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Abstract: We give two applications of the exponential Ax–Linde-
mann Theorem to local systems. One application is to show that
for a connected topological space, the existence of a finite model of
the real homotopy type implies linearity of the cohomology jump
loci around the trivial local system. Another application is the
linearity of the cohomology jump loci of rank one local systems on
quasi-compact Kähler manifolds.
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1. Introduction

Given a path-connected topological space X, we define the Betti moduli
space

MB(X) = Hom(π1(X),C∗)
to be the space of rank one characters of π1(X). When X is of the homo-
topy type of a finite CW-complex, MB(X) is an algebraic group, and it is
isomorphic to the direct product of (C∗)b1(X) and a finite group.
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For any representation ρ ∈ MB(X), there is a unique C-local system
of rank one Lρ on X, whose monodromy representation is isomorphic to ρ.
Thus, MB(X) is naturally the moduli space of rank one local systems on X.
In MB(X), there are some canonically defined algebraic subsets,

Σi
k(X) = {ρ ∈ MB(X)| dimH i(X,Lρ) ≥ k},

called the cohomology jump loci. One can define these loci more precisely
as subschemes of MB(W ), not necessarily reduced. However, for the purpose
of this paper, we only consider their induced reduced structures.

In this article, a subtorus is an algebraic subgroup (C∗)p ⊂ MB(X).
Based on the work of Green and Lazarsfeld [11], Arapura [1] proved that
when X is a compact Kähler manifold, each Σi

k(X) is a finite union of trans-
lated subtori in MB(X). When X is a quasi-compact Kähler manifold (the
complement of a normal crossing divisor in a compact Kähler manifold), Ara-
pura proved the same statement holds when the mixed Hodge structure on
H1(X,C) is pure. When X is a projective manifold, Simpson [17] showed
that Σi

k(X) is a finite union of torsion-translated subtori. When X is a quasi-
projective manifold, it was first proved by Dimca and Papadima [10] that any
irreducible component of Σi

k(X) passing through the trivial representation 1
is a subtorus. Later, in [4] we proved in this case that each irreducible com-
ponent of Σi

k(X) is a torsion translate of a subtorus in MB(X). Around the
same time, the second author proved in [20] the same result for all compact
Kähler manifolds, achieving a final positive answer to an original conjecture
by Beauville [3]. See the survey [6] for more on this subject.

The first main result is a generalization of Arapura’s result by removing
the assumption on H1(X,C).

Theorem 1.1. Let X be a connected quasi-compact Kähler manifold. Then
each Σi

k(X) is a finite union of translates of subtori in MB(X).

As mentioned above, when X is a quasi-projective manifold this was al-
ready proved in [4]. However, our proof here is quite different from the one
of [4]. We generalize Simpson’s (see [17]) Betti-de Rham sets of projective
manifolds to quasi-compact Kähler manifolds, and then prove the irreducible
ones are translates of subtori. In particular, the cohomology jump loci are
Betti-de Rham sets, and hence are union of translates of subtori.

We conjecture that the full non-compact analog of the main result of [20]
holds:

Conjecture 1.2. Let X be a connected quasi-compact Kähler manifold. Then
each irreducible component of Σi

k(X) contains a torsion point.
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Moreover, to the best of our knowledge, we do not know an example of a
quasi-compact Kähler manifold that is not homotopy equivalent to any quasi-
projective manifold. In the compact case, such an example was constructed
by Voisin [19]. So an interesting question would be the following.

Question 1. Is there a quasi-compact Kähler manifold that is not homotopy
equivalent to any quasi-projective manifold?

The second main result reveals more of the topology responsible for the
linearity phenomenon for cohomology jump loci. In this article we use the
shorter terminology differential algebra to mean a commutative differential
graded algebra over C.

Theorem 1.3. Suppose X is a path-connected topological space, and suppose
X is homotopy equivalent to a finite CW-complex.

1. If the real homotopy type of X is equivalent to a finite-dimensional
differential algebra, then each irreducible component of Σi

k(X) passing
through the origin is a subtorus.

2. If ρ ∈ MB(X) and the differential algebra pair (Ω �

DR(X),Ω �

DR(Lρ)) is
homotopy equivalent to another differential algebra pair (C �

,M
�) such

that M
� has finite dimension on each degree, then every irreducible

component of Σi
k(X) passing through ρ is the translate of a subtorus.

In part (2), Ω �

DR(X) is Sullivan’s differential algebra of piecewise smooth
C-forms on X. The differential algebra Ω �

DR(X) can be replaced by the de
Rham complex of smooth C-forms on X if X is a smooth manifold. In the
above, Ω �

DR(Lρ) is the module over Ω �

DR(X) obtained from the forms with
values in the rank one local system Lρ attached to ρ. Also in part (2), the no-
tions of pair and homotopy between pairs are as defined in [5]. Part (2) implies
part (1) if ρ = 1. Part (1) is a generalization of a result of Dimca-Papadima
[10, Theorem C(2)] which required in addition a positive-weight structure on
the finite-dimensional model. Our proof is different, not depending on weight
structures.

Recall that, by a theorem of J. Morgan [15], the real homotopy type of a
quasi-compact Kähler manifold is equivalent to the Gysin model with respect
to any good compactification, and the Gysin model is finite-dimensional. Nil-
manifolds and solvmanifolds also admit finite-dimensional models for the real
homotopy types. However, the cohomology jump loci of local systems of rank
one are trivial and, respectively, finite in these cases [13, 14]. It would be
interesting to find other classes of manifolds with non-trivial jump loci and
admitting finite models for their real homotopy types.
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One can construct examples as in part (2) with ρ not trivial as follows.
Take ρ with finite image. Then ρ is trivialized up on a finite abelian Galois
cover X ′ of X. Assuming that X ′ satisfies the condition from part (1), then
ρ satisfies the condition from part (2).

The above two theorems are both consequences of the following fact.

Proposition 1.4. Let exp : Cn → (C∗)n, (zi)1≤i≤n �→ (e2πizi)1≤i≤n be the
exponential map. Suppose V ⊂ Cn and W ⊂ (C∗)n are irreducible algebraic
subvarieties of the same dimension. If exp(V ) ⊂ W , then V is a translate of
a linear subspace, and hence W is a translate of a subtorus.

This proposition is an affine analog of [17, Theorem 1.3(c)]. In fact, when
X has a compactification X̄ with H1(X̄,Z) = 0 and complement a simple
normal crossings divisor, the de Rham moduli space of (X̄, X̄ \X) is isomor-
phic to Cb1(X) and the Betti moduli space of X is isomorphic to (C∗)n, and
the Riemann-Hilbert map is isomorphic to the above exponential map. More
precisely, we have the following commutative diagram

Cb1(X) ∼=

exp

MDR(X̄/D)

RH

(C∗)b1(x) ∼= MB(X)

where D = X̄\X, MDR(X̄/D) and MB(X) are the de Rham and Betti moduli
spaces, respectively, and RH is the Riemann-Hilbert map. See Section 4 for
more details.

Proposition 1.4 is known among the experts. It is implied by the Expo-
nential Ax-Lindemann Theorem due to Ax [2], see [7, Theorem 1.2]. A related
statement was proved in [4, Appendix] and used there for the main result.
Nevertheless, we decided to provide a proof in Section 2, since the proof is
quite short and simple, and some of the ideas are used in the last section.

Following the work of Dimca-Papadima [10], it is straightforward to prove
Theorem 1.3 using Proposition 1.4. We give the argument in Section 2. In
Section 3, we prove Theorem 1.1. The proof goes through a non-compact
analog of [17, Theorem 1.3(c)]. More precisely, we prove that Betti-de Rham
sets of a 1-Hodge structure are finite unions of translates of subtori. Then we
show the cohomology jump loci are Betti-de Rham sets. We not only need
the statement of [17, Theorem 1.3(c)] in the proof of Theorem 1.1, but also
use the ideas in [17] repeatedly throughout the paper.

Note that, according to Theorem 1.3, we give an alternative proof of
Theorem 1.1 by showing that every irreducible component of Σi

k(X) contains
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a local system admitting L a finite-dimensional model for its twisted de Rham
complex. If L is torsion and X is quasi-compact Kähler manifold, then a finite
model always exists, by Morgan’s theorem plus a standard argument with
finite covers reducing to the case of the trivial rank one local system (see e.g.
the last paragraph in the proof of [20, Theorem 1.3]). However, as noted in
Conjecture 1.2, we cannot yet produce torsion points.

2. Affine Betti-de Rham sets

Before the proof of Proposition 1.4, we give the definition of some terms that
we already used in the introduction. Let exp : Cn → (C∗)n, (zi)1≤i≤n �→
(e2πizi)1≤i≤n be the exponential map. Let V ⊂ Cn be an irreducible alge-
braic subvariety. If there exists an algebraic subvariety W ⊂ (C∗)n such that
dim(V ) = dim(W ) and exp(V ) ⊂ W , then W is called an irreducible affine
Betti-de Rham set. An analytic subset of (C∗)n is called an affine Betti-
de Rham set if it is a finite union of irreducible Betti-de Rham sets of the
same dimension.

Thus, Proposition 1.4 is equivalent to the statement that every irreducible
affine Betti-de Rham set in (C∗)n is the translate of a subtorus.

Lemma 2.1. Let V ⊂ Cn and W ⊂ (C∗)n be closed irreducible analytic
varieties of the same dimension. Suppose exp(V ) ⊂ W . Then exp(V ) = W .

Proof. Let W̃ = exp−1(W ). Then exp : W̃ → W is a covering map. Since
W ⊂ (C∗)n is a closed analytic subvariety, W̃ is a closed analytic subset
consisting of possibly infinitely many irreducible analytic varieties. Let Wreg

be the smooth locus of W , and let W̃reg = exp−1(Wreg). Since irreducible
components of an analytic variety correspond to the connected components
of the smooth locus of the analytic variety, the irreducible components of
W̃ are parametrized by the cokernel of the homomorphism H1(Wreg,Z) →
H1((C∗)n,Z), induced by the composition of embeddings Wreg ↪→ W ↪→
(C∗)n. Moreover, any two irreducible components of W̃ differ by a translation
by a lattice point in Cn. Thus, for any irreducible components W̃0 and W̃ ′

0,
we have exp(W̃0) = exp(W̃ ′

0), and hence, exp(W̃0) = W for every irreducible
component W̃0 of W̃ .

Since exp(V ) ⊂ W , one has V ⊂ W̃ . Hence, V is contained in one of
the irreducible components of W̃ , which we denote by W̃1. Now, V ⊂ W̃1.
Moreover, V and W̃1 are both closed irreducible analytic varieties of the same
dimension. Therefore V = W̃1, and hence the lemma follows.
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Proof of Proposition 1.4. The proposition is trivial for n = 1. We first prove
the proposition for the case n = 2. Then we will prove the proposition for
general n by induction.

When n = 2, the only nontrivial case is when V is of dimension one.
Let W̃ = exp−1(W ). According to Lemma 2.1, W̃ is a union of possibly
infinitely many closed irreducible analytic varieties, and V is equal to one
irreducible component of W̃ . Let f : H1(Wreg,Z) → H1((C∗)2,Z) be the map
on homology induced by the embedding Wreg ↪→ (C∗)2. Then Im(f) acts on
each of the irreducible components of W̃ , and hence on V .

Claim 1. Im(f) has rank at least one.

Proof of Claim. We can consider (C∗)2 as P2 removing three lines L1, L2
and L3. Let V̄ be the closure of V in P2. Clearly, V̄ intersects each of L1.
Choose a point x ∈ V̄ ∩ L1. Take a small loop γ in V around x. (When x
is a singular point, we can still make such a choice, but no longer unique up
to homotopy.) Since γ represents a nontrivial loop in H1((C∗)2,Z), f([γ]) ∈
H1((C∗)2,Z) is non-zero. Since H1((C∗)2,Z) is torsion free, Im(f) has rank
at least one.

The group H1((C∗)2,Z) = π1((C∗)2) acts on C2 by translations. Now,
the subgroup Im(f) acts on C2, which preserves V . Since Im(f) has rank at
least one, V contains infinitely many points on an affine line. Since V is a
closed irreducible algebraic variety of dimension one, V must be equal to that
affine line. Hence W must be a translate of subtorus.

Next, we prove the proposition by induction on n (n ≥ 3). Suppose W
is not of codimension one, or equivalently V is not of codimension one. Take
a general projection of algebraic groups p : (C∗)n → (C∗)n−1, such that
dim(W ) = dim(p(W )). Let the induced map on universal cover be p̃ : Cn →
Cn−1. By Lemma 2.1, exp(V ) = W , and hence exp(p̃(V )) = p(W ). Since
the exponential map is continuous, exp

(
p̃(V )

)
⊂ p(W ). Notice that p(W )

is a closed algebraic variety, because of the hypothesis that W is algebraic.
Clearly, exp(p̃(V )) is Zariski dense in exp

(
p̃(V )

)
, and p(W ) is Zariski dense

in p(W ). Thus,

dim exp
(
p̃(V )

)
= dim exp(p̃(V )) = dim p(W ) = dim p(W ).

We obtain irreducible subvarieties p̃(V ) ⊂ Cn−1 and p(W ) ⊂ (C∗)n−1 of
the same dimension. Moreover, exp

(
p̃(V )

)
⊂ p(W ). Therefore, the induction

hypothesis implies that p̃(V ) is a translate of a linear subspace. This is true
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for any projection p : (C∗)n → (C∗)n−1 such that dim p(W ) = dimW . Taking
two distinct such projections, then V is contained in two translates of linear
subspaces V ′ and V ′′ with dimV ′ = dimV ′′ = dimV + 1. Therefore, V =
V ′ ∩ V ′′ has to be a translate of a linear subspace in Cn.

Suppose W is of codimension one. Take any affine embedding

j : (C∗)n−1 → (C∗)n;

that is, j is the composition of an algebraic group embedding and a translation
in (C∗)n. Let T = Im(j) and let S = exp−1(T ). Then S is the union of
infinitely many parallel hyperplanes in Cn. By Lemma 2.1, exp(V ) = W .
Hence exp(S∩V ) = T ∩W . Suppose T intersects W properly, i.e., T ∩W �= ∅
and T � W . Then T ∩W is of dimension n− 2. Notice that S ∩V consists of
at most countably many closed subvarieties of V , and exp(S ∩ V ) = T ∩W .
Since an analytic variety can not be covered by countably many subvarieties of
smaller dimension, there exists an irreducible component of S∩V of dimension
n − 2, which we denote by V ′. Since V ′ is irreducible, exp(V ′) is contained
in one of the irreducible components of T ∩ W , which we denote by W ′.
Since dim(V ′) = dim(W ′) = n − 2, by Lemma 2.1, exp(V ′) = W ′. Then
by induction hypothesis, W ′ is a translate of a subtorus and V ′ is an affine
subspace of Cn.

Since V is irreducible and since dimV ≥ 2, for a general affine hyperplane
H ⊂ Cn, V ∩H is irreducible. Therefore, for a general affine hyperplane H in
Cn, whose slope is rational, H∩V is an affine subspace of Cn. Thus, V has to
be an affine subspace of Cn, and W is a translate of a subtorus in (C∗)n.

Corollary 2.2. Suppose (V , 0) and (W , 1) are analytic germs of two algebraic
sets in Cn and (C∗)n, respectively. If the exponential map exp : Cn → (C∗)n
induces an isomorphism between (V , 0) and (W , 1), then (W , 1) is the germ
of a finite union of subtori.

Proof. Let V and W be the analytic closure of (V , 0) and (W , 1) in Cn and
(C∗)n, respectively. Since (V , 0) and (W , 1) are germs of algebraic sets, V
and W are algebraic sets of Cn and (C∗)n, respectively. Moreover, (V , 0) is
equal to the germ of V at 0 and similarly (W , 1) is equal to the germ of W
at 1. Since exp(V ) = W , we deduce that W ⊂ W , and since W is analytically
closed, we have exp(V ) ⊂ W .

Let W1 be an irreducible component of W . Since W is the analytic clo-
sure of W , W1 ∩W is nonempty and contains an analytic open subset of W1.
Since exp(V ) = W , there exists an irreducible component of V , denoted by
V1, such that exp(V1) contains a nonempty analytic open subset of W1. In par-
ticular, dimV1 ≥ dimW1. Since V1 is irreducible, exp(V1) is also irreducible.
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Notice that exp(V1) ⊂ exp(V ) ⊂ W . Hence exp(V1) is contained in one of
the irreducible components of W , which is clearly W1. Thus, we have shown
exp(V1) ⊂ W1 and dimV1 = dimW1.

Now, we have algebraic subvarieties V1 ⊂ Cn and W1 ⊂ (C∗)n of the same
dimension, and exp(V1) ⊂ exp(W1). Therefore, by Proposition 1.4, W1 is a
torus. Since W1 can be chosen as any irreducible component of W , the variety
W is a union of subtori, and W is the germ of a finite union of subtori.

Before proving Theorem 1.3, recall that when X is a connected smooth
manifold, MB(X) is isomorphic to the space of complex flat line bundles on X.
There is an exponential map from H1(X,C) to the space of flat connections,
mapping the origin to the trivial flat connection. Thus, there exists a complex
Lie group map from H1(X,C) to MB(X), which we call the exponential
map and denote by exp.

We also need some definitions and results from [10]. A differential algebra
(A �

, d) over C is called connected if A0 = C · id. Suppose (A �

, d) is con-
nected and suppose Ai is finite-dimensional for every i. The space of flat
connections is defined to be

F(A �) = {ω ∈ A1|dω = 0}.

Since A � is connected, the first differential d0 : A0 → A1 is zero, and hence
F(A �) ∼= H1(A �

, d). We will consider F(A �) as an affine variety with an
origin, instead of a vector space. Given an element ω ∈ F(A �), the operator
dω

def= d + ω defines another differential on the graded vector space A �, since
(d + ω)2 = 0. We call the cochain complex (A �

, dω) the Aomoto complex
associated to ω.

The resonance variety of A � is defined to be

Ri
k(A

�) = {ω ∈ F(A �)| dimH i(A �

, dω) ≥ k}.

The resonance varieties are closed algebraic subsets of F(A �). In fact, they
are defined by certain determinantal ideals, see loc. cit. or [5].

Theorem 2.3 ([10, Theorem B(2)]). Suppose X is a connected topological
space, homotopy equivalent to a finite CW-complex. Suppose Ω �

DR(X) is ho-
motopy equivalent to a connected differential algebra A �, with dimAi < ∞
for every i. Then the composition exp ◦φ : F(A �) → MB(X) induces an iso-
morphism on the analytic germ of Ri

k(A
�) at the origin and the analytic germ

of Σi
k(X) at the trivial character 1, where exp : H1(X,C) → MB(X) is the

exponential map and φ : F(A �) → H1(X,C) is the isomorphism induced by
the homotopy equivalence between A � and Ω �

DR(X).
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Here Ω �

DR(X) is, as in the Introduction, Sullivan’s differential algebra of
piecewise smooth C-forms on X. It can be replaced by the de Rham complex
of X if X is a smooth manifold.

Proof of part (1) of Theorem 1.3. As in the above theorem, the composition
exp ◦φ : F(A �) → MB(X) has image in the connected component of MB(X)
containing 1, and it is isomorphic to the exponential map exp : Cb1(X) →
(C∗)b1(X), if we replace MB(X) by that connected component. Therefore, the
theorem follows immediately from Theorem 2.3 and Corollary 2.2.

The theory of differential graded Lie algebra pairs in [5] (or in the case of
rank one flat bundles, commutative differential graded algebra pairs) allows us
to move away from origin. To study the deformation theory of the cohomology
jump loci at a general point ρ ∈ MB(X), we need not only the differential
algebra Ω �

DR(X), but also Ω �

DR(Lρ) considered as a module over Ω �

DR(X).
This allows us to give a generalized version of Theorem 1.3 as below, using
the definition of homotopy equivalence of pairs from [5].

Proof of part (2) of Theorem 1.3. The proof is same as the proof of part (1)
of Theorem 1.3, except we need to replace Theorem 2.3 by Theorem 7.2
of [5]. Note that in [5] we worked only with smooth manifolds instead of
CW-complexes of finite type and with Ω �

DR being the de Rham complex of
smooth forms. However, it is known that every finite CW-complex is homo-
topy equivalent to an open submanifold of an Euclidean space (see e.g. [12,
Corollary A.10]).

3. Betti-de Rham sets of 1-Hodge structures

In this section, we define Betti-de Rham sets in a more general setting, which
combines the affine Betti-de Rham sets and the Betti-de Rham sets of Simpson
[17]. They are analytic subsets of some abelian complex Lie groups. We will
prove that any irreducible Betti-de Rham set is a translate of a Lie subgroup.

Let X be a quasi-compact Kähler manifold. According to [9], the group
H1(X,Z) admits a mixed Hodge structure of type {(1, 0), (0, 1), (1, 1)}. Such
a Hodge structure is called a 1-Hodge structure in [1]. More precisely, a 1-
Hodge structure consists of the following data:

1. A finitely generated abelian group Λ;
2. A subspace W = W1 ⊂ ΛQ;
3. A subspace F = F 1 ⊂ ΛC;
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such that WC = (WC ∩ F ) ⊕ (WC ∩ F̄ ) and ΛC = WC + F . For simplicity,
we will assume that the group Λ is torsion free in this section.

A subgroup Λ′ ⊂ Λ defines a sub 1-Hodge structure, if Λ/Λ′ is torsion free
and (Λ′,W ′, F ′) is a 1-Hodge structure where W ′ = W ∩Λ′

Q, F ′ = F ∩Λ′
C. It

is easy to check that given a sub 1-Hodge structure (Λ′,W ′, F ′) of (Λ,W, F ),
the quotients (Λ/Λ′,W/W ′, F/F ′) has a natural 1-Hodge structure. In fact,
this also follows from the general theory of Deligne [9] that the mixed Hodge
structures form an abelian category.

Given a 1-Hodge structure (Λ,W, F ), let Λ0 = Λ ∩W . As the usual con-
vention for 1-Hodge structures, we let H0,1 = WC ∩ F̄ , H1,0 = WC ∩ F and
H1,1 = ΛC/WC. The complex Lie groups ΛC/Λ0 and ΛC/Λ are analogs of
de Rham and Betti moduli spaces. The natural map RH : ΛC/Λ0 → ΛC/Λ,
defined by taking further quotient, is the analog of the Riemann-Hilbert corre-
spondence map. We call this map RH the Hodge-theoretic Riemann-Hilbert
map. In general, ΛC/Λ0 will not have a natural algebraic variety structure.
However, we will define a class of closed analytic subsets of ΛC/Λ0, which
will define an analog of algebraic Zariski topology on ΛC/Λ0. In particular,
when the 1-Hodge structure (Λ,W, F ) is the 1-Hodge structure of a smooth
quasi-projective variety X, this topology will be same as the algebraic Zariski
topology on the de Rham moduli space (see Section 4 for the latter).

Since WC = (WC ∩ F ) ⊕ (WC ∩ F̄ ) and since ΛC = WC + F , we have
canonical isomorphisms H0,1 ∼= WC/(WC ∩ F ) ∼= ΛC/F . Thus we have a
canonical surjective map p : ΛC → H0,1, whose kernel is equal to F . Moreover,
p(Λ0) ∼= Λ0 is a full lattice in H0,1 over R. Let T = H0,1/p(Λ0). Then T is a
compact complex torus, and it is the analog of Pic0(X̄), where X̄ is a good
compactification of X.

Let p̄ : ΛC/Λ0 → H0,1/p(Λ0) = T be the natural map induced by p.
Then p̄ is an affine bundle map, with fiber isomorphic to F . More precisely,
p̄ : ΛC/Λ0 → T is a principal F bundle map. Fiberwise, we can take a
compactification F ⊂ Pm, where m = dimF . We can globalize this compact-
ification to get a compactification ΛC/Λ0, which is Pm-bundle over T. More
precisely, given a complex affine space A, we can define a vector space VA as
follows, which we call the linearization of A. The vector space VA is generated
by elements of A subject to the relation that λa+ (1−λ)b = c (as relation in
VA) for elements a, b, c ∈ A with λa+(1−λ)b = c (as relation in A). Then the
projective bundle ΛC/Λ0 over T is obtained first by a fiberwise linearization
of the affine bundle p̄ : ΛC/Λ0 → H0,1/p(Λ0) = T , then taking fiberwise
projectivization.

Definition 3.1. Given a 1-Hodge structure (Λ,W, F ), recall that Λ0 is defined
by Λ0 = Λ ∩W . We call the abelian complex Lie group ΛC/Λ (resp. ΛC/Λ0)
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the Betti (resp. de Rham) moduli space associated to the 1-Hodge
structure (Λ,W, F ).

We have defined a canonical compactification ΛC/Λ0 of ΛC/Λ0, which is
a Pm-bundle over the compact torus T . An analytic set of ΛC/Λ0 is called
de Rham closed, if its Euclidean topological closure in ΛC/Λ0 is also ana-
lytically closed. Clearly, the de Rham closedness defines a topology on H/Λ0.
We call this topology the de Rham topology.

We will call an analytic set of ΛC/Λ Betti closed, if it is closed in the
usual algebraic Zariski topology of ΛC/Λ via the identification ΛC/Λ ∼= (C∗)n,
where n = rank(Λ). That is, the Betti topology on ΛC/Λ corresponds to the
usual algebraic Zariski topology on (C∗)n.

An irreducible algebraic set S of ΛC/Λ is called an irreducible Betti-
de Rham set, if there exists a de Rham closed set R ⊂ ΛC/Λ0 of the same
dimension as S such that RH(R) ⊂ S. An algebraic set of ΛC/Λ is called a
Betti-de Rham set, if it is a finite union of irreducible Betti-de Rham sets.

Remark 3.2. Let ΛC/Λ0
′ be another compactification of ΛC/Λ0 such that

there is a bimeromorphic map between ΛC/Λ0
′ and ΛC/Λ0 extending the iden-

tity map of ΛC/Λ0. Then an analytic set of ΛC/Λ0 is de Rham closed if and
only if its Euclidean closure in ΛC/Λ0

′ is analytically closed.

Let (Λ′,W ′, F ′) be a sub 1-Hodge structure of (Λ,W, F ). Then the image
of the natural embedding Λ′

C/Λ′ → ΛC/Λ is an irreducible Betti-de Rham
set. We will show the converse is also true up to a translate.

Theorem 3.3. Let S be an irreducible Betti-de Rham set in ΛC/Λ as defined
above. Then S is a translate of a subtorus Ŝ of ΛC/Λ. Moreover, Ŝ is defined
by a sub 1-Hodge structure of (Λ,W, F ).

Proof. The following commutative diagram of abelian complex Lie groups is
the quasi-compact Kähler analog of the diagram in [4].

(1) 0 (WC/Λ0)DR

RH

ΛC/Λ0

RH

res
H1,1

RH

0

0 (WC/Λ0)B ΛC/Λ ev
H1,1/(Λ/Λ0) 0

Notice that both rows are exact, and the first vertical arrow is an isomor-
phism of complex Lie groups. Each complex Lie group in the diagram has
two topologies. One is the Euclidean topology, which is induced from the
complex manifold structures. All the arrows are continuous with respect to
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the Euclidean topology. There is another topology on each complex Lie group
in the diagram, which is the analog of algebraic Zariski topology. In the sec-
ond row, the second topology is the Betti topology. Each object in the second
row is isomorphic to an affine torus. The Betti topology is the usual algebraic
Zariski topology on affine tori. In the first row, the second topology is the de
Rham topology. We have defined the de Rham topology on ΛC/Λ0. It follows
from the definition that any 1-Hodge structure (Λ,W, F ) induces a 1-Hodge
structure on (Λ0,W, F ∩WC). With this induced 1-Hodge structure we can
define the de Rham topology on WC/Λ0. The de Rham topology on the com-
plex vector space H1,1 is the algebraic Zariski topology on an affine space. To
emphasize the second topology on WC/Λ0, we use the subscripts DR and B
for the de Rham and the Betti topology, respectively.

Now we prove the theorem in 3 steps.
Case 1, W = 0, that is when the first objects in the short exact sequences

of (1) are trivial. In this case, Λ0 = 0. In this case, ΛC/Λ0 ∼= ΛC, and
RH : ΛC → ΛC/Λ is isomorphic to the exponential map. The definition of
Betti-de Rham set is equivalent to the affine Betti-de Rham set. It follows
from Proposition 1.4 that S is a translate of a subtorus. When W = 0, every
subtorus of ΛC/Λ is defined by a sub 1-Hodge structure. Thus, the proposition
follows.

Case 2, W = ΛQ, that is when the last objects in the short exact se-
quences of (1) are trivial. In this case, WC = ΛC, Λ0 = Λ and H1,1 = 0. The
proposition is essentially proved in [17, Theorem 3.1 (c)]. In fact, Simpson
proved this case with the assumption that T = H0,1/p(Λ0) is an abelian va-
riety. However, the assumption is not necessary in the proof. The proof there
is quite easy to follow, except the reference to [16]. So we will give a sketch
of this part.

We will prove there does not exist a codimension one irreducible Betti-de
Rham set. In fact, let F be any fiber of the principal affine bundle p̄ : ΛC/Λ →
T , and let G be a general affine line in F . Suppose there exists a codimension
one irreducible Betti-de Rham set S. Considering S as an algebraic subvariety
of ΛC/Λ ∼= (C∗)n, we can assume that S is defined by an algebraic function h.
It is a straightforward computation to check that the restriction of h to G
has exponential growth. In other words, h has essential singularity at infinity.
Therefore, h = 0 has infinitely many roots on G. This is a contradiction to
W being de Rham closed.

For the rest of Simpson’s proof in [17] to work, we just need to check
that the de Rham topology behaves in the same way as algebraic Zariski
topology under projections. For example, let s : ΛC/Λ × ΛC/Λ → ΛC/Λ be
the addition map, and let Z1 and Z2 be de Rham closed subsets of ΛC/Λ.
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Then the closure of s(Z1 ×Z2), with respect to Euclidean topology, in ΛC/Λ
is de Rham closed. In fact, this follows from Remark 3.2 and the fact that
the image of an analytic closed set under a proper map is still analytically
closed.

Case 3, the general case. Suppose S is an irreducible Betti-de Rham set
in the Betti moduli space ΛC/Λ. Since being Betti-de Rham set is invariant
under translations, we can assume that S contains the the origin 0 ∈ ΛC/Λ.
Denote by ΣS the Euclidean closure of the subgroup of ΛC/Λ generated by S.
Then ΣS is an irreducible Betti-de Rham set, which is a subgroup of ΛC/Λ. It
is easy to see that ΣS is a subtorus defined by a sub 1-Hodge structure. We can
also assume this by induction on the codimension of S. Replacing the original
1-Hodge structure Λ by this sub 1-Hodge structure, we can assume that S

generates ΛC/Λ without loss of generality. For the rest of the proof, we will
assume that S contains the origin, and S generates ΛC/Λ, i.e., ΣS = ΛC/Λ.

As we have discussed in the beginning of this proof, the abelian group
Λ/Λ0 has a 1-Hodge structure of pure type (1,1). It follows easily from the
definition of Betti-de Rham sets that ev(S) is a Betti-de Rham set in the Betti
moduli space H1,1/(Λ/Λ0) associated to the 1-Hodge structure on Λ/Λ0. Since
ev(S) contains the origin, by the conclusion of Case 1, ev(S) is a translate of
a subtorus in H1,1/(Λ/Λ0). By the assumption that S contains the origin and
S generates ΛC/Λ, clearly ev(S) = H1,1/(Λ/Λ0).

Now, we use the short exact sequences (1) of Lie groups. We can consider
the map ΛC/Λ0 → H1,1 as a principal WC/Λ0 fiber bundle. Let F be any
fiber. By choosing an origin in F , there is an isomorphism F ∼= WC/Λ0 of
complex Lie groups. Since H0 has a 1-Hodge structure, we can define Betti-de
Rham sets of F by Definition 3.1. Moreover, the definition is independent of
the choice of the origin, since the notion of Betti-de Rham sets is translation
invariant. Now, clearly S ∩F is a Betti-de Rham set of F . By the conclusion
of Case 2, S ∩ F is a finite union of translates of Lie subgroups defined by
sub 1-Hodge structures of Λ0. There are at most countably many sub 1-
Hodge structures of Λ0. Therefore, for every fiber F with S ∩ F �= ∅, S ∩ F

is irreducible and it is a translate of the same subtorus T of WC/Λ0. In
other words, S is invariant under the translation by elements in T . Moreover,
subtorus T is defined by a sub 1-Hodge structure ΛT of Λ0.

Since 1-Hodge structures form an abelian category, Λ/ΛT also has a nat-
ural 1-Hodge structure. Denote this 1-Hodge structure by Λ′ and denote S/T

by S′. By the above argument, S′ is an irreducible Betti-de Rham set in
Λ′

C/Λ′. Moreover, the restriction of ev : Λ′
C/Λ′ → H′ 1,1/(Λ′/Λ′

0) to S′ is
dominant and generically finite. It suffices to show that S′ is a translate of
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a subtorus of Λ′
C/Λ′ defined by a sub 1-Hodge structure. Therefore, we are

reduced to the case when the map ev|S : S → H1,1/(Λ/Λ0) is generically finite.
We proceed using induction on dimC H1,1. When dimC H ′ 1,1 = 0, the

subspace W ′ is a point, and we are done. When dimC H ′ 1,1 = 1, S is a
curve. The subsets S, S + S, S + S + S, . . ., are all irreducible Betti-de Rham
sets of ΛC/Λ. By our assumption, the whole Betti moduli space ΛC/Λ will
appear in the above sequence. Therefore, there exists a codimension one Betti-
de Rham set in ΛC/Λ which maps dominantly under ev to H1,1/(Λ/Λ0).
Restricting such codimension one Betti-de Rham set to a general fiber F of
ev : ΛC/Λ → H1,1/(Λ/Λ0). By the earlier discussion, F is isomorphic to the
Betti moduli space associated to the pure 1-Hodge structure Λ0 of weight
one. By the argument in the proof of Case 2, codimension one Betti-de Rham
subsets of F do not exist, hence a contradiction.

Suppose dimC H1,1 > 1. Since the 1-Hodge structure on Λ/Λ0 is pure of
type (1,1), any surjective homomorphism Λ/Λ0 → Z is a map of 1-Hodge
structures, where we give the trivial type (1,1)-Hodge structure on Z. Denote
the kernel of Λ/Λ0 → Z by Λ′. Clearly, Λ′

0 = Λ0. The intersection S∩Λ′/Λ0 in
ΛC/Λ is a Betti-de Rham set in Λ′/Λ0. By the induction hypothesis, S∩Λ′/Λ0
is a finite union of translates of subtori defined by sub 1-Hodge structures
of Λ′. Notice that this conclusion holds for any Λ′ = ker(Λ → Z), as long as
the map Λ → Z factors through the quotient map Λ → Λ/Λ0. One can easily
deduce that near the origin S is equal to the image of a linear subspace under
the exponential map. Therefore, S is a subtorus.

The following is an immediate consequence of the preceding theorem.

Corollary 3.4. Let S be a Betti-de Rham set in ΛC/Λ. Then S is a finite
union of translates of subtori that are defined by a sub 1-Hodge structures of
(Λ,W, F ).

4. Cohomology jump loci of quasi-compact Kähler manifolds

In this section we give the proof of Theorem 1.1. Let X be a quasi-compact
Kähler manifold. We fix a good compactification X̄, such that the boundary
divisor D = X̄ \ X is a normal crossing divisor in X̄. Let MDR(X̄/D) be
the moduli space of logarithmic flat line bundles on X̄ with poles along D.
Let M0

B(X) and M0
DR(X̄/D) respectively be the connected components of

MB(X) and MDR(X̄/D) containing the origin. The group H1(X,Z) has a
natural 1-Hodge structure. The Betti and de Rham moduli spaces associated
to H1(X,Z) are naturally isomorphic to M0

B(X) and M0
DR(X̄/D).

Theorem 1.1 will be reduced to the following statement.
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Proposition 4.1. Under the above notations, Σi
k(X)∩M0

B(X) is a Betti-de
Rham set in M0

B(X).

Remark 4.2. Even though in general the moduli spaces of logarithmic flat
bundles are only defined for quasi-projective manifolds, in the rank one case
the definition easily extends to quasi-compact Kähler manifolds. The main
reason is that rank one bundles are always stable. So there is no polarization
and stability condition involved. In fact, one can show that MDR(X̄/D) is
a fine moduli space by constructing a universal family of flat bundles with
logarithmic connections. This is very similar to the proof of the fact that
the Picard group of a compact Kähler manifold is a fine moduli space. For the
same reason, the moduli space MHod(X̄/D) (as defined in [18]) of line bundles
on X̄ with λ-logarithmic connections with poles along D is also well-defined
for the pair (X̄,D).

Proof of Proposition 4.1. By definition, the closed points of MDR(X̄/D) pa-
rametrize the logarithmic flat line bundles (E,∇), where E is a line bundle
on X̄ and ∇ : E → E ⊗OX̄

ΩX̄(logD) is a logarithmic connection with poles
along D. Notice that we do not put any assumption on the Chern classes of the
underlying line bundle. So in general, MDR(X̄/D) may have infinitely many
connected components. In any case, there is a canonical covering map RH :
MDR(X̄/D) → MB(X) induced by taking restriction of the logarithmic flat
bundle to X and then taking the associated local system. We call this covering
map the geometric Riemann-Hilbert map. Then the de Rham moduli space
associated to the 1-Hodge structure H1(X,Z) is isomorphic to M0

DR(X̄/D).
Moreover, the geometric Riemann-Hilbert map is isomorphic to the Hodge-
theoretic Riemann-Hilbert map, that is the following diagram commutes,

ΛC/Λ0
∼=

RH

M0
DR(X̄/D)

RH0

ΛC/Λ
∼= M0

B(X)

where Λ = H1(X,Z) with the natural 1-Hodge structure and RH0 is the re-
striction of the geometric Riemann-Hilbert map RH : MDR(X̄/D) → MB(X)
to M0

DR(X̄/D).
Now, we need some conventions and results from [4]. Define the de Rham

cohomology jump loci to be

Σi
k(X̄/D) =

{
(E,∇) ∈ MDR(X̄/D))| dimHi(X̄, E ⊗ Ω �

X̄(logD)) ≥ k
}
.
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They are closed analytic subsets of MDR(X̄/D). We will show that they are
indeed de Rham closed subsets. We need the notation of λ-connections and
their moduli space (see [18]). Denote by MHod(X̄/D) the moduli space of
line bundles on W̄ with λ-logarithmic connections whose poles are along D.
Then there is a projection π : MHod(X̄/D) → A1, which is given by the
parameter λ. Thus, π−1(1) ∼= MDR(X̄/D). We can generalize the de Rham
cohomology jump loci in MDR(X̄/D) to the moduli space MHod(X̄/D). De-
fine

Σ̃i
k(X̄/D) =

{
(E,∇) ∈ MHod(X̄/D))| dimHi(X̄, E ⊗ Ω �

X̄(logD)) ≥ k
}
.

Notice that forgetting the connection, i.e. (E,∇) �→ E, defines two maps
MDR(X̄/D) → Pic(X̄) and MHod(X̄/D) → Pic(X̄). Since the space of 1-
connections on a line bundle is an affine space, and since the space of λ-
connections on a line bundle is a vector space, MDR(X̄/D) → Pic(X̄) and
MHod(X̄/D) → Pic(X̄) are affine bundle maps and vector bundle maps,
respectively. Denote by

P(MHod(X̄/D)/Pic(X̄))

the projective bundle associated to the vector bundle MHod(X̄/D) → Pic(X̄).
Then P(MHod(X̄/D)/Pic(X̄)) is the projective compactification of the affine
bundle MDR(X̄/D) → Pic(X̄).

By definition, the cohomology jump locus Σ̃i
k(X̄/D) in MHod(X̄/D) is

preserved under the fiberwise C∗ multiplication. Denote the image of
Σ̃i

k(X̄/D) in P(MHod(X̄/D)/Pic(X̄)) by Σ̄i
k(X̄/D). Then Σ̄i

k(X̄/D) is a
closed analytic subset of P(MHod(X̄/D)/Pic(X̄)), and

(2) Σ̄i
k(X̄/D) ∩ MDR(X̄/D) = Σi

k(X̄/D)

where we consider P(MHod(X̄/D)/Pic(X̄)) as the fiberwise projective com-
pactification of MDR(X̄/D).

Now, it follows from the definition of the 1-Hodge structure on H1(X)
that the affine bundle map M0

DR(X̄/D) → Pic(X̄) is isomorphic to the
affine bundle map p̄ : ΛC/Λ0 → H0,1/p(Λ0) defined in the last paragraph
before Definition 3.1, where Λ = H1(X,Z) with the natural 1-Hodge struc-
ture. It follows from the definition of de Rham subsets and the equality (2)
that Σi

k(X̄/D) ∩ M0
DR(X̄/D) is a de Rham subset of ΛC/Λ0 by identify-

ing M0
DR(X̄/D) and ΛC/Λ0. Let M1

DR(X̄/D) be another connected com-
ponent of MDR(X̄/D) whose image under the map RH : MDR(X̄/D) →
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MB(X) is the component M0
B(X) containing the origin 1. Then by choos-

ing a point of RH−1(1) ∩ M1
DR(X̄/D) as an origin, we can construct an

isomorphism between M1
DR(X̄/D) and M0

DR(X̄/D). Thus we obtain an iso-
morphism M1

DR(X̄/D) ∼= ΛC/Λ0. Applying the same argument, we can show
that Σi

k(X̄/D) ∩ M1
DR(X̄/D) is a de Rham closed subset of ΛC/Λ0 via the

above isomorphism.
Define the bad locus BL ⊂ MDR(X̄/D) to be the locus where one of the

residues of ∇ is a positive integer. By a theorem of Deligne [8, II, 6.10] (see
also [4]), we have an equality

RH−1(Σi
k(X)) \BL = Σi

k(X̄/D) \BL.

Given any irreducible component S of Σi
k(X)∩M0

B(X), it is proved in [4] that
there exists a connected component M1

DR(X̄/D) of MDR(X̄/D) such that
RH−1(S)∩M1

DR(X̄/D) is not contained in BL. In fact, take any point ρ ∈ S,
and denote the Deligne extension of the local system Lρ by (Eρ,∇ρ). Then the
connected component of MDR(X̄/D) containing (Eρ,∇ρ) will work. Since the
map M1

DR(X̄/D) → M0
B(X) induced by RH is a covering map, there exists

an irreducible component R of Σi
k(X̄/D) ∩ M1

DR(X̄/D) → M0
B(X), such

that R has the same dimension as S and S = RH(R). Therefore, via the
isomorphism M0

B(X) ∼= ΛC/Λ, where Λ = H1(X,Z), S is a Betti-de Rham
set.

We have shown that every irreducible component of Σi
k(X) ∩ M0

B(X) is
a Betti-de Rham set. Thus, Σi

k(X) ∩ M0
B(X) is a Betti-de Rham set.

Proof of Theorem 1.1. By Theorem 3.3, Σi
k(X) ∩M0

B(X) is a finite union of
translates of a subtori. In particular, we have proved Theorem 1.1, if H1(X,Z)
has no torsion.

In general, since a finite cover of a quasi-compact Kähler manifold also
has the structure of a quasi-compact Kähler manifold, it follows from a stan-
dard argument about cohomology jump loci of covering spaces (e.g. the last
paragraph in the proof of [20, Theorem 1.3]) that Σi

k(X) is a finite union of
translated subtori. This finishes the proof of Theorem 1.1.
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