. A direct proof is given by Zariski-van Kampen method [28]
w.r.t. the pencils {gs= const.}, which intersects with discriminant loci by two
points, giving two generators of the fundamental group easily identified with
ã, b̃ [22, §4.3] and gives the relation (4.1) by turning gs = eiθ (0 ≤ θ ≤ 2π).

Let us sketch another approach in [5, 8, 22], where we regard the discrim-
inant loci DI2(p) as the discriminant loci for the orbit space for the dihedral
group action on a two dimensional vector space. Namely, let VR be the real
2-space on which the dihedral group W (I2(p)) acts as the reflection group.
We suitably (up to constant) identify the invariant ring S(V ∗

R )W (I2(p)) with
the polynomial ring generated by two variables gs and gl (recall (2.1)). So, we
do W (I2(p)�VC with SI2(p) and (W (I2(p))�VC)reg = W (I2(p))�(VC \ ∪Hα)
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(=regular orbit space) with SI2(p) \DI2 (where ∪Hα is the union of complexi-
fied reflection hyperplanes). By this identification, the real region ΓI2(p) (3.1)
is homeomorphic to any chamber in VR \∪Hα. Then, the inverse image in VR

of the closure of ∗ is a curved polygon which is dual to the chamber decompo-
sition, namely, hexagon, octagon and dodecagon according as I2(p) is of type
A2, B2 and G2. The boundary of the polygon is given by (ȧḃ)p (see [22] Fig.).
Here, each ȧ (resp. ḃ) is a double cover of the closed interval a (resp. b) which
is crossing the reflection hyperplane at its central point. We now consider the
inverse image in VC \ ∪Hα of the union ã ∪ b̃. Actually, the inverse image is
free homotopic to the boundary to the curved dual polygon shifted by

√
−1δ

for some δ ∈ VR \∪Hα (corresponding to breadth of ã and b̃, Figure 5), where
each component of the inverse image of ã (resp. b̃) is homotopic to a shifted
edge ȧ +

√
−1δ (resp. ḃ +

√
−1δ). On the other hand, the shifted real vector

space VR +
√
−1δ does not intersect with any reflection hyperplane so that

the shifted dual polygon is contractible in VC \ ∪Hα. This creates the homo-
topy relation (4.1). That there is no-more relations follows from a dimension
argument, which we omit here.

The group GI2(p) with the presentation in Fact 7 is called the Artin group
of type I2(p) [6]. The element of the expression (4.1) is the least common
multiple of the generators ã and b̃ inside the positive monoid of the group
and is called the fundamental element [12, 6], denoted by12

Δ = ΔI2(p).

It is well-known (e.g. [6]) that the center of the group GI2(p) is an infinite
cyclic group generated by Δ (types B2 and G2) or by Δ2 (type A2).

We determine the monodromy actions of the fundamental group GI2(p)
on the lattices L, LI2(p) and L/rad(L). Recall Fact 2, 3, 4 and 5 that the
“degeneration” of the curve EI2(p),g moving the parameter g along the path
a (resp. b) pinches the cycles γi (i = 1, · · · , [p/2]) (resp. cycle γ0) in EI2(p),g0

to points pi (resp. p0). Then the actions ρ = ρI2(p) of ã (resp. b̃) on the
lattice L = H1(EI2(p),g0

,Z) is determined by Picard-Lefschetz formula (i.e.
the transvections) of the vanishing cycles γ1, · · · , γ[p/2] (resp. γ0), taking the
intersection number (3.7) in account. That is,

ρ(ã)(γj) =
{
γ0 −

∑[p/2]
i=1 γi if j = 0

γj if j = 1, 2, 3
ρ(b̃)(γj) =

{
γ0 if j = 0
γj + γ0 if j = 1, 2, 3

12Here, we have an unfortunate coincidence of notation of the fundamental el-
ement with that of the discriminant (2.5). Since we use them in different places,
there shall be no confusion.
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Then, the other actions on LI2(p) and L/rad(L), denoted by the same ρ, are
induced from this action either by restriction to the sub-lattice or by the
quotient out the radical of the lattice. In particular, the embedding (3.15)
is equivariant with the monodromy action. Explicit formulae are given as
follows.

Fact 8. 1) The action of GI2(p) on LI2(p) = H1(EI2(p),g0
,Z)σI2(p) is given as

follows.

(4.2) ρ(ã)(α, β) = (α, β)
[
1 −1
0 1

]
and ρ(b̃)(α, β) = (α, β)

[
1 0

[p/2] 1

]
.

2) The action of GI2(p) on L/rad(L) = H1(EI2(p),g0
,Z) is given as follows.

ρ(ã)([γ0], [γ1])=([γ0], [γ1])
[

1 0
−[p/2] 1

]
and ρ(b̃)([γ0], [γ1])=([γ0], [γ1])

[
1 1
0 1

]
.

(4.3)

Here, the representations (4.2) and (4.3) are conjugate by the basis change:

(4.4) (α, β) = ([γ0], [γ1])
[

0 1
[p/2] 0

]

(3.15), and, hence, they are equivalent.13 We determine the image and the
kernel of the representations as follows.

Fact 9. Let us identify L/rad(L) with Z2 by the use of the basis [γ0] and [γ1],
and regard the representation (4.3) as a homomorphism ρ : GI2(p) → SL2(Z).
Then, we have

13In the sequel, we shall treat these two equivalent representations in parallel
(e.g. (4.13)), which looks a bit redundant and cumbersome. This subtlety was caused
since we, later on, want to study automorphic forms for congruence subgroups
(see (4.6) and §6). More precisely, from a view point for the period map of a
primitive form, it is natural to consider the lattice LI2(p) of vanishing cycles. On
the other hand, from a view point of classical elliptic integrals for a compact elliptic
curve and to connect with classical elliptic modular function theory, it is natural
to consider the lattice L/rad(L). Therefore, in the sequel, when we talk about the
matrix expression of the representation ρ, we shall mean those matrices with respect
to the basis [γ0] and [γ1] but not the basis α and β. These cautious treatments are
necessary for the cases of types B2 and G2 but not for A2, since the embedding (3.15)
is already isomorphic.
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1. The fundamental element Δ is represented by ρ as follows.

ρA2(Δ) =
[

0 1
−1 0

]
, ρB2(Δ) =

[
−1 0
0 −1

]
and ρG2(Δ) =

[
1 0
0 1

]
.

(4.5)

In particular, the images Im(ρA2) and Im(ρB2) contain −id, but Im(ρG2)
does not.

2. The image of the representation ρ in SL2(Z) is equal to the subgroup

(4.6) Γ1([p/2]) :=
{[

a b
c d

]
∈ SL2(Z) |

[
a b
c d

]
≡

[
1 b
0 1

]
mod [p/2]}

}
,

called a congruence subgroup of SL2(Z) of level [p/2] (see e.g. [15]):
3. The kernel of the representation ρ is an infinite cyclic group generated

by

(4.7) (ãb̃)k(I2(p))

where k(I2(p)) ∈ Z≥2 is a number attached to any Coxeter system (see [23,
§6, 6.1 ii])) such that

(4.8) k(A2) = 6, k(B2) = 4 and k(G2) = 3.14

4. Thus, we have the short exact sequence

(4.9) 1 → Z → GI2(p) → Γ1([p/2]) → 1.

That is, the Artin group GI2(p) is a central extension of an elliptic congruence
modular group Γ1([p/2]).

Proof. 1. This is a direct calculation for the cases [p/2] = 1, 2 and 3. The fact
that Im(ρA2) does not contain −id is a consequence of ii).

2. Let us show that ρ is surjective to Γ1([p/2]). Set A := ρ(ã) and B :=
ρ(b̃) in (4.3). Clearly A,B ∈ Γ1([p/2]). We show that Γ1([p/2]) is generated
by A and B. Consider an element C ∈ Γ1([p/2]) whose (2, 1) (resp. (2,2))
entry is c (resp. d). By definition, we set c = c[p/2] for some c ∈ Z. We also
know by definition that d �= 0. Then the (2,1) entry (resp. (2,2) entry) of
CAk (k ∈ Z) is equal to c + kd[p/2] = (c + kd)[p/2] (resp. is unchanged d).

14The numbers k(W ) for any finite Weyl group W is defined in [23, 6.1] depending
only on Coxeter diagram of W .
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Then, by the Euclidean division algorithm, we can choose k ∈ Z such that
|c− kd| ≤ |d|/2. Next, let us consider C ∈ Γ1([p/2]) such that its (2,1) entry
c = c[p/2] satisfies the condition |c| ≤ |d|/2. If c = 0 then the diagonal of C is
±(1, 1) where (−1,−1) cannot occur for the case [p/2] = 3 by the definition of
Γ1(3). By multiplying −id if necessary for the cases [p/2] = 1 or 2 (recall the
result in 1.), we see that C is already of the form Bl for some l ∈ Z. Suppose
c �= 0. We consider CBl for l ∈ Z. Then, its (2,1)-entry is unchanged c, but
the (2,2) entry is given by d′ := d− lc. Then after a suitable choice of l ∈ Z,
we have |d− lc| ≤ |c|/2. Combining the above two procedures, the (2,2) entry
d′ of the matrix CAkBl satisfies |d′| ≤ |c|/2 = |c[p/2]|/2 ≤ |d|[p/2]/4. Since
[p/2]/4 < 1 in our case, this means |d′| < |d|. That is, if C is note generated
by A and B, there are integers k and l such that the (2,2) entry of CAkBl

has the absolute value strictly smaller than that of C. This give an induction
proof of Γ1([p/2]) = 〈A,B〉.

3. As a result of 1., we observe ρA2(Δ4), ρG2(Δ2) and ρG2(Δ) are identity
matrices. That is, Δ4

A2
, Δ2

B2
and ΔG2 belong to the kernel, where we have

relations Δ4
A2

= (ãb̃)6, Δ2
B2

= (ãb̃)4 and ΔG2 = (ãb̃)3. Thus the element (4.7)
is contained in the ker ρ. Conversely, let us show that ker(ρI2(p))⊂ center of
GI2(p). Then, we explicitly calculate Δ4

A2
, Δ2

B2
and ΔG2 generate the kernel. To

show this, we use the fundamental domain of Γ1([p/2]) (see [23, §6 Assertion
5, 6.]).

4. This is only the rewriting of the results 2. and 3.

Remark 1. The following characterization of the congruence subgroup is well-
known.

Γ1([p/2])={m ∈ SL2(Z) | m preserves the subsets L/rad(L)+ 1
[p/2] [γ0]}

= {m ∈ SL2(Z) | m preserves the subsets LI2(p) and LI2(p)+[γ1]}
= {m∈SL(LI2(p)) |m extends to SL2(Z) and preservesLI2(p)+[γ1]}.

A sketch of proof. Reflections by the roots α and β, satisfy the conditions.

Conversely, the conditions on m =
[
a b
c d

]
∈ SL2(Z) that it preserves L (resp.

LI2(p) + [γ1]) implies c ≡ 0 mod [p/2] (resp. d ≡ 1 mod [p/2]).

As a consequence of the description of the congruence subgroup Γ1([p/2])
in Fact 9, we introduce a character (see [23, §6 (6.1.6)]) on it, which shall be
used to formulate the discriminant conjecture in §11:

(4.10) ϑI2(p) : Γ1([p/2]) → C×, ã, b̃ �→ exp
( π

√
−1

k(I2(p))
)
.
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Proof. Obviously, the relation (4.1) is satisfied by the images of ϑI2(p). On the
other hand, the ϑI2(p)-image of (4.7) is equal to exp(2π

√
−1)=1.

Note that the k(I2(p))th power of the character ϑI2(p)

(4.11) θI2(p) := ϑ
k(I2(p))
I2(p) : Γ1([p/2]) → {±1}, ã, b̃ �→ −1

defines also a character for the anti-invariants, and ϑ
2k(I2(p))
I2(p) is trivial. Actually

except for the type G2, θI2(p) factor through the sign morphism WI2(p) → {±1}
of the Weyl group associated with I2(p).

For a use to describe the period map in §5, we prepare some notations.
The monodromy ρ covering space S̃I2(p) of SI2(p) \DI2(p) is defined by

(4.12) S̃I2(p) := ker(ρI2(p))�
(
SI2(p) \DI2(p)

)∼
,

where (SI2(p) \ DI2(p))∼ is the universal covering of SI2(p) \ DI2(p), on which
the fundamental group GI2(p) acts from left properly and discontinuously af-
ter choosing a copy Γ̃I2(p) in (SI2(p) \ DI2(p))∼ of the base point loci ΓI2(p) ⊂
SI2(p) \ DI2(p) (3.1) as the base point loci in (SI2(p) \ DI2(p))∼. Then we take
the quotient of the universal covering by the kernel of the monodromy repre-
sentation. The image of Γ̃I2(p) in S̃I2(p) is again denoted by Γ̃I2(p) and called
the base point loci of S̃I2(p) (which is of homotppy type S1).

We consider the liftings to S̃I2(p) of the local systems of the homology
groups H1(EI2(p),g,Z)σI2(p) and H1(EI2(p),g,Z) over g ∈ SI2(p) \DI2(p) (equiva-
lent to the data in Fact 9), and call them L̃I2(p) and L̃/rad(L̃), respectively.
By definition, they are trivial local systems on the space S̃I2(p)

(4.13) L̃I2(p) � LI2(p) × S̃I2(p) and L̃/rad(L̃) � L/rad(L) × S̃I2(p)

of fibers LI2(p) (3.12) and L/rad(L) (3.10). Due to (3.15), we have natural
inclusion relation L̃I2(p) ⊂ L̃/rad(L̃). For any element of LI2(p) ⊂ L/rad(L),
say γ, we shall denote by the same γ the global section of L̃I2(p) ⊂ L̃/rad(L̃)
associated with it, so far as there may be no-confusion. So, the free basis α

and β (3.12) (resp. [γ1] and [γ0] (Fact 6)) are lifted to global basis α and β

(resp. [γ1] and [γ0]) of L̃I2(p) (resp. L̃/rad(L̃)).
Let us show in the next Fact 10 that not only those closed cycles [γi] are

lifted to global sections over S̃I2(p) but also some “special arcs” δi on the curve
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EI2(p),g, which originally defined only for the base point loci g ∈ ΓI2(p), have
global sections over S̃I2(p). Namely, let us first consider the pullback family

π̃I2(p) : X̃I2(p) −→ S̃I2(p)

of the family π̃I2(p) (2.8) to S̃I2(p). It carries some additional structures:
(1) global sections {∞i × S̃I2(p)} (1 ≤ i ≤ [p/2]),
(2) fiberwise automorphism σ̃I(p) such that global sections are cyclically

permutated: σI2(p)(∞i) = ∞i+1 (i ∈ Z/[p/2]Z).

Recall further that if the parameter g belongs to the base point locus
ΓI2(p), then the fiber curve EI2(p),g contains oriented arcs δi (i = 1, · · · , [p/2])
such that

(4.14)

⎧⎪⎪⎨⎪⎪⎩
a) ∂(δi) = ∞i+1 −∞i for i ∈ Z/[p/2]Z,
b) σI2(p)(δi) = δi+1 for i ∈ Z/[p/2]Z,
c)

∑
i∈Z/[p/2]Z δi ∼ γ0 homologous in EI2(p),g.

We extend these δi’s to global sections over S̃I2(p) as follows.

Fact 10. 1. There exist global sections for 1 ≤ i ≤ [p/2]

(4.15) δi : g ∈ S̃I2(p) �→ δi(g) ∈ C1(EI2(p),g,Z)

which coincide with δi in Fact 1. when g ∈ ΓI2(p), and satisfy the condi-
tions (4.14). Here, C1(EI2(p).g,Z) is the module of singular 1-chains on EI2(p).g.

2. The sections are unique up to homologous zero. That is, if there exists
other section δ′i, then δi(g)−δ′i(g) ∼ 0 (homologous in EI2(p),g) for all g ∈ S̃I2(p).

The proof is an elementary topology and is left to the reader.

5. Periods for primitive forms

We study integrals over paths and cycles in the curves EI2(p),g of the fam-
ily (2.3). Since we are interested in period integrals over the cycles in
H1(EI2(p),g,Z) (3.8), the integrant form should be holomorphic 1-form on
XI2(p) relative to the base space SI2(p).15 Still, this condition is too weak to

15Forms on XI2(p) relative to the base space SI2(p) means the equivalence classes
of forms on XI2(p) modulo the OXI2(p)-submodule generated by dFI2(p), dgs and dgl.
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fix an integrant (e.g. the Betti number of the curves are larger than 1 so that
just one choice of an integrant seems insufficient).

In present paper, we shall focus on the integrals only of the following
form:

(5.1) ζI2(p) := Res
[ dxdy

FI2(p)(x, y, g)
]

(see Footnote 16 for explicit descriptions of the residue (5.1)16), which has a
characterization, up to a constant factor, as the unique primitive form for the
family (2.1).17

In the present section, we introduce the period map (5.3) by integrating
ζI2(p) over closed cycles in EI2(p),g. The description of its inversion map (5.6)

16For each fixed g ∈ SI2(p), dxdy/FI2(p) may be considered as a top degree
meromorphic 2-form on (x, y)-plane of simple pole along the curve EI2(p),g. Then,
at the smooth point of EI2(p),g, the symbol (5.1) defines the residue, which is a
holomorphic one form on EI2(p),g. Actually, using the (x, y)-coordinates, the form
is explicitly given by the relative differential forms dx

∂FI2(p)/∂y
∼ − dy

∂FI2(p)/∂x
(which

are equivalent modulo dFI2(p)). Using these expressions, we confirm that ζI2(p), as
a 1-form on EI2(p),g, is well-defined up to the singularity loci {(x, y) ∈ EI2(p),g |
∂FI2(p)/∂y = ∂FI2(p)/∂x = 0} =:Sing(EI2(p),g) when g ∈DI2(p).

17As we shall see immediately in Fact 11, the form ζI2(p) is, so called, the elliptic
integral of the first kind for the compact elliptic curves EI2(p),g for g ∈ SI2(p) (see, for
instance, [27]). On the other hand, from a view point of integrals of vanishing cycles
of the universal family (2.3) of type I2(p), the form ζI2(p) is, up to an ambiguity
of a constant factor, called the primitive form of the family (to be exact, this is
a restriction of the primitive form ζ defined on the bigger family of type A2, A3
or D4. Since the action of σ on the big family (recall Footnote 9) preserves the form
ζ, it induces the form ζI2(p) (5.1)) (see [19, 23] for primitive forms).

A primitive form in general has distinguished characterizations, which we shall
implicitly (but not explicitly) use in the present paper (actually, we used already
the action of the primitive vector field in §4, which is an important ingredient
of the primitive form theory), and which we recall briefly as follows. Let us con-
sider the twisted relative de-Rham cohomology group RπI2(p),∗(ΩXI2(p)/SI2(p)) of
the family (2.3).It is a filtered Os-module equipped with the Gauss-Manin con-
nection and higher residue pairings. Then, ζI2(p) is an element in the 0th filter
satisfying 1) primitivity, 2) homogeneity, 3) orthogonality, 4) holonomicity (see, for
instance, [19]). In particular, the primitivity means that the covariant differentia-
tions of ζI2(p) generate all cohomology classes so that just a single choice of ζI2(p)
is sufficient.
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by the use of Eisenstein series over the lattices LI2(p) ⊂ L/rad(L) is the
main subject of the present paper. In order to understand them, the study of
integrals over the closed cycles are not sufficient, but we need to develop a
study of integrals of ζI2(p) over non closed paths in EI2(p),g. Precisely, we study
integrals over the arcs δi in the present section and over indefinite paths in
the next section.

We start with the integral of ζI2(p) over a horizontal family of closed
cycles γ ∈ H1(EI2(p),g,Z) (where g runs over a simply connected open subset
of SI2(p)\DI2(p))

(5.2) ωγ :=
∮
γ
ζI2(p).

As is well-known that ωγ is a holomorphic function in the parameter g (which
is proven by a use of Leray’s residue formula) on the domain where the family
γ is defined. On the other hand, ωγ depends only on its equivalence class
[γ] ∈ L/rad(L) due to the following fact.

Fact 11. The form ζI2(p) can be extended holomorphically on the compactified
elliptic curves EI2(p),g for g ∈ SI2(p). The extended form is nowhere vanishing
on the smooth part EI2(p),g \ Sing(EI2(p),g) of the curve.

Proof. If (x, y) ∈ EI2(p),g is a non-singlar point, then either of
∂FI2(p)(x, y, g)/∂x or ∂FI2(p)(x, y, g)/∂y is non-zero. Then, one of the two
explicit expressions of ζI2(p) in Footnote 16 gives a non-vanishing and holo-
morphic expression of ζI2(p) at the point (x, y). At the infinity points, we have
already observed in Footnote 3 that EI2(p),g is smooth. Then using that ex-
pressions, we check again that ζI2(p) is holomorphic and non-vanishing. The
details are left to the reader.

This means that ζI2(p) may also be regarded as a relative de Rham coho-
mology class of the family of compactified elliptic curves EI2(p),g. The cycles
γ1, · · · , γ[p/2] are homologous to each other in EI2(p),g. This implies

∮
γ1
ζI2(p) =

· · · =
∮
γ[p/2]

ζI2(p), and, ωγ depends only on the class [γ] ∈ L̃/rad(L̃). There-
fore, we regard ωγ as a holomorphic function defined on S̃I2(p). In particular,
in view of (3.13), we have expressions

ωα :=
∮
α
ζI2(p) = [p/2] ωγ1 and ωβ :=

∮
β
ζI2(p) = ωγ0 .
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Thus, in the present paper, we shall integrate either over a cycle in L̃I2(p) and
a cycle γ in L̃/rad(L̃).18 (in such situation, we shall say “integrate a cycle
γ ∈ L̃I2(p) ⊂ L̃/rad(L̃)”), or over “special arcs” δi (4.15).

For each point g̃ ∈ S̃I2(p) (4.12), we consider the linear map

(5.3) γ ∈ L̃I2(p) ⊂ L̃/rad(L̃) �→ ωγ :=
∮
γ
ζI2(p) ∈ OS̃I2(p)

where we set OS̃I2(p)
= holomorphic functions on S̃I2(p).

Using the trivialization (4.13) of L̃I2(p) ⊂ L̃/∼, we obtain a holomorpbic
map

PI2(p) : S̃I2(p) → HomZ(LI2(p),C) = HomZ(L/rad(L),C) (� C2)

g �→ γ �→ ωγ :=
∮
γ(g) ζI2(p)

(5.4)

where the identification in RHS is canonically given by the change

(5.5) ωα = [p/2] ωγ1 and ωβ = ωγ0

of the basis in both vector spaces. We shall call PI2(p) the period map associ-
ated with the primitive form ζI2(p) (5.1).

Fact 12. The period map PI2(p) is locally bi-holomorphic.

Proof. We show the Jacobian determinant of the map is no-where vanishing.
We use an essential property: the primitivity of ζI2(p) [19]. Since the proof uses
relative de-Rham cohomology theory for the family (2.3) which is beyond the
scope of present paper, a complete proof is left to the literature but we give
here a brief sketch of its idea.

There exists, so called, the Gauss-Manin covariant differentiation opera-
tor ∇ on the module (over OSI2(p)) of relative de Rham cohomology classes

18It is rather restrictive view point to study integrals only over σI2(p)-invariant
cycles or over equivalent class of cycles. This is caused by the fact that our fam-
ily (2.1) is already the subfamily of the full families of type A3 or D4, and is fixed
by a cyclic action σ (recall Footnote 1 and 7) where the full (A3 or D4) lattice L
does not play role. The studies of period integrals of the primitive form over the
full lattice L in the big families of type A3 and D4 (unpublished) are by themselves
interesting subject and should appear elsewhere.
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of (2.3). Then, one basic property, called the primitivity, of a primitive form
is that its covariant differentiations ∇∂gsζI2(p) and ∇∂glζI2(p) generate the rel-
ative de-Rham cohomology module (here ∂gs and ∂gl stand for the partial
derivatives w.r.t. the coordinate system g). Then, standard duality between
the de-Rham cohomology group and the (σI2(p)-invariant) singular homol-

ogy group of the curve EI2(p),g implies det
[∮

γ0
∇∂gs ζI2(p)

∮
γ0
∇∂gl

ζI2(p)∮
γ1
∇∂gs ζI2(p)

∮
γ1
∇∂gl

ζI2(p)

]
�= 0.

Since the integral
∮

commutes with the derivation action ∂g and the
covariant differentiation ∇∂g , we see that the Jacobian determinant

det
[
∂gs

∮
γ0
ζI2(p) ∂gl

∮
γ0
ζI2(p)

∂gs
∮
γ1
ζI2(p) ∂gs

∮
γ1
ζI2(p)

]
�= 0 does not vanish.

Let us now formulate the first main theorem of the present paper.

Theorem 5.1. The period map (5.4) induces a biholomorphic map

(5.6) PI2(p) : S̃I2(p) � H̃ ,

where the RHS of (5.6), so called the period domain, is given as

(5.7)
H̃ := {ω ∈ HomZ(LI2(p),C) | Im(ωα/ωβ) > 0}

= {ω ∈ HomZ(L/rad(L),C) | Im(ωγ1/ωγ0) > 0},

(here we used again (5.5) for the identification of the first and the second
lines). The map (5.4) is equivariant with the action of the coongruence mod-
ular group Γ1([p/2]) ⊂ SLZ(LI2(p)) ∩ SL2(Z).

Proof. This result for the case of type A2 = I2(3), is the well-known classic
(e.g. see [27]). We want to show the parallel world for the other types B2 and
G2 exists. The complete proof of this theorem can be given after solving the
Jacobi-inversion problem for those period maps in Theorem 9.2 in §9. In the
present section, we show only the following classical well-known fact:

Fact 13. The image of the period map (5.4) is contained in RHS of (5.6). In
particular, by the period integral (5.2), the lattice L̃/rad(L̃)g for g ∈ S̃I2(p) is
embedded into a discrete lattice, called the period lattice:

(5.8) Ω
L̃/rad(L̃),g := Zωγ0 + Zωγ1

in the complex plane C.
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Actually, this is well-known as a consequence of (1) the Riemann’s in-
equality: 1

2
√
−1

∫
EI2(p),g

ζI2(p) ∧ ζI2(p) > 0, due to the finite positivity of the real
volume form 1

2
√
−1ζI2(p)∧ζI2(p) and (2) the Stokes relation:

∫
EI2(p),g

ζI2(p)∧ζI2(p) =∮
γ1
ζI2(p)

∮
γ0
ζI2(p)−

∮
γ0
ζI2(p)

∮
γ1
ζI2(p), due to the fact that the cycles γ0 and γ1 give

a canonical dissection of the real surface EI2(p),g where ζI2(p) has no poles
(i.e. it is only a topological but not analytical property. cf. the first row of
Figure 3).

Before ending this section, let us consider also the integrals over the special
arcs δi (4.15) constructed in Fact 1 in §2 and Fact 10 in §4. Namely, for every
g ∈ S̃I2(p) and 1 ≤ i ≤ [p/2], set

(5.9) ωδi :=
∫
δi

ζI2(p).

Recall that the δi’s are cyclically permuted by σI2(p) and their sum is homol-
ogous to γ0 (see (4.15) and Fact 10.1). On the other hand, one sees immedi-
ately from the expression (5.1) that the form ζI2(p) is invariant by the action
of σI2(p). These together implies ωδ1 = · · · = ωδ[p/2] and ωδ1 +· · ·+ωδ[p/2] = ωγ0 .
Thus those arc integrals (5.9) are expressed in terms of a classical period of
a vanishing cycle as follows.

(5.10) ωδ1 = · · · = ωδ[p/2] = 1
[p/2]ωβ

(
= 1

[p/2]ωγ0

)
Finally in this section, let us notice some elementary but useful facts.

Fact 14. The periods ωγi and ωδi (i = 1, · · · , [p/2]) are weighted homogeneous
functions on S̃I2(p) of weights given in Table 1. That is, the C× action on
SI2(p) is naturally lifted to that on S̃I2(p), which, for an abuse of notation, we
shall denote g �→ twt(g)g, so that we have the following equivariance w.r.t. the
action of t ∈ C×.

ωγi(twt(g)g) = twt(ωγi ) ωγi(g) and ωδi(twt(g)g) = twt(ωδi
) ωδi(g)

where wt(ωγi) = wt(ωδi) = wt(z). Putting negatively graded structure on
RHS’s of (5.4) and (5.6) by multiplication twt(z) for t ∈ C×, the maps (5.4)
and (5.6) are equivariant with respect to the C×-action.

Proof. Recall that the C× action on the space XI2(p) extends to its partial
compactification XI2(p) in such manner that the restriction of the action on
the divisors ∞i × SI2(p) are equivariant with that on SI2(p). Then, the action
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induces an action on the set of paths in EI2(p),g starting from ∞1 × g, where
the end point of the path is acted by the C×. We replace the integral (6.1)
over a path by the integral over the “acted” path. Due to the expression (5.1),
we have wt(z) = wt(x) + wt(y) − wt(FI2(p)).

6. Jacobian variety

We study integrals of the primitive form ζI2(p) over paths in the smooth part
of the curve EI2(p),g for each fixed g ∈ SI2(p) \DI2(p) which may not necce-
sarily be closed. That is, we study the Jacobian variety of the curve EI2(p),g
and the Hamilton’s equation of the motion regarding the unfolding function
FI2(p)(x, y, g) as the Hamiltonean.19

Precisely, we focus on the integrals from the point at infinity ∞1:

(6.1) z :=
∫ (x,y)∼

∞1

ζI2(p) ∈ C

where (x, y)∼ is a point in the universal covering (with respect to the base
point ∞1) of the curve EI2(p)g which lies over a point (x, y) ∈ EI2(p)g, or,
equivalently, a homotopy class of rectifiable paths in the curve EI2(p)g from
∞1 to (x, y) ∈ EI2(p)g (as exlained, the notation (x, y)∼ is ambiguous and we
use it only in the present formula).

It is a classic that the integral (6.1) induces a biholomorphic map from the
universal covering of EI2(p),g to the complex plane C (Proof. The map is locally
bi-regular (Fact 11) and is equivariant with the covering transformation of
π1(EI2(p)g,∞1) on E

∼
I2(p),g with the translation action by the full period lattice

Ω
L̃/rad(L̃)g=Zωγ0⊕Zωγ1 on C (Fact 13)).

For a later use in the study of inversion problem, let us confirm the di-
rection of the Hamiltonian FI2(p) at the base point g0 ∈ ΓI2(p) as follows.

Fact 15. By the map (6.1) for g0 ∈ ΓI2(p), the cycle (3.4) is mapped to the
real interval [0, ωβ] in the z-complex plane.

In particular, one has the correspondence: ∞i ↔ i
[p/2]ωβ mod Zωβ .

Proof. Let’s first observe that the integral (6.1) over the arc δ1 takes real
increasing values. For the purpose, we only need to notify that δ1 is a real path

19We can study in parallel the case when g belongs to the discriminant DI2(p)
by replacing EI2(p)g by EI2(p)g \Sing(EI2(p)g) and LI2(p) by the lattices of rank 1
and 0. We omitt details which are left to the reader.
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Figure 5: Period lattice ΩG2,g and its fundamental domain. The big black spots
indicate points in ΩG2,g, and other small spots indicate other places of the
poles of the functions xI2(p)(z, g) and yI2(p)(z, g). Shaded area is a fundamental
domain (=period parallelogram) for translation action of ΩG2,g.

as in Figure 2 and the integrant ζI2(p) = dx
∂FI2(p)/∂y

takes positive real values on
the arc δ1, or equivalently, the function ∂FI2(p)/∂y takes negative real values
when x is decreasing and takes positive real values when x is increasing on the
path δ1 (near at ∞1). This can be confirmed directly depending on cases using
the condition (3.5). The same argument works for the integral over the arcs
(δ2,∞2), · · · , (δ[p/2],∞[p/2]). Then, recall that the cycle (3.4) is homologous
to γ0 = β.

We consider the inverse map: z =
∫ (x,y)∼
∞1

ζI2(p) ∈ C �→ (x, y) ∈ EI2(p),g.
More precisely, we associate to z ∈ C the coordinate values of the correspond-
ing point (x, y) ∈ EI2(p),g by the relation (6.1) and denote it by

(6.2) xI2(p)(z, g) and yI2(p)(z, g),

respectively.20 To be careful, the values of the “functions” xI2(p) and yI2(p)
may not be defined when (x, y) represents a point at infinity (2.7), however,
the function is obviously holomorphic at other points and we see easily those
undefined points are removable to a holomorphic or meromorphic function.21

20Inversion expression of the coordinate (x, y) with respect to the integral value
w =

∫ (x,y)
∞ ω over the elliptic integral of the first kind ω = dx/

√
4x3 − gsx + gl is

well-known to be given by Weierstrass p-function and its derivative as x = p(w), y =
p′(w). Since there exists a factor relation ζA2 = ω/2, we have the relation w = 2z
and the period lattice gets half size. Then, xA2(z) = 1

4p(z), yA2(z) = 1
8p

′(z).
21Here, one should be slightly cautious that xI2(p) and yI2(p) are (at present stage)

as functions in g ∈ SI2(p) \ DI2(p) only pointwise. Their holomorphic dependence
on g can be shown again by a use of Leray’s residue formula (details are omitted).
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Recalling the two local expressions in Footnote 16 of the de Rham class
of ζI2(p), we obtain the following Hamilton’s equation of motion:

∂xI2(p)(z, g)
∂z

=
∂FI2(p)(x, y, g)

∂y
and

∂yI2(p)(z, g)
∂z

= −
∂FI2(p)(x, y, g)

∂x
.

(6.3)

However, this equation of the motion (which depends only on gs but not on
gl) alone does not determine the solution (6.2) uniquely. In order to recover
the functions (6.2) as a function in z, we need to put the following (obvious
geometric) constraint on the energy level (depending on gl) of the motion:

(6.4) FI2(p)(xI2(p), yI2(p), g) = 0

We remark also that the functions xI2(p) and yI2(p), which are no-longer poly-
nomials but meromorphic in z, are still weighted homogeneous functions if
we give the weights to x, y, z and g as given in the Table 1. That is, we have
the following equivariance w.r.t. the action of t ∈ C×.

(6.5)
xI2(p)(twt(z)z, twt(g)g) = twt(x) xI2(p)(z, g),
yI2(p)(twt(z)z, twt(g)g) = twt(y) yI2(p)(z, g)

(Proof of (6.5).) Recall that the C× action on the space XI2(p) extends to its
partial compactification XI2(p) in such manner that the point ∞1 at infinity of
a curve stays at infinity ∞1 of the curve whose parameter g is acted by the C×

action. Then, the action induces an action on the set of paths starting from
∞1 to a point in the curve, where the end point of the path is acted by the C×.
We replace the integral (6.1) over a path by the integral over the “acted” path.
Due to the expression (5.1), we have wt(z) = wt(x)+wt(y)−wt(FI2(p)). �).

One crucial fact here is that the only variable z has the negative weight
(recall Table 1) and the functions xI2(p)(z, g) and yI2(p)(z, g) can be (and,
actually, are) transcendental in z.

7. Laurent series solutions at infinities

We study formal Laurent series solutions of the equation of the motion (6.3)
together with the constraint (6.4) of the energy level and the weight condi-

However, their extendability to DI2(p) is not a priori obvious). Actually combining
with the discussions in Footnote 15, it is possible to show that they actually are
extendable to the functions on the whole SI2(p). However, without using that logic,
we show directly in Lemma 7.1 in §7.
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tion (6.5). The solutions are exactly in one to one correspondence with the
set of points at infinity of the curve ẼI2(p),g, having the geometric origin.

Exactly, we shift the center of Laurent expansion: if xI2(p)(z) or yI2(p)(z)
has a non trivial pole at z = ω(g) (where ω(g) is a function of g ∈ S̃I2(p) of
weight = wt(z)), then we consider the Laurent expansion of the pair

(x(z),y(z)) := (xI2(p)(z + ω(g)), yI2(p)(z + ω(g)))

with respect to the local formal coordinate z at 0. The pair (x(z),y(z)) satisfies
the pair of equations

(6.3*)
∂x(z, g)

∂z
=

∂FI2(p)(x,y, g)
∂y and

∂y(z, g)
∂z

= −
∂FI2(p)(x,y, g)

∂x

since the equations (6.3) are invariant by the shift of the center. Next Lemma
classify all formal Laurent solutions of (6.3*) with non-trivial poles in z.

Lemma 7.1. Consider the system of the equations (6.3) together with the
constraint (6.4) and the weight condition (6.5). Then it has exactly [p/2]-
pairs of formal Laurent series solutions having non-trivial pole, which are
in one to one correspondence with the set {∞1, · · · ,∞[p/2]} of the points at
infinity (2.7) of the curve EI2(p).

(7.1)
{Solutions with non-trivial pole } � {Points at infinity}

(x(z),y(z)) �→ lim
z↓0

(x(z),y(z))!

The linear transformation σI2(p) (3.11) acts on the set of solutions cyclically
equivariant with the bijection (7.1). The coefficients of the Laurent series are
Q-coefficients weighted homogeneous polynomials in g so that the solution is
a pair of weighted homogeneous functions of weight (wt(x),wt(y)).

Proof. The proof is divided into 4 steps.

Step 1. For each type I2(p), consider the pair of formal Laurent series:

(7.2)
xA2(z, g) =

∑∞
n=−a Anz

2n and yA2(z, g) =
∑∞

n=−bBnz
2n−1

xB2(z, g) =
∑∞

n=−aAnz
2n+1 and yB2(z, g) =

∑∞
n=−bBnz

2n

xG2(z, g) =
∑∞

n=−a Anz
n and yG2(z, g) =

∑∞
n=−bBnz

n

of indeterminate coefficients An and Bn with non vanishing leading terms
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A−aB−b �= 022 (according to the even property of xA2 and yB2 or odd property
of yA2 and xB2 caused by the Z/2-symmetry (x, y)→(x,−y), the sum consist
either only of even or odd powers in z). We assume that the pair has non-trivial
pole, i.e. at least one of a or b is positive. Here the coefficients are weighted
homogeneous functions in g ∈ S̃I2(p), a priori not necessarily polynomials, of
weight

wt(An) = wt(Bn) = (1 + n)/d

where d = 3, 2 or 3 according as I2(p) = A2,B2 or G2 (use Table 1 for weights
for x, y and z). Therefore, for each type I2(p), there exists a positive integer
n0 such that

wt(An0) = wt(Bn0) = 1 = wt(gl)

(actually, n0 = d− 1 = 2, 1 or 2 according as I2(p) = A2,B2 or G2).

Step 2. Using only the equations (6.3*) double inductively on An (n ≥ −a)
and Bn (n ≥ −b), one can uniquely determine the coefficients until the degree
n < n0, where we observe two basic facts.

(1) The initial term (A−a, B−b) are constants independent of the parame-
ter, and we have exactly [p/2]-number of solutions. More exactly, according to
each initial direction condition listed in the following table (7.3), there exists
a unique solution satisfying it, where, in the last case, xI2(p) does not have
non-trivial pole. The list of explicit solutions is given in (7.4), where one con-
firm that the coefficients are Q-coefficient polynomials in gs. The calculation
is case by case and we omit details.

(7.3)

A2 ∞1 : A−a > 0 and B−b < 0

B2 ∞1 : A−a > 0 and B−b < 0
B2 ∞2 : A−a < 0 and B−b > 0

G2 ∞1 : A−a > 0 and B−b < 0
G2 ∞2 : A−a < 0 and B−b < 0
G2 ∞3 : a ≤ 0 and B−b < 0

Already in this initial solutions level (under the assumption that they shall
later extend to full solution), we can confirm the bijection (7.1) by the use of
Figure 2, where the “roots” of paths δi’s are the infinity points ∞i. Therefore,

22Here, we, unfortunately, use the notation An and Bn for the coefficients of
the Laurent series, which have nothing to do with the classification names An and
Bn for root systems. Since they are used only inside present proof, one should
cautiously read them.
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we indicated the point at infinity in the table (7.3) of initial conditions and
in the table (7.4) of (partial) solutions.

(2) The second nontrivial term ((A1, B1) for type A2 and (A0, B0) for
types B2 and G2) contains the variable gs non-trivial linearly.

Step 3. We next use the energy condition (6.4) to determine the coefficients
An0 , Bn0 (actually, the equation (6.3) alone cannot determine the energy
level). We confirm that gl appears non-trivially in An0 , Bn0 . According to
the 6 initial conditions listed in (7.3), the results are given below. In partic-
ular, we confirm that the variable gl appears as a non-trivial linear term in
An0 and/or in Bn0 .

(7.4)

xA2,∞1(z) = 1
4z

−2 + 1
5gs z2 + 4

7glz
4 +

∑∞
n=3 Anz

2n

yA2,∞1(z) = −1
4z

−3 + 1
5gsz + 8

7glz
3 +

∑∞
n=3 Bnz

2n−1

xB2,∞1(z) = 1
2z

−1 + 1
3gsz +

( 1
18g

2
s − 4

5gl
)
z3 +

∑∞
n=2 Anz

2n+1

yB2,∞1(z) = −1
4z

−2 + 1
6gs +

( 1
12g

2
s − 6

5gl
)
z2 +

∑∞
n=2 Bnz

2n

xB2,∞2(z) = −1
2z

−1 − 1
3gsz− ( 1

18g
2
s − 4

5gl)z
3 +

∑∞
n=2 Anz

2n+1

yB2,∞2(z) = 1
4z

−2 − 1
6gs − ( 1

12g
2
s − 6

5gl)z
2 +

∑∞
n=2 Bnz

2n

xG2,∞1(z) = 1
2z

−1 + 1
2gs + 3

2g
2
sz + (g3

s − 1
2gl)z

2 +
∑∞

n=3 Anz
n

yG2,∞1(z) = −1
2z

−1 + 3
2gs −

3
2g

2
sz + (3g3

s − 3
2gl)z

2 +
∑∞

n=3 Bnz
n

xG2,∞2(z) = −1
2z

−1 + 1
2gs −

3
2g

2
sz + (g3

s − 1
2gl)z

2 +
∑∞

n=3 Anz
n

yG2,∞2(z) = −1
2z

−1 − 3
2gs −

3
2g

2
sz

2 − (3g3
s − 3

2gl)z
2 +

∑∞
n=3 Bnz

n

xG2,∞3(z) = −gs + (−2g3
s + gl)z2 +

∑∞
n=2 A2nz

2n

yG2,∞3(z) = z−1 + 3g2
sz +

∑∞
n=2 B2n−1z

2n−1

Step 4. To determine the coefficients An and Bn for n > n0, we use again
the equation (6.3). By inserting (7.4) in (6.3*), compare coefficients of the
Laurent expansions in BHS. Let Cn (resp. Dn) be the coefficient polynomial
of the power of z in the RHS of (6.3) whose degree coincides with the term
An (resp. Bn) in LHS. The Cn and Dn are rational coefficients weighted
homogenous polynomials in gs, gl and Am, Bm (m ∈ Z>n0). Since the total
weight of Cn (resp. Dn) is equal to wt(An) = wt(Bn), the coefficient Cn (resp.
Dn) cannot contain Am, Bm for m > n and An and Bn appear only linearly
with constant coefficients. The linear coefficients are independent of n, since
such terms appear in the expansion of RHS of (6.3*) only when the term An

or Bn multiplied with the constant coefficient terms of xI2(p) and yI2(p), that is



940 Kyoji Saito

lowest degree terms A−az
−a and B−bz

−b (see (7.4)). But, such pattern does
not depends on n ∈ Z>n0 . Calculating explicitly the linear coefficients, we
obtain the equations:

(7.5)

A2 type : 2nAn = 2Bn + C ′
n, (2n− 1)Bn = 6An + D′

n

B2 type : (2n + 1)An = 2Bn + C ′
n, 2nBn = 3An + D′

n

G2 type : nAn = −An + Bn + C ′
n, nBn = 3An + Bn + D′

n

where C ′
n and D′

n are the remaining part of Cn and Dn after subtracting the
linear terms in An and Bn. We observe immediately that the determinants of
coefficients of An and Bn in the two equation for three types are given by

A2 : det
[
2n −2
−6 2n−1

]
B2 : det

[
2n+1 −2
−3 2n

]
G2 : det

[
n+1 −1
−3 n−1

]
= 2(2n+3)(n−2), = 2(2n−3)(n+2), = (n+2)(n−2)

which takes positive values for n > n0. Thus An and Bn are uniquely expressed
as rational coefficients polynomials in Am, Bm (n0 ≤ m < n) and gs. This
gives the inductive construction of the coefficients An and Bn for n ∈ Z>n0 .

This completes the proof of Lemma 7.1.

As a result of Lemma 7.1, we can determine the principal parts of the Lau-
rent expansions of the meromorphic functions xI2(p)(z, g) and yI2(p)(z, g) (6.2).

Fact 16. 1. The formal Laurent series solutions in Lemma 7.1 are convergent.
2. The following substitutions of z in the formal series solution (7.4):

(7.6) xI2(p),∞i
(z − ( i−1

[p/2]ωγ0 + ωγ)), yI2(p),∞i
(z − ( i−1

[p/2]ωγ0 + ωγ))

give the Laurent expansions of the meromorphic functions xI2(p)(z, g) and
yI2(p)(z, g) at the place i−1

[p/2]ωγ0 + ωγ for any 1 ≤ i ≤ [p/2] and γ ∈ L̃/rad(L̃).

Proof. 1. Can be shown as a consequence of the next 2.
2. We know already from geometry (recall a discussion after the defini-

tion (6.2) and the description of Fact 15) that the functions xI2(p)(z, g) and
yI2(p)(z, g) may have poles only at the places i−1

[p/2]ω0 + ωγ for i = 1, · · · , [p/2]
and γ ∈ L̃/rad(L̃). In view of the asymptotic behavior of paths δi’s at their
starting points in the first row of Figure 1, we observe that all of them be-
come poles except that the function xG2 at the places 2

3ω0 + ωγ for any
γ ∈ L̃/rad(L̃)) does not have a pole.
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Obviously, the Laurent expansions at those places should satisfy the equa-
tions (6.3) together with the constraint (6.4), which further satisfy the initial
constraint (7.3) according to its location. Then, the uniqueness of the solution
of the equations under the initial constraint implies that the formal solution
should coincide with the expansion of xI2(p)(z, g) or yI2(p)(z, g).

We note that the proof of Lemma 7.1 for actually covers also the Laurent
series expansions of the cases of g ∈ SI2(p) \ DI2(p) g ∈ DI2(p). The (7.3)
express the Laurent series expressions of the coordinate (x, y) for the cases of
g ∈ DI2(p) (recall Footnote 17 and 19) as trigonometric or rational functions
in z.

Let us give explicitly the first few terms of the Laurent expansion of
xI2(p)(z, g) and yI2(p)(z, g) at the origin z = 0 as follows.

Table 2: Laurent expansions of xI2(p) and yI2(p) at z = 0
A2 case.

xA2(z) = 1
4z

−2 + 1
5gsz

2 + 4
7glz

4 + 4
75g

2
sz

6 + 48
385gsglz

8 + · · ·
yA2(z) = −1

4z
−3 + 1

5gsz + 8
7glz

3 + 4
25g

2
sz

5 + 192
385gsglz

7 + · · ·

B2 case.
xB2(z) = 1

2z
−1 + 1

3gsz +
( 1

18g
2
s − 4

5gl
)
z3 +

( 1
27g

3
s − 8

35gsgl
)
z5 + · · ·

yB2(z) = −1
4z

−2 + 1
6gs +

( 1
12g

2
s − 6

5gl
)
z2 +

( 5
54g

3
s − 4

7gsgl
)
z4 + · · ·

G2 case.
xG2(z) = 1

2z
−1 + 1

2gs + 3
2g

2
sz + (g3

s − 1
2gl)z

2 + (3
2g

4
s − 6

5glgs)z
3 + · · ·

yG2(z) = −1
2z

−1 + 3
2gs −

3
2g

2
sz + (3g3

s − 3
2gl)z

2 − (3
2g

4
s − 6

5glgs)z
3 + · · ·

8. Partial fractional expansions

We come back to the global study of the meromorphic functions xI2(p)(z, g)
and yI2(p)(z, g) in z (6.2). The goal of this section is to give the partial frac-
tional expansion of them. The study belongs to classical elliptic function the-
ory. In particular, A2-type case is well-known as Weierstrass p-function theory.
We generalize it for the other two types B2 and G2, since those descriptions
in the present section, lead to “generalized Eisenstein series” expression of
the modular forms for the congruence subgroups Γ1(2) and Γ1(3) in the next
section, which seems to have be unknown (see also Remark 9.3 2 in §9).

We recall the classical Weierstrass’s p-function and ζ-function associated
with any point (ω0, ω1) ∈ H̃ as meromorphic functions on the z-plane with
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double or simple poles (see, e.g. [13]).

p(z) = 1
z2 +

∑
ω 
=0∈Ω

(
1

(z−ω)2 − 1
ω2

)
ζ(z) = 1

z +
∑

ω 
=0∈Ω

(
1

z−ω + 1
ω + z

ω2

)
,

where we set Ω := Zω0 +Zω1. Since they are compact uniform convergent on
C× H̃ \∪m,n∈Z{z− (mω1 +nω0) = 0}, one may derivate them termwisely. In
particular, one has the well-known relation: ζ ′(z) = −p(z).23

Theorem 8.1. The meromorphic functions xI2(p)(z, g) and yI2(p)(z, g) have
the following partial fractional expansions.

xA2(z, g) = 1
4p(z)

yA2(z, g) = 1
8p

′(z)

xB2(z, g) = −1
2ζ(

1
2ω0) + 1

2ζ(z) −
1
2ζ(z −

1
2ωγ0)

yB2(z, g) = −1
4p(z) + 1

4p(z −
1
2ωγ0)

xG2(z, g) = −1
6ζ(

1
3ωγ0) − 1

6ζ(
2
3ωγ0) + 1

2ζ(z) −
1
2ζ(z −

1
3ωγ0)

yG2(z, g) = 1
2ζ(

1
3ωγ0) + 1

2ζ(
2
3ωγ0) − 1

2ζ(z) −
1
2ζ(z −

1
3ωγ0) + ζ(z − 2

3ωγ0)

(8.1)

where the p-function and the ζ-function in RHS are those associated with the
period (ωγ0 , ωγ1) ∈ H̃, and, hence, with the period lattice Ω = Ω

L̃/rad(L̃),g (5.8).

Proof. Owing to (7.4) and Fact 16, we know already the principal parts of
poles of the functions xI2(p)(z, g) and yI2(p)(z, g) in z. Since the principal parts
of poles of p(z), p′(z) and ζ(z) are 1/(z − ω)2, −2/(z − ω)3 and 1/(z − ω)
for ω ∈ ΩI2(p),g, respectively, we see that the sum in the bracket of RHS of
the following (8.2) give meromorphic functions on z, whose principal parts of
poles coincide with those of xI2(p)(z, g) and yI2(p)(z, g) in z, respectively (here,
we denote by

[
f(z)

]
the set of all principal parts of a meromorphic function

23The notation “ ′ ” or “ ′′ ” shall mean single or twice derivative with respect to
the variable z.
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f(z) defined on z-plane).

(8.2)

[
xA2(z, g)

]
=

[1
4p(z)

][
yA2(z, g)

]
=

[1
8p

′(z)
]

[
xB2(z, g)

]
=

[1
2ζ(z) −

1
2ζ(z −

1
2ωγ0)

][
yB2(z, g)

]
=

[
− 1

4p(z) + 1
4p(z −

1
2ωγ0)

]
[
xG2(z, g)

]
=

[1
2ζ(z) −

1
2ζ(z −

1
3ωγ0)

][
yG2(z, g)

]
=

[
− 1

2ζ(z) −
1
2ζ(z −

1
3ωγ0) + ζ(z − 2

3ωγ0)
]

On the other hand, we remark that the functions in the bracket of the
RHS of (8.2) are periodic functions w.r.t. the period lattice ΩI2(p),g, since
(1) the functions p(z) and p′(z) are already periodic, and (2) the sum of
coefficients of the linear combinations of the functions of the form ζ(z + ∗)
in each formula is equal to zero and, then, it is well known that the linear
combination is a periodic function (see, e.g. [13, Ch. 1§12], this follows from
an elementary property of zeta function that ζ(z + mω0 + nω1) − ζ(z) =
m2ζ(ω0/2) + n2ζ(ω1/2) for ω ∈ Ω). Thus, due to Liouville’s Theorem, the
difference of meromorphic functions in the brackets of both hand sides of (8.2)
are constants.

Actually, the data of the principal parts of poles are not sufficient to
control the ambiguity of adding constant terms except for the case of type A2.
Namely, the Laurent expansion for the type A2 at z = 0 (see Table 2 at the
end of §7) does not have constant terms but those for the other types B2 and
G2 contain non-trivial constant terms, which are linear in gs and which are
still to be determined from the data of the lattice ΩI2(p). In order to overcome
this issue, we use the Hamilton equation (6.3) of the motion. This is essentially
the new feature for the types B2 and G2 to be cautious compared with the
classical case of type A2.

Let us determine the constants depending on the type separately.

A2 type case: Since the constant terms of the Laurent expansions at the
origin of BHS are zero, the difference is zero, and we obtain already (8.1) for
type A2.

B2 type case: Set, for suitable constants (w.r.t. z) A and B,

xB2(z, g) = A + 1
2ζ(z) −

1
2ζ(z −

1
2ωγ0)

yB2(z, g) = B − 1
4p(z) + 1

4p(z −
1
2ωγ0)
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In the first equality, since the constant terms of the Laurent expansions of
xB2(z, g) and ζ(z) are zero (recall (7.4) and the fact that ζ(z) is an odd
function) the sum of the remaining terms A − ζ(0 − 1

2ωγ0) is equal to zero.
This determine A = −ζ(1

2ωγ0).
For the second row of the equality, recall the Hamilton’s equation of the

motion (6.3) ∂xB2
∂z = 2yB2 . The LHS is equal to −1

2p(z) + 1
2p(z −

1
2ωγ0), and

substituting yB2 in the RHS, we see that 2B = 0. These already gives (8.1)
for type B2. Then, by comparing the constant terms of the Laurent expansion
of the BHS of (8.1) in view of (7.4), we obtain 1

6gs = 1
4p(0 − 1

2ωγ0). Hence,

(8.3)
A = −ζ(1

2ωγ0)
B = 0
gs = 3

2 p(1
2ωγ0).

G2 type case: Set, for suitable constants w.r.t. z, A and B,

xG2(z, g) = A + 1
2ζ(z) −

1
2ζ(z −

1
3ωγ0)

yG2(z, g) = B − 1
2ζ(z) −

1
2ζ(z −

1
3ωγ0) + ζ(z − 2

3ωγ0).

Recall the Hamilton’s equation of the motion (6.3)

∂xG2

∂z
= 2xG2yG2 + 2gsyG2 .

The LHS is equal to −1
2p(z)+ 1

2p(z−
1
3ωγ0) so the residue at any pole of LHS

is equal to zero. Thus, we obtain two relations that the residues at z = 2
3ωγ0

and at z = 1
3ωγ0 of the meromorphic function

2
(
A + 1

2ζ(z) −
1
2ζ(z −

1
3ωγ0)

)
×
(
B − 1

2ζ(z) −
1
2ζ(z −

1
3ωγ0)

+ ζ(z − 2
3ωγ0)

)
+ 2 gs

(
B − 1

2ζ(z) −
1
2ζ(z −

1
3ωγ0) + ζ(z − 2

3ωγ0)
)

are zero.

(1) Residue at z = 2
3ωγ0 : 2A + ζ(2

3ωγ0) − ζ(2
3ωγ0 − 1

3ωγ0) + 2gs = 0
(2) Residue at z = 1

3ωγ0 : −A− 1
2ζ(

1
3ωγ0)−B+ 1

2ζ(
1
3ωγ0)−ζ(1

3ωγ0 − 2
3ωγ0)−

gs = 0

In addition to these, let us consider two more relations:

(3) 1
2gs = A− 1

2ζ(0 − 1
3ωγ0)

(4) 3
2gs = B − 1

2ζ(0 − 1
3ωγ0) + ζ(0 − 2

3ωγ0)
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obtained by comparing the constant terms of Laurent expansion of the equal-
ities: xG2 = A+ 1

2ζ(z)−
1
2ζ(z−

1
3ωγ0) and yG2 = B− 1

2ζ(z)−
1
2ζ(z−

1
3ωγ0) +

ζ(z − 2
3ωγ0).

Recalling the fact that ζ is an odd function, we see that (1), (2), (3) and
(4) are overdetermined system for A,B and gs, and we obtain the solution:

(8.4)
A = −1

6ζ(
1
3ωγ0) − 1

6ζ(
2
3ωγ0)

B = 1
2ζ(

1
3ωγ0) + 1

2ζ(
2
3ωγ0)

gs = 2
3ζ(

1
3ωγ0) − 1

3ζ(
2
3ωγ0)

This completes the proof of Theorem 8.1.

Remark 8.2. In order to get the equality (8.1), we have substituted the lat-
tice Ω in the RHS by the period lattice ΩI2(p),g. However, the expression in the
RHS of (8.1) is defined in a self-contained manner for any point (ω0, ω1) in H̃.
Therefore, we shall hereafter regard RHS of (8.1) as meromorphic functions
in z which are holomorphically parametrized by H̃, where the holomorphicity
follows from the compact uniform convergences of the series p and ζ also in
the variable (ω0, ω1) ∈ H̃, regardless whether it is in the image of the period
map or not.

9. Eisenstein series of type A2,B2 and G2
(primitive automorphic forms)

We come back to the solve the inversion problem posed at Theorem 5.1. For
the purpose, we use some generalizations of Eisenstein series to obtain inver-
sion maps (see Theorem 9.2). For type A2, this is classically well established
theory. Our interest is to show that a generalization of the theory works for
types B2 and G2 (which is the first main goal of the present paper).

Definition 9.1. For each type I2(p), the coefficients of the Laurent series
expansion at z = 0 of the meromorphic functions in RHS of (8.1), as a
weighted homogeneous holomorphic functions on (ω0, ω1) ∈ H̃, shall be called
Eisenstein series of type I2(p).

In the following, we determine explicitly all Eisenstein series of type I2(p).
However, such explicit description is un-necessary to solve the inversion prob-
lem. So, some readers may skip the present paragraph till Theorem 9.2. How-
ever, the explicit description are unavoidably important in §10, when we study
the Fourier expansions of the polynomials in C[gs, gl] as modular forms.
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Set Ω := Zω0 + Zω1 for (ω0, ω1) ∈ H̃. Depending on m ∈ Z≥3 and
a ∈ Rω0 + Rω1 = R⊗Z Ω, let us consider series:

(9.1) Gm(a) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
ω∈Ω\{0}

ω−m = 1
(m−1)!

dm−2(p−z−2)
dzm−2 (0)

= − 1
(m−1)!

dm−1(ζ−z−1)
dzm−1 (0) (if a ∈ Ω)∑

ω∈Ω
(ω + a)−m = 1

(m−1)!
dm−2p
dzm−2 (−a)

= − 1
(m−1)!

dm−1ζ
dzm−1 (−a) (if a �∈ Ω) .

The first series for a ∈ Ω are the classical well-known classical Eisenstein
series of weight m (see, e.g. [H-C,E-Z]). However, the second series for a /∈ Ω
seem to be less explicitly known in literature. As we shall see, since both
behaves in parallel to the classical Eisenstein series, we shall call the latter
case shifted classical Eisenstein series of weight m.

It is absolute and locally uniformly convergent so that defines a holomor-
phic function on H̃ of weight −m·wt(z)24 parametrized by a ∈ (Rω0+Rω1)/Ω,
such that Gm(a) = (−1)mGm(−a). In particular, we have the relations:

Gm(a) = 0 for a ∈ 1
2Ω and m = odd.

Using (9.1), one get the following Laurent and Tayler expansions. The
first two lines are standard (e.g. [13]), and the latter two for a ∈ R ⊗ Ω \ Ω
can be shown similarly.25

(9.2)

p(z) = z−2 +
∑∞

n=1(2n + 1)z2nG2n+2(0)

ζ(z) = z−1 −∑∞
n=1 z

2n+1G2n+2(0)

p(z − a) = p(a) +
∑∞

m=1(m + 1)zmGm+2(a)

ζ(z − a) = −ζ(a) − p(a)z −∑∞
m=1 z

m+1Gm+2(a)

Now, let us describe Eisenstein series for each type I2(p) separately. The
calculation is straight forward from the formula (8.1), and we omit details of
them.

24We should be cautious about the use of the terminology “weight”. The weight
−m · wt(z) of Gm(a) as a function on H̃ comes from the C×-action (recall Fact
14). It is proportional to the weight m as the Eisenstein series, but depends on the
factor wt(z) which depends on type I2(p) (recall Table 1) (cf. (10.3) and Table 5).

25Actually, the last equality has meaning for the periodic variable a, even though
the zeta function is not periodic, since ζ is still “semi-periodic” (see [13, §11]).
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A2 type: Set

(9.3)
xA2(z) = 1

4z
−2 +

∑∞
n=1 Anz

2n

yA2(z) = −1
4z

−3 +
∑∞

n=1 Bnz
2n−1

Then, we have

(9.4)
An = 2n+1

4 G2n+2(0) (n ≥ 1)
Bn = (2n+1)n

4 G2n+2(0) (n ≥ 1)

B2 type: Set

(9.5)
xB2(z) = 1

2z
−1 +

∑∞
n=0 Anz

2n+1

yB2(z) = −1
4z

−2 +
∑∞

n=0 Bnz
2n

Then, we have

(9.6)

A0 = 1
2p(

1
2ω0)

An = −1
2G2n+2(0) + 1

2G2n+2(1
2ω0) (n ≥ 1)

B0 = 1
4p(

1
2ω0)

Bn = −2n+1
4 G2n+2(0) + 2n+1

4 G2n+2(1
2ω0) (n ≥ 1)

G2 type: Set

(9.7)
xG2(z) = 1

2z
−1 +

∑∞
n=0 Anz

n

yG2(z) = −1
2z

−1 +
∑∞

n=0 Bnz
n

Then, we have

(9.8)

A0 = 1
3ζ(

1
3ωγ0) − 1

6ζ(
2
3ωγ0) = 1

2ζ(
1
3ωγ0) − 1

3ζ(
1
2ωγ0)

A1 = 1
2p(

1
3ω0)

An = −1
2Gn+1(0) + 1

2Gn+1(1
3ω0) (n ≥ 2)

B0 = ζ(1
3ωγ0) − 1

2ζ(
2
3ωγ0) = 3

2ζ(
1
3ωγ0) − ζ(1

2ωγ0)

B1 = 1
2p(

1
3ω0) − p(2

3ω0) = −1
2p(

1
3ω0)

Bn = 1
2Gn+1(0) + 1

2Gn+1(1
3ω0) −Gn+1(2

3ω0)

= 1
2Gn+1(0) + (1

2 + (−1)n)Gn+1(1
3ω0) (n ≥ 2)
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Remark 2. 1. The infinite sequence of Eisenstein series for each type I2(p)
are not algebraically independent. More precisely, they are obeying recur-
rence relation (7.5) in Step 4. of the proof of Lemma 7.1 (which leads to
the isomorphism (9.9), describing relations directly). The relations may be
considered as the B2-type and G2-type generalizations of the classically well-
known A2-type relations. However, in the present paper, we do not go into
details of the relations.

2. We note that the first Eisenstein series A0, B0 in case of type B2 and
the first and the second Eisenstein series A0, B0 and A1, B1 in case of type G2
do not have the description using the classical series (9.1). These exceptional
behavior was caused by the fact that the classical Eisenstein series (9.1) do
not converge absolutely in those low weights so that one need to make condi-
tional convergent series by a help of p-function or ζ-function. This was made
possible by the determination of the constant terms of fractional expansions
in Theorem 8.1 using the energy condition (6.4) of the Hamilton’s equations
of the motion.

In a forthcoming paper [2], we shall study systematically those “excep-
tional” Eisenstein series from a view point of modular forms.

Now we are to formulate the second main theorem of the present paper.
The proof is essentially done already in previous sections so that we have only
to coordinate them.

Theorem 9.2. Consider the pull-back homomorphism P ∗
I2(p) : O

H̃
→ O

S̃I2(p)

from the ring of holomorphic functions on the period domain H̃ to that on the
monodromy covering space S̃I2(p) of the base space SI2(p) of the family (2.3)
(recall (4.12) for the definition of S̃I2(p) and (5.4) for the definition of PI2(p)).

Then, it induces the ring isomorphism:

(9.9) Q[Eisenstein series of type I2(p)] � Q[gs, gl],

where LHS is the ring over Q generated by all Eisenstein series of type I2(p)
(recall Definition 9.1) and RHS is the coordinate ring of the space SI2(p) (re-
call (2.3)) generated by the flat coordinates gs and gl over Q.

In particular, the generators gs and gl are expressed by Eisenstein series
EI2(p),s and EI2(p),l of type I2(p) as follows

A2 type:

(9.10)
gs = EA2,s := 15

4 G4(0)
gl = EA2,l := 35

16 G6(0)
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B2 type:

(9.11)
gs = EB2,s := 3

2p(
1
2ω0)

gl = EB2,s := 5
32p

2(1
2ω0) + 5

8G4(0) − 5
8G4(1

2ω0)

G2 type:

(9.12)
gs = EG2,s := ζ(1

3ω0) − 2
3ζ(

1
2ω0)

g2
s = E2

G2,s
:= 1

3p(
1
3ω0)

gl = EG2,l := 2g3
s −G3(1

3ω0)

Proof. The explicit description of the function on S̃I2(p) corresponding to an
Eisenstein series by the pull-back morphism P ∗

I2(p) is obtained by the cor-
responding coefficient of the Laurent expansion at z = 0 of the meromor-
phic functions xI2(p)(z, g) or yI2(p)(z, g) (8.1). Then, it was already shown in
Lemma 7.1 that they are rational coefficient polynomials in gs and gl (cf.
Table 2 at the end of §7). This defines the homomorphism (9.9) from left to
right.

The morphism is injective, since the period map PI2(p) (5.4) is an open
map between connected manifolds (Fact 12).

The morphism is surjective, since (1) the generator gs is, up to a con-
stant factor, given by the lowest weight Eisenstein series for each type (recall
Step 2. of the proof of Lemma 7.1 and (7.4)), and (2) the generator gl appear
non-trivially and linearly in the coefficients An0 and Bn0 of the Laurent ex-
pansions of xI2(p)(z, g) and yI2(p)(z, g) (recall Step 3. of the proof of Lemma 7.1
and (7.4)).

After the isomorphism (9.9), we shall sometimes identify the ring of Eisen-
stein series and the polynomial ring in gs and gl.

Proof of Theorem 5.1. We show by 4 steps that the period map PI2(p) (5.6)
is bi-holomorphic.

Step 1. Regardless, whether an element (ω0, ω1) ∈ H̃ belongs to the image of
the period map or not, let us use the Eisenstein series of type I2(p) expres-
sions (9.10), (9.11) and (9.12) to define a holomorphic map

(9.13) E = (EI2(p),s, EI2(p),l) : H̃ −→ SI2(p).
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The equality (8.1) in Theorem 8.1 implies that the following diagram is com-
mutative

(9.14)
S̃I2(p)

PI2(p)
−−−−−−−→ H̃

↘ ↙E

SI2(p)

We remark that pull back of the polynomial ring on SI2(p) by the morphism
E (9.13) induces the same isomorphism (9.9), since (i) the period map PI2(p)
is a non-trivial open map, and (ii) any algebraic dependence relation among
Eisenstein series on an open domain in H̃ automatically extends on the whole
H̃ by analytic continuation, since H̃ is connected.

Step 2. Let us show that the image of E is contained in the compliment of the
discriminant: E(H̃) ⊂ SI2(p) \DI2(p). For (ω1, ω2) ∈ H̃, using RHS of (8.1), we
define global meromorphic functions xI2(p) and yI2(p), which are periodic w.r.t.
the lattice Ω = Zω0 +Zω1. Let us see that the pair satisfies the relation (6.3)
together with (6.4), where the parameter g is given by (9.13). Actually, the
both hand sides give doubly periodic function of the period Ω = Zω0 + Zω1,
where we can check they have the same principal parts of poles, and the
constant term of Laurent expansions at 0 coincides.

This means that the time coordinate z is given by the integral (6.1) (up
to a shift of a constant). That is, the image of the map (xI2(p), yI2(p) satis-
fies the equation (6.4). However, if g belonged to the discriminant, then the
associated curve defined by the equation (2.1) is a singular rational curve.
The integral (6.1) (avoiding the singularity of the curve but admitting to go
through points at infinity) cannot be doubly periodic (either one periodic for
g ∈ DI2(p)\{0}, or no-periodic for g = 0), where as the starting (ω0, ω1) ∈ H̃
generates rank 2 lattices and xI2(p) and yI2(p) are doubly periodic. A contra-
diction!

Step 3. Let us show that the period map is surjective. Since H̃ is connected, for
any point ω ∈ H̃, consider any path, say p, in H̃ connecting ω with the image
PI2(p)(Γ̃I2(p)) in H̃ of the base point loci of S̃I2(p) (recall the definition (4.12)).
Then, the projection image E(p) is a path in SI2(p)\DI2(p) connecting the base
point loci ΓI2(p) with E(ω) (recall the commutative diagram (9.14)). Then,
the monodromy lifting Ẽ(p) of the path E(p) in the covering space S̃I2(p) is
a path connecting the base point loci Γ̃I2(p) to a point Ẽ(ω) which lies over
E(ω). Then, the image PI2(p)(Ẽ(p)) is a monodromy covering in H̃ of the
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path E(p) connecting PI2(p)(Γ̃I2(p)) to a point PI2(p)(Ẽ(ω)). Since p is also is
a monodromy covering in H̃ of the same path E(p) connecting the base point
loci PI2(p)(Γ̃I2(p)) to the point p. So the two end points PI2(p)(Ẽ(ω)) and p of
the paths should coincide each other. In particular, p is in the image of the
period map. This shows also that the modular group Γ1([p/2]), which is the
monodromy representation ρ-image of the fundamental group of SI2(p) \DI2(p)
(Fact 9, 2.), acts on any fiber of the map E transitively. That is, the modular
group action quotient of H̃ is isomorphic to the discriminant compliment:

Γ1([p/2])�H̃ � SI2(p) \DI(2)

Step 4. Finally, let us show that the period map is injective. Since the period
map is equivariant with the modular group action, it is sufficient that the
modular group action on the period domain H̃ is (generically) fixed point free.
But this is trivially true, since the modular group is a subgroup of GL2(Z) so
that its fixed points set is thin and H̃ is an open subset of C2. Since E is a
covering map, if the action modular group is fixed point free in one fiber, it
is fixed point free for all fibers.

This completes a proof of Theorem 5.1.

Remark 9.3. 1.

(9.15) ∂(gs, gl)
∂(ω0, ω1)

= cΔred
I2(p)

2. In [21, 23], we posed a general question to describe the inversion mor-
phism to the period map defined by a primitive form. If a function on the
parameter space of the family is described in terms of the coordinates of the
period domain, we call the function (and its description on the period domain)
a primitive automorphic form. In that sense, the generalized Eisenstein series
of type B2 and G2 in this sections are are the first examples of primitive
automorphic forms beyond the classical case of type A2.

10. Ring of modular forms and discriminant

We identify the ring of Eisenstein series of type I2(p) with the ring of modular
forms of the congruence group Γ1([p/2]) (see [1] for M∗(Γ1([p/2]))). Then we
confirm that the set of irreducible components of the discriminant of the
family (2.3) is in one to one correspondence with the set of cusps of the
congruence group Γ1([p/2]).
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Theorem 10.1. The ring of Eisenstein series of type I2(p) is identified with
the ring of holomorphic modular forms of the congruence group Γ1([p/2]),
where the identification is given in following (10.3).26

(10.1) C[Eisenstein series of type I2(p)] � M∗(Γ1([p/2])).

The correspondences of generators are given in (10.5), (10.6) and (10.7).

Proof. Proof of the theorem is divided into Steps 1–5.

Step 1. We explain the meaning of “identification”, and fix notation.
Recall the period domain H̃ := {(ω0, ω1) ∈ C2 | Im(ω1/ω0) > 0} with

its homogenous coordinates (ω0, ω1). We introduce the inhomogeneous coor-
dinate

(10.2) τ := ω1/ω0

Then the natural projection H̃ → H := {τ ∈ C | Im(τ) > 0}, (ω0, ω1) �→ τ :=
ω1/ω0 gives a principal C×-bundle, say (L×)−1, over H, which we trivialize by
the morphism H̃ � C×H, (ω0, ω1) �→ (ω0, τ). The modular group Γ1([p/2])
acts from the left on H̃ and hence on L. For k ∈ Z>0, a holomorphic section
of the Lk, say s = s(τ), such that γ∗(s) := s · aτ+b

cτ+d is equal to (cτ + d)ks(τ)

for γ =
[
a b
c d

]
∈ Γ1([p/2]), is called a modular form of weight k of Γ1([p/2])

in a wide sense. Then, the correspondence s(τ) �→ ω−k
0 · s(τ) defines the

“identification”:

{modular forms of weight k of the group Γ1([p/2]) in a wide sense}
(10.3)

↔ {holomorphic functions on H̃ of weight −k·wt(z) invariant by Γ1([p/2])}

Actually, we study more restricted class of modular forms which are holo-
morphic and taking finite (bounded) values at cusps, as we explain now.

Recall [15] that a point x ∈ R ∪ {
√
−1∞} (= ∂H) is called a cusp of

Γ1(N) if it is fixed by a hyperbolic element of Γ1(N). The isotropic sub-
group of Γ1(N) fixing a cusp is an infinite unipotent group, and the set of

26This is naturally an expected result. However, this should have been proven,
since the Eisenstein series appeared in the context of the geometry of the period
mapping, whereas the modular forms are defined independently by themselves. So,
their coincidence is a non-trivial marvelous fact, which we need to work cautiously.
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all cusps are invariant under the action of Γ1(N). For γ =
[
a b
c d

]
∈ SL2(Z),

set (s|kγ)(τ) := (γ∗s)(τ)(cτ + d)−k (so that the modularity property of s is
equivalent to s|kγ = s for all γ ∈ Γ1(N)). Let γ(x) =

√
−1∞ for a cusp x

and γ ∈ SL2(Z). For a modular form s (in the wide sense), s|kγ, as a periodic
function in τ , develops into a Fourier series in τ . Then, s is called a holomor-
phic modular form if the Fourier series consists only of non-negative powers
of q = exp (2π

√
−1τ) at all cusps of Γ1(N). The constant term of the Fourier

series is called the value of s at the cusp and denoted by (s|kγ)(
√
−1∞).

Step 2. We recall the results by Aoki and Ibukiyama on the ring of mod-
ular forms. In [1], Aoki and Ibukiyama gave a simple unified description of
the graded ring of holomorphic modular forms of Γ0(N) for N = 1, 2, 3, 4.
From that description, we recover easily the ring M∗(Γ1(N)) of holomorphic
modular forms of Γ1(N). Namely, according as N = 1, 2 and 3, the ring is
generated by two (algebraically independent) modular forms e4, e6 of weight
4 and 6, α2, β4 of weight 2 and 4, and α1, β3 of weight 1 and 3, respectively.
That is,

M∗(Γ1(1)) = C[e4, e6], M∗(Γ1(2)) = C[α2, β4], M∗(Γ1(3)) = C[α1, β3]
(10.4)

where explicit descriptions of the generators as theta-function, in particular,
the first few Fourier coefficients at the cusps are given in [1].

Step 3. We define a morphism from the left hand side to the right hand
side of (10.1). This is achieved by showing that the Eisenstein series are
holomorphic at all cusps.

More explicitly, recall that, according as N = 1, 2 and 3, the number of
Γ1(N)-equivalence classes of cusps are 1, 2 and 2, whose representatives are
given as follows.

A2 type:
√
−1∞, B2 type:

√
−1∞ and 0, G2 type:

√
−1∞ and 0.

Let us consider the ring of Eisenstein series of type I2(p). Recall that the
identification (9.9) was given by the composition with the period map PI2(p),
where the period map is Γ1([p/2])-equivariant. This means that any Eisenstein
series is a Γ1([p/2])-invariant function on H̃. So, by the identification (10.3),
it gives arise a modular form. If we, further, show that the Eisenstein series
are holomorphic at all cusps, we obtain a graded ring homomorphism from
the left hand side to the right hand side of (10.1).
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Lemma 10.2. The modular forms associated with Eisenstein series of type
I2(p) (p = 1, 2, 3) are holomorphic at their cusp(s).

Proof. Let E =
[
1 0
0 1

]
and S =

[
0 1
−1 0

]
∈ SL2(Z), which transforms

√
−1∞

and 0 to √
−1∞. We show that the series associated with s|kE and/or s|kS

for an Eisenstein series s with the weight k converges absolute uniformly in
a “neighborhood” of

√
−1∞. This is classical for the case of Eisenstein series

s = Gm(0) for m ≥ 3 (see [11]), and similar proof works for Eisenstein series
of the form s = Gm(a) for a suitable a ∈ ΩQ. In case of Eisenstein series of
the form s = p(a) for a suitable a ∈ ΩQ in type B2 and G2, we may either
show directly the convergence in [2], or alternatively, we use the expression of
the p-function as a proportion of Jacobi forms [10, Theorem 3.6] to show that
the Fourier expansions at infinity consists only of positive powers. In case of
s = ζ(1

3ω0) − 2
3ζ(

1
2ω0), it will be shown in [2].

Step 4. In the following table, we give the values at cusps of the additive
summands in (9.10), (9.11) and (9.12). Calculations depend on cases: In case
of the form Gm(0), it is classical (e.g. [7, 11]). In case of the form p(a) for
some a ∈ ΩQ (see [2]). The cases of shifted series G4(1

2ω0) and G3(1
3ω0) at

the cusp
√
−1∞ are reduced to Riemann’s zeta function ζR(4) or Dirichlet’s

L-function L(3, χ) of the character χ given by quadratic residues, respectively
(see [3] for explicit values). Their values at the cusp 0 are directly shown to
be zero. In case of ζ(1

3ω0) − 2
3ζ(

1
2ω0), it will be shown in [2].

Table 3: Values of Eisenstein series of type I2(p) at cusps, I
A2 type:(
ω4

0 ·G4(0)|4E
)
(
√
−1∞) = π4

45
(
ω6

0 ·G6(0)|6E
)
(
√
−1∞) = 2π6

945

B2 type:(
ω2

0 · p(1
2ω0)|2E

)
(
√
−1∞) = 2π2

3
(
ω2

0 · p(1
2ω0)|2S

)
(
√
−1∞) = −π2

3(
ω4

0 · p2(1
2ω0)|4E

)
(
√
−1∞) = 4π4

9
(
ω4

0 · p2(1
2ω0)|4S

)
(
√
−1∞) = π4

9(
ω4

0 ·G4(0)|4E
)
(
√
−1∞) = π4

45
(
ω4

0 ·G4(0)|4S
)
(
√
−1∞) = π4

45(
ω4

0 ·G4(1
2ω0)|4E

)
(
√
−1∞) = π4

3
(
ω4

0 ·G4(1
2ω0)|4S

)
(
√
−1∞) = 0

G2 type:(
ω0 · (ζ(1

3ω0) − 2
3ζ(

1
2ω0))|1E

)
(
√
−1∞)

(
ω0 · (ζ(1

3ω0) − 2
3ζ(

1
2ω0))|1S

)
(
√
−1∞)

= π√
3 = −

√
−1π

3(
ω2

0 · p(1
3ω0)|2E

)
(
√
−1∞) = π2 (

ω2
0 · p(1

3ω0)|2S
)
(
√
−1∞) = −π2

3(
ω3

0 ·G3(1
3ω0)|3E

)
(
√
−1∞) = 22π3

3
√

3

(
ω3

0 ·G3(1
3ω0)|3S

)
(
√
−1∞) = 0

This completes a proof of Theorem 10.1.
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Remark 3. In case of type A2, Fourier coefficients of Eisenstein series are
well-known to be given by the divisor sum function σp(n) with suitable con-
stant factors given by special values of Riemann’s zeta function (e.g. [11,
VII.1.3]). It is natural to ask for similar expressions of the Fourier coefficients
of Eisenstein series for the types B2 and G2.

Combining above calculations with the expressions (9.10), (9.11) and
(9.12), we obtain the following table,

Table 4: Values of Eisenstein series of type I2(p) at cusps, II
A2 type:(
ω4

0 · gs|4E
)
(
√
−1∞) = 1

223π
4,(

ω6
0 · gl|6E

)
(
√
−1∞) = 1

2333π
6,

B2 type:(
ω2

0 · gs|2E
)
(
√
−1∞) = π2,

(
ω2

0 · gs|2S
)
(
√
−1∞) = −1

2π
2,(

ω4
0 · gl|4E

)
(
√
−1∞) = − 1

23π
4,

(
ω4

0 · gl|4S
)
(
√
−1∞) = 1

25π
4,

G2 type:(
ω0 · gs|1E

)
(
√
−1∞) = π√

3 ,
(
ω0 · gs|1S

)
(
√
−1∞) = −

√
−1
3 π,(

ω3
0 · gl|3E

)
(
√
−1∞) = 2

3
√

3π
3,

(
ω3

0 · gl|3S
)
(
√
−1∞) = 2

√
−1

33 π3.

Step 5. This is the final step to obtain the isomorphism (10.1). We determine
the linear relations between the generators of both hand sides by comparing
their values at cusps.

First, we compare the weights (of the free generators of) the rings in
both hand sides of (10.1) by the use of “weight factor” wt(z) (recall (10.3)).
Comparing Table 1 in §2 and the description of (10.4), we obtain the following
“coincidences” of weights!

Table 5: Weights of the generators of the ring of modular forms
−wt(gs)/wt(z), −wt(gl)/wt(z) weights of M∗(Γ1([p/2]))

A2 −(2/3)/(−1/6) = 4, −1/(−1/6) = 6 4, 6
B2 −(1/2)/(−1/4) = 2, −1/(−1/4) = 4 2, 4
G2 −(1/3)/(−1/3) = 1, −1/(−1/3) = 3 1, 3

This means that each generators gs and gl are mapped into the graded
vector subspace of M∗(Γ1([p/2])) of the same degree as the corresponding gen-
erators αi, βj etc., respectively. For gs, the dimension of the graded subspace
containing it is equal to 1 so that we only need to fix the constant factor. In
case of gl, the dimension is either 1 for type A2 or 2, spanned by gl and a
power of gs, for types B2 and G2.
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Let us recall the values of the generators of the modular forms at cusps.
The following values are taken from Aoki-Ibukiyama [1] Internat J. Math.
16-3(2005) 249–279, B2: p. 270 B3 pp. 271–272.

Table 6: Values of Modular forms of Γ1([p/2]) at cusps
(e4|2E)(

√
−1∞) = 1,

(e6|4E)(
√
−1∞) = 1,

(α2|2E)(
√
−1∞) = 1, (α2|2S)(

√
−1∞) = −1/2,

(β4|4E)(
√
−1∞) = 0, (β4|4S)(

√
−1∞) = 1/256,

(α1|1E)(
√
−1∞) = 1, (α1|1S)(

√
−1∞) = −

√
−1/

√
3,

(β3|3E)(
√
−1∞) = 1, (β3|3S)(

√
−1∞) = −

√
−1/3

√
3.

Comparing Table 4 with Table 6, we obtain the following expressions of
the isomorphism (10.1).

A2 type:

(10.5)
gs = 1

223π
4 e4 ω−4

0

gl = 1
2333π

6 e6 ω−6
0

B2 type:

(10.6)
gs = π2 α2 ω−2

0

gl = 24π4 β4 ω−4
0 − 1

23π
4 (α2 ω−2

0 )2

G2 type:

(10.7)
gs = 1√

3π α1 ω−1
0

gl = − 2
3
√

3π
3 β3 ω−3

0

Remark 4. As a consequence of the identification (10.1), we observe that
the holomorphicity condition at cusps on modular forms are equivalent to
the holomorphic extendability condition on functions on SI2(p) \ DI2(p) to
holomorphic functions on SI2(p). Then the cusp form condition “should be”
equivalent to the condition to vanish on the discriminant DI2(p). This is the
subject discussed in the following lemma.

Lemma 10.3. The set of Γ1([p/2])-equivalence classes of cusp points corre-
sponds naturally in one to one with the set of irreducible components of the
discriminant loci DI2(p) (2.4).

We show that a generator of the ideal of the ring M∗(Γ1([p/2])) of modular
forms vanishing at each equivalence class of cusp points, which can be easily
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found from Table 4, is, by the pull back by the period map (5.6), up to
a constant factor, identified with an irreducible component of the equation
ΔI2(p) ∈ C[gs, gl] (2.5) of the discriminant.

Here, we may recall Footnote 27 again.

A2 type: Recall that there is a unique equivalence class of cusps which is
represented by

√
−1∞. The ideal vanishing at the class is generated by e3

4−e2
6.

We also recall the equation of the discriminant (2.5) of type A2. Then, the
identification (10.5) induces the following identity:

(10.8) − 27g2
l + g3

s = π12

1728(e3
4 − e2

6) ω−12
0

B2 type: Recall that there are two equivalence classes of cusps, which are
represented by

√
−1∞ and by 0. The ideal vanishing at the class

√
−1∞ is

generated by β4, and the ideal vanishing at the class 0 is generated by α2
2 −

64β4. We recall the irreducible factors of the equation of the discriminant (2.5)
of type B2 are −8gl + g2

s and 8gl + g2
s . Then, the identification (10.6) induces

the following identities.

(10.9) 8gl + g2
s = 128π4β4 ω−4

0
−8gl + g2

s (= −G2(1
2ω0)) = 2π4(α2

2 − 64β4) ω−4
0

G2 type: Recall that there are two equivalence classes of cusps, which are
represented by

√
−1∞ and by 0. The ideal vanishing at the class

√
−1∞ is

generated by 1
54(α3

1 − β3), and the ideal vanishing at the class 0 is generated
by 1

2(α3
1 +β3). We recall the irreducible factors of the equation of the discrim-

inant (2.5) of type G2 are gl+2g3
s and gl−2g3

s . Then, the identification (10.7)
induces the following identities.

(10.10)
gl + 2g3

s = 2
3
√

3π
3(α3

1 − β3) ω−3
0

gl − 2g3
s (= −G3(1

3ω0)) = − 2
3
√

3π
3(α3

1 + β3) ω−3
0

11. Discriminant conjecture

This is the last section of the study of the period map of types A2, B2 and G2.
We recover the classical modular discriminant formula for all types, and ex-
amine in Theorem 11.1 that the discriminant conjecture in [23, §6] holds for
these particular toy cases. Let us recall the conjecture in the original form.

Conjecture 6. Let W be a crystallographic finite reflection group. Is the
k(W )th power root of δW , say λW (up to a constant factor), an automorphic
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form for the group Γ(W ) with the character ϑW? Can one find an infinite
product expression for λW compatible with Conjecture 4?

We first explain notation in the conjecture. In [23], W is a Weyl group
for an irreducible finite root system of any type, but in the present paper,
we restrict ourselves only to the types A2, B2 or G2. The number k(W ) and
the character ϑW are defined in [23, §6], but, in the present paper, in (4.8)
and (4.10), respectively. The δW is a generator of anti-invariants whose square
is the discriminant ΔI2(p). We shall explain about δW and λW again in Theo-
rem 11.1. The modular group Γ(W ) is, in [23, §6, 6.4 Example], unfortunately,
wrongly stated to be equal to the congruence group Γ0([p/2]). However, ac-
cording to a result (4.6) in the present paper, the group Γ(W ) should be
corrected to be Γ1([p/2]).27 The Conjecture 4 mentioned in the Conjecture 6
is something about the “liftablity” of the ring of Eisenstein series to the ring
of the “Galois” covering by the Weyl group of the type I2(p). However, we
will not discuss on this in the present paper.

The answer to Conjecture is given by a use of Dedekind eta function
η(τ) := q1/24 ∏∞

n=1(1 − qn) (q = exp (2π
√
−1τ)). Recall that a function in

τ ∈ H is called an eta-quotient if it has a finite product/quotient expression∏s
i=1 η

ri(miτ) where s,mi ∈ Z>0, ri ∈ Z. A holomorphic modular form that
is non-vanishing on H and has integer Fourier coefficients at infinity, is an
integer multiple of an eta-quotient (see [18]).

Let us come back to the equalities (10.8), (10.9) and (10.10), and show
that they admit eta-quotient expressions. LHSs, as defining equations of ir-
reducible components of the discriminants, do not vanish on SI2(p) \ DI2(p).
So, after the identification (10.3), they do not vanish on H̃. On the other
hand, those generators e4, e6, α2, β4, α1, β2 in RHS, are described by theta-
functions, and, therefore, have integral Fourier coefficients at infinity (see [1]).
Then, we have the following expressions.

Table 7: Eta-quotients of irreducible components of the disriminant
Γ1(1) : e34−e26

1728 = η(τ)24,
Γ1(2) : β4 = η(2τ)16

η(τ)8 , α2
2 − 64β4 = η(τ)16

η(2τ)8 ,

Γ1(3) : 1
54 (α3

1 − β3) = η(3τ)9
η(τ)3 , 1

2 (α3
1 + β3) = η(τ)9

η(3τ)3

Proof. Case of type A2 is classical (e.g. [7, 11]).
27In fact, Γ0(N) = Γ1(N) for N = 1, 2, but Γ0(3) is a double extension of Γ1(3)

by ±id. Since in [23], one use the same generators as (4.3) in the present paper as for
the generators of Γ(I2(p)), practically the calculations in [23] are still meaningful,
and we shall use them in the present paper.
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Case of type B2: Because of level 2 condition, candidates of eta quotients
are of the form cη(τ)pη(2τ)q for unknowns c ∈ C and p, q ∈ Z, satisfying
p + q = 2 · weight = 8. Recall Table 6, so that β4|4E(

√
−1∞) = 0 (simple

zero in q), β4|4S(
√
−1∞) = 1/256 and α2

2 − 64β4|4E(
√
−1∞) = 1, α2

2 −
64β4|4S(

√
−1∞) = 0 (simple zero in q). Posing these constraints on the eta-

quotients, we determine c, p and q, and obtain the expression.
Similar proof works for the type G2. �

Applying above expressions for (10.8), (10.9) and (10.10), we are now able
to express the discriminant form ΔI2(p) (2.5) and its reduced form Δred

I2(p) by
some products of eta quotients. As is expected (since discriminant vanishes
on both cusps), the results are no-longer eta-quotients, but are eta-products,
i.e. they don’t have denominators.

Table 8: Eta-product expressions of discriminants

(11.1)

ΔA2 = −27g2
l + g3

s = π12 η(τ)24 ω−12
0

ΔB2 = (8gl + g2
s)(−8gl + g2

s)2 = 512 π12 η(τ)24 ω−12
0

ΔG2 = (gl + 2g3
s)(−gl + 2g3

s)3 = −27
4 π12 η(τ)24 ω−12

0

Table 9: Eta-product expressions of reduced discriminants

(11.2)

Δred
A2

= −27g2
l + g3

s = π12 η(τ)12η(τ)12 ω−12
0

Δred
B2

= −64g2
l + g4

s = 256π8 η(τ)8η(2τ)8 ω−8
0

Δred
G2

= −g2
l + 4g6

s = −4π6 η(τ)6η(3τ)6 ω−6
0

We formulate final Theorem of the present paper, where both formu-
lae (11.2) and (11.1) give answers to the first half and the latter half of
Conjecture, respectively.

Theorem 11.1. 1. For all three types A2, B2 and G2, set

(11.3) λI2(p)(τ) := η(τ)η([p/2]τ).

Then, (i) λI2(p)(τ) is a modular form of weight 1 of the group Γ1([p/2]) with
respect to the character ϑI2(p) (4.10),

(ii) The power δI2(p) := λI2(p)(τ)k(I2(p)) is a generator of the module anti-
invariant modular forms (recall (4.8) for k(I2(p))),

(iii) The power λI2(p)(τ)2k(I2(p)), up to a non-zero constant factor, corre-
sponds by (10.3) to the reduced discriminant form Δred

I2(p).
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2. For all three types A2, B2 and G2, the discriminant form ΔI2(p) (2.5),
up to a non-zero constant factor, corresponds by (10.3) to

q
∏∞

n=1(1 − qn)24

called the modular discriminant (or discriminant function).28

Proof. 1. (i) The calculations given in [23] to show the modularity of λI2(p)
with the character ϑ are still valid. For a sake of completeness of the present
paper, we recall it by adjusting notations.

For simplicity, we introduce a number N ∈ Z>0 called level, where N =
[p/2] in case of type A2,B2 and G2. Set ζ := exp (π

√
−1/12) so that ζN+1 =

exp (π
√
−1/k(I2(p))) (N = 1, 2, 3 and p = 3, 4, 6). In view of (4.3), (4.6)

and (4.10), it is sufficient to show the following.

Lemma 11.2. The λN := η(τ)η(Nτ) for N ∈ Z>0 is a modular form of
Γ1(N) with a character ϑN , where the character satisfies

ϑN : ãN :=
[

1 0
−N 1

]
, b̃N :=

[
1 1
0 1

]
�→ ζN+1 ∈ C×

Proof of Lemma 10.2. By definition, λN is automatically a modular form
with a character of the group Γ1(N) (see, e.g. [18]). Recalling (10.2) and (10.3),
we have only to show (ã∗N )−1(λNω

−1
0 ) = ζ−N−1(λNω

−1
0 ) and b̃∗N (λNω

−1
0 ) =

ζN+1(λNω
−1
0 ). In the following, we shall use a sign convention on the mon-

odromy of the eta-function from [15, p. 121].
Recall (10.2), b̃∗N (τ) = τ + 1 and b̃∗N (ω0) = ω0. Then, using the transfor-

mation formula η(τ + 1) = ζη(τ), we obtain:

b̃∗N (λNω
−1
0 ) := η(τ + 1)η(N(τ + 1))ω−1

0

= ζη(τ) ζNη(Nτ)ω−1
0 = ζN+1(λNω

−1
0 )

Recall (10.2) so that ã∗N (τ) = τ
1−Nτ and ã∗N (ω0) = ω0 −Nω1 = ω0(1 −Nτ).

Then, using the transformation formula η(−/τ) =
√

τ√
−1η(τ), we obtain:

(ã∗a)−1(λNω
−1
0 ) := η( τ

1 + Nτ
)η( Nτ

Nτ + 1)) ω−1
0

1 + Nτ

28All results are well-known for the type A2. However, for the other types B2
and G2, at present, there is no geometric explanation why such power roots of the
reduced discriminant Δred

I2(p) form modular forms with character, and why all three
geometric discriminants ΔI2(p) take the same modular discriminant form. What are
λI2(p)’s? Does mirror symmetric interpretation give a hint to understand them?
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=
√

−(Nτ + 1)/τ√
−1

η(−N − 1/τ) ζη(− 1
Nτ + 1) ω−1

0
1 + Nτ

=
√

−(Nτ + 1)/τ√
−1

τ√
−1

Nτ + 1√
−1

ζ−Nη(τ) ζη(Nτ + 1) ω−1
0

1 + Nτ

= ζ−N+2
√

1√
−1

η(τ)η(Nτ)ω−1
0

= ζ−N−1ζ(τ)η(Nτ)ω−1
0 = ζ−N−1(λNω

−1
0 )

End of Proof of Lemma 10.2.

(ii) Recalling the character θ (4.11), δI2(p) is obviously an anti-invariant
of the group Γ1(N).

(iii) This a paraphrase of (11.2).

2. This is only a paraphrase of (11.1).

Remark 5. In [23, §6], we formulated 6 conjectures. The present paper gives
positive answers to all conjectures for the types A2,B2 and G2. The conjec-
tures seem to be still valid for all types of crystallographic reflection groups.
That is, we ask for a construction of Eisenstein series for all types to answer
to Jacobi inversion problem, where we may need special consideration for low
weight cases as in the present paper.

12. Concluding remarks

The findings of the duplication formula for the Lemniscate arc length integral
due to Fagnano (1718) and its generalization to the addition formula due to
Euler (1751) were naturally understandable by inverting the variables, i.e.
by parametrizing the Cartesian coordinates of the curve by the arc length.
This led to the finding of new periodic functions, i.e. the elliptic functions,
beyond the trigonometric or exponential functions. It is impressive to see the
historical developments caused by these finding of the elliptic integrals, from
the classical Abel-Jacobi theory through the modern mixed Hodge theory.

The author, however, was attracted by other aspects of elliptic integrals.
Namely, covariant differentiations of the elliptic integral of the first kind by
suitable deformation parameters give other kinds of elliptic integrals. That is,
the elliptic integral of the first kind is a potential for other periods. He called
this property the primitivity of the elliptic integral of the first kind.

The primitivity is combined with another remarkable property. Namely,
the rank 2 of the lattice of cycles used for the elliptic integrals is equal to the
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dimension 2 of the unfolding parameters (gs, gl) of the elliptic curve. That
is, the map from the space of parameters to the space of periods of integrals
of the lattice becomes an equidimensional morphism.Actually, it is locally bi-
holomorphic for the elliptic integral of the first kind. The Schottky problem
in classical Abelian integral theory to determine the image set of periods (cf.
[27]) is resolved automatically in this setting! The author called this property
the equi-dimensionality of the period map of elliptic integrals of the first kind.

Then, the inverse morphism from the space of integral values to the space
of original family of curves were described by theta-series by Jacobi, Eisen-
stein series and later by Weierstrass functions. We call this procedure “solu-
tions to Jacobi’s inversion problem”.

Following those classics, the author was inspired to look for (higher di-
mensional) analogs of the elliptic integral of the first kind, which carries the
primitivity and the equi-dimensionality. That is the theory of integrals of
primitive forms over Lefschetz vanishing cycles [19]. If we look back some
historical works from the view point of primitive forms, the works by E. Pi-
card [17] (1883) and by G. Shimura [25, 26] (1963, 1964) can be regarded
already as some part of period integrals of primitive forms of type E6 and
E8,E(1,1)

8 and some others, respectively.
Nowadays, primitive forms become a driving force for constructing new

integrable hierarchies, and play a role in mirror symmetry from complex ge-
ometric side. However, this is one aspect of the primitive form theory, i.e.
algebraic analytic aspects. The transcendental aspects, i.e. the period inte-
gral theory over Lefschetz vanishing cycles is missing still. Primitive forms
may be able to play their full original power only after they are integrated to
period maps, and then the solutions to the Jacobi inversion problem should
lead us to the study of new transcendental functions [24].

However, the integral theory over closed cycles is a quite hard subject,
since they form a closed world which is rigid and inflexible. We first need to
embed them in a big ocean of integrals over open cycles, where we have wide
freedom of making new pictures and theories, as was done in the original works
of arc-length integrals by Fagnano and Euler. Also, the classical abelian inte-
gral theory by Riemann was successful through integrals over open intervals,
called the Jacobian variety theory, where the inversion maps are described by
theta functions [27].

Thus, it was the pleasure to reinterpret the classical elliptic integrals of
the families for Weierstrass, Legendre-Jacobi and Hesse in terms of integrals of
primitive forms over vanishing cycles of types A2,B2 and G2 as in the present
paper (types D4 and A3 are ongoing). We tried to make clear the importance
of integrals over open paths by showing that their inversion functions are the
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solutions of Hamilton’s equation of motion in §6. That is, open integrals are
inverse to certain Dynamical systems. Actually, this fact was the key reason,
why we could determine the inversion map in §7–9 to solve Jacobi’s inversion
problem by introducing generalized Eisenstein series for each type.

We do not know yet what are the higher dimensional analog of them:
how to invert the period map to answer Jacobi’s inversion problem, how to
generate the inversion functions [21]. When the vanishing cycles form a finite
root system, there are some conjectural descriptions [23]. The positive answer
to the conjectures for types A2,B2 and G2 in the present paper by a use of the
Dedekind eta-function is a toy model and did not give any new transcendental
function. However, we may get hope that the conjectures still hold for all other
types of root systems by extending to higher dimensional eta-function.

One may expect the mirror symmetry and the study of d-branes on open
string theory in high energy physics may give some suggestions for the under-
standing of the period maps for primitive forms, since the study of the power
roots of the discriminant, as done in the present paper, is explained not from
the primitive form side by itself but from the structure of the root system of
the vanishing cycles [23] which belongs to the mirror side, i.e. the symplectic
geometry side.
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