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Parametrization simple irreducible plane curve
singularities in arbitrary characteristic

Nguyen Hong Duc
∗

Abstract: We study the classification of plane curve singularities
in arbitrary characteristic. We first give a bound for the determi-
nacy of a plane curve singularity with respect to pararametrization
equivalence in terms of its conductor. We then define the notion of
parametrization modality for plane curve singularities. Finally, we
revisit Mehmood-Pfister’s classification of parametrization simple
plane curve singularities which are irreducible by giving a concrete
list of normal forms of equations and parametrizations. In charac-
teristic zero, the classification of parametrization simple irreducible
plane curve singularities was achieved by Bruce and Gaffney.

1. Introduction

We classify irreducible plane curve singularities f ∈ K[[x, y]] which are sim-
ple with respect to parametrization equivalence, where K is an algebraically
closed field of arbitrary characteristic. That is, the irreducible plane singular-
ities whose parametrizations have modality 0 up to the change of coordinates
in the source and target spaces (or, left-right equivalence, see Section 2.1).
The notion of modality was introduced by Arnold in the seventies into the
singularity theory for real and complex singularities. He classified simple,
unimodal and bimodal hypersurface singularities with respect to right equiv-
alence, i.e. the hypersurface singularities of right modality 0,1,2 respectively
[1], [2], [3]. The classifications of contact simple and unimodal complete in-
tersection singularities were done by Giusti [12] and Wall [22]. Classification
of contact simple space curve singularities was obtained by Giusti [12] and
Frühbis-Krüger [9]. In positive characteristic, the right simple, unimodal and
bimodal hypersurface singularities were recently classified by Greuel and the
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author in [14] and [21]. The classification of contact simple hypersurface singu-
larities were achieved by Greuel-Kröning [11], while classifications of contact
unimodal and bimodal singularities are still unknown.

Curve singularities can be also described by parametrizations. Two plane
curve singularities are parametrization equivalent if their parametrizations
are left-right equivalent. The first results on classification of simple curve sin-
gularities with respect to parametrization equivalence were obtained by Bruce
and Gaffney, for complex irreducible plane curve singularities in C{x, y} [6].
The classifications were extended to irreducible space curves by Gibson and
Hobbs [10], irreducible curves of any embedding dimension by Arnold [4], and
reducible curves by Kolgushkin and Sadykov [17]. In this paper, after intro-
ducing the notion of parametrization modality, we revisit Mehmood-Pfister’s
classification of parametrization simple irreducible plane curve singularities.
This generalizes the result of Bruce and Gaffney to the singularities in ar-
bitrary characteristic (Theorem 3.3). We give lists of normal forms of equa-
tions and parametrizations of parametrization simple plane curve singular-
ities which are irreducible (Tables 1, 2, 3 in Section 3). We first study in
Section 2 the problem of determinacy with respect to parametrization equiv-
alence. The theory of determinacy was systematically studied by Mather in
[18], where he defined the equivalence relations R,C,K,L and A and ob-
tained necessary and sufficient conditions for finite determinacy with respect
to them. He also gave estimates for the corresponding determinacy. Lower
estimates were provided later by Gaffney, Bruce, du Plessis and Wall. The
problem of determinacy in positive characteristic with respect to R,K was
treated by Boubakri, Greuel and Markwig in [5] and recently by Greuel and
Pham [15, 16]. We show that reduced plane curve singularities are finitely
determined with respect to parametrization equivalence. Moreover, we give a
lower bound for parametrization determinacy of a plane curve singularity in
terms of its conductor (Theorem 2.1).

2. Parametrization determinacy

2.1. Parametrization equivalence

For a plane curve singularity f , i.e. an element in the maximal ideal m in
K[[x, y]], there is a unique (up to multiplication with units) decomposition
f = fρ1

1 · . . . ·fρr
r , with fi ∈ m irreducible in K[[x, y]]. We assume, in this note,

that f is reduced, i.e. ρi = 1 for all i = 1, . . . , r. The integral closure of R :=
Rf := K[[x, y]]/〈f〉 (in the total quotient ring Quot(R)) is isomorphic to R̄ :=⊕r

i=1 K[[t]] (see [7], [13]). A composition K[[x, y]] � R ↪→ R̄ =
⊕r

i=1 K[[t]]
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of the natural projection K[[x, y]] � R and a normalization R ↪→ R̄, is called
a parametrization of f . It is an element in the space J := HomK(K[[x, y]], R̄)
of morphisms of local K-algebras. Any element ψ ∈ J can be identified with
the image ψ(x), ψ(y) of x and y in R̄. Hence, it is often written as a tuple of
r pairs (xi(t), yi(t)).

Two morphisms of K-algebras ψ, ψ′ : K[[x, y]] → R̄ =
⊕r

i=1 K[[t]] are
called left-right equivalent (or, A-equivalent), ψ ∼A ψ′, if there exist an au-
tomorphism φ of R̄ and an automorphism Φ ∈ AutK(K[[x, y]]) such that
ψ ◦ Φ = φ ◦ ψ′. By an automorphism of R̄ we mean a tuple of automor-
phisms of K[[t]]. Two plane curves f, g ∈ K[[x, y]] are called parametrization
equivalent, denoted by f ∼p g, if there exist a parametrization ψ of f and
a parametrization ψ′ of g such that ψ ∼A ψ′. It was known that two plane
curve singularities are parametrization equivalent if and only if they are con-
tact equivalent ([20, Prop. 1.2.10], see also [6, Lemma 2.2] for f irreducible).

2.2. Parametrization determinacy

For each k = (k1, . . . , kr) ∈ Zr
≥0, the k-jet of ψ is defined to be the compo-

sition jkψ : K[[x, y]] ψ→ ⊕r
i=1 K[[t]] → ⊕r

i=1 K[[t]]/(tki+1). We call ψ param-
etrization k-determined if it is parametrization equivalent to every ψ′ whose
k-jet coincides with that of ψ. We say that f is parametrization finitely de-
termined if one (and therefore all) of its parametrizations is parametrization
k-determined for some k = (k1, . . . , kr) ∈ Zr

≥0. A minimum k with this prop-
erty is called a parametrization determinacy of f (or ψ). We show, in the
present note, that f is d-parametrization determined, where d is concretely
given by the conductor of f .

Let C := (R : R̄) := {u ∈ R | uR̄ ⊂ R} be the conductor ideal of R̄ in
R (cf. [23]). Then C is an ideal of both R and R̄. So one has C = (tc1) ×
· · · × (tcr) for some c1, . . . , cr ∈ Z≥0. We call c := c(f) := (c1, . . . , cr) ∈ Zr

≥0
the conductor (exponent) of f . The conductor c = (c1, . . . , cr) of f is related
to the ones of its branches and other invariants by the following beautiful
formulas

(2.1) ci = c(fi) +
∑
j �=i

i(fi, fj)

and

(2.2) |c| := c1 + . . . + cr = 2δ,

where δ is the delta invariant of f , defined as δ := dimK R̄/R.
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Here for g, h ∈ K[[x, y]], i(g, h) denotes the intersection multiplicity of g, h
defined by i(g, h) := dimK K[[x, y]]/(g, h). Note that, if h is irreducible and
ψ is a parametrization of h, then i(g, h) = ord ψ(g). Furthermore, the in-
tersection multiplicity is additive, i.e. if h = h1 · . . . · hr, then i(g, h) =
i(g, h1) + . . .+ i(g, hr). The following theorem generalizes a result of Zariski.

Theorem 2.1. Let f ∈ m ⊂ K[[x, y]] be reduced, r the number of the irre-
ducible components, c ∈ Zr

≥0 its conductor, and let

Zr
≥0 	 d :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if mt(f) = 1
c + 1 if mt(f) = 2 and r = 1
c if mt(f) = 2 and r = 2
c − 1 if mt(f) > 2.

Then f is parametrization d-determined. In particular, f is always param-
etrization (c + 1)-determined.

The multiplicity of f , mt(f), is defined to be the maximum of integers k
for which 〈f〉 ⊂ mk. For the proof of the theorem we need the two following
lemmas, which give several relations between the conductor (c) and the max-
imal contact multiplicity (β̄1) of a reduced power series f in some concrete
cases. Recall that the maximal contact multiplicity of f is defined by

β̄1(f) := sup{ min
i=1,...,r

i(fi, γ)|γ regular},

where f1, . . . , fr are the irreducible components of f .

Lemma 2.2. Let f = f1 ·f2 ∈ K[[x, y]] be reduced such that f1, f2 are regular.
Then

β̄1(f) = i(f1, f2).

Proof. By definition, one has

β̄1(f) ≥ min{i(f1, f1), i(f2, f1)} = i(f1, f2).

It remains to prove min{i(f1, γ), i(f2, γ)} ≤ i(f1, f2), for every non-singular
series γ. Since γ is non-singular, there exists a coordinate change Φ ∈
AutKK[[x, y]] such that Φ(γ) = y. Since the intersection multiplicity is invari-
ant under automorphisms of K[[x, y]], it suffices to show min{i(F1, y),i(F2, y)}
≤ i(F1, F2), where F1 := Φ(f1) and F2 := Φ(f2). Since i(F1, F2) ≥ 1, we may
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assume that i(F1, y) > 1 and i(F2, y) > 1, because, if otherwise, the desired
inequality would be trivial. Then

F1(x, y) = a01y + ak0x
k +

∑
i+kj>k

aijx
iyj ; a01, ak0 �= 0

and
F2(x, y) = c01y + cl0x

l +
∑

i+lj>l

cijx
iyj ; c01, cl0 �= 0,

where k := i(F1, y) > 1 and l := i(F2, y) > 1. Here a01 and c01 are different
from zero, since F1 and F2 are regular. Thus F1 has a parametrization

x(t) = t; y(t) = atk + terms of higher order.

Therefore

F2(x(t), y(t)) = ac01t
k + terms of higher order

+ cl0t
l + terms of higher order.

Hence

i(F1, F2) = ord F2(x(t), y(t)) ≥ min{k, l} = min{i(F1, y), i(F2, y)}.

Lemma 2.3. Let f ∈ K[[x, y]] be irreducible.

(i) If mt(f) = 2, then c(f) = β̄1(f) − 1.
(ii) If mt(f) > 2, then c(f) > β̄1(f).

Proof. The lemma follows from the conductor formula (cf. [7, Proposition
4.4.5]). See also [20, Lemma 2.5.5] for an elementary proof.

Proof of Theorem 2.1. Note that d + 1 ≥ c, i.e. di + 1 ≥ ci for all i =
1, . . . , r. Let ψ = (ψ1, . . . , ψr) : K[[x, y]] → R̄ be a parametrization of f and
let ψ′ : K[[x, y]] → R̄ such that jd(ψ) = jd(ψ′). It suffices to show that
ψ ∼A ψ′.

Indeed, we have

ψ(x) − ψ′(x) ∈ td+1R̄ ⊂ R and ψ(y) − ψ′(y) ∈ td+1R̄ ⊂ R.

Thus there exist g1, g2 ∈ K[[x, y]] such that

ψ(g1) = ψ(x) − ψ′(x) ∈ td+1R̄ and ψ(g2) = ψ(y) − ψ′(y) ∈ td+1R̄.
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The following claim shows that, the map Φ: K[[x, y]] −→ K[[x, y]] sending
x, y to x− g1(x, y), y − g2(x, y) respectively, is an automorphism of K[[x, y]]
and hence ψ ∼A ψ′ as required, since ψ ◦ Φ = ψ′.

Claim 2.4. mt(g1) > 1 (similarly, mt(g2) > 1).

Proof of the claim: Since the case mt(f) = 1 is evident, we assume that
mt(f) ≥ 2. We argue by contradiction. Suppose that it is not true, i.e.
mt(g1) = 1. Then by the definition of the maximal contact multiplicity β̄1(f),

(2.3) min{i(fi, g1)|i = 1, . . . , r} ≤ β̄1(f).

The following three steps comprise the proof:
Step 1: mt(f) = 2 and r = 1. Then d = c + 1 and ψ(g1) ∈ td+1K[[t]]. This
implies

i(f, g1) = ord ψ(g1) ≥ d + 1 = c + 2 = β̄1(f) + 1,

where the last equality is due to Lemma 2.3. This contradicts to (2.2).
Step 2: mt(f) = 2 and r = 2. Then f = f1 ·f2 with mt(f1) = mt(f2) = 1 and
d = c. It follows from (2.1) that c1 = c2 = i(f1, f2). Since ψ1(g1) ∈ td1+1K[[t]],

i(g1, f1) = ord ψ1(g1) ≥ d1 + 1 = i(f1, f2) + 1.

Similarly, i(g1, f2) ≥ i(f1, f2) + 1. Combining Lemma 2.2 and (2.2) we get

i(f1, f2) + 1 ≤ min{i(f1, g1); i(f2, g1)} ≤ β̄1(f) = i(f1, f2),

a contradiction.
Step 3: mt(f) > 2. Then d = c − 1. Let f = f1 · . . . · fr be an irreducible
decomposition of f such that mt(f1) ≤ . . . ≤ mt(fr). We consider the three
following cases:

• If mt(fr) > 2, then i(fr, g1) = ord ψr(g1) ≥ dr + 1 = cr. By Lemma 2.3
and by the definition of the maximal contact multiplicity of fr, one deduce
that

c(fr) > β̄1(fr) ≥ i(fr, g1) ≥ cr > c(fr),

a contradiction.
• If mt(fr) = 2, then r > 1 and i(fr, g1) = ord ψr(g1) ≥ dr + 1 = cr. This

implies that β̄1(fr) ≥ cr. By (2.1) and the inequality i(f1, fr) ≥ mt(fr) = 2,

cr ≥ c(fr) + i(f1, fr) > c(fr) + 1.
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It follows from Lemma 2.3 that c(fr) = β̄1(fr) − 1 ≥ cr − 1 > c(fr), which is
a contradiction.

• If mt(fr) = 1 then mt(f1) = mt(f2) = . . . = mt(fr) = 1 and r =
mt(f) > 2. Due to (2.1) one has c1 ≥ i(f1, f2) + i(f1, fr) ≥ i(f1, f2) + 1.
Hence

i(f1, g1) = ord ψ1(g1) ≥ d1 + 1 = c1 ≥ i(f1, f2) + 1.
Similarly i(f2, g1) ≥ i(f1, f2) + 1 and then i(f1, f2) + 1 ≤ min{i(f1, g1);
i(f2, g1)}. It hence follows from Lemma 2.2 that

i(f1, f2) + 1 ≤ min{i(f1, g1); i(f2, g1)} ≤ β̄1(f1 · f2) = i(f1, f2),

a contradiction. This completes the theorem.

Example 2.5. 1. Let f = x2 − y5. Then r(f) = 1 and c(f) = 4. It is easy to
see that f is not parametrization 4-determined.

2. Let f = (x− y3)(x− y5). Then r(f) = 2, c(f) = (3, 3) and

ψ : K[[x, y]] → K[[t]] ⊕K[[t]], g �→ g(t3, t) ⊕ g(t5, t)

is a parametrization of f . It can be easily verified that f is parametrization
(3, 2)- but not (2, 2)- determined.

3. Parametrization simple singularities

In this section, we first define the notion of parametrization modality. Then we
classifiy parametrization irreducible plane curve singularities whose param-
etrization modality is zero. This should be considered as a revisited version
of [19].

3.1. Parametrization modality

Consider an action of algebraic group G on a variety X (over a given alge-
braically closed field K) and a Rosenlicht stratification {(Xi, pi), i = 1, . . . , s}
of X w.r.t. G. That is, a stratification X = ∪s

i=1Xi, where the stratum
Xi is a locally closed G-invariant subvariety of X such that the projection
pi : Xi → Xi/G is a geometric quotient. For each open subset U ⊂ X the
modality of U , G-mod(U), is the maximal dimension of the images of U∩Xi in
Xi/G. The modality G-mod(x) of a point x ∈ X is the minimum of G-mod(U)
over all open neighbourhoods U of x.

Let L := Aut(K[[x, y]]) resp. R := Aut(R̄) the left group resp. the right
group. The left-right group A := R × L acts on J = HomK(K[[x, y]], R̄)
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by ((φ,Φ), ψ) �→ Φ−1 ◦ ψ ◦ φ. Then, two elements ψ, ψ′ ∈ J are left-right
equivalent, if and only if they belong to the same A-orbit.

For each k ∈ Z, denoted by Jk the k-jet space of J , that is, the space of
morphisms

K[[x, y]] → R̄k :=
r⊕

i=1
K[[t]]/(tk+1).

We may identify an element ψ in Jk with the pair (ψ(x),ψ(y)) in K[[t]]/(tk+1)×
K[[t]]/(tk+1), and therefore Jk can be identified with the variety R̄2

k
∼= A

2(k+1)
K .

For each element ψ ∈ J , denoted the jkψ the image of ψ by the map induced
by the projection R̄ → R̄k. We call ψ to be left-right k-determined if it is left-
right equivalent to any element in J whose k-jet coincides with jkψ. A number
k is called left-right sufficiently large for ψ, if there exists a neighbourhood
U of the jkψ in Jk such that every ψ′ ∈ J with jkψ′ ∈ U is left-right k-
determined. We also consider the k-jet of the left-right group A defined by
Ak := Rk×Lk. This group acts naturally on the k-jet space Jk. The left-right
modality of ψ, A-mod(ψ), is defined to be the Ak-modality of jkψ in Jk with
k right sufficiently large for ψ.

Let f ∈ m ⊂ K[[x, y]] be reduced plane curve singularity and let ψ be its
parametrization. By Theorem 2.1, ψ is left-right (|c| + 1)-determined, where
|c| denotes the sum c1 + . . . + cr for c = (c1, . . . , cr). Note that,

|c| =
r∑

i=1

⎛
⎝c(fi) +

∑
j �=i

i(fi, fj)

⎞
⎠ = 2δ(f).

It yields that ψ is left-right (2δ(f) + 1)-determined. From the upper semi-
continuity of the delta function δ (see [8]), we can show, by using the same
argument as in [14], that k = 2δ(f) + 1 is left-right sufficiently large for ψ.
The parametrization modality of f , denoted by P-mod(f), is defined to be
the left-right modality of ψ, i.e the number Ak-mod(jkψ).

A plane curve singularity f ∈ K[[x, y]] is called parametrization sim-
ple, uni-modal, bi-modal or r-modal if its parametrization modality is equal
to 0,1,2 or r respectively. These notions are independent of the choice of
a parametrization, and its sufficiently large number k. This may be proved
in much the same way as [14, Prop. 2.6, 2.12]. The simpleness can be also
described by deformation theory. A deformation of ψ over Al is a mor-
phism ψs : K[[x, y]] → R̄[s] =

⊕r
i=1 K[s][[t]] such that ψ0 = ψ, where s =

(s1, . . . , sl). A plane curve singularity f ∈ K[[x, y]] is parametrization simple
if its parametrization is of finite deformation type, i.e. its parametrization



Parametrization simple irreducible plane curve singularities 1061

can be deformed only into finitely many left-right classes in J . The following
properties are consequences of our definition.

Proposition 3.1. (i) If f and g are parametrization equivalent, then they
have the same parametrization modality.

(ii) (Semicontinuity of modality) Let ψs be deformation of ψ over Al, then
there exists an open neighbourhood U of 0 in Al such that A-mod(ψs) ≤
A-mod(ψ) for all s in U .

Proof. (i) It follows immediately from our definition of modality.
(ii) By Theorem 2.1, ψ is k-determined with k = 2δ(f) + 1. From the

upper semi-continuity of the delta function δ (see [8]), as discussed above, we
can show that k = 2δ(f) + 1 is left-right sufficiently large for ψ. The claim is
now done by the same argument as in [14, Proposition 2.7].

3.2. Parametrization simple irreducible plane curve singularities

Theorem 3.2 ([6, Theorem 3.8]). Let char(K) = 0. An irreducible plane
curve singularity f ∈ m2 ⊂ K[[x, y]] is parametrization simple if and only if
one of its parametrizations is A-equivalent to one of the singularities in the
Tables 1 (where ε ∈ {0, 1} and ck(y) = a0 + a1y + . . . + aky

k ∈ K[y]).

Table 1: Irreducible simple plane curve singularities (p = 0)
Name Equations Parametrizations Conditions
A2k x2 + y2k+1 (t2, t2k+1) k ≥ 1
E6k x3 + y3k+1 + ck−2(y)x2y2k+1 (t3, t3k+1 + εt3(k+q)+2) 0 ≤ q ≤ k − 2

E6k+2 x3 + y3k+2 + ck−2(y)x2y2k+1 (t3, t3k+2 + εt3(k+q)+4) 0 ≤ q ≤ k − 2
W12 x4 + y5 + ax2y3 (t4, t5 + εt7)
W18 x4 + y7 + c1(y)x2y4 (t4, t7 + εtq) q = 9, 13

W�
2q−1 (x2 + y3)2 + c1(y)xyq+4 (t4, t6 + t2q+5) q ≥ 1

Theorem 3.3. Let p = char(K). An irreducible plane curve singularity f ∈
m2 ⊂ K[[x, y]] is parametrization simple if and only if one of its parametriza-
tions is A-equivalent to one of the singularities in the Tables 2, 3, 4 (where
e ∈ {1, 2} and ε ∈ {0, 1}, ε(y) ∈ {0, 1, y} and ck(y) = a0 + a1y + . . .+ aky

k ∈
K[y]).

Proof. The theorem follows from Propositions 3.5 and 3.7 below.

Remark 3.4. 1. The indices in Tables 2, 3, 4 are the conductors of the
corresponding singularities, except for the singularities of type W�

2q−1
whose the conductors are 2q + 14.
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2. Our lists of irreducible simple plane curve singularities coincide with
the lists in [19] except for the case of characteristic 3. More precisely,
the singularities of type W18 and W�

2q−1 are excluded in our lists (i.e.
they are not parametrization simple).

3. In contrast to the case of characteristic zero, in positive characteristic,
there is only one infinite family of simple singualrities (A2k). For exam-
ple, there are only finitely many simple singualrities of multiplicity at
least 3.

4. Since all deformations of parametrization induce a deformation of equa-
tion, it follows that, all contact simple singularities are parametrization
simple. A direct comparison shows that the lists of Greuel-Kröning
in [11] are contained in our lists. However, the singularities of type
E6k, E6k+2, k > 1 and W in Tables 2, 3, 4 are not contact simple.

Table 2: Irreducible simple plane curve singularities (p > 3)
Name Equations Parametrizations Conditions
A2k x2 + y2k+1 (t2, t2k+1) k ≥ 1
E6 x3 + y4 (t3, t4)
E8 x3 + y5 (t3, t5) p > 5

x3 + y5 + εxy4 (t3, t5 + εt7) p = 5
E6k x3 + y3k+1 + ck−2(y)x2y2k+1 (t3, t3k+1 + εt3(k+q)+2) 3k ≤ ep + 5

e = p mod 3
0 ≤ q ≤ k − 2
q < k if 3k + 1 = dp

E6k+2 x3 + y3k+2 + ck−2(y)x2y2k+1 (t3, t3k+2 + εt3(k+q)+4) 3k ≤ ep + 4
e = 2p mod 3
0 ≤ q ≤ k − 2
q < k if 3k + 2 = ep

W12 x4 + y5 + ax2y3 (t4, t5 + εtq) q = 6, 7
q = 7 if p > 5

W18 x4 + y7 + c1(y)x2y4 (t4, t7 + εtq) p �= 7, 13; q = 9, 13
W�

2q−1 (x2 + y3)2 + c1(y)xyq+4 (t4, t6 + t2q+5) p �= 13, q ≥ 1
q = 1 if p = 5
q ≤ 4 if p = 7
q ≤ 10 if p = 11
q ≤ p−13

2 if p ≥ 17

Proposition 3.5. Let f ∈ m2 ⊂ K[[x, y]] be an irreducible plane curve singu-
larity and let (x(t), y(t)) be its parametrization with m = ordx(t) = mt(f) <
ordy(t) = n. Then f is not parametrization simple if either

(1) m > 4 or
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Table 3: Irreducible simple plane curve singularities in characteristic 3
Name Equations Parametrizations Conditions
A2k x2 + y2k+1 (t2, t2k+1) 1 ≤ k
E6 x3 + y4 + εx2y2 (t3 + εt5, t4)
E8 x3 + y5 + ε(y)x2y2 (t3 + εtq, t5) q = 4, 7

W12 x4 + y5 + ax2y3 (t4, t5 + εtq) q = 7, 11

Table 4: Irreducible simple plane curve singularities in characteristic 2
Name Equations Parametrizations Conditions
A2k x2 + y2k+1 + εxy2k−q (t2k+1, t2 + εt2q+1) 1 ≤ q < k
E6 x3 + y4 + εx2y2 (t4 + εt5, t3)
E8 x3 + y5 (t5, t3)
E12 x3 + y7 + εx2y5 (t3, t7 + εt8)

(2) m = 4 and p = 2 or
(3) m = 4 and n > 7 or
(4) m = 4 and n = 7 and p = 7, or
(5) m = 4 and n = 6 and p | (c− 3).
(6) m ≥ 3, n ≥ 6 and p = 3 or
(7) m = 3 and n ≥ 8 and p = 2 or
(8) m = 3 � n and n > ep + 6 with e = np mod 3 and e ∈ {1, 2}.

Proof. All the statements of the proposition was proved in [19] except (6),
which will be proved here. Assume that m ≥ 3, n ≥ 6 and p = 3. Then ψ can
be deformed into a parametrization of the form

(
t3 + t4 + O(5), t6 + t7 + O(8)

)
,

which is obviously A-equivalent to

ψ′ = (x′(t), y′(t)) =
(
t3 + t4 + O(5), t7

)
,

by the coordinate change x �→ x, y �→ −y+x2 and a compatible automorphism
of form φ(t) = t + a2t

2 + . . .. Consider the deformation ψ′
s := (x′s(t), y′s(t))

of ψ′ with x′s(t) = x(t) + st5, y′s(t) = y′(t). It is then easy to see that ψ′
s is

A-equivalent to ψ′
s′ if and only if s = s′. This implies that ψ′ is not simple,

and hence neither is ψ by Proposition 3.1.

Proposition 3.6 ([19]). Let f ∈ m2 ⊂ K[[x, y]] be an irreducible plane curve
singularity and let c be its conductor and let (x(t), y(t)) be its parametrization
with m = ordx(t) < ordy(t) = n.
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(1) If m = 2 and c = 2k then f is parametrization equivalent to a singularity
of type Ak.

(2) If ψ is A-equivalent to
(
t3, t3k+1 + t3(k+q)+2 + higher order terms

)

with p � 3q + 1 then ψ is A-equivalent to
(
t3, t3k+1 + t3(k+q)+2

)
.

(3) If ψ is A-equivalent to
(
t3, t3k+2 + t3(k+q)+4 + higher order terms

)

with p � 3q + 2 then ψ is A-equivalent to
(
t3, t3k+2 + t3(k+q)+4

)
.

(4) If m = 4, n = 5 or n = 7, then f is parametrization equivalent to a
singularity of type Wc.

(5) If m = 4, n = 6 and p �= (c− 3) then ψ is A-equivalent to
(
t4, t6 + t2q+5

)

with c = 2q + 14.

Proof. cf. [19], Lemma 11, Lemma 4, Lemma 7, Lemma 9.

Proposition 3.7. The singularities in Tables 3 are parametrization simple.

Proof. We first note that the multiplicity is upper semicontinuous by defi-
nition. Furthermore, the conductor of irreducible plane curve singularities is
equal to 2 times the delta invariant (cf. (2.2)) and hence also upper semicon-
tinuous by [8]. The proposition therefore follows directly from Proposition 3.6
and the upper semicontinuity of the multiplicity m and of the conductor c.
For instance, a singularity of type W �

2q−1 (p > 3) can be deformed into at
most the classes Ak, Ek,W12,W18,W

�
2q′−1 with k ≤ 2q + 14 and q′ ≤ q.
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