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Connectedness of Milnor fibres and Stein factorization
of compactifiable holomorphic functions

Helmut A. Hamm

Abstract: We start with conditions under which the Milnor fibre
of a holomorphic function on a singular space is connected. In this
case the special fibre is contractible, hence connected. So we pass
to a more general question: compare the number of connected com-
ponents of the fibres of a holomorphic function. Useful ingredients
are local Lefschetz theorems and some kind of a Stein factorization.

A result of classical singularity theory is that the Milnor fibre of a function
of n+1 complex variables with isolated singularity has the homotopy type of
a bouquet of n-spheres, in particular, the Milnor fibre is connected if n > 0.
G.-M. Greuel asked if there is a weaker hypothesis which ensures connected-
ness, see [3, Section 8] about the result of the subsequent discussion. Here we
weaken the hypothesis even more.

Moreover we can embed the question in a broader context. First of all it is
not necessary to restrict to the local situation. Then we may ask whether the
general and the special fibre have the same number of connected components.
It would be natural to deduce this from the bijectivity of a certain mapping
– but which one? In this context it is preferable to look at several mappings:
π0(f−1(t)) → π0(f−1(V \ {0})) → π0(f−1(V )), V small disk around 0, t ∈
V \ {0}, resp. π0(f−1(0)) → π0(f−1(V )). This turns out to be related to
generalized Stein factorizations. We will discuss different approaches, there
does not seem to be a straightforward one.

1. The local case

Let X be a locally closed (reduced) analytic subspace of CN , Y a (reduced)
analytic subspace of X, 0 ∈ Y , f : X → C holomorphic and open, f(0) = 0.

Let Xε := X ∩ {‖z‖ < ε}, Yε := Y ∩Xε. 0 < ε � 1. Now replace X, Y by
Xε, Yε. Then we have a generalization of a result of Dimca ([2, Prop. 2.3], see
Theorem 2.3 below):
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Theorem 1.1. Assume that X \ (Y ∪ f−1(0)) is connected and that there
are irreducible components D1, . . . , Dr, r > 0, of f−1(0) \ (Y ∪ Sing X) of
multiplicity d1, . . . , dr where these numbers are coprime.

Then F \ Y is connected, where F := f−1(t), 0 < |t| � ε.

Proof. Assume that z ∈ Dj . Let 0 < |t| � ρ � ε′ � ε, U := {ζ ∈ X | ‖ζ −
z‖ < ε′}, then U is a neighbourhood of z in X \ (Y ∪ Sing X).

Put D = Dρ := {s ∈ C | |s| < ρ}, D∗ = D
∗
ρ := Dρ \ {0}.

Now let z0 ∈ F \ Y .
Then there is in F \ Y a path from z0 to some z1 ∈ F ∩ U : (*)
Let z2 ∈ F ∩ U . Note that f−1(D∗) \ Y is connected because it has the

same homotopy type as X \ (Y ∪ f−1(0)). This is because both f−1(D) and
X are good neighbourhoods of 0 in X with respect to Y ∪f−1(0) in the sense
of Prill, see [9, Section B]. So there is a path α from z0 to z2 in f−1(D∗) \ Y .
Then f ◦α is a closed path in D

∗. This path can be lifted to a path β in U with
end point z2. Let z1 ∈ F ∩U be its initial point and γ := α ∗β−1, it is a path
from z0 to z1. Of course, f ◦ γ is nullhomotopic in D

∗, i.e. there is a mapping
φ : I × I → D

∗: φ(0, s) = φ(1, s) = φ(s, 1) = t, s ∈ I, φ(s, 0) = (f ◦ γ)(s).
Here I = [0, 1].

Since f : f−1(D∗) \ Y → D
∗ is a fibration there is a mapping Φ : I × I →

f−1(D∗) \ Y such that f ◦ Φ = φ and Φ(s, 0) = γ(s). Restricting Φ to the
other boundary segments of I × I we obtain a path from z0 to z1 in F \ Y ,
so we get (*).

In particular, the natural mapping H0(F ∩ U) → H0(F \ Y ) is surjective
(we take homology with integral coefficients). So we have a commutative
diagram

H0(F ∩ U) → H0(F ∩ U)
↓ ↓

H0(F \ Y ) → H0(F \ Y )

where the vertical arrows are surjective and the upper arrow is (hU )dj∗ = id,
the lower one h

dj
∗ .

Here h : F → F is the monodromy of f ; we may assume h(U) ⊂ U , let
hU : F ∩ U → F ∩ U be the monodromy of f |U .

This implies that h
dj
∗ = id, too. Since d1, . . . , dr are relatively prime we

obtain h∗ = id.
Now the Wang sequence yields an exact sequence

H0(F \ Y ) h∗−id→ H0(F \ Y ) → H0(f−1(D∗) \ Y ) → 0

The first arrow is 0, hence H0(F \ Y ) � H0(f−1(D∗) \ Y ) � Z.
This proves our statement.
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Remarks:

a) The hypothesis that X \ (Y ∪ f−1({0})) is connected is guaranteed if
X is irreducible, e.g. normal.

b) We may also treat the case where X \ (Y ∪ f−1({0})) is not connected,
similarly to Theorem 4.1 b) below.

c) Without loss of generality we may suppose that Y ∩ f−1(0) is nowhere
dense in Y . Then in the case X smooth the hypothesis of Theorem 1.1
is also necessary, see section 2.

Important special cases:

a) Y = ∅: the question is about the connectedness of F , which amounts
to ask whether f is simple (“einfach”) in the sense of [10].

b) Y = Sing X: Then we obtain information about irreducibility, because
F \ Sing X = F \ Sing F is connected if and only if F is irreducible:

Theorem 1.2. Assume that X is irreducible and that there are irreducible
components D1, . . . , Dr of f−1(0) \ Sing X of multiplicity d1, . . . , dr (r > 0)
where these numbers are coprime.

Then F is irreducible, too.

Examples: Let Bn := {z ∈ C
n | ‖z‖ < ε}.

a) X = B2, f(z) := z2
1z

3
2 : F irreducible, by Theorem 1.2, hence connected.

b) X = B2, f(z) := z2
1z

4
2 : F = {z | z1z

2
2 = ±

√
t} is not connected, hence re-

ducible, so one cannot drop the condition on d1, . . . , dr in Theorem 1.1.
c) X := {z1z2 = 0} ⊂ B3, f(z) := z3. Then X is reducible, X \ f−1(0) is

connected. F is connected but not irreducible.
d) X := (B2 × {0}) ∪ ({0} × B2) ⊂ B4, f(z) := z1 − z3:

Then f−1(t) = ({(t, s, 0, 0) | s ∈ C} ∪ {(0, 0,−t, s) | s ∈ C}) ∩ B4. So F
is not connected, hence reducible. In fact, X \f−1(0) has two connected
components.

2. Use of a kind of Stein factorization

Let us keep the notations of the last section.
There is some weak local version of the Stein factorization theorem which

we will take up later on (section 4). It sheds light on Example b) in section 1:

Theorem 2.1. Suppose that X \ (Y ∪ f−1(0)) is connected. Let d be the
number of connected components of F \Y . Then there is a continuous weakly
holomorphic function g : f−1(Dρ) \ Y → C such that g|f−1(D∗

ρ) \ Y is holo-
morphic, f = gd and that the general fibre of g is connected.
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If X \ Y is weakly normal, g is holomorphic on f−1(Dρ) \ Y .
If X is normal, g can be holomorphically extended to f−1(Dρ).

For the notion of weak normality see [7, 72.3].

Proof. Looking at the connected components of F \ Y we get an unramified
covering over D

∗
ρ with connected total space, because X \ (Y ∪ f−1(0)), and

hence f−1(D∗
ρ) \ Y , is connected. It can be identified with D

∗
β → D

∗
ρ : t �→ td,

where βd = ρ. Then f |f−1(D∗
ρ) \ Y → D

∗
ρ admits a lifting g : f−1(D∗

ρ) \ Y →
D

∗
β which must be holomorphic, namely: g(z) corresponds to the connected

component of z in f−1(f(z)) \ Y . Of course the fibres of this function are
connected. We may extend g to a continuous function on f−1(Dρ) \ Y .

Note that g is weakly holomorphic on f−1(Dρ), so g can be holomorphi-
cally extended to f−1(Dρ) if X is normal.

If we drop the connectedness hypothesis for X \ (Y ∪ f−1(0)) we must
replace Dβ by some complex curve C with a finite mapping p : C → Dρ, then
f = p ◦ g. Note that C is a union of discs identified at their center.

Alternative proof of Theorem 1.1: Let d be chosen as in Theorem 2.1.
We must show that d = 1. Let x ∈ Dj . Near x the function g must be
holomorphic. So d|di. Since d1, . . . , dr are coprime we have d = 1.

Theorem 2.2. Suppose that X is weakly normal, X\(Y ∪f−1(0)) is connected
and that Y ∩ f−1(0) is nowhere dense in Y . Then the following conditions
are equivalent:

a) F \ Y is connected,
b) f−1(0) \ Y is not of the form d· divisor of a holomorphic function g on

X \ Y , d > 1,
c) there is no d > 1, g : f−1(Dρ) \ Y → C holomorphic, such that f = gd.

Proof. a) ⇒ c): obvious.
c) ⇒ a): If a) did not hold we would get a contradiction because of

Theorem 2.1.
b) ⇔ c): clear.

In a special case we obtain a result proved by Dimca (he showed a) ⇔ b)):

Theorem 2.3 (See [2, Prop. 2.3, p. 76]). Let X = BN , Y = ∅. Then the
following conditions are equivalent:

a) F is connected,
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b) the multiplicities of the irreducible components of f−1(0) are coprime,
i.e. we have a prime decomposition f = fd1

1 · · · fdr
r where d1, . . . , dr are

coprime,
c) there is no d > 1, g : f−1(Dρ) → C holomorphic, such that f = gd.

The case X singular is more complicated because divisors may not be
principal divisors.

Example: X = {z1z2 = z2
3} ⊂ B3, f(z) = z2: f−1(0) is irreducible and has

multiplicity 2, yet F is connected. In fact, 1
2f

−1(0) is a divisor which is not a
principal divisor. Cf. [4, II Expl. 6.5.2, p. 133f].

3. Use of local Lefschetz theorems

We have a topological characterization of local irreducibility:
Let X be endowed with a Whitney stratification such that Sing X is a

union of strata.

Lemma 3.1. Let Y be a closed analytic subset of X.

a) Let X be irreducible. Then X\Y is connected, and if Y �=X, X \ Y =X.
b) If C is a connected component of X \ Y the closure C̄ in X is analytic.
c) The closure of X \ Y in X is analytic.

Proof. a) That X \ Y is connected is claimed as an exercise in [7, E.49f].
In fact, it is well-known that the irreducibility of X means that X \ Sing X
is connected, see e.g. [7, 49.5]. Then X \ Sing X ∪ Y is connected, too. Let
x ∈ X \ Y : then there is a connected neighbourhood U in X \ Y , and U
intersects X \Sing X, i.e. X \ Y ∪Sing X, because Sing X is nowhere dense
in X. Therefore X \ Y is connected, too.

If Y �= X, Y is nowhere dense by [7, Prop. 49.8], hence X \ Y = X.
b) Let Xi, i ∈ I, be the irreducible components of X. Let J be the set of

all i ∈ I such that C ∩ Xi �= ∅. Since Xi \ Y is connected by a), we obtain
that Xi \ Y ⊂ C. Let X ′ be the union of all Xi, i ∈ J . Then X ′ \ Y = C, so
X ′ = C̄, hence C̄ is analytic.

c) X \ Y is the support of the ideal sheaf of Y in X.

Lemma 3.2. Suppose that Y ⊂ X is a closed subset which is a union of
strata. Suppose that for all y ∈ Y the following holds: U \S is connected, i.e.
N \ {y} is connected, where S is the stratum which contains y, U is a good
neighbourhood of y in X and N a normal slice at y with respect to S. Then
π0(X \ Y ) � π0(X).
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Proof. Let Yi be the union of all strata of Y of dimension ≤ i. Then it is
sufficient to show for all i that π0(X \ Yi) � π0(X \ Yi−1). So it is sufficient
to prove the theorem in the case where Y is a union of strata of the same
dimension.

Let i : Y → X and j : X \ Y → X be the inclusions. Then we have a
distinguished triangle

i∗Ri!ZX → ZX → Rj∗ZX\Y
[+1]→

so we get an exact sequence

i∗i
!
ZX → ZX → j∗ZX\Y → i∗R

1i!ZX → 0

Our hypothesis implies that Rki!ZX = 0, k = 0, 1. This implies that 0 =
H

k(Y,Ri!ZX) � Hk(X,X \ Y ;Z), k = 0, 1, which leads to our assertion.

Lemma 3.3. a) X is locally irreducible ⇔ for all x ∈ X the following holds:
U \ S is connected, i.e. N \ {x} is connected, where S is the stratum which
contains x, U is a good neighbourhood of x in X and N a normal slice at x
with respect to S.

b) If H is transversal to X and X is locally irreducible, then X ∩ H is
locally irreducible, too.

Proof. a) ⇒: Since U is irreducible U \ S is connected by Lemma 3.1a).
⇐: We can assume that Sing X is a union of strata. Lemma 3.2 implies

that π0(U \ Sing U) � π0(U) = 0, so U is irreducible.
b) The normal slices for X ∩H are normal slices for X, too.

Recall the definition of rectified homotopical depth in [5, Def. 1.1]:
rhd(X) ≥ n if and only if for all strata S of X and all x in S, the pair
(U,U \S) is n−dim S−1-connected, where U is a suitable neighbourhood of
x in X. Again we fix here a Whitney stratification of X. We say dim−(X) ≥ n
if all irreducible components of X have dimension ≥ n.

Lemma 3.4. a) rhd(X \Xn−2) ≥ n ⇔ dim−(X \Xn−2) ≥ n.
b) rhd(X \ Xn−3) ≥ n if dim−(X \ Xn−3) ≥ n and X \ Xn−3 is locally

irreducible.

Proof. a) rhd(X \ Xn−2 ≥ n means that for all strata S of X of dimension
> n− 2 and all x in S, (U,U \ S) is n− dim S − 1-connected. We have only
to look at strata of dimension n − 1, and these should be nowhere dense in
X, which means dim−(X \Xn−2) ≥ n.

b) In addition we must look at strata of dimension n−2, here U \S should
be connected. Now apply Lemma 3.3.
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Now let us compare X with the special fibre f−1(0).

Theorem 3.5. Let (X, 0) be connected in dimension 2, dim−(X) ≥ 3. Then
f−1(0) \ {0} is connected.

Recall that (X, 0) is connected in dimension k if X \ Y is connected for
every closed analytic subspace Y of dimension < k, see [1].

Proof. Take a Whitney stratification of X. Let Y be the union of {0} and of
the strata of dimension 1 which are not contained in f−1(0). Then f−1(0) ∩
Y = {0}, rhd(X \ Y ∪ f−1({0})) ≥ 3, see Lemma 3.4a). By Weak Lefschetz,
see [5, Cor. 3.3.4], the pair (X \Y, f−1(0)\{0}) is 1-connected. By hypothesis,
X \ Y is connected. So f−1(0) \ {0} is connected, too.

Note that in this way we obtain Théorème 1,β, i.e. the key result of
[1]: in fact, (X, 0) is connected in dimension 2 if (X, 0) is irreducible and
dim− X ≥ 3.

Now we concentrate upon the case where X is locally irreducible, e.g.
normal.

If Σ ⊂ X is analytic, codim−
XΣ ≥ k means that dim Xi − dim Σj ≥ k for

all irreducible components Xi of X, Σj of Σ such that Σj ⊂ Xi.

Theorem 3.6. Assume that dim− X ≥ 3, Y analytic subset of X, 0 ∈ Y ,
X \ (Y ∪ f−1({0})) locally irreducible, and that f |Y is submersive along Y ∩
f−1(0) \ {0} up to a subset Σ of Y ∩ f−1(0) \ {0} with 0 ∈ Σ, codim−

XΣ ≥ 3.
Then the connected components of X \ Y correspond bijectively to those

of f−1({0}) \ Y .
More precisely: Hk(X \ Y, f−1({0}) \ Y ) = 0, k = 0, 1.

Proof. Remember that X, Y are open subsets of CN .
a) First we give a proof under the additional assumption that X \ Y is

locally irreducible.
We may assume that f is linear, so H = f−1(0) is a linear hyperplane.
(i) First assume that Σ = {0}: Then Hk(X\Y, f−1({0})\Y ) = 0, k = 0, 1,

according to [5, Cor. 3.3.4].
(ii) Now assume that L is a linear subspace of CN codimension k which is

transversal to all strata of Y \ {0} and dim− X ∩ L ≥ 3. Then we can find a
chain of linear subspaces L = Lk ⊂ Lk−1 ⊂ . . . ⊂ L1 with the same property
such that codimLi = i. By Lemma 3.3b), X ∩Li−1 \ Y is locally irreducible.
By (i) we obtain inductively that Hk(X \ Y, L ∩X \ Y ) = 0, k = 0, 1.

(iii) Now return to the hypothesis of the theorem. We can find a linear
subspace L of H of codimension codim−

XΣ such that L is transverse to all
strata of Y as well as Y ∩ f−1(0). By (ii), we have that (X \ Y,X ∩L \ Y ) is
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1-connected, as well as (X ∩ f−1(0), \Y,X ∩ L \ Y ). Altogether, (X \ Y,X ∩
f−1(0) \ Y is 1-connected.

b) Now we go back to our original assumption.
Without loss of generality assume 0 ∈ Y . Induction on dim Σ.
Note that Hk(X \ Y, f−1({0}) \ Y ) � Hk(Rj!Rl∗ZX\Y ∪f−1({0}))0, where

j : X \ f−1({0}) → X and l : X \ Y ∪ f−1({0}) → X \ f−1({0}) are the
inclusions.

Case dim Σ = 0: Then f |Y is submersive along (f−1({0})∩Y )\{0}. Since
rhd(X\(Y ∪f−1({0}))) ≥ 3 by Lemma 3.4b) we get that (X\Y, f−1({0})\Y )
is 1-connected, by Weak Lefschetz, see [5, Cor. 3.3.4].

Induction on dim Σ: Let F0 := f−1({0}), V := ∂X∩{|f | ≤ β}, 0 < β � ε.
By [5, Theorem 3.3.1] we have: Hk(∂X \ ∂Y, V \ ∂Y ) = 0, k = 0, 1.

Now look at the exact sequence:

Hk(∂X \ ∂Y, V \ ∂Y ) → Hk(∂X \ ∂Y, ∂F0 \ ∂Y ) → Hk(V \ ∂Y, ∂F0 \ ∂Y )

It is sufficient to show that Hk(V \ ∂Y, ∂F0 \ ∂Y ) = 0, k = 0, 1.
But this group coincides with H

k(V,R(jε)!R(lε)∗ZV \∂Y ∪∂F0).
Here jε : V \ ∂Y → V and lε : V \ ∂Y ∪ ∂F0 → V \ ∂F0 are the inclusions.
Since the hypercohomology group in question coincides with the group

H
k(∂F0, R(jε)!R(lε)∗ZV \∂Y ∪∂F0), it is sufficient to show that for all x ∈ ∂F0

the following holds: Hk(R(jε)!(R(lε)∗ZV \∂Y ∪∂F0)x = 0, k = 0, 1.
Let U be a suitable neighbourhood of x in V . Then the latter group

coincides with Hk(U \ ∂Y, U \ ∂Y ∪ ∂F0) � Hk(N \ ∂Y,N \ ∂Y ∪ ∂F0) �
Hk(R(jN )!R(lN )∗ZN\∂Y ∪F0))x, where N is a suitable neighbourhood of x in
a general hyperplane section of X at x, jN : N \ ∂F0 → N \ ∂Y and lN : N \
∂Y ∪∂F0 → N \∂F0 are the inclusions. This is true due to transversality. By
induction hypothesis, Hk(R(jN )!(R(lN )∗ZN\∂Y ∪∂F0)x = 0, k = 0, 1, because
dim N ∩ Σ < dim Σ. So we obtain our assertion.

A special case is Y = {0} where the submersiveness condition is auto-
matically fulfilled.

Similarly, we can compare with the general fibre:

Theorem 3.7. Suppose that dim− X ≥ 2, Y analytic subset of X, X \ Y
locally irreducible, and that f−1(0)\Σ is a smooth divisor, where Σ ⊂ f−1(0),
codim−

XΣ ≥ 2.
Then the connected components of X \ Y correspond bijectively to those

of F \ Y , where F := f−1(t), t �= 0 small.
More precisely: Hk(X \ Y, F \ Y ) = 0, k = 0, 1.
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Proof. We use the Strong local Lefschetz theorem, see [5, Th. 4.2.1], instead
of the Weak one. We have rhd(X \ Y ) ≥ 2, by Lemma 3.1 and 3.2.

We can assume that X \ (Y ∪ f−1({0})) is dense, by Lemma 3.1c).
Furthermore we may assume that 0 ∈ Y : otherwise look at the exact

sequence
Hk(X,X \ {0}) → Hk(X,F ) → Hk(X \ {0}, F )

and note that Hk(X,X\{0}) = 0, k = 0, 1, because rhd(X) ≥ 2 by Lemma3.1
and 3.2.

And Hk(X \ Y, F \ Y ) = Hk(ΦfRl∗ZX\Y )0, where l : X \ Y → X is the
inclusion.

Induction on dim Σ:
Case dim Σ = 0: Then f−1({0}) \ {0} is smooth, so our claim follows

from loc. cit. (recall that we may assume 0 ∈ Y ).
Induction step: Again assume 0 ∈ Y , and put V = ∂X ∩ {|f | ≤ β}. By

the theorem loc. cit., we have Hk(X̄ \ Ȳ , F̄ ∪ V \ Ȳ ) = 0, k = 0, 1.
Look at the exact sequence:

Hk(X̄ \ Ȳ , F̄ ∪ V \ Ȳ ) → Hk(X̄ \ Ȳ , F̄ \ Ȳ ) → Hk(F̄ ∪ V \ Ȳ , F̄ \ Ȳ )

where Hk(F̄∪V \Ȳ , F̄ \Ȳ )�Hk(V \∂Y, ∂F0\∂Y )�H
k(∂F0,ΦfεR(lε)∗ZV \∂Y ).

Here fε = f |V, lε : V \ ∂Y → V is the inclusion.
So we show for x ∈ V ∩ ∂F0: Hk(ΦfεR(lε)∗ZV \∂Y )x = 0, k = 0, 1.
This group coincides with Hk(ΦfNR(lN )∗ZN\∂Y )x, where N is a general

hyperplane section of X at x, fN := f |N , lN : N \ ∂Y → N the inclusion.
Now we may apply the induction hypothesis.

4. The global case

Here, we look at a mapping which is compactifiable in a certain sense. An
important application is given in the algebraic case: Suppose that f : X → S
is a morphism of (not necessarily irreducible) complex algebraic varieties.
Then it is well-known that f is compactifiable: Let X̄ be a compactification
of X. Let Γ ⊂ X × S be the graph of f and Γ̄ its closure in X̄ × S. If we
restrict the projection of X̄×S → S to Γ̄ we get the desired compactification.

Now turn back to the analytic case. We assume that S is a Riemann
surface and that X̄ is a complex space, f̄ : X̄ → S holomorphic and proper,
X∞ a closed complex subspace of X̄, X := X̄ \X∞, f := f̄ |X.

We have the following global analogue of Theorem 1.1, where we drop the
connectedness assumption:
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Theorem 4.1. Let s ∈ S, V a good small neighbourhood of s, s′ ∈ V \ {s}
and F := f−1(s′).

a) The mapping π0(F ) → π0(f−1(V \ {s})) is surjective.
b) Suppose that for all s ∈ S the following holds: Let V be a good neigh-

bourhood of s. Then for every connected component C of f−1(V \ {s}) there
are irreducible components D1, . . . , Dr of C̄ ∩ f−1(s) \ Sing X of multiplicity
d1, . . . , dr, r > 0, where these numbers are coprime.

Then the mapping π0(F ) → π0(f−1(V \ {s})) is bijective.

Proof. a) clear.
b) If f−1(V \{s}) is connected argue as in the proof of Theorem 1.1 where

it is not important that X is a space germ.
In general look at each connected component of f−1(V \ {s}).

Lemma 4.2. a) If f is open we have that π0(f−1(V \ {s})) → π0(f−1(V ))
is surjective.

b) If X is locally irreducible we have that π0(f−1(V \{s})) → π0(f−1(V ))
is injective.

Proof. We may assume X = f−1(V ), s = 0.
a) obvious.
b) (i) Let X0 be the closure of X \f−1(0) in X. It is an analytic subspace

of X which is not only closed but open, too, because of local irreducibility.
Hence π0(X0) → π0(X) is injective.

(ii) Let C1, C2 be two different connected components of X \f−1(0). Look
at the closure Ci of Ci in X. This is an analytic subset of X0. Then we must
have C1 ∩ C2 = ∅:

Otherwise let us choose a Whitney regular stratification of X0 which is
compatible with C1 and C2. Let S be a maximal stratum of C1 ∩C2, x ∈ S.
Take a small neighbourhood U of x in X. Since X is locally irreducible,
U \ S is connected. Furthermore, C1 and C2 intersect U \ S. This yields a
contradiction.

Now let C1, . . . , Cn be the different connected components of X \ f−1(0).
Note that X0 is the union of the closures Ci.

We know that the Ci are connected, closed and open (the complement in
X0 is closed), so Ci is an irreducible component of X0.

So π0(X \f−1(0)) → π0(X0) is bijective: it maps Ci onto Ci. This implies
our statement, using (i).

From now on assume S = Dρ.
Analogue of Theorem 3.6:
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Theorem 4.3. Assume that dim− X ≥ 3, X locally irreducible, and that
f̄ |X∞ is submersive along f̄−1({0}) ∩X∞ up to a subset of f̄−1({0}) ∩X∞
of codimension ≥ 2.

Then the connected components of X correspond bijectively to those of
f−1({0}).

More precisely: Hk(X, f−1({0})) = 0, k = 0, 1.

Proof. Let l : X \ f−1({0}) → X̄ \ f̄−1({0}) and j̄ : X̄ \ f̄−1({0}) → X̄
be the incusions. Then Hk(X, f−1({0})) = H

k(X̄, Rj̄!Rl∗ZX\f−1({0})); we can
replace X̄ by f̄−1({0}). But according to Theorem 3.6, we have for every
x ∈ f̄−1({0}): Hk(Rj̄!Rl∗ZX\f−1({0}))x = 0, k = 0, 1. This implies our state-
ment.

Analogue of Theorem 3.7:

Theorem 4.4. Assume that dim− X ≥ 2, X locally irreducible, and that
f̄−1({0}) is generically smooth.

Then the connected components of X correspond bijectively to those of F .
More precisely: Hk(X,F ) = 0, k = 0, 1.

Proof. It is sufficient to show that Hk(X,F ;Z) = 0, k = 0, 1.
Let id : Dρ → Dρ be the identity, j : X → X̄ the inclusion, and f̄0 :

f̄−1({0}) → {0} the projection.
Then Hk(X,F ;Z) = Hk(ΦidRf∗ZX)0 = Hk(ΦidRf̄∗Rj∗ZX)0 =

Hk(R(f̄0)∗Φf̄Rj∗ZX)0 = H
k(f̄−1(0),Φf̄Rj∗ZX) = 0, k = 0, 1, since

Hk(Φf̄Rj∗ZX) = 0, k = 0, 1, by Theorem 3.7.

A stronger result can be obtained if we apply Theorem 4.1 and Lemma 4.2
as soon as we renounce to the statement about Hk(X,F ), k = 0, 1:

Suppose that X is locally irreducible, f is open and that the assumption
of Theorem 4.1b) holds. Then π0(F ) → π0(X) is bijective.

5. Relation to Stein factorization

Recall the Stein factorization theorem, cf. [7, 49.A.22]:
Suppose that f : X → S is a proper holomorphic mapping between

complex spaces. Then there is a complex space Z, a proper holomorphic
mapping g : X → Z with connected fibres and a finite (= proper holomorphic
with finite fibres) mapping p : Z → S such that f = p ◦ g.

For a generalization to non-proper continuous mappings see [8].
Now we pass to the set-up of the last section, i.e. f is compactifiable, S

a Riemann surface.
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Note that f defines a topological fibre bundle over S0 := S \D, D being
a suitable discrete subset of S (discriminant).

Lemma 5.1. There is a Riemann surface Z0 and an unramified holomorphic
covering p0 : Z0 → S0 such that p−1

0 (s) = π0(f−1({s}), s ∈ S0.

Proof. It is clear how we must define Z0 as a set. Let s0 ∈ S0 and V a
contractible neighbourhood of s0 in S0. Let C ∈ p−1

0 (s0), i.e. a connected
component of f−1(s0). Choose xs0 ∈ C. If s ∈ V we choose a corresponding
element xs ∈ f−1({s}) as follows: Let γ be a path from s0 to s in V . We can lift
it to a path in f−1(V ) with initial point xs0 , let xs be the end point. Then the
connected component [xs] of xs in f−1({s}) depends only on the connected
component [xs0 ] of xs0 in f−1({s0}). Put ṼC := {[xs] | s ∈ V } ⊂ p−1

0 (V ). Then
V → ṼC : s �→ [xs] is bijective. Choose the topology and the holomorphic
structure of ṼC such that it is biholomorphic. Now p−1

0 (V ) is the disjoint
union of all ṼC . After all, p0 is an unramified holomorphic covering.

Now we will introduce extensions pi : Zi → S, i = 1, 2, 3, of p0 : Z0 → S0,
i.e. p−1

i (S0) = Z0, pi|Z0 = p0, i = 1, 2, 3:
Let s ∈ D and V a suitable neighbourhood of s in S.
Put p−1

1 (s) := π0(f−1(V \ {0})). This defines Z1 as a set. If we extend
p0 to a holomorphic branched covering p′1 : Z ′

1 → S with a smooth complex
curve Z ′

1 we have a bijection Z1 → Z ′
1, so we obtain on Z1 the structure of a

smooth complex curve, too, and p1 is a holomorphic branched covering.
Now put p−1

2 (s) := π0(f−1(V )). Then we obtain Z2 as a set, and we have
a mapping Z1 → Z2. Then we get Z2 from Z1 by adjoining an isolated point
for each element of π0(f−1(V )) not contained in the image of π0(V \f−1({s}))
and identifying all points which correspond to elements of π0(V \ f−1({s}))
which are mapped to the same element of π0(V ). If we have identified r points
a neighbourhood of their image is of the following form: D × {1, . . . , r}/ ∼
where (z1, k) ∼ (z2, l) iff z1 = z2 and: k = l whenever z1 �= 0. The canonical
projection can be identified with D× {1, . . . , r} → Dr := {z ∈ D

r | zl = 0 for
at least r − 1 values of l}: (z, k) �→ (z1, . . . , zr) with zk = z and zl = 0 for
l �= k. We define a complex structure on Z2 by using the last mapping. Then
Z2 is weakly normal and p2 holomorphic.

We have a mapping g2 : X → Z2: let g2(x) be the connected component of
f−1(V ) which contains x. In fact, Z2 has the quotient topology with respect
to g2, so g2 is continuous, and g2|X0 is holomorphic, where X0 = f−1(S \D).
Note that g−1

2 (z) is connected for z ∈ Z2.
And p2 ◦ g2 = f .
If X is weakly normal we obtain that g2 is holomorphic.
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Finally put p−1
3 (s) := π0(f−1(s)). Then we have Z3 as a set; we have a

mapping Z3 → Z2, define U ⊂ Z3 to be open if its image in Z2 is open. For
an element of π0(f−1(V )) not contained in the image of π0(f−1(s)) take off
the corresponding point of Z2. If ρ elements of π0(f−1(s)) are mapped to the
same element of π0(f−1(V )) replace the point of Z2 which corresponds to
the latter by ρ points and identify the corresponding punctured neighbour-
hoods. In fact this mapping corresponds locally to some canonical projection
Dr × {1, . . . , ρ} → Dr,ρ, where Dr,ρ is the quotient space with respect to the
following equivalence relation: (z1, k) ∼ (z2, l) iff z1 = z2 and: k = l whenever
z1 = 0. Note that this mapping is a local homeomorphism.

The mapping Z3 → Z2 is a local homeomorphism, so we get on Z3 the
structure of a weakly normal, not necessarily Hausdorff complex space Z3
(i.e. a ringed space where in the definition of a complex space we drop the
assumption to be Hausdorff). Note that anyhow Z3 is a T1-space, so indeed
locally a complex space. We have a mapping g3 : X → Z3: let g3(x) be the
connected component of f−1(s) which contains x. Again g−1

3 (z) is connected
if z ∈ Z3. And p3 ◦ g3 = f .

If X is weakly normal, g3 is holomorphic.
So with these definitions we obtain:

Theorem 5.2. a) Z1 is a smooth complex curve, p1 : Z1 → S is a finite holo-
morphic mapping such that #p−1

1 ({s}) is the number of connected components
of f−1(V \ {s}) whenever s ∈ S, V small suitable neighbourhood of s.

b) Let X be weakly normal. Z2 is a weakly normal complex space, g2 :
X → Z2 holomorphic, p2 : Z2 → S is a finite holomorphic mapping such that
f = p2 ◦ g2 and g−1

2 (V ) is connected whenever s ∈ Z2, V are as in a).
So #p−1

2 ({s}) is the number of connected components of f−1(V ) whenever
s ∈ S, V small suitable neighbourhood neighbourhood of s.

c) Let X be weakly normal. Z3 is a weakly normal, not necessarily Haus-
dorff complex space (i.e. a ringed space where in the definition of a complex
space we drop the assumption to be Hausdorff), g3 : X → Z3 is a holomorphic
mapping and p3 : Z3 → S a quasi-finite holomorphic mapping (i.e. with finite
fibres) such that f = p3 ◦ g3 and g−1

3 ({s}) is connected for all s ∈ Z3.
#p−1

3 ({s}) is the number of connected components of f−1({s}) whenever
s ∈ S.

Lemma 5.3. a) Z2 and Z3 do not contain isolated points as soon as f is
open (e.g. flat).

b) We have holomorphic mappings Z1 → Z2 ← Z3.

From Theorem 5.2a) and Theorem 4.1b) we obtain:
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Theorem 5.4. Under the hypothesis of Theorem 4.1b), p1 is an unramified
covering.

By Lemma 4.2:

Lemma 5.5. a) If X is locally irreducible then we have that Z1 → Z2 is
injective.

b) If X is locally irreducible and f is open then we have Z1 � Z2, so there
is a holomorphic mapping g1 : X → Z1: f = p1 ◦ g1.

Remark: If f is proper we have Z2 = Z3, so we are not obliged to permit
non-Hausdorff spaces. Furthermore, by the proof of the Stein factorization
theorem, f∗OX = OZ2 .

If moreover Z1 � Z2 we get that f∗OX is locally free.

Now we pass to geometric notions:

Since we are mainly interested in the local case assume that S = C or
that S is an open disc around 0 in C, let S∗ := S \ {0}, X∗ := f−1(S∗).
Assume that f defines a topological fibre bundle over S∗.

Definition: Let (tn)(n=1,...) be a sequence in S∗, t := t1, tn → 0. Let Ctn be
a connected component of Ftn , C0 a connected component of F0.

So Ctn , C0 represent elements of Z3.
Assume that Ctn → C0: then there is an N such that the image of Ctn in

π0(X∗) does not depend on n if n > N .
So we may assume that the image of Ctn in π0(X∗) does not depend on

n at all.
Note that the question whether Ctn → C0 then depends only on this

image, hence on Ct1 .

a) We say that Ctn tends to infinity if there is no such C0. This means
that the image of Ct in π0(X) does not belong to the image of π0(F0).
See also [6, Def. 2.1].

b) We say that Ctn splits if there are at least two such C0, i.e. that the
image of Ctn in π0(X) is the image of several (i.e. at least two) elements
of π0(F0).

c) We say that C0 is not a limit (or: isolated) if there is no such (Ctn), i.e.
the image of C0 in π0(X) does not belong to the image of π0(X∗).

d) We say that C0 is a multiple limit if there are (Ctn) which corresponds
to different components of X∗, i.e. there are several elements of π0(X∗)
which have the same image in π0(X) as C0.
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Examples:

a) f : C2 → C : f(z) := z1(z1z2 − 1) (Broughton). Then Z1 = Z2 = C,
Z3 = two copies of C, glued together along C

∗.
F1 is connected and splits into the two components z1 = 0 resp. z1z2 =1.

b) f : {z ∈ C
2 | z1z2 = 0, z �= 0} → C : z �→ z1: Z1 = C, Z2 = C

·
∪ {pt},

Z3 = C
∗ ·
∪ {pt}.

F1 is connected and tends to ∞; F0 is connected and isolated.
c) f : C2 \ {0} → C : z �→ z1z2: Z1 = Z2 = C, Z3 = two copies of C, glued

together along C
∗.

F1 is connected and splits into C
∗ × {0} and {0} × C

∗.
d) f : {z ∈ C

3 \ ({0} × C) | z1z2 = 0} → C : z �→ z3: Z1 = Z2 = Z3 =
C

·
∪ C.

Here we have a continuous behaviour.
e) f : (C2 × {(0, 0)}) ∪ ({(0, 0)} × C

2 → C : z �→ z1 − z3: Z1 = C
·
∪ C,

Z2 = Z3 = C× {0} ∪ {0} × C.
F0 = {0} × C× {(0, 0)} ∪ {(0, 0, 0)} × C is a multiple limit:
of {t} × C× {(0, 0)} ⊂ Ft as well as of {(0, 0)} × {−t} × C ⊂ Ft.

f) f : C2 → C : z �→ z2
1 : Z1 = Z2 = Z3 = C, p1(t) = t2.

g) f : C∗ → C inclusion: Z1 = Z2 = C, Z3 = C∗.
F1 is connected and tends to ∞.

h) f : {z ∈ C
3 \ {0} | z1z2 = z2

3} → C: z �→ z2
3 .

Z1 = Z2 = C, Z3 arises from two copies of C which are glued along C
∗,

pi(z) = z2.
The connected components of F1 split, each connected component of
F0 is a double limit.

Note that in the cases b) and h) the Euler characteristic of the fibres is
constant but this does not mean that the connected components of the fibres
behave continuously!

Instead of a compactifiable mapping f we may also treat the local case:
Let f : X \ Y → C be as in section 1–3, S = Dρ. Then the results of this
section still hold.
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