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Abstract: In the framework of constructing mirror symmetric
pairs of Calabi–Yau manifolds, P.Berglund, T. Hübsch and M. Hen-
ningson considered a pair (f,G) consisting of an invertible poly-
nomial f and a finite abelian group G of its diagonal symmetries
and associated to this pair a dual pair (f̃ , G̃). A. Takahashi sug-
gested a generalization of this construction to pairs (f,G) where
G is a non-abelian group generated by some diagonal symmetries
and some permutations of variables. In a previous paper, the au-
thors showed that some mirror symmetry phenomena appear only
under a special condition on the action of the group G: a parity
condition. Here we consider the orbifold Euler characteristic of the
Milnor fibre of a pair (f,G). We show that, for an abelian group G,
the mirror symmetry of the orbifold Euler characteristics can be
derived from the corresponding result about the equivariant Eu-
ler characteristics. For non-abelian symmetry groups we show that
the orbifold Euler characteristics of certain extremal orbit spaces
of the group G and the dual group G̃ coincide. From this we derive
that the orbifold Euler characteristics of the Milnor fibres of dual
periodic loop polynomials coincide up to sign.
Keywords: group action, invertible polynomial, mirror symme-
try, Berglund–Hübsch–Henningson duality, equivariant Euler char-
acteristic, Saito duality.

1. Introduction

The famous method of P. Berglund and T. Hübsch [3] associates to a so-
called invertible polynomial a dual polynomial: its transposed polynomial
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(see Section 2 for details). More generally, Berglund and M. Henningson [2]
considered a pair (f,G) consisting of an invertible polynomial f and a finite
abelian group G of diagonal symmetries of f . They associate to this pair a
dual pair (f̃ , G̃) which we call the Berglund–Hübsch–Henningson (BHH) dual
pair. The purpose of their construction was to obtain mirror symmetric pairs
of Calabi–Yau manifolds. There were discovered mirror symmetry phenomena
concerning the elliptic genera of BHH dual pairs [2, 11]. In a series of papers
[5, 4, 6] and partly in joint work with A. Takahashi [8], we started to look
at these pairs from a singularity theory point of view. In [5], we studied the
equivariant Euler characteristic of the Milnor fibre of f with the action of
G defined as an element of the Burnside ring of the group. We constructed
a duality between the Burnside rings of a finite abelian group and of its
group of characters which generalizes the Saito duality and we showed that
this duality is related to the BHH duality. Namely, it was shown that the
reduced equivariant Euler characteristics of the Milnor fibres of dual pairs
are dual to each other up to sign. In [4], we studied the reduced orbifold
Euler characteristic of the Milnor fibre of such a pair and we showed that for
dual pairs these invariants coincide up to sign. (In some papers, symmetry
properties of BHH-dual pairs were considered under the condition that the
symmetry group G is a so-called admissible group. In [5, 4, 6, 8], no conditions
on G are imposed.)

Recently, there has been some interest in generalizing the construction to
non-abelian groups of symmetries (cf. [9]). Following an idea of Takahashi, we
considered a semi-direct product G � S where G is a subgroup of the group
Gf of all diagonal symmetries of f and S is a subgroup of the group Sn of
permutations of the variables preserving f and respecting G. Takahashi pro-
posed a natural candidate for the group dual to G�S. With this construction,
we generalized the Saito duality between Burnside rings to this case of non-
abelian groups and proved a “non-abelian” generalization of the statement
about equivariant Euler characteristics [7]. It turned out that the statement
only holds under a special condition on the action of the subgroup S of the
permutation group called PC (“parity condition”). Moreover, it turned out
that the pairs from a collection given in [14] dual in the sense of Takahashi
but not satisfying the PC condition are not mirror symmetric.

Here we consider the orbifold Euler characteristic of the Milnor fibre of a
pair (f,G). We show that, for an abelian group G, the result of [4] about the
orbifold Euler characteristics can be derived from the corresponding result
about the equivariant Euler characteristics. Then we consider a non-abelian
group of the above form. Let S be a subgroup of Sn satisfying PC and let
T ⊂ S be a subgroup of S. As the main result of this paper, we derive that
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the orbifold Euler characteristics of certain extremal orbit spaces of the group
G�S and the dual group G̃� S coincide (see Theorem 5.1). We derive from
this that the orbifold Euler characteristics of the Milnor fibres of dual periodic
loop polynomials coincide up to sign.

2. Invertible polynomials and their symmetry groups

An invertible polynomial in n variables is a quasihomogeneous polynomial f
with the number of monomials equal to the number n of variables (that is

f(x1, . . . , xn) =
n∑

i=1
ai

n∏
j=1

x
Eij

j ,

where ai are non-zero complex numbers and Eij are non-negative integers)
such that the matrix E = (Eij) is non-degenerate and f has an isolated
critical point at the origin.

Remark 2.1. The condition detE �= 0 is equivalent to the condition that
the weights q1, . . . , qn of the variables in the polynomial f are well defined (if
one assumes the quasidegree to be equal to 1). In fact they are defined by the
equation

E · (q1, . . . , qn)T = (1, . . . , 1)T .

Without loss of generality one may assume that all the coefficients ai are
equal to 1.

A classification of invertible polynomials is given in [13]. Each invertible
polynomial is the direct (“Sebastiani–Thom”) sum of atomic polynomials in
different sets of variables of the following types:

1) chains: xp1
1 x2 + xp2

2 x3 + . . . + x
pm−1
m−1 xm + xpmm , m ≥ 1;

2) loops: xp1
1 x2 + xp2

2 x3 + . . . + x
pm−1
m−1 xm + xpmm x1, m ≥ 2.

The group of the diagonal symmetries of f is

Gf = {λ = (λ1, . . . , λn) ∈ (C∗)n : f(λ1x1, . . . , λnxn) = f(x1, . . . , xn)} .

One can see that Gf is an abelian group of order | detE |. For an atomic
polynomial the group Gf is cyclic. The Milnor fibre Vf = {x ∈ Cn : f(x) = 1}
of the invertible polynomial f is a complex manifold of dimension n− 1 with
the natural action of the group Gf .
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The Berglund–Hübsch transpose (or dual) of f is

f̃(x1, . . . , xn) =
n∑

i=1

n∏
j=1

x
Eji

j .

The group G
f̃

of the diagonal symmetries of f̃ is in a canonical way isomorphic
to the group G∗

f = Hom(Gf ,C
∗) of characters of Gf (see, e.g., [5, Proposi-

tion 2]). For a subgroup G of Gf , the Berglund–Hübsch–Henningson (BHH)
dual to the pair (f,G) is the pair (f̃ , G̃), where G̃ ⊂ G

f̃
= G∗

f is the subgroup
of characters of Gf vanishing (i.e. being equal to 1) on the subgroup G.

Let the permutation group Sn act on the space Cn by permuting the
variables. If an invertible polynomial f is invariant with respect to a subgroup
S ⊂ Sn, then it is invariant with respect to the semidirect product Gf �

S (defined by the natural action of S on Gf ). The Milnor fibre Vf of the
polynomial f carries an action of the group Gf � S.

Let G be a subgroup of Gf invariant with respect to the group S. In this
case the semidirect product G� S is defined and the BHH dual subgroup G̃

is also invariant with respect to S. An idea to define a pair dual to (f,G�S)
was suggested by A. Takahashi.

Definition 2.1. The Berglund–Hübsch–Henningson–Takahashi (BHHT) dual
to the pair (f,G� S) is the pair (f̃ , G̃� S).

The Burnside ring A(H) of a finite group H is the Grothendieck ring of
finite H-sets: see, e.g., [12]. As an abelian group, A(H) is freely generated
by the classes [H/K] of the quotient sets H/K for representatives K of the
conjugacy classes of subgroups of H. For an H-space X and for a point x ∈ X

the isotropy subgroup of x is Hx := {g ∈ H : gx = x}. For a subgroup K ⊂ H

the set of fixed points of K (that is points x with Hx ⊂ K) is denoted by
XK ; the set of points x ∈ X with the isotropy subgroup K is denoted by
X(K), the set of points x ∈ X with the isotropy subgroup conjugate to K

is denoted by X([K]). For a “sufficiently nice” topological space Z, denote
by χ(Z) its (additive) Euler characteristic, i.e. the alternating sum of the
ranks of the cohomology groups with compact support. The equivariant Euler
characteristic of a topological H-space X is the element of the Burnside ring
A(H) defined by

(1) χH(X) :=
∑

[K]∈ConjsubH

χ(X([K])/H)[H/K] ,
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where ConjsubH is the set of the conjugacy classes of subgroups of H.
The reduced equivariant Euler characteristic χH(X) is χH(X) − χH(pt) =
χH(X) − [H/H].

The orbifold Euler characteristic of the pair (X,H) is defined by

(2) χorb(X,H) = 1
|H|

∑
(g,h)∈H2:gh=hg

χ(X〈g,h〉) ,

where 〈g, h〉 is the subgroup of H generated by g and h (see [1, 10] and
references therein). The reduced orbifold Euler characteristic of an H-set X
is defined as χ orb(X,H) = χorb(X,H) − χorb(pt,H), where χorb(pt,H) =
|ConjH| is the orbifold Euler characteristic of a one-point set with the only
H-action. For an abelian group H one has χorb(pt,H) = |H|.

Since each element of the Burnside ring A(H) is represented by a zero-
dimensional space with an H-action, its orbifold Euler characteristic is de-
fined. This defines a group (not a ring!) homomorphism χorb : A(H) → Z.
Moreover, for an H-space X one has χorb(X,H) = χorb(χH(X)).

If H is a subgroup of a finite group G, one has the reduction and the induc-
tion operations RedG

H and IndG
H which convert G-spaces to H-spaces and H-

spaces to G-spaces respectively. The reduction RedG
HX of a G-space X is the

same space considered with the action of the smaller subgroup. (One can say
that RedG

HX converts a pair (X,G) to the pair (X,H).) The induction IndG
HX

of an H-space X is the quotient space (G×X)/ ∼, where the equivalence rela-
tion ∼ is defined by: (g1, x1) ∼ (g2, x2) if (and only if) there exists h ∈ H such
that g2 = g1h, x2 = h−1x1; the G-action on it is defined in the natural way.
Applying the reduction and the induction operations to finite G- and H-sets
respectively, one gets the reduction homomorphism RedG

H : A(G) → A(H)
and the induction homomorphism IndG

H : A(H) → A(G). For a subgroup K
of H, one has IndG

H [H/K] = [G/K]. The reduction homomorphism is a ring
homomorphism, whereas the induction one is a homomorphism of abelian
groups.

For a finite abelian group H, let H∗ = Hom(H,C∗) be its group of char-
acters. Just as for a subgroup of Gf above, for a subgroup K ⊂ H, the (BHH)
dual subgroup of H∗ is

K̃ := {α ∈ H∗ : α(g) = 1 for all g ∈ K} .

The equivariant Saito duality (see [5]) is the group homomorphism DH :
A(H) → A(H∗) defined by DH([H/K]) := [H∗/K̃]. In [5], it was shown that

(3) χGf (Vf ) = (−1)nDG
f̃
χ
G

f̃ (V
f̃
) ,
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i.e. the reduced equivariant Euler characteristics of the Milnor fibres of
Berglund–Hübsch dual invertible polynomials f and f̃ with the actions of
the groups Gf and G

f̃
respectively are Saito dual to each other up to the sign

(−1)n.

3. Non-abelian equivariant Saito duality

Let G be a finite abelian group and let S be a finite group with a homo-
morphism ϕ : S → AutG. These data determine the semi-direct product
Ĝ = G� S. Let A�(G� S) be the Grothendieck group of finite Ĝ-sets with
the isotropy subgroups of points conjugate to H � T ⊂ G� S, where H and
T are subgroups of G and of S respectively such that, for σ ∈ T , the auto-
morphism ϕ(σ) preserves H. (The semidirect product structure on H � T is
defined by the homomorphism ϕ|T : T → AutH.) The group A�(G � S) is
a subgroup of the Burnside ring A(Ĝ) of the group Ĝ. It is the free abelian
group generated by the conjugacy classes of the subgroups of the form H�T .
An element of A�(G� S) can be written in a unique way as

∑
[H�T ]∈Conjsub Ĝ

aH�T [G� S/H � T ]

with integers aH�T .
Let G∗ = Hom (G,C∗) be the group of characters on G. One has G∗∗ ∼= G

(canonically). The homomorphism ϕ : S → AutG induces a natural homo-
morphism ϕ∗ : S → AutG∗: 〈ϕ∗(σ)α, g〉 = 〈α, ϕ(σ−1)g〉, where 〈α, g〉 :=
α(g). Let Ĝ∗ := G∗ � S be the semidirect product defined by the homomor-
phism ϕ∗. One can see that, if ϕ(σ) preserves a subgroup H ⊂ G, then ϕ∗(σ)
preserves the subgroup H̃ ⊂ G∗. Thus for a semidirect product H�T ⊂ G�S
one has the semidirect product H̃ � T ⊂ G∗ � S.

One can show that subgroups H1�T1 and H2�T2 are conjugate in G�S
if and only if the subgroups H̃1 � T1 and H̃2 � T2 are conjugate in G∗ � S
(see [7, Proposition 2]). Therefore the following definition makes sense.

Definition 3.1. The (“non-abelian”) equivariant Saito duality corresponding
to the group Ĝ = G � S is the group homomorphism D�

Ĝ
: A�(G � S) →

A�(G∗ � S) defined (on the generators) by

D�

Ĝ
([G� S/H � T ]) = [G∗ � S/H̃ � T ] .

One can see that D�

Ĝ
is an isomorphism of the groups A�(G � S) and

A�(G∗ � S) and D�

Ĝ∗
D�

Ĝ
= id.
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For a subgroup S′ ⊂ S one has the natural homomorphism IndG�S
G�S′ :

A�(G�S′) → A�(G�S) sending the generator [G� S′/H � T ] to the gen-
erator [G� S/H � T ]. This homomorphism commutes with the Saito duality,
i.e. the diagram

A�(G� S′)
D�

G�S′−−−−→ A�(G∗ � S′)⏐⏐	IndG�S

G�S′

⏐⏐	IndG∗
�S

G∗�S′

A�(G� S)
D�

G�S−−−−→ A�(G∗ � S)

is commutative.
Let f be an invertible polynomial invariant with respect to a subgroup

S ⊂ Sn.

Definition 3.2. We say that a subgroup S ⊂ Sn satisfies the parity condition
(“PC” for short) if for each subgroup T ⊂ S one has

dim(Cn)T ≡ n mod 2 ,

where (Cn)T = {x ∈ Cn : σx = x for all σ ∈ T}.

Example 3.1. A subgroup S ⊂ Sn satisfying PC is contained in the alter-
nating group An ⊂ Sn. A cyclic subgroup of Sn satisfies PC if and only if it
is contained in An.

Example 3.2. For n ≥ 4, the subgroup An ⊂ Sn does not satisfy PC.

Example 3.3. The subgroup S = 〈(12)(34), (13)(24)〉 ⊂ A4 isomorphic to
Z2 × Z2 does not satisfy PC. The group 〈(12345), (12)(34)〉 ⊂ A5 coincides
with A5 and therefore does not satisfy PC. The group 〈(12345), (14)(23)〉 ⊂
A5 is isomorphic to the dihedral group D10 and satisfies PC.

Let Vf denote the Milnor fibre of f . From [7, Proposition 3] one can derive
that the equivariant Euler characteristic of the Milnor fibre Vf of a polynomial
f with the Gf �S-action belongs to the subgroup A�(Gf �S) ⊂ A(Gf �S).
Let Ĝf = Gf � S, Ĝ

f̃
= G

f̃
� S. It was proved in [7, Theorem 1] that, if the

subgroup S ⊂ Sn satisfies PC, then one has

(4) χGf�S(Vf ) = (−1)nD�

G
f̃
�Sχ

G
f̃
�S(V

f̃
) .
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4. Orbifold Euler characteristic: the abelian case

Let f be an invertible polynomial in n variables, G be a subgroup of Gf , and
(f̃ , G̃) the BHH-dual pair.

In [4] it was shown that the reduced orbifold Euler characteristics of the
Milnor fibres of (f,G) and (f̃ , G̃) (that is of the Milnor fibres of the polyno-
mials f and f̃ with the actions of the groups G and G̃ respectively) coincide
up to the sign (−1)n. At that moment we did not realize relations between
the equivariant Euler characteristic and the orbifold one. (Moreover, taking
into account the fact that the monodromy transformation of an invertible
polynomial is an element of the symmetry group Gf , we considered χG(Vf )
rather not as a generalization of the Euler characteristic, but as an equiv-
ariant version of the monodromy zeta function (and even did not denote it
by χG(Vf ), but by ζ

Gf

f ).) Therefore the proof of [4, Theorem 1] was inde-
pendent of the result of [5] (though the ideas elaborated in the proof of the
result of [5] were used in [4] as well). Later we understood that the result of
[4] follows directly from [5, Theorem 1] due to the following statement. Let
G be a finite abelian group with the group of characters G∗ = Hom(G,C∗),
let G be a subgroup of G and let G̃ be the BHH-dual subgroup of G∗ (i.e.
G̃ = {α ∈ G∗ : α(g) = 1 for all g ∈ G}).

Theorem 4.1. One has

(5) χorb ◦ RedG
G = χorb ◦ RedG∗

G̃
◦DG∗ .

(Both sides of (5) are group homomorphisms from the Burnside ring A(G)
to Z.)

Proof. It is sufficient to verify (5) on the generators [G/K] of A(G). One has

χorb ◦ RedG
G([G/K]) = χorb(G/K,G)

= |G|
|K + G| · χ

orb((K + G)/K,G)

= |G|
|K + G| · |K ∩G|;

χorb ◦ RedG∗

G̃
◦DG∗([G/K]) = χorb ◦ RedG∗

G̃
([G∗/K̃]) = |G∗|

|K̃ + G̃|
| · |K̃ ∩ G̃|

= |G∗|
|K̃ ∩G|

| · |K̃ + G| = |K ∩G| · |G|
|K + G| .



On the orbifold Euler characteristics 1107

Applied to (3), Theorem 4.1 with G = Gf , G∗ = G
f̃

implies the following
statement.

Theorem 4.2 ([4]).

(6) χ orb(Vf , G) = (−1)n χ orb(V
f̃
, G̃).

5. Orbifold Euler characteristic: the non-abelian case

Let S be a subgroup of Sn, let f be an invertible polynomial invariant with
respect to S, and let G be a subgroup of Gf preserved by S. We do not know
whether the natural analogue of Theorem 4.1 holds for the group G = Gf �S,
i.e., whether, for a subgroup T of S, one has

(7) χorb ◦ RedGf�S
G�T = χorb ◦ Red

G
f̃
�S

G̃�T
◦D�

G
f̃
�S .

(It seems that the condition PC is not important here.) Therefore, for a
subgroup S satisfying PC, we cannot deduce an analogue of Theorem 4.2
from Equation (4). Equation (7) holds if and only if

χorb(Gf � S/H � T,G� S) = χorb(G
f̃
� S/H̃ � T, G̃� S) .

We can only prove the following special case.

Theorem 5.1. Let f be an invertible polynomial invariant with respect to a
subgroup S of Sn, let G be a subgroup of Gf preserved by S, and let T be a
subgroup of S. Then one has

(8) χorb(Gf � S/{e}� T,G� S) = χorb(G
f̃
� S/G

f̃
� T, G̃� S).

Proof. Let us compute the left hand side of (8). We have

χorb(Gf � S/{e}� T,G� S)

= 1
|G� S|

∑
((g,σ),(g′,σ′))∈Ĝ2:

(g,σ)(g′,σ′)=(g′,σ′)(g,σ)

∣∣∣(Gf � S/{e}� T )〈(g,σ),(g′,σ′)〉
∣∣∣

= 1
|S|

∑
(σ,σ′)∈S2:
σσ′=σ′σ

1
|G|

∑
(g,g′)∈G2:

(g,σ)(g′,σ′)=(g′,σ′)(g,σ)

∣∣∣(Gf � S/{e}� T )〈(g,σ),(g′,σ′)〉
∣∣∣ .
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Let (κ, ρ) ∈ Gf � S be a representative of a point in Gf � S/{e} � T . An
element (g, σ) ∈ G� S acts on it by the formula

(g, σ)(κ, ρ) = (g · σ(κ), σρ).

Therefore this point is fixed by (g, σ) if and only if σρ = ρτ for some τ ∈ T
(i.e. ρ−1σρ ∈ T ) and g · σ(κ) = κ (i.e. g = κ(σ(κ))−1). For δ ∈ S, let
Aδ : Gf → Gf be the homomorphism defined by

Aδ(κ) = κ(δ(κ))−1 .

Therefore the point is fixed by (g, σ) if and only if ρ−1σρ ∈ T and g = Aσ(κ).
In the same way it is fixed by (g′, σ′) if and only if ρ−1σ′ρ ∈ T and g′ = Aσ′(κ).

The elements (g, σ) and (g′, σ′) commute if and only if σσ′ = σ′σ and
gσ(g′) = g′σ′(g). The latter condition can be rewritten in the form

(9) Aσ′(g) = Aσ(g′).

One can see that, for g = Aσ(κ) and g′ = Aσ′(κ), Equation (9) holds au-
tomatically. This follows from the fact that, for commuting σ and σ′, the
homomorphisms Aσ and Aσ′ also commute. Indeed

κ(σ(κ))−1
(
σ′

(
κ(σ(κ))−1

))−1
= κ(σ(κ))−1(σ′(κ))−1σ′σ(κ)(10)

= κ(σ′(κ))−1(σ(κ))−1σσ′(κ) = κ(σ′(κ))−1
(
σ
(
κ(σ′(κ))−1

))−1
.

The conditions on g and g′ do not include ρ. Therefore, for fixed σ and σ′,
∑

(g,g′)∈G2:
(g,σ)(g′,σ′)=(g′,σ′)(g,σ)

∣∣∣(Gf � S/{e}� T )〈(g,σ),(g′,σ′)〉
∣∣∣(11)

= |{ρ : ρ−1σρ ∈ T, ρ−1σ′ρ ∈ T}|
|T |

· |{κ ∈ Gf : Aσ(κ) ∈ G,Aσ′(κ) ∈ G}|.

The latter factor is equal to |A−1
σ (G) ∩ A−1

σ′ (G)|.
Now let us compute the right hand side of (8). For a homomorphism

A : Gf → Gf , let A∗ : G
f̃
→ G

f̃
be the dual homomorphism defined by

〈g, A∗α〉 = 〈Ag, α〉. One can see that the dual to the homomorphism Aδ is
the homomorphism A∗

δ which sends α ∈ G
f̃

to α(δ∗(α))−1. Indeed

〈g(δ(g))−1, α〉 = 〈g, α〉 · 〈δ(g)−1, α〉 = 〈g, α〉 · 〈δ(g), α〉−1
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= 〈g, α〉 · 〈g, δ∗(α)〉−1 = 〈g, α(δ∗(α))−1〉.

One has G
f̃
�S/G

f̃
�T = S/T . As above, two elements (α, σ) and (α′, σ′)

from G̃ � S have a fixed point in S/T represented by ρ ∈ S if and only if
ρ−1σρ ∈ T and ρ−1σ′ρ ∈ T . Two elements (α, σ) and (α′, σ′) commute if and
only if A∗

σ(α′) = A∗
σ′(α). Therefore

χorb
(
G

f̃
� S/G

f̃
� T, G̃� S

)
(12)

= 1
|G̃� S|

∑
((α,σ),(α′,σ′))∈̂̃G2

:
(α,σ)(α′,σ′)=(α′,σ′)(α,σ)

∣∣∣∣
(
G

f̃
� S/G

f̃
� T

)〈(α,σ),(α′,σ′)〉
∣∣∣∣

= 1
|S|

∑
(σ,σ′)∈S2:
σσ′=σ′σ

1
|G̃|

∑
(α,α′)∈G̃2:

(α,σ)(α′,σ′)=(α′,σ′)(α,σ)

∣∣∣∣
(
G

f̃
� S/G

f̃
� T

)〈(α,σ),(α′,σ′)〉
∣∣∣∣

= 1
|S|

∑
(σ,σ′)∈S2:
σσ′=σ′σ

1
|G̃|

∣∣{ρ : ρ−1σρ ∈ T, ρ−1σ′ρ ∈ T
}∣∣

|T |

·
∣∣∣{(α, α′) ∈ G̃2 : (α, σ)(α′, σ′) = (α′, σ′)(α, σ)}

∣∣∣ .
The latter factor can be computed in the following way. The element

β = A∗
σ(α′) = A∗

σ′(α) may be an arbitrary element of A∗
σ(G̃) ∩ A∗

σ′(G̃). For a
fixed β of this sort, the number of the elements α ∈ G̃ such that β = A∗

σ′(α)
is equal to |KerA∗

σ′ ∩ G̃|, the number of the elements α′ ∈ G̃ such that
β = A∗

σ(α′) is equal to |KerA∗
σ ∩ G̃|. Thus this factor is equal to

|A∗
σ(G̃) ∩ A∗

σ′(G̃)| · |KerA∗
σ′ ∩ G̃| · |KerA∗

σ ∩ G̃| .

Equations (11) and (12) imply that the orbifold Euler characteristics
χorb(Gf � S/{e} � T,G � S) and χorb

(
G

f̃
� S/G

f̃
� T, G̃� S

)
are linear

combinations respectively of the numbers

(13) |A−1
σ (G) ∩ A−1

σ′ (G)|
|G|

and

(14) |A∗
σ(G̃) ∩ A∗

σ′(G̃)| · |KerA∗
σ′ ∩ G̃| · |KerA∗

σ ∩ G̃|
|G̃|
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with the same coefficients. Therefore coincidence of these numbers implies
the statement.

In order to prove the coincidence of (13) and (14), we need the following
fact.

Lemma 5.1. Let A be an endomorphism of Gf and let A∗ be the correspond-
ing dual endomorphism of G

f̃
. Then the subgroup Ã−1(G) dual to A−1(G) is

A∗(G̃).

Proof. An element h ∈ Gf belongs to ˜A∗(G̃) if and only if for all γ ∈ G̃ one
has 〈A∗γ, h〉 = 1. This is equivalent to 〈γ,Ah〉 = 1 and thus Ah ∈ G.

Therefore, we have

|A−1
σ (G) ∩ A−1

σ′ (G)|
|G| = |Gf |

|G|
∣∣∣∣Ã−1

σ (G) + Ã−1
σ′ (G)

∣∣∣∣
= |Gf |

|G||A∗
σ(G̃) + A∗

σ′(G̃)|
= |Gf ||A∗

σ(G̃) ∩ A∗
σ′(G̃)|

|G||A∗
σ(G̃)||A∗

σ′(G̃)|

= |Gf ||A∗
σ(G̃) ∩ A∗

σ′(G̃)||KerA∗
σ ∩ G̃||KerA∗

σ′ ∩ G̃|
|G||G̃||G̃|

what coincides with (14). (We use the obvious relation |A∗
δ(G̃)| =

|G̃|
|KerA∗

δ
∩G̃|

.)

As an application of Theorem 5.1, we consider the following special case:
Let f be the periodic loop

(15) f(x1, . . . , xk�) = xp1
1 x2 + xp2

2 x3 + · · · + xp�k�x1,

where pi+� = pi. Let S be the subgroup of the group of permutations of k�
variables generated by the permutation which sends the variable xi to the
variable xi+� where the index i is considered modulo k�. This permutation
preserves f . One can see that the group S does not satisfy PC if and only if k
is even and � is odd. Let G be a subgroup of Gf invariant with respect to S.

Theorem 5.2. If S satisfies PC, then one has

χorb(Vf , G� S) = (−1)k�χorb(V
f̃
, G̃� S)
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Proof. In [7, Proof of Theorem 1], it was shown that, for a group S satisfying
PC, one has

χGf (Vf ) = (−1)n−1[Gf � S/{e} × S] +
∑
I

∑
T

aI,T [Gf � SI/GI
f � T ]

− [Gf � S/Gf � S]

where the summation is over representations I of the orbits of the S-action on
the set 2I0 of subsets of I0 = {1, . . . , n} such that I �= ∅, I �= I0, and f |(Cn)I is
an invertible polynomial (i.e. contains |I| monomials) and over representatives
T of the conjugacy classes of the isotropy subgroup SI of I ∈ 2I0 . In the case
under consideration (f is the loop (15)), for any proper non-empty subset
I ⊂ I0, f |(Cn)I consists of less than |I| monomials. Therefore

χGf (Vf ) = (−1)k�−1[Gf � S/{e} × S] − [Gf � S/Gf � S],

χ
G

f̃ (V
f̃
) = (−1)k�−1[G

f̃
� S/{e} × S] − [G

f̃
� S/G

f̃
� S].

Hence

χorb(Vf , G� S) = (−1)k�−1χorb(Gf � S/{e} × S,G� S)
− χorb(Gf � S/Gf � S,G� S),

χorb(V
f̃
, G̃� S) = (−1)k�−1χorb(G

f̃
� S/{e} × S, G̃� S)

− χorb(G
f̃
� S/G

f̃
� S, G̃� S).

Now the statement follows from Theorem 5.1.
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