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Abstract: We address the problem of existence of refined (i.e.,
depending on a formal parameter) tropical enumerative invariants,
and we present two new examples of a refined count of rational
marked tropical curves. One of the new invariants counts plane ra-
tional tropical curves with an unmarked vertex of arbitrary valency.
It was motivated by the tropical enumeration of plane cuspidal
tropical curves given by Y. Ganor and the author, which naturally
led to consideration of plane tropical curves with an unmarked
four-valent vertex. Another refined invariant counts rational trop-
ical curves of a given degree in the Euclidean space of arbitrary
dimension matching specific constraints, which make the spacial
refined invariant similar to known planar invariants.
Keywords: Rational tropical curve, plane tropical curve, spacial
tropical curve, tropical enumerative geometry, refined enumerative
invariants.

Introduction

Refined enumerative invariants, i.e., invariants that count objects with weights
depending on a parameter, appeared in [9]. Later F. Block and L. Göttsche
[3] introduced refined invariants in the framework of tropical geometry. This
subject has been developed further in [2, 4, 8, 10, 11, 13, 18]. The main chal-
lenging problem in this direction is to find a reasonable algebraic-geometric
or symplectic counterpart of the refined invariants. Specific values of some
of these refined invariants coincide with closed or open Gromov-Witten in-
variants of toric surfaces, or with descendant invariants of toric surfaces. In
a certain particular case the relation between the refined tropical and refined
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algebraic-geometric count was discovered by G. Mikhalkin [16]. A related im-
portant question is: Which numerical tropical enumerative invariants admit
a refinement?

In this note, we present two new examples of a refined count of rational
marked tropical curves.

One of the new invariants counts plane rational tropical curves with an
unmarked vertex of arbitrary valency. It was motivated by the correspondence
between plane unicuspidal algebraic curves and plane cuspidal tropical curves
given by Y. Ganor and the author [5], where we encountered plane tropical
curves with an unmarked four-valent vertex. The weight of such a cuspidal
tropical curve appeared to be convenient for a refinement, while the refined
invariant specializes to the number of plane rational unicuspidal curves of a
given degree that match an appropriate point constraint, as the parameter
gets value 1.

Another refined invariant counts rational tropical curves of a given degree
in the Euclidean space of arbitrary dimension. The known planar refined in-
variants [2, 3, 8] come from numerical tropical enumerative invariants, which
count plane tropical curves of a given degree and genus so that the weight
assigned to each tropical curve is the product of weights of vertices of this
tropical curve. Then the weight of each vertex is replaced with its refined ana-
logue, and the final task is to show that this formally obtained expression does
not depend on the choice of constraints. For tropical curves in Rn, n ≥ 3, the
first tropical enumerative invariant was found by T. Nishinou and B. Siebert
[17]. It then was largely extended by T. Mandel and H. Ruddat [12] by allow-
ing ψ-constraints, complicated boundary conditions, and curves of positive
genera. The weights of tropical curves in these enumerative problems involve
factors depending on the entire curves, not only on their vertices, edges or
other small fragments. This, in fact, makes difficult to find an appropriate
refinement of the numerical invariant. Our main idea is to specify a partic-
ular situation when the weight of each tropical curve splits into relatively
elementary factors, which then are replaced by their refined analogues. Inde-
pendently, a somewhat similar idea was elaborated in [13], where the authors
use collections of constraints different from ours and also allow multivalent
marked points.

1. Marked rational tropical curves

We shortly recall some basic definitions concerning rational tropical curves
adapted to our setting and define the class of tropical curves under consider-
ation (for details, see [6, 7, 14, 15]).
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(1) A n-marked rational tropical curve in Rm, m ≥ 2, is a triple (Γ, h,p),
where

• Γ is a finite metric graph, which is either isometric to R, or is a finite
connected metric tree without vertices of valency ≤ 2, whose set Γ0 of
vertices in nonempty, the set of edges Γ1 contains a subset Γ1

∞ �= ∅ con-
sisting of edges isometric to [0,∞) (called ends), while Γ1 \Γ1

∞ consists
of edges isometric to compact segments in R (called finite edges);

• h : Γ → Rm is a proper continuous map such that h is nonconstant,
affine-integral on each edge of Γ in the length coordinate and, at each
vertex V of Γ, the balancing condition holds

(1)
∑

E∈Γ1, V ∈E
aV (E) = 0 ,

where aV (E) is the image under the differential D(h
∣∣
E
) of the unit

tangent vector to E emanating from its endpoint V (called the directing
vector of E centered at V );

• p = (p1, ..., pn) is a sequence of n points of Γ.

The multiset of vectors deg(Γ, h) :=
{
aV (E) : E ∈ Γ1

∞
}
⊂ Zm \ {0}

is called the degree of (Γ, h,p). Clearly the vectors of deg(Γ, h) sum up to
zero (we call such a multiset balanced). The degree Δ is called nondegenerate
if dim Span{a ∈ Δ} = m, and is called primitive if all vectors a ∈ Δ are
primitive integral vectors.

(2) Two plane n-marked rational tropical curves (Γ, h,p) and (Γ′, h′,p′)
are called isomorphic, if there exists an isometry ϕ : Γ → Γ′ such that
h = h′ ◦ ϕ and ϕ(pi) = p′i for all pi ∈ p, p′i ∈ p′, i = 1, ..., n. Clearly, the
isomorphism preserves the combinatorial type of a tropical curve (Γ, h,p), i.e.,
the combinatorial type of the pair (Γ,p) and the list of all directing vectors
aV (E) for all pairs of incident vertices and edges of Γ. For a given degree
Δ, there are only finitely many combinatorial types of pairs (Γ,p) (see [17,
Proposition 2.1]). Given a finite balanced multiset Δ ⊂ Zm \{0}, we consider
the moduli space M0,n(Rm,Δ) parameterizing isomorphism classes [(Γ, h,p)]
of n-marked rational tropical curves of degree Δ in Rm.

We will also use labeled tropical curves. For, we fix a linear order on Δ
and denote the obtained sequence by Δlab. A labeled n-marked plane rational
tropical curve of degree Δlab is a triple (Γlab,p, h), where (Γ,p, h) is an n-
marked plane rational tropical curve of degree Δ, and Γlab is the graph Γ with
a linear order on the set of its ends Γ1

∞ such that h equips the i-th end of Γlab

with the i-th directing vector in Δlab for all i (cf. [6, Definition 4.1]). Note
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that a labeled tropical curve has no nontrivial isomorphisms, and hence the
corresponding moduli space Mlab

0,n(Rm,Δ) parameterizes just the n-marked
labeled rational tropical curves of degree Δlab.

Lemma 1.1 ([6], Proposition 7.4, and [2], Lemma 1.1). The space
Mlab

0,n(Rm,Δ) can be identified with a tropical fan of dimension |Δ|+m+n−3
in RN for a sufficiently large N , whose open cells parameterize isomorphism
classes of marked tropical curves of the same combinatorial type. The map
forgetting labels

π0,n : Mlab
0,n(Rm,Δlab) → M0,n(Rm,Δ)

is surjective and finite, and, for any element [(Γ,p, h)] ∈ M0,n(Rm,Δ), we
have

(2)
∣∣∣(π0,n)−1(Γ, h,p)

∣∣∣ = |G|!
|Aut(Γ, h,p)| ,

where G is the group of permutations ϕ : Δlab → Δlab such that f(ϕ(b)) =
f(b) for each b ∈ Δlab with f : Δlab → Δ being the label forgetting map.

2. The refined cuspidal tropical invariant of the plane

In this section we consider only plane tropical curves.

2.1. Moduli spaces of marked plane tropical curves with
multi-valent vertices

Denote by Z∞
+ the set of sequences of nonnegative integers (ki)i≥0 such that∑

i ki < ∞, and by Z
∞,∗
+ ⊂ Z∞

+ the set of sequences with the vanishing initial
member. Let m = (mi)i≥0 ∈ Z

∞,∗
+ , n = (ni)i≥0 ∈ Z∞

+ . We say that a marked
plane tropical curve (Γ, h,p) is of V-type (m,n), if exactly mi vertices in
Γ0 \ p have valency i + 2 for all i ≥ 1, exactly n0 points of p lie in Γ \ Γ0,
exactly ni vertices in Γ0 ∩ p have valency i + 2 for all i ≥ 1. It is easy to see
that

|Γ0| =
∑
i≥1

(mi + ni), |Γ1| =
∑
i≥1

(i + 1)(mi + ni) + 1,(3)

|Γ1
∞| =

∑
i≥1

i(mi + ni) + 2 .
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Assuming that a finite balanced multiset Δ ⊂ Z2 \ {0} and sequences of
nonnegative integers m ∈ Z

∞,∗
+ , n ∈ Z∞

+ , satisfy

(4) |Δ| =
∑
i≥1

i(mi + ni) + 2

(cf. (3)), we consider the moduli space M0,n,m(R2,Δ) parameterizing isomor-
phism classes [(Γ, h,p)] of plane n =

∑
i≥0 ni-marked rational tropical curves

of V-type (m,n) and degree Δ.

Lemma 2.1. The space M0,n,m(R2,Δ) can be identified with a finite union
of open convex polyhedral cones of pure dimension

∑
i≥0(mi + ni) + 1.

Proof. Given a combinatorial type of the pair (Γ,p) and the distribution of
the directing vectors aV (E) ∈ Z2\{0} for all edges E ∈ Γ1, the lengths of the
finite edges, the distances from marked points in Γ \ Γ0 to chosen vertices of
the corresponding edges, and the freely chosen image h(V ) of a fixed vertex
V ∈ Γ0 give N =

∑
i≥0(mi + ni) + 1 independent coordinates in the positive

orthant of RN , from which one should get rid suitable diagonals in case when
at least two marked points occur in the interior of the same edge of Γ.

By M̂0,n,m(R2,Δ) we denote the polyhedral fan obtained by extending
M0,n,m(R2,Δ) with classes corresponding either to contraction of some finite
edges (i.e., vanishing of their lengths), or to arrival of marked points from
edges to vertices of Γ, or to collision of marked points.

Assume that 2n =
∑

i≥0(mi + ni) + 1, or, equivalently,

(5) n =
∑
i≥1

mi + 1 .

Then the evaluation map

Ev : M̂0,n,m(R2,Δ) → R2n, Ev[(Γ, h,p)] = h(p) ∈ R2n ,

relates spaces of the same dimension
∑

i≥0(mi + ni) + 1 = 2n.

Definition 2.1.1. Let a balanced, nondegenerate multiset Δ ⊂ Z2 \ {0} and
sequences m ∈ Z

∞,∗
+ , n ∈ Z∞

+ satisfy (4) and (5).
(1) We say that a class [(Γ, h,p)] ∈ M0,n,m(R2,Δ) is regular, if each

connected component K of Γ\p is unbounded, and its closure K ⊂ Γ possesses
a unique orientation of its edges (called regular orientation) such that

• all marked points in K are sources, all ends of K are oriented towards
infinity;
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• for each vertex V ∈ K ∩Γ0 exactly two of its incident edges are incom-
ing, and, moreover, the h-images of these edges are not collinear.

(2) A cell of M0,n,m(R2,Δ) is called enumeratively essential, if Ev in-
jectively takes it to R2n. Denote by M e

0,n,m(R2,Δ) the union of the enu-
meratively essential cells of M0,n,m(R2,Δ), by M̂ e

0,n,m(R2,Δ) the closure
of M e

0,n,m(R2,Δ) in M̂0,n,m(R2,Δ), and by Eve the restriction of Ev to
M̂ e

0,n,m(R2,Δ).

Lemma 2.2. Let Δ ⊂ Z2 \ {0} be a balanced nondegenerate multiset, m ∈
Z
∞,∗
+ , n ∈ Z∞

+ . Suppose that (4) and (5) hold. Then M e
0,n,m(R2,Δ) �= ∅ and

each cell of M e
0,n,m(R2,Δ) consists of regular classes.

Proof. Suppose that [(Γ, h,p)] ∈ M0,n,m(R2,Δ) is a regular class. Then it
belongs to M e

0,n,m(R2,Δ). Indeed, whenever we fix the position of h(p), the
image of h : Γ → R2 is fixed as well (recall that the combinatorial type of
(Γ,p) and the differentials of h on the edges of Γ are a priori fixed), and then
we recover the lengths of compact edges of Γ. On the other hand, it imme-
diately follows from the regularity that any small variation of h(p) induces a
(unique) small variation of (Γ, h,p) in its combinatorial class.

For the proof of the existence of a regular class, we make the following
elementary observation (left to the reader as an exercise):

(O) Let |Δ| > 3 and let Δ by cyclically ordered by rotation in the positive
direction. Then, for any ai ∈ Δ, which is not simultaneously collinear to ai−1
and ai+1, and any 1 ≤ j ≤ |Δ| − 2, there exist a sequence ak, ...,ak+j ∈ Δ,
including ai, such that dim Span{ak, ...,ak+j} = 2,

∑k+j
s=k as �= 0, and the

multiset Δ′ = (Δ \ {ak, ...,ak+j}) ∪ {a′}, where a′ = ak + ... + ak+j , is
balanced and nondegenerate.

Then we proceed as in the proof of the existence statement in [2, Lemma
1.4]. We remind here this argument referring to [2] for the details. First, we
construct the (convex lattice) Newton polygon P (Δ), whose boundary can
be represented as the union of cyclically ordered integral segments [vk, vk+1],
k = 1, ..., |Δ|, v|Δ|+1 = v1, obtained by rotating the ordered as above vectors
ak ∈ Δ, k = 1, ..., |Δ|, by π

2 clockwise (we call ak and [vk, vk+1] dual to each
other). The set V = {v1, ..., v|Δ|} includes all the vertices of P (Δ).

We proceed by induction on n. If n = 1, the curve Γ is a fan with the
center at the unique (marked) vertex, and (Γ, h,p) is regular. Suppose that
n > 1. Then (cf. (5)) there are ni > 0 and mj > 0. If j = |Δ| − 2 and
respectively n = n0 = 2, then γ again has a unique (unmarked) vertex, and
we pick two marked points on two ends with non-collinear directing vectors,
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obtaining a regular curve (Γ, h,p). Suppose that j ≤ |Δ| − 3. If i = 0,
we choose ak, which is not parallel simultaneously to ak−1 and ak+1, then
find a sequence as, ...,as+j−1 as in observation (O), and, finally draw the
chord in P (Δ) joining the points vs and vs+j . It follows that the interior
of this chord is disjoint from ∂P (Δ). The chord cuts P (Δ) into a polygon
containing j + 2 points of V and the remaining polygon P (Δ′), where Δ′ =
(Δ \ {as, ...,as+j−1}) ∪ {a′}, a′ = as + ... + as+j−1. The former polygon
(with the corresponding part of V) is dual to a tropical curve with the unique
(unmarked) vertex of valency j + 2, a marked point on the end directed by
the vector ak, and the end directed by the vector −a′, to which we attach
the remaining part of the constructed curve existing due to the induction
assumption applied to Δ′ and the sequences n′, m′, obtained by reducing ni

and mj by one. The regularity of the constructed tropical curve is evident.
Suppose that n0 = 0 and i > 0. Then i + j ≤ |Δ| − 3. We, first, choose
a sequence ak, ...,ak+i as in observation (O), join the points vk, vk+i ∈ V
by a chord, whose interior must be disjoint from ∂P (Δ). It cuts off P (Δ) a
polygon P1 that will be dual to a marked point of valency i + 2 incident to
i + 1 ends directed by ak, ...,ak+i and to one more edge dual to the chord.
Set Δ′ = (Δ \ {ak, ...,aki}) ∪ {a′}, a′ = ak + ...,ak+i. Since the chord is
not collinear with the neighboring sides of P (Δ), we apply observation (O)
to Δ′ and obtain a sequence of j + 1 vectors of Δ′ (including a′), whose dual
segments form a connected part of ∂P (Δ′), and the extreme points of this part
are joined by a chord which intersects ∂P (Δ′) only in its endpoints. Thus,
we cut off P (Δ′) a polygon P2 which will be dual to an unmarked vertex
of valency j + 2 incident to j ends, an edge dual to the first constructed
chord, and one more edge dual to the second chord. So, we attach the two
constructed fragments by gluing along the edges dual to the first chord, and,
finally, apply the induction assumption to Δ′′ that is formed by the vectors
as dual to the remaining segments [vr, vr+1] and by the vector a′′ equal to
the sum of all removed vectors as (and dual to the second chord), while n
and m turn into n′,m′ by reducing 1 from ni and mj .

Suppose now that [(Γ, h,p)] ∈ M e
0,n,m(R2,Δ). This means that x = h(p)

is in general position in R2. Using induction on |Γ0|, we show that (Γ, h,p)
is regular. If |Γ0| ≤ 1, the claim is evident. Assume that |Γ0| > 1. Since one
can consider all components of Γ \ p separately and independently, we are
left with the case when all marked points belong to ends of Γ, when no two
points lie on the same end or on collinear ends. The relation n = |Γ0|+ 1 (cf.
(5)) yields that there are two ends with marked points incident to the same
vertex V ∈ Γ0. Note that no any other end with a marked point is incident to
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V due to the general position of x. So, we orient the segments on the chosen
above two ends of Γ, which join the marked points with V , towards V , while
all other edges of Γ incident to V are oriented outwards. Thus, we reduce the
considered case to the study of the connected components of Γ \ {V }, and
hence derive the required regularity by the induction assumption.

Remark 2.2.1. As shown in [2, Proof of Lemma 1.4], the subdivision of
P (Δ) constructed in the proof of Lemma 2.2 can be further refined by extra
chords between the points of V so that the final subdivision will consist of
|Δ| − 2 nondegenerate triangles with vertices in V.

Let
(6) Y 2n−1 = Ev

(
M̂ e

0;m(R2,Δ) \M e
0;m(R2,Δ)

)
.

This set possesses the structure of a finite polyhedral complex of dimension
≤ 2n−1 in R2n, induced by that of M̂ e

0;m(R2,Δ)\M e
0;m(R2,Δ). Indeed, the

images of (finitely many) cells of M̂ e
0;m(R2,Δ) \M e

0;m(R2,Δ) are polyhedra
of dimension ≤ 2n − 1. Each of these polyhedra is an intersection of finitely
many half-spaces. Let H1, ..., Hs ⊂ R2n be the supporting hyperplanes of all
the half-spaces that appear here, and let H+

i , H
−
i be the half-spaces supported

by Hi, i = 1, ..., s. For each point x ∈ R2n, we define a polyhedron, which is
the intersection of all the half-spaces among H±

i , i = 1, ..., s, that contain x.
Clearly, all such polyhedra define a finite polyhedral structure on R2n, and
Y 2n−1 is a union of entire cells.

Denote by X2n−1 the union (maybe empty) of open (2n− 1)-dimensional
cells of Y 2n−1, and then define X2n−2 := Y 2n−1 \ X2n−1, which is a finite
polyhedral complex of dimension ≤ 2n− 2.

Lemma 2.3. Under the hypotheses of Lemma 2.2, suppose that X2n−1 �=
∅. Then, for each x ∈ X2n−1, the preimage (Eve)−1(x) consists of regular
classes, or classes [(Γ, h,p)] such that
(a) (Γ, h,p) is of V-type (m′, n′), where m′

i = mi for all i ≥ 1 except for
m′

i1 = mi1 − 1, and n′
i = ni for all i ≥ 0 except for n′

i2 = ni2 − 1 and
n′
i1+i2 = ni1+i2 + 1; furthermore, exactly one connected component of

Γ \ p is not regular;
(b) Γ is of V-type (m′, n), where m′

i = mi for all i ≥ 1 except either for
m′

i1 = mi1 − 2, m′
2i1−2 = m2i1−2 + 1 with some i1 ≥ 1, or for m′

i1 =
mi1 − 1, m′

i2 = mi2 − 1, m′
i1+i2−2 = mi1+i2−2 +1 with some i2 > i1 ≥ 1;

furthermore, exactly one connected component of Γ \ p is not regular.

Proof. By construction, a non-regular element [(Γ, h,p)] ∈ (Eve)−1(x) is a
limit of regular classes [(Γt, ht,pt)], 0 < t < ε, and is obtained by vanishing of
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exactly one of the parameters in the corresponding cell of M e
0,n,m(R2,Δ). If

the vanishing parameter is the length of a segment joining a marked point pk,t
and a vertex Vt ∈ Γ0

t \ pt, then we get to the case (a). The only non-regular
component of Γ \ p is the component which contains the limit of the edge of
Γt\pt, which is not incident to pk,t and is regularly oriented towards Vt. If the
vanishing parameter is the length of the edge joining two vertices of Γ0

t \ pt

and not containing points of pt, then we get to the case (b). The only non-
regular component of Γ \ p is that with the vertex appeared in the collision
of two vertices of Γ0

t \ pt: the regularity fails, since the new vertex is incident
to three incoming edges. Note that no two of these three edges have collinear
directing vectors, since otherwise the dimension of the corresponding cell of
Y 2n−1 would not exceed 2n− 2.

By M̂ e,lab
0,n,m(R2,Δlab) we denote the moduli space of labeled n-marked

plane rational tropical curves that project to M̂ e
0,n,m(R2,Δ).

2.2. Refined multiplicity of a regular plane rational marked
tropical curve

Throughout this section, we fix a standard basis in R2, and for any vectors

a = (a1, a2), b = (b1, b2) ∈ R2, set a ∧ b = det
(
a1 a2
b1 b2

)
. For any α ∈ R and

a formal parameter y, define

(7) [α]−y = yα/2 − y−α/2

y1/2 − y−1/2 , [α]+y = yα/2 + y−α/2

y1/2 + y−1/2 .

Now we introduce an additional restriction:

(8)
∑
i≥2

mi ≤ 1 .

It means that all but at most one unmarked vertices are trivalent.

Remark 2.3.1. The refined multiplicity of plane tropical curves which we
give below naturally extends to arbitrary m and n satisfying (5). However the
invariance statement holds only under restriction (8). We do not know how to
correct the refined multiplicity in order to obtain an invariant in the general
case.

Let [(Γ, h,p)] ∈ M e
0,n,m(R2,Δ), and let (Γlab, h,p) be one of the la-

belings of (Γ, h,p). We start with defining a refined cuspidal multiplicity
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RCMy(Γ, h,p, V ) (depending on a formal parameter y) for each vertex
V ∈ Γ0.

(1) Refined cuspidal multiplicity of a trivalent unmarked vertex. Suppose that
V ∈ Γ0 is trivalent and the regularly oriented edges E1, E2 ∈ Γ1 incident to
V are incoming. Define the Mikhalkin’s multiplicity of the vertex V by (cf.
[14, Definition 2.16])

μ(Γ, h,p, V ) = |a1 ∧ a2|, where ai = aV (Ei), i = 1, 2 .

Following [3], we put

(9) RCMy(Γ, h,p, V ) = [μ(Γ, h,p, V )]−y .

(2) The function μ+
y (A). We recall here the definition of the function

μ+
y (A) for any balanced sequence A = (ai)i=1,...,r, r ≥ 2, ai ∈ R2, i = 1, ..., r,

as given in [2, Section 2.1, item (2)]. If r = 2, we set μ+
y (A) = 1. If r = 3,

we set μ+
y (A) = [|a1 ∧ a2|]+y . Note that, due to the balancing condition, this

definition does not depend on the choice of the order in the sequence A. If
r ≥ 4, then, for each pair 1 ≤ i < j ≤ m, we form the two balanced sequences

• A′
ij consisting of the vectors ak, 1 ≤ k ≤ r, k �= i, j, and one more

vector aij := ai + aj ,
• A′′

ij = (ai,ai,−aij).

Then we set

(10) μ+
y (A) =

∑
1≤i<j≤m

μ+
y (A′

ij) · μ+
y (A′′

ij) .

It is easy to see that μ+
y (A) does not depend on the choice of the order in A.

(3) The refined cuspidal multiplicity of a marked vertex. Given a marked
vertex V ∈ Γ0 ∩p and the directing vectors a1, ...,ar of all the edges incident
to V , we set (cf. [2, Formula (9)])

(11) RCMy(Γ, h,p, V ) = μ+
y (AV ), AV = (a1, ...,ar) .

(4) The refined cuspidal multiplicity of an unmarked vertex of valency
≥ 4. Given an unmarked vertex V ∈ Γ0 \p of valency r ≥ 4 and the directing
vectors a1, ...,ar of all its incident edges of Γ, ordered so that a1,a2 direct
the edges regularly oriented towards V , we set

(12) RCMy(Γ, h,p, V ) = [|a1∧a2|]−y ·μ+
y (A′

V ), A′
V = (a1+a2,a3, ...,ar) .
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(5) The refined cuspidal multiplicity of a regular plane rational marked
tropical curve. Given [(Γ, h,p)] ∈ Me

0,n,m(R2,Δ), define

RCMy(Γlab, h,p) =
∏

V ∈Γ0

RCMy(Γ, h,p, V ),(13)

RCMy(Γ, h,p) = RCMy(Γlab, h,p)
|Aut(Γ, h,p)| .

2.3. The invariance statement

Theorem 2.1. Let Δ ⊂ Z2 \ {0} be a balanced, nondegenerate multiset,
m ∈ Z

∞,∗
+ , n ∈ Z∞

+ , and let (4), (5) and (8) hold. Then the expression

(14) RCy(Δ, n,m,x) :=
∑

[(Γ,h,p)]∈(Eve)−1(x)
RCMy(Γ, h,p)

does not depend on the choice of x ∈ R2n \ Y 2n−1 with Y 2n−1 defined by (6).

Remark 2.3.2. In case of Δ primitive, ni = 0 for all i ≥ 1, and mi = 0
for all i ≥ 2 (i.e., (Γ, h,p) trivalent without marked vertices), the cuspidal
invariant RCy(Δ, n,m) coincides with the Block-Göttsche refined invariant
NΔ,δ

trop(y) for δ chosen so that the counted tropical curves are rational [3].
In case of Δ primitive, ni = mi = 0 for all i ≥ 2 (i.e., (Γ, h,p) trivalent

but with some vertices marked), the invariant RCy(Δ, n,m) coincides with
refined broccoli invariant as defined by Göttsche and Schroeter [8].

At last, in case of mi = 0 for all i ≥ 2 (i.e., all unmarked vertices
trivalent), the invariant RCy(Δ, n,m) coincides with the refined descendant
invariant defined in [2]. The only novelty of the present note is that we allow
one unmarked vertex of arbitrary valency.

Similarly to [2, Proposition 2.4], our invariant RCy(Δ, n,m) is often a
rational function of y:

Proposition 2.3.1. If under hypotheses of Theorem 2.1, in addition, Δ ⊂
Z2 \ 2Z2 (i.e., does not contain even vectors), then we have

(15) RCy(Δ, n,m) = F (y + y−1)
(y + 2 + y−1)k ,

where k ≥ 0 and F is a nonzero polynomial of degree

degF = | IntP (Δ) ∩ Z2| + |∂P (Δ) ∩ Z2| − |Δ|
2 + k ,
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where P (Δ) is the Newton polygon constructed in the proof of Lemma 2.2.
Furthermore,

(16) k ≤
∑
i≥2

i(n2i + n2i+1) + 1
2

∑
j≥4

(j − 3)mj .

Proof. The argument used in the proof of [2, Proposition 2.4] word-for-word
applies in the considered situation. We only make a couple of comments. The
computation of degF uses the construction of a regular tropical curve in the
proof of Lemma 2.2 and also Remark 2.2.1. The last summand in the right-
hand side of (16) (as compared with [2, Inequality (14)]) comes from the fact
that an unmarked vertex of valency j > 3 contributes to the denominator at
most j − 3 factors y1/2 + y−1/2.

In general, the denominator in formula (15) is unavoidable as noticed in
[2, Corollary 3.3].

2.4. Proof of the invariance

It will be convenient to consider labeled tropical curves. In view of formulas
(2) and (13), the invariance of RCy(Δ, n,m,x) is equivalent to the invariance
of RC lab

y (Δ, n,m,x).1
So, we choose two generic configurations x(0),x(1) ∈ R2n \Y 2n−1. There

exists a continuous path x(t) ∈ R2n, 0 ≤ t ≤ 1, connecting the chosen
configurations, that avoids X2n−2, but may finitely many times hit cells of
X2n−1, which may cause changes in the structure of (Eve)−1(x(t)). We shall
consider all possible wall-crossing phenomena and verify the constancy of
RC lab

y (Δ, n,m,x(t)) (as a function of t) in these events.
To relax notations we simply denote labeled tropical curves by (Γ, h,p)

and write RC lab
y (t) for RC lab

y (Δ, n,m,x(t)).
Let x(t∗) be generic in an (2n− 1)-dimensional cell of X2n−1. Denote by

H0 the germ of this cell at x(t∗) and by H+, H− ⊂ R2n the germs of the
halfspaces with common boundary H0. Let T ∗ = (Γ, h,p) ∈ (Eve)−1(x(t∗))
be as described in Lemma 2.3(a,b), and let F0 ⊂ M̂ e,lab

0,n,m(R2,Δ) be the germ
at T ∗ of the (2n − 1)-cell projected by Eve onto H0. We shall analyze the
2n-cells of M̂ e,lab

0,n,m(R2,Δ) attached to F0, their projections onto H+, H−, and
prove the constancy of RC lab

y (t), t ∈ (t∗ − η, t∗ + η), 0 < η � 1.

1The latter expression is defined by formula (14), where we sum up over all
labeled corves.
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Figure 1: Geometric illustration to the invariance statement.

(1) Suppose that T ∗ is as in Lemma 2.3(a), i.e., it has a marked point p1
at a vertex V ∈ Γ0 of valency i1 + i2 + 2, with incident edges E0, ..., Ei1+i2+1
directed by the vectors aj := aV (Ej), 0 ≤ j ≤ i1 + i2 +1, and we assume that
the limit of the regular orientation is such that E0 is incoming and all other
edges incident to V are outgoing. Without loss of generality we can suppose
that the path x(t), in a neighborhood of t∗, is as follows: x1 = h(p1) ∈
R2 moves along a smooth germ transversal to the fixed line L through the
segment h(E0), while x \ {x1} remains fixed.

Assume that i2 = 0. Then, in the deformation, the marked point p1
moves from V to one of the edges E1, ..., Ei1+1. Note that the sign of a0 ∧ aj

determines whether the tropical curve with a marked point on Ej , 1 ≤ j ≤
i1 + 1, is mapped to H+ or H−. Hence, in view of the former formula in (13)
and formula (12), the constancy of RC lab

y (t) is equivalent to the relation

(17)
i1+1∑
j=1

[a0 ∧ aj ]−y · μ+
y (Aj) = 0, where Aj = (a0 + aj , (ak)k �=0,j) .

If i1 = 1, the balancing condition, which reads a0 + a1 + a2 = 0, and the
definition μ+

y (A1) = μ+
y (A2) = 1 imply (17). If i1 ≥ 2, then (17) is equivalent

to [2, Formula (18)].
So, assume that i2 ≥ 1. Then, in the deformation, V splits into a marked

(i2 + 2)-valent vertex p1 and an unmarked (i1 + 2)-valent vertex V ′ mapped
to the line L. Denote by E′

0 the edge connecting the vertices V, V ′ of the
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deformed curve. The sign of a0∧a′
0, where a′

0 = aV (E′
0), determines whether

the Eve-image of the deformed curve belongs to H+ or to H−. Then the sought
constancy will follow from the relation (see Figure 1(a))

(18)
∑

I∪J={1,...,i1+i2+1}
|I|=i1,|J |=i2+1

[a0 ∧ a′
0]−y · μ+

y (AI) · μ+
y (BJ) = 0 ,

where

AI = (a0,−a′
0, (as : s ∈ I)), BJ = (a′

0, (as : s ∈ J)), a′
0 = −

∑
s∈J

as .

Using [2, Formula (18)], we rewrite (18) in the form (see Figure 1(b))∑
I∪J={1,...,i1+i2+1}

|I|=i1,|J |=i2+1

∑
k∈I

[a0 ∧ as]−y · μ+(AI,k) · μ+
y (BJ) = 0,

where AI,k = (a0 + ak,−a′0, (as : s ∈ I \ {k})) ,

or, equivalently, as

(19)
i1+i2+1∑
k=1

⎛⎜⎜⎜⎝[a0 ∧ ak]−y ·
∑

I∪J={1,...,i1+i2+1}
k∈I,|I|=i1,|J |=i2+1

μ+
y (AI,k)μ+

y (BJ)

⎞⎟⎟⎟⎠ = 0 .

For a given k, the term
∑

I,J μ
+
y (AI,k)μ+

y (BJ) in the left-hand side of (19)
can be written (cf. [2, Section 2.5, proof of Lemma 2.5]) as the sum of the
expressions μ+

y,α(Ck,a0 + ak, E), where Ck = (a0 + ak, (as : 1 ≤ s ≤
i1 + i2 + 1, s �= k)), α runs over all combinatorial types of trivalent trees
having i1 + i2 + 1 leaves and containing a point, whose complement consists
of two trees with i1 + 1 and i2 + 2 leaves, respectively, which E runs over the
leaves of the former subtree. It follows from [2, Formula (25)] that

(20)
∑

I∪J={1,...,i1+i2+1}
k∈I,|I|=i1,|J |=i2+1

μ+
y (AI,k)μ+

y (BJ) = Φ1(z)
∑

τ∈Si1+i2

zτΛ(Ck) ,

where Ck = {as : 1 ≤ s ≤ i1 + i2 + 1, s �= k}, z2 = y, Sk is the permutation
group of k elements, C = (bs}1≤s≤|C|, and

τΛ(C) =
∑

1≤s<t≤|C|
bτ(s) ∧ bτ(t) .
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Plugging (20) to (19) and using relations

[a0 ∧ ak]−y = za0∧ak − zak∧a0

z − z−1 , a0 = −a1 − ...− ai1+i2+1 ,

we obtain in the left-hand side of (19)

Φ2(z)

⎛⎝i1+i2+1∑
k=1

∑
τ∈Si1+i2

z
τΛ(Ck)+

∑
s �=0 ak∧as−

i1+i2+1∑
k=1

∑
τ∈Si1+i2

z
τΛ(Ck)+

∑
s �=0 as∧ak

⎞⎠
= Φ2(z)

⎛⎝ ∑
σ∈Si1+i2+1

zσΛ(C) −
∑

σ∈Si1+i2+1

zσΛ(C)

⎞⎠ = 0

(where C = {a1, ...,ai1+i2+1}).

(2) Suppose that T ∗ = (Γ, h,p) is as in Lemma 2.3(b), i.e., it results from
a collision of two unmarked vertices of valency 3 and r ≥ 3. Then Γ has an
unmarked vertex V of valency r+1. Let Ej ∈ Γ1, j = 1, ..., r+1, be the edges
incident to V , and the limit of the regular orientation is such that E1, E2, E3
are incoming, while the other edges are outgoing. Denote aj = aV (Ej), j =
1, ..., r+1. We use the same symbols Ej for the corresponding edges of curves
T (t) ∈ M e,lab

0,n,m(R2,Δ) obtained in a deformation of T ∗ along the path x(t),
t ∈ (t∗ − η, t∗ + η), no confusion will arise.

The list of possible curves T (t) is as follows:

• either, for some 1 ≤ j ≤ 3, a curve T (t) has a trivalent vertex V1
incident to the edges Ej , Ek, k = 4, ..., r+1, and the edge E0 that joins
V1 with the vertex V2; in turn, V2 is incident to E0, Ej1 , Ej2 , where
{1, 2, 3} \ {j} = {j1, j2}, and Es, s = 4, ..., r + 1, s �= k;

• or, for some 1 ≤ j ≤ 3, a curve T (t) has a trivalent vertex V1 incident
to the edges Ej1 , Ej2 , and the edge E0 that joins V1 with the vertex V2;
in turn, V2 is incident to E0, Es, s = 4, ..., r + 1.

The regular orientation of E0 is given in the former and in the latter case by
the vectors

a0 = aV2(E0) = aj + ak and a0 = aV1(E0) = aj1 + aj2 ,

respectively. In both the cases, the sign of aj ∧ a0 determines whether
Eve(T (t)) belongs to H+ or H−. Introduce εj = ±1, j = 1, 2, 3, so that
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εj · sign(aj ∧ a0) = 1 points to H+ for all j = 1, 2, 3. Then the required
constancy relation reads

3∑
j=1

εj ·[|aj1 ∧ aj2 |]−y ·
(

r+1∑
k=4

[aj ∧ ak]−y · μ+
y (Ak)+[aj∧(−aj1 − aj2)]−y · μ+

y (A)
)
,

(21)

where

Ak = (aj1 + aj2 ,aj + ak, (al : l ∈ K \ {k})), A = (a1 + a2 + a3, (al)l∈K)

(see Figure 1(c,d)).
If r = 3, then (21) turns into

(22)
3∑

j=1
εj · [aj ∧ (−aj1 − aj2)]−y · [|aj1 ∧ aj2 |]−y = 0 ,

which reflects a collision of two trivalent vertices with Block-Göttsche refined
multiplicities, and in which case (22) appears to be a particular case of the
invariance statement in [10, Theorem 1] (see a detailed treatment in [10, Pages
5313-5316]).

If r ≥ 4, relation [2, Formula (18)] (cf. also (17)) yields that

r+1∑
k=4

(
[aj ∧ ak]−y · μ+

y (Ak)
)

= −[aj ∧ (aj1 + aj2)]−y · μ+
y (A) ,

we obtain in the left-hand side of (21)

2
3∑

j=1

(
εj · [|aj1 ∧ aj2 |]−y · [aj ∧ (−aj1 − aj2)]−y

)
,

which vanishes in view of (22).

3. On refined count of rational tropical curves in Rm

From now on we suppose that m ≥ 3, that Δ ⊂ Zm \ {0} is a balanced,
non-degenerate multiset, and that

(23) n = |Δ| − 1 .
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(1) Introduce the evaluation maps

Ev : M0,n(Rm,Δ) → Rmn, Ev[(Γ, h,p)] = h(p) ,
Ev : Mlab

0,n(Rm,Δlab) → Rmn, Ev[(Γlab, h,p)] = h(p) .

By Lemma 1.1, dimM0,n(Rm,Δ) = |Δ|+m+n−3 = 2n+m−2. We call an
open (2n+m− 2)-dimensional cell of M0,n(Rm,Δ), or Mlab

0,n(Rm,Δlab) enu-
meratively essential, if Ev injectively takes it to Rmn. Denote by M e

0,n(Rm,Δ),
resp. M e,lab

0,n (Rm,Δlab) the union of all enumeratively essential cells of the
space M0,n(Rm,Δ), resp. Mlab

0,n(Rm,Δlab), and by M̂ e
0,n(Rm,Δ), resp.

M̂ e,lab
0,n (Rm,Δlab) its closure in M0,n(Rm,Δ), resp. Mlab

0,n(Rm,Δlab).
By [6, Construction 2.24 and Proposition 7.4] (see also [1, Construc-

tion 4.2]), the push-forward Ev∗ Mlab
0,n(Rm,Δlab) ⊂ Rmn is a tropical variety

(cycle) of dimension (2n + m − 2). Moreover, since it is of pure dimension,
the support |Ev∗Mlab

0,n(Rm,Δlab)| ⊂ Rmn coincides with

Ev(M̂ e,lab
0,n (Rm,Δlab)) = Ev(M̂ e

0,n(Rm,Δ)),

and hence we can speak of the tropical variety Ev∗ M̂ e
0,n(Rm,Δ).

We call a class [(Γ, h,p)] ∈ M e
0,n(Rm,Δ), where n satisfies (23), regular,

if Γ is trivalent, Γ0∩p = ∅, at each vertex V ∈ Γ0 the directing vectors of the
incident edges span a two-dimensional subspace of Rm, and each connected
component K of Γ \ p is unbounded. Notice that the regularity condition
together with (23) yield that each connected component of Γ \ p contains
exactly one unbounded edge (see [14, Lemma 4.20]).

Lemma 3.1. Every regular class [(Γ, h,p)] ∈ M0,n(Rm,Δ) belongs to the
space M e

0,n(Rm,Δ).

Proof. We can linearly order the components of Γ\p and reduce the required
statement to the following one: Given a regular rational curve (Γ′, h′,p′) with
s ends and s−1 marked points on all but one of the ends, and the h′-image of
one of the marked points is fixed, then the evaluation image of the remaining
s−2 marked points fills a 2(s−2)-dimensional polyhedron as the curve varies
in its combinatorial type. This holds, since we have 2(s − 2) independent
parameters: the lengths of s − 3 finite edges, and s − 1 distances from the
marked points to their nearest vertices.

Fix a sequence of (m−2)-dimensional linear subspaces L1, ..., Ln−1 ∈ U(L)
defined over Q, and denote by Li the family of (m − 2)-dimensional affine
subspaces of Rm parallel to Li, i = 1, ..., n− 1.
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For any point x0 ∈ Rm and a sequence L = (L′
i ∈ Li, i = 1, ..., n − 1),

introduce the set

M e
0,n(Rm,Δ,x0,L) =

⎧⎪⎨⎪⎩[(Γ, h,p)] ∈ M̂ e
0,n(Rm,Δ)

∣∣∣∣∣
h(p1) = x0,
h(pi+1) ∈ L′

i,
i = 1, ..., n− 1

⎫⎪⎬⎪⎭ .

Remark 3.1.1. Our constraint is a particular case of an affine constraint
considered in [17, Definition 1.3].

Lemma 3.2. For any point x0 ∈ Rm and generically chosen sequence L of
affine spaces L′

i ∈ Li, i = 1, ..., n−1, the set M e
0,n(Rm,Δ,x0,L) is finite and

such that

• each element [(Γ, h,p)] ∈ M e
0,n(Rm,Δ,x0,L) is regular;

• for each point pi+1 ∈ p, i = 1, ..., n− 1, the germ of the line h(Γ, pi+1)
intersects with Li only in one point;

• for an arbitrary small variation L′ of the configuration x0,L, the set
M e

0,n(Rm,Δ, x′0,L
′) is in bijection with M e

0,n(Rm,Δ,x0,L) so that any
element of the former set is obtained by a small variation of the corre-
sponding element of the latter set within its combinatorial type.

Proof. The closure of Ev(M e
0,n(Rm,Δ)) and the affine space {x0}×

∏n−1
j=1 L′

j

are polyhedral complexes of complementary dimension in Rmn. Hence, after a
generic shift of {x0}×

∏n−1
j=1 Lj (which can be realized via shifts of each factor

in Rm) we obtain a finite intersection, whose points are intersections of open
cells of top dimension. In particular, M e

0,n(Rm,Δ,x0,L) ⊂ M e
0,n(Rm,Δ),

and the two last claims of the lemma follow.
Next, we prove the regularity of the classes [(Γ, h,p)]∈M e

0,n(Rm,Δ,x0,L).
Consider a component K of Γ \ p, whose closure K contains p1 (the marked
point mapped to x0). It cannot be bounded. Indeed, otherwise, as observed
in the preceding paragraph, the restriction h : K → R3 is determined up to
a finite choice by the conditions that one univalent vertex of the closure K
is mapped to x0 and among the remaining univalent vertices of K all but
one are mapped to certain spaces Li in the sequence L. However, this means
that the aforementioned conditions impose a restriction to the position of the
space Lj that contains the very last univalent vertex of K in contradiction to
the pre-assumed general position of L. The same argument shows that each
other component K ′ of Γ \ p, whose closure shares a point with K, cannot
be bounded either. Proceeding in this way, we show that all components of
Γ \ p are unbounded. Since |π0(Γ \ p)| = n + 1 = |Δ|, we obtain that each
component of Γ \p contains exactly one unbounded edge. It remains to show
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that the images of the edges of Γ incident to the same vertex are not collinear.
In fact, it is sufficient to show this for a component K of Γ\p having a unique
(trivalent) vertex. As we noticed above, the h-image of one univalent vertex
of K is fixed, while the h-image of the other one belongs to a tropical line
in general position, but the latter requirement failed if h(K) were inside a
straight line.

(2) By [17, Proposition 2.1] there are finitely many types of rational
tropical curves of degree Δ in Rm, and hence the set A(Δ) ⊂ Zm \ {0} of
all possible directing vectors of their edges is finite. The set of the subspaces
L′ ∈ Gr(m,m − 2) such that, for any two vectors a, b ∈ A(Δ), we have
Ψ′(a) ∧ Ψ′(b) �= 0 as long as a ∧ b �= 0, where Ψ′ : Rm → Rm/L′ is the
projection, form a complement of a hypersurface in Gr(m,m − 2). Pick a
connected component U of this set and an element L ∈ U .

Denote by Ψ : Rm → Rm/L � R2 the projection, and let ψ ∈ Λ2R2 be
nondegenerate.

Now we define the weight of each class [(Γ, h,p)] ∈ M e
0,n(Rm,Δ,x0,L)

for x0 and L in general position. By Lemma 3.2, [(Γ, h,p)] is regular, and
hence the edges of the closure K of any connected component K of Γ \ p
can be uniquely (regularly) oriented so that each marked point is a source,
the unbounded edge is directed towards infinity, and for each vertex V ∈
K ∩ Γ0 exactly two of its incident edges are incoming. For a vertex V ∈ Γ0,
let E1, E2 be the incoming edges of Γ \ p incident to V , ordered so that
ψ(Ψ(a1),Ψ(a2)) > 0, where ai = aV (Ei), i = 1, 2 (the vanishing here is not
possible due to the regularity of [(Γ, h,p)] and the Z-generality of R). Set

μ(Γ, h,p, L;V ) = za1∧a2 − za2∧a1 ,

SI(Γ, h,p, L) =
∏

V ∈Γ0

μ(Γ, h,p, L;V ) ,

and

(24) SI(Rm,Δ, L,x0,L) =
∑

[(Γ,h,p)]∈M e
0,n(Rm,Δ,x0,L)

SI(Γ, h,p, L) .

Theorem 3.1. There exists a neighborhood U(L) of L in U such that the
expression SI(Rm,Δ, L,x0,L) does not depend on the choice of L1, ..., Ln−1 ∈
U(L) and of the choice of a generic constraint x0 ∈ Rm, L ∈ ∏n−1

i=1 Li.

Remark 3.2.1. (1) All the summands in the right-hand side of (24) belong
to the ring Z[Λ2Zm]. One can obtain more traditional refined invariants via
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any group homomorphism λ : Λ∗Zm → Z. that induces a ring homomorphism
λ∗ : Z

[1
2Λ2Zm

]
→ Z[y1/2, y−1/2].

(2) It would be interesting to understand an enumerative meaning of our
invariant. More precisely, what is the meaning of the limits of

λ∗SI(Rm,Δ, L) · (z − z−1)1−n as z → 1 or z →
√
−1

for various homomorphisms λ : Λ2Zm → Z? Notice that n− 1 is the number
of vertices of each of the curves [(Γ, h,p)] ∈ M e

0,n(Rm,Δ,x0,L).

Note that SIy(Rm,Δ, L) does depend on the choice of U , and the invari-
ance may fail for L parallel to a vector in A(Δ) (we comment on this in the
proof of Theorem 3.1 below). We suggests also a relaxed refined invariant by
setting

μred
y (Γ, h,p, L, ψ;V ) = [ψ(Ψ(a1),Ψ(a2))]−y

= yψ(Ψ(a1),Ψ(a2))/2 − yψ(Ψ(a2),Ψ(a1))/2

y1/2 − y−1/2 ,

SIred
y (Γ, h,p, L, ψ) =

∏
V ∈Γ0

μred
y (Γ, h,p, L, ψ;V ) ,

and

(25) SIred
y (Rm,Δ, L, ψ,x0,L) =

∑
[(Γ,h,p)]∈M e

0,n(Rm,Δ,x0,L)
SIred

y (Γ, h,p, L, ψ) .

Thus, we immediately obtain

Corollary 3.2.1. Under the hypotheses of Theorem 3.1, the expression
SIred

y (Rm,Δ, L, ψ,x0,L) does not depend on the choice of a generic con-
straint x0 ∈ Rm and L ∈ ∏n−1

i=1 Li.

Example 3.2.1. Suppose that L1 = ... = Ln−1 = L and that ψ(a, b) =
y1(a)y2(b) − y2(a)y1(b). Then SIred

y (Rm,Δ, (Li)n−1
i=1 ) turns to be the Block-

Göttsche refined invariant for plane rational curves of degree Ψ(Δ), multiplied
by (y1/2 − y−1/2)n−1.

Proof of Theorem 3.1. We fix the point x0 ∈ Rm, choose two generic con-
figurations L(0),L(1) ∈ ∏n−1

i=1 , join them by a generic path {L(t)}0≤t≤1,
and show that SI(Rm,Δ, L,x0,L(t)) remains constant along this path. More
precisely, for all but finitely many t ∈ [0, 1], the set M e

0,n(Rm,Δ,x0,L(t))
satisfies the properties listed in Lemma 3.2, and hence SI(Rm,Δ, L,x0,L(t))
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is constant along each connected component of the complement to the above
finite exceptional set F ⊂ (0, 1). Observe that, due to L1, ..., Ln−1 ∈ U , for
[(Γ, h,p)] ∈ M0,n(Rm,Δ), the intersection of h(Γ) with any of the spaces
L′
i ∈ Li, i = 1, ..., n− 1, is finite.

The points of F correspond to the events when the current constraint
L(t) meets the Ev-image of a codimension one cell of M̂ e

0,n(Rm,Δ) in its
generic point. It follows that exactly one of the parameters in the dimension
count in the proof of Lemma 3.2 (cf. also [10, Proof of Theorem 1]) vanishes.
More precisely, for t∗ ∈ F , all but one elements of M e

0,n(Rm,Δ,x0,L(t∗)) are
regular, while the remaining element [(Γ, h,p)] is as follows

(i) either Γ is trivalent, p ∩ Γ0 = {pi} for some 1 ≤ i ≤ n, all but one
components of Γ \ p are unbounded, while one component is bounded
and contains pi in its boundary;

(ii) or p ∩ Γ0 = ∅, all but one vertices of Γ are trivalent, and one vertex is
four-valent and is incident to three incoming edges; all components of
Γ \ p are unbounded.

Denote by ΓV the germ of Γ at V , where V = pi in case (i), and V ∈ Γ0 is
the four-valent vertex in case (ii).

The case (i): Passage through [(Γ, h,p)] ∈ M e
0,n(Rm,Δx0,L(t∗)) with

pi = V ∈ Γ0, 1 ≤ i ≤ n. Let E1, E2, E3 ∈ Γ1 be incident to V . Exactly one
of these edges, say, E1, is contained in a bounded component of Γ. Since pi
cannot move inside E1 by the regularity condition (see Lemma 3.2), there
are two top-dimensional cells of M̂ e

0,n(Rm,Δ) attached to the cell contain-
ing [(Γ, h,p)] and corresponding to the moves of pi into E2, or E3. Since
Ev∗ M̂ e

0,n(Rm,Δ) is a tropical variety, the balancing condition ensures that
the Ev-images of the above top-dimensional cells of M̂ e

0,n(Rm,Δ) cover a
germ of an (m + 2n − 2)-plane centered at Ev[(Γ, h,p)]. Thus, in the plane
R2, which is the target of Φ, the considered passage looks as shown in Figure 2,
where e1, e2, e3, and p̃i denote the Ψ ◦ h-images of E1, E2, E3, and pi, respec-
tively. Assuming that the numbering of E1, E2, E3 matches the cyclic order
defined by the form ψ, we reduce the constancy of SI(Rm,Δ, L,x0,L(t)) for
t ∈ (t∗ − ε, t∗ + ε) \ {t∗} to the relation

aV (E1) ∧ aV (E2) = aV (E3) ∧ aV (E1) ,

which follows from the equality aV (E3)=−aV (E1)−aV (E2) coming from (1).

The case (ii): Passage through [(Γ, h,p)] ∈ M e
0,n(Rm,Δ,x0,L(t∗)) with

Γ having a four-valent vertex. Let V ∈ Γ0 be a four-valent vertex, and let
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Figure 2: Bifurcation.

E1, E2, E3, E4 ∈ Γ1 the edges incident to V , whose Ψ ◦ h-images e1, e2, e3, e4
(see Figure 3(b,c)) are cyclically ordered so that ψ(Ψ(ai),Ψ(ai+1)) > 0, where
ai = aV (Ei), i = 1, 2, 3, 4. We can assume also that, in the limit of the regular
orientation, E1, E2, E3 are incoming, while E4 is outgoing.

Suppose that no two of the edges e1, e2, e3, e4 are parallel to each other.
In this case, there are three top-dimensional cells of M̂ e

0,n(Rm,Δ) incident to
[(Γ, h,p)] and corresponding to three ways of splitting of a four-valent vertex
into a pair of trivalent vertices (cf. [7, Page 156] or [6, Proof of Theorem
3.7]). We can assume that the path L(t), t ∈ (t∗ − ε, t∗ + ε), is a generic line
in

∏n−1
i=1 Li. Again, since Ev∗ M̂ e

0,n(Rm,Δ) is a tropical variety, the balanc-
ing condition ensures that the Ev-images of the above three top-dimensional
cells of M̂ e

0,n(Rm,Δ) cover the germ of an (m + 2n − 2)-plane H centered
at Ev[(Γ, h,p)]. That is, one of the cells maps to one half-space H+ of H,
bounded by the considered wall, while the other two cells are mapped to the
other half-space H− of H.

Assume for the moment that L1 = ... = Ln−1 = L. Under this assumption,
all the elements of the constraint are mapped to distinct points in Rm/L � R2,
and hence we encounter the well-known trifurcation for plane tropical curves
matching suitably many point constraints (see, for instance, [7, Page 156] and
[6, Proof of Theorem 3.7]). Namely, this trifurcation and the corresponding
subdivisions of the plane quadrangle Q, dual to the four-valent vertex, are
shown in Figure 3(a). The distribution of the cells of M̂ e

0,n(Rm,Δ) mapped to
H+ or H− depends on the position of the position of the unique parallelogram
inscribed into Q, and it is indicated in the left part of Figure 3(a). More
precisely, this distribution matches the equality

μ1μ2 = μ3μ4 + μ5μ6 ,

where μ1, ..., μ6 are twice the Euclidean areas of the triangles as indicated in
the right part of Figure 3(a) (see for details the aforementioned sources). So,
depending on the position of the vectors e1, ..., e4 with respect to the inscribed
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Figure 3: Trifurcation.
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parallelogram, we encounter the two possible options shown in Figure 3(b,c).
Hence, the constancy of SI(Rm,Δ, L,x0,L(t)), where t ∈ (t∗ − ε, t∗ + ε),
reduces to the equalities

(za1∧a2 − za2∧a1)(z(a1+a2)∧a3 − za3∧(a1+a2))
= (za2∧a3 − za3∧a2)(za1∧(a2+a3) − z(a2+a3)∧a1)

+(za3∧a1 − za1∧a3)(za2∧(a1+a3) − z(a1+a3)∧a2)

(Figure 3(b)) and

(za2∧a3 − za3∧a2)(za1∧(a2+a3) − z(a2+a3)∧a1)
= (za1∧a2 − za2∧a1)(z(a1+a2)∧a3 − za3∧(a1+a2))

+(za1∧a3 − za3∧a1)(za2∧(a1+a3) − z(a1+a3)∧a2)

(Figure 3(c)), which are clearly valid. If L1, ..., Ln−1 vary in a sufficiently
small neighborhood U(L) of L, then the considered three cells of M̂ e

0,n(Rm,Δ)
remain to be mapped to the same half-space H+ or H− as above, and hence
again the constancy SI(Rm,Δ, L,x0,L(t)), t ∈ (t∗ − ε, t∗ + ε), follows.

Suppose that (at least) two of the edges e1, e2, e3, e4 are parallel, that
is, either e1‖e3, or e2‖e4. Due to the choice of L, the latter relations yield
a1‖a3 and a2‖a4, respectively. In these cases we encounter only two types
of deformations of [(Γ, h,p)], see Figure 3(d, e). Thus, the constancy of
SI(Rm,Δ, L,x0,L(t)), t ∈ (t∗ − ε, t∗ + ε), reduces in both the cases to the
equality

(za2∧a1 − za1∧a2)(za3∧(a1+a2) − z(a1+a2)∧a3)
= (za3∧a2 − za2∧a3)(z(a2+a3)∧a1 − za1∧(a2+a3)) .

If a1‖a3, then it follows from a1 ∧ a3 = 0, and if a2‖a4, it follows from
a2 ∧ a4 = 0 and a4 = −a1 − a2 − a3.

Notice that if L �∈ U , in the last paragraph of the proof one may have
a1 �‖ a3, resp. a2 �‖ a4, and the required invariance may fail.
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