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Critical points and mKdV hierarchy of type C(1)
n
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∗

and Tyler Woodruff

Abstract: We consider the population of critical points, gener-
ated from the critical point of the master function with no vari-
ables, which is associated with the trivial representation of the
twisted affine Lie algebra C

(1)
n . The population is naturally parti-

tioned into an infinite collection of complex cells Cm, where m are
positive integers. For each cell we define an injective rational map
C

m → M(C(1)
n ) of the cell to the space M(C(1)

n ) of Miura opers of
type C

(1)
n . We show that the image of the map is invariant with

respect to all mKdV flows on M(C(1)
n ) and the image is point-wise

fixed by all mKdV flows ∂
∂tr

with index r greater than 2m.
Keywords: Critical points, master functions, mKdV hierarchies,
Miura opers, affine Lie algebras.

1. Introduction

Let g be a Kac-Moody algebra with invariant scalar product ( , ), h ⊂ g Car-
tan subalgebra, α0, . . . , αn simple roots. Let Λ1, . . . ,ΛN be dominant integral
weights, k0, . . . , kn nonnegative integers, k = k0 + · · · + kn.

Consider CN with coordinates z = (z1, . . . , zN ). Consider Ck with coordi-
nates u collected into n+ 1 groups, the j-th group consisting of kj variables,

u = (u(0), . . . , u(n)), u(j) = (u(j)
1 , . . . , u

(j)
kj

).

The master function is the multivalued function on C
k × C

N defined by the
formula

Φ(u, z) =
∑
a<b

(Λa,Λb) ln(za − zb) −
∑
a,i,j

(αj ,Λa) ln(u(j)
i − za) +(1.1)
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+
∑
j<j′

∑
i,i′

(αj , αj′) ln(u(j)
i − u

(j′)
i′ ) +

∑
j

∑
i<i′

(αj , αj) ln(u(j)
i − u

(j)
i′ ),

with singularities at the places where the arguments of the logarithms are
equal to zero.

A point in C
k × C

N can be interpreted as a collection of particles in
C: za, u(j)

i . A particle za has weight Λa, a particle u
(j)
i has weight −αj . The

particles interact pairwise. The interaction of two particles is determined by
the scalar product of their weights. The master function is the “total energy”
of the collection of particles.

Notice that all scalar products are integers. So the master function is
the logarithm of a rational function. From a “physical” point of view, all
interactions are integer multiples of a certain unit of measurement. This is
important for what will follow.

The variables u are the true variables, variables z are parameters. We may
think that the positions of z-particles are fixed and the u-particles can move.

There are “global” characteristics of this situation,

I(z, κ) =
∫

eΦ(u,z)/κA(u, z)du,

where A(u, z) is a suitable density function, κ a parameter, and there are
“local” characteristics – critical points of the master function with respect to
the u-variables,

duΦ(u, z) = 0.

A critical point is an equilibrium position of the u-particles for fixed positions
of the z-particles. In this paper we are interested in the equilibrium positions
of the u-particles.

Examples of master functions associated with g = sl2 were considered by
Stieltjes and Heine in 19th century, see for example [12]. The master functions
were introduced in [10] to construct integral representations for solutions of
the KZ equations, see also [13, 14].

The critical points of master functions with respect to the u-variables
were used to find eigenvectors in the associated Gaudin models by the Bethe
ansatz method, see [2, 9, 15]. In important cases the algebra of functions on
the critical set of a master function is closely related to Schubert calculus,
see [5].

In [11, 6] it was observed that the critical points of master functions with
respect to the u-variables can be deformed and form families. Having one
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critical point, one can construct a family of new critical points. The family is
called a population of critical points. A point of the population is a critical
point of the same master function or of another master function associated
with the same g,Λ1, . . . ,ΛN but with different integer parameters k0, . . . , kn.
The population is a variety isomorphic to the flag variety of the Kac-Moody
algebra gt Langlands dual to g, see [6, 7, 4].

In [17], it was discovered that the population, originated from the critical
point of the master function associated with the affine Lie algebra ŝln+1 and
the parameters N = 0, k0 = · · · = kn = 0, is connected with the mKdV
integrable hierarchy associated with ŝln+1. Namely, that population can be
naturally embedded into the space of ŝln+1 Miura opers so that the image
of the embedding is invariant with respect to all mKdV flows on the space
of Miura opers. For n = 1, that result follows from the classical paper by
M. Adler and J. Moser [1], which served as a motivation for [17].

The case of the twisted affine Lie algebra A
(2)
2n was considered in [16,

18]. In this paper we prove analogous statements for the twisted affine Lie
algebra C

(1)
n .

In Sections 2–4 we follow the paper [3] by V. Drinfled and V. Sokolov. We
review the affine Lie algebras A(1)

2n−1 and C
(1)
n , the associated mKdV and KdV

hierarchies, Miura maps. In particular, we describe the C
(1)
n mKdV hierarchy

as a sequence of commuting flows on the infinite-dimensional space M(C(1)
n )

of the C
(1)
n Miura opers.

In Section 5 we study the tangent maps to Miura maps. In Section 6, we
introduce our master functions,

Φ(u, k) = 2
∑
i<i′

ln(u(0)
i − u

(0)
i′ ) + 4

n−1∑
j=1

∑
i<i′

ln(u(j)
i − u

(j)
i′ )(1.2)

+ 2
∑
i<i′

ln(u(n)
i − u

(n)
i′ ) − 2

n−1∑
j=0

∑
i,i′

ln(u(j)
i − u

(j+1)
i′ ).

This master function is the special case of the master function in (1.1). The
master function in (1.2) is defined by formula (1.1) for g being the Langlands
dual to C

(1)
n and N = 0, see a remark in Section 6.1.

Following [6, 7, 17], we describe the generation procedure of new critical
points starting from a given critical point of Φ(u, k). We define the population
of critical points generated from the critical point of the function with no
variables, namely, the function corresponding to the parameters k0 = · · · =
kn = 0. That population is partitioned into complex cells C

m labeled by
degree increasing sequences J = (j1, . . . , jm), see the definition in Section 6.5.
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In Theorem 6.4 we deduce from [8] that every critical point of the master
function in (1.2) with arbitrary parameters k0, . . . , kn belongs a cell of our
population. Moreover, a function in (1.2) with some parameters k0, . . . , kn
either does not have critical points at all or its critical points form a cell Cm

corresponding to a degree increasing sequence.
In Section 7, to every degree increasing sequence J we assign a rational

injective map μJ : Cm → M(C(1)
n ) of the cell corresponding to J to the space

M(C(1)
n ) of Miura opers of type C

(1)
n . We describe properties of that map.

In Section 8, we formulate and prove our main result. Theorem 8.1 says
that for any degree increasing sequence, the variety μJ(Cm) is invariant with
respect to all mKdV flows on M(C(1)

n ) and that variety is point-wise fixed by
all flows ∂

∂tr
with index r greater than 2m, see Theorem 8.1.

This theorem shows that there is a deep interrelation between the critical
set of the master functions of the form (1.2) and rational finite-dimensional
submanifolds of the space M(C(1)

n ), invariant with respect to all flows of the
C

(1)
n mKdV hierarchy.

Initially the critical points of the master functions were related to quan-
tum integrable systems of the Gaudin type through the Bethe ansatz, [10, 2,
9, 15]. Our result shows that the critical points are also related to the classical
integrable systems, namely, the mKdV hierarchies.

In the next papers we plan to extend this result to other affine Lie alge-
bras.

2. Kac-Moody algebra of type A
(1)
2n−1

In this section we follow [3, Section 5].

2.1. Definition

For n � 2, consider the 2n× 2n Cartan matrix of type A
(1)
2n−1,

A
(1)
2n−1 =

⎛⎜⎜⎜⎝
a0,0 a0,1 . . . a0,2n−1
. . . . . . . . . . . .
. . . . . . . . . . . .

a2n−1,0 a2n−1,1 . . . a2n−1,2n−1

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 . . . 0 −1
−1 2 −1 . . . 0 0
0 −1 2 . . . . . . . . .

. . . . . . . . . . . . . . . . . .
0 0 0 . . . 2 −1

−1 0 0 . . . −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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For example, for n = 2, we have

A
(1)
3 =

⎛⎜⎜⎜⎝
2 −1 0 −1

−1 2 −1 0
0 −1 2 −1

−1 0 −1 2

⎞⎟⎟⎟⎠ .

The Kac-Moody algebra g(A(1)
2n−1) of type A(1)

2n−1 is the Lie algebra with canon-
ical generators Ei, Hi, Fi ∈ g(A(1)

2n−1), i = 0, . . . , 2n − 1, subject to the rela-
tions:

[Ei, Fj ] = δi,jHi,

[Hi, Ej ] = ai,jEj , [Hi, Fj ] = −ai,jFj , (adEi)1−ai,jEj = 0,

(adFi)1−ai,jFj = 0, [Hi, Hj ] = 0,
2n−1∑
i=0

Hi = 0,

see [3, Section 5]. The Lie algebra g(A(1)
2n−1) is graded with respect to the

standard grading, degEi = 1, degFi = −1, i = 0, . . . , 2n−1. Let g(A(1)
2n−1)

j
=

{x ∈ g(A(1)
2n−1) | deg x = j}, then g(A(1)

2n−1) = ⊕j∈Z g(A(1)
2n−1)

j
.

Notice that g(A(1)
2n−1)0 is the 2n−1-dimensional space generated by the Hi.

Denote h = g(A(1)
2n−1)0. Introduce elements αj of the dual space h∗ by the

conditions 〈αj , Hi〉 = ai,j for i, j = 0, . . . , 2n − 1. For j = 0, 1, . . . , 2n −
1, we denote by n

−
j ⊂ g(A(1)

2n−1) the Lie subalgebra generated by Fi, i ∈
{0, 1, . . . , 2n− 1}, i �= j. For example, n−0 is generated by F1, F2, . . . , F2n−1.

2.2. Realizations of g(A(1)
2n−1)

Consider the complex Lie algebra sl2n with standard basis ei,j , i, j = 1,. . . ,
2n. Let w = e2πi/2n. Define the Coxeter automorphism C : sl2n → sl2n of
order 2n by the formula

C(X) = SXS−1, S = diag(1, w, . . . , w2n−1).

Denote (sl2n)j = {x ∈ sl2n | Cx = wjx}. The twisted Lie subalgebra
L(sl2n, C) ⊂ sl2n[ξ, ξ−1] is the subalgebra

L(sl2n, C) = ⊕j∈Z ξ
j ⊗ (sl2n)j mod 2n.
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The isomorphism τC : g(A(1)
2n−1) → L(sl2n, C) is defined by the formula,

E0 
→ ξ ⊗ e1,2n, Ei 
→ ξ ⊗ ei+1,i,

F0 
→ ξ−1 ⊗ e2n,1, Fi 
→ ξ−1 ⊗ ei,i+1,

H0 
→ 1 ⊗ (e1,1 − e2n,2n), Hi 
→ 1 ⊗ (−ei,i + ei+1,i+1),

for i = 1, . . . , 2n−1. Under this isomorphism we have g(A(1)
2n−1)

j
= ξj⊗(sl2n)j .

The standard isomorphism τ0 : g(A(1)
2n−1) → sl2n[λ, λ−1] is defined by the

formula,

E0 
→ λ⊗ e1,2n, Ei 
→ 1 ⊗ ei+1,i,

F0 
→ λ−1 ⊗ e2n,1, Fi 
→ 1 ⊗ ei,i+1,

H0 
→ 1 ⊗ (e1,1 − e2n,2n), Hi 
→ 1 ⊗ (−ei,i + ei+1,i+1),

for i = 1, . . . , 2n− 1.

2.3. Element Λ(1)

Denote by Λ(1) the element
∑2n−1

j=0 Ej ∈ g(A(1)
2n−1). Then z(A(1)

2n−1) = {x ∈
g(A(1)

2n−1) | [Λ(1), x] = 0} is an abelian Lie subalgebra of g(A(1)
2n−1). Denote

z(A(1)
2n−1)j = z(A(1)

2n−1)∩ g(A(1)
2n−1)

j
, then z(A(1)

2n−1) = ⊕j∈Z z(A(1)
2n−1)j . We have

dim z(A(1)
2n−1)j = 1 if j �= 0 mod 2n and dim z(A(1)

2n−1)j = 0 otherwise.
Let g(A(1)

2n−1) be realized as L(sl2n, C) and written out as 2n×2n-matrices.
For m ∈ Z and 1 � j < 2n, we introduce the element

A(2n)m+j = ξ(2n)m+j ⊗
(

0 Ij
I2n−j 0

)
∈ L(sl2n, C),

where Ij is the j × j identity matrix. We have A(2n)m+j = (A1)(2n)m+j .
If g(A(1)

2n−1) is realized as L(sl2n, σ0), we introduce the element

B(2n)m+j =
(

0 λm+1 ⊗ Ij
λm ⊗ I2n−j 0

)
∈ L(sl2n, σ0).

We have B(2n)m+j = (B1)(2n)m+j .

Lemma 2.1. For any m ∈ Z, 1 � j < 2n, the elements (τC)−1(A(2n)m+j),
(τ0)−1(B(2n)m+j) of z(A(1)

2n−1)(2n)m+j are equal.
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Denote by Λ(1)
(2n)m+j the elements (τC)−1(A(2n)m+j) and (τ0)−1(B(2n)m+j)

of g(A(1)
2n−1). Notice that Λ(1)

1 =
∑2n−1

i=0 Ei = Λ(1). For any m ∈ Z, 1 � j < 2n,
the element Λ(1)

(2n)m+j generates z(A(1)
2n−1)(2n)m+j .

Let T =
∑m

j=−∞ Tj be a formal series with Tj ∈ g(A(1)
2n−1)

j
. Denote T+ =∑m

j=0 Tj , T− =
∑

j<0 Tj . Let g(A(1)
2n−1) be realized as sl2n[λ, λ−1]. Consider

Λ(1) = B1 as a 2n× 2n matrix depending on the parameter λ. By [3, Lemma
3.4], we may represent T uniquely in the form T =

∑k
j=−∞ bj (Λ(1))j , bj ∈

Diag, where Diag ⊂ gl2n is the space of diagonal 2n × 2n matrices. Denote
(T )+Λ(1) =

∑k
j=0 bj (Λ(1))j , (T )−Λ(1) =

∑
j<0 bj (Λ(1))j .

Lemma 2.2. We have (T )+Λ(1) = T+, (T )−Λ(1) = T−, b0 = T 0.

Proof. The isomorphism ι : sl2n[λ, λ−1] → L(sl2n, C) is given by the formula
λm⊗ ek,l 
→ ξ(2n)m+k−l⊗ek,l. We have ι(b0) = ι(1⊗(b10e1,1 + · · ·+ b2n0 e2n,2n)) =
1⊗ (b10e1,1 + · · ·+ b2n0 e2n,2n) ∈ g(A(1)

2n−1)
0
, ι(b1Λ(1)) = ι((b11e1,1 + b21e2,2 + · · ·+

b2n1 e2n,2n)(e2,1 + · · · + e2n−1,2n−2 + e2n,2n−1 + λe1,2n)) = ι(b11λe1,2n + b21e2,1 +
· · · + b2n1 e2n,2n−1) = ξ ⊗ (b11e1,2n + b21e2,1 + · · · + b2n1 e2n,2n−1) ∈ g(A(1)

2n−1)
1
,

ι(b−1(Λ(1))−1) = ι((b1−1e1,1 + b2−1e2,2 + · · · + b2n−1e2n,2n)(e1,2 + · · · + e2n−1,2n +
λ−1e2n,1)) = ι(b1−1e1,2+· · ·+b2n−1

−1 e2n−1,2n+b2n−1λ
−1e2n,1) = ξ−1⊗b1−1e1,2+· · ·+

b2n−1
−1 e2n−1,2n+b2n−1e2n,1)∈ g(A(1)

2n−1)
−1

. Similarly one checks that ι(bj (Λ(1))j)∈
g(A(1)

2n−1)
j

for any j.

We have (Λ(1))−1 =
∑2n−1

i=1 ei,i+1 + λ−1e2n,1, and

E0 = Λ(1)e2n,2n, Ei = Λ(1)ei,i, F0 = e2n,2n(Λ(1))−1
, Fi = ei,i(Λ(1))−1

,

for i = 1, . . . , 2n− 1.

Lemma 2.3. Consider the elements F0, Fi + F2n−i for i = 1, . . . , n − 1 as
2n× 2n matrices. Let g ∈ C. Then

egF0 = 1 + g e2n,2n(Λ(1))−1,(2.1)
eg(Fi+F2n−i) = 1 + g (ei,i + e2n−i,2n−i)(Λ(1))−1,

egFn = 1 + g en,n(Λ(1))−1.

Lemma 2.4. We have

ei+1,i+1Λ(1) = Λ(1)ei,i, ei,i(Λ(1))−1 = (Λ(1))−1ei+1,i+1,(2.2)

for all i, where we set e2n+1,2n+1 = e1,1.
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3. Kac-Moody algebra of type C(1)
n

In this section we follow [3, Section 5].

3.1. Definition

For n � 2, consider the (n + 1) × (n + 1) Cartan matrix of type C
(1)
n ,

C(1)
n =

⎛⎜⎜⎜⎝
a0,0 a0,1 . . . a0,n
. . . . . . . . . . . .
. . . . . . . . . . . .
an,0 an,1 . . . an,n

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 . . . . . . . . . 0
−2 2 −1 0 . . . . . . . . .
0 −1 2 −1 . . . . . . . . .

. . . 0 −1 . . . . . . . . . . . .

. . . . . . . . . . . . 2 −1 0

. . . . . . . . . . . . −1 2 −2
0 . . . . . . . . . 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

For example, for n = 2, we have

C(1)
n =

⎛⎜⎝ 2 −1 0
−2 2 −2
0 −1 2

⎞⎟⎠ .

The Kac-Moody algebra g(C(1)
n ) of type C(1)

n is the Lie algebra with canon-
ical generators ei, hi, fi ∈ g(C(1)

n ), i = 0, . . . , n, subject to the relations

[ei, fj ] = δi,jhi, [hi, ej ] = ai,jej , [hi, fj ] = −ai,jfj ,

(ad ei)1−ai,jej = 0, (ad fi)1−ai,jfj = 0, [hi, hj ] = 0,
h0 + · · · + hn = 0,

see [3, Section 5].
The Lie algebra g(C(1)

n ) is graded with respect to the standard grading,
deg ei = 1, deg fi = −1, i = 0, . . . , n. Let g(C(1)

n )
j

= {x ∈ g(C(1)
n ) | deg x =

j}, then g(C(1)
n ) = ⊕j∈Z g(C(1)

n )
j
.

Notice that g(C(1)
n )

0
is the n-dimensional space generated by the hi. De-

note h = g(C(1)
n )

0
. Introduce elements αj of the dual space h∗ by the condi-

tions 〈αj , hi〉 = ai,j for i, j = 0, . . . , n.
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3.2. Realizations of g(C(1)
n )

Recall the twisted Lie subalgebra L(sl2n, C). We have an embedding τ̃C :
g(C(1)

n ) ↪→ L(sl2n, C) defined by the formula

e0 
→ ξ ⊗ e1,2n, en 
→ ξ ⊗ en+1,n

f0 
→ ξ−1 ⊗ e2n,1, fn 
→ ξ−1 ⊗ en,n+1

ei 
→ ξ ⊗ (ei+1,i + e2n+1−i,2n−i), fi 
→ ξ−1 ⊗ (ei,i+1 + e2n−i,2n+1−i),
h0 
→ 1 ⊗ (e1,1 − e2n,2n), hn 
→ 1 ⊗ (−en,n + en+1,n+1),
hi 
→ 1 ⊗ (−ei,i + ei+1,i+1 − e2n−i,2n−i + e2n+1−i,2n+1−i),

for i = 1, . . . , n− 1. Under this embedding we have g(C(1)
n )

j
⊂ ξj ⊗ (sl2n)j .

We also have the standard embedding τ̃0 : g(C(1)
n ) ↪→ sl2n[λ, λ−1] defined

by the formula

e0 
→ λ⊗ e1,2n, ei 
→ 1 ⊗ (ei+1,i + e2n+1−i,2n−i),
f0 
→ λ−1 ⊗ e2n,1, fi 
→ 1 ⊗ (ei,i+1 + e2n−i,2n+1−i),
en 
→ 1 ⊗ en+1,n, fn 
→ 1 ⊗ en,n+1,

h0 
→ 1 ⊗ (e1,1 − e2n,2n), hn 
→ 1 ⊗ (−en,n + en+1,n+1),
hi 
→ 1 ⊗ (−ei,i + ei+1,i+1 − e2n−i,2n−i + e2n+1−i,2n+1−i),

for i = 1, . . . , n− 1.

3.3. Element Λ(2)

Denote by Λ(2) the element
∑n

i=0 ei ∈ g(C(1)
n ). Then z(C(1)

n ) = {x ∈ g(C(1)
n ) |

[Λ(2), x] = 0} is an abelian Lie subalgebra of g(C(1)
n ). Denote zj(C(1)

n ) =
z(C(1)

n ) ∩ g(C(1)
n )

j
, then z(C(1)

n ) = ⊕j∈Z z(C(1)
n )j . We have dim z(C(1)

n )j = 0 if
j is even, and dim z(C(1)

n )j = 1 otherwise.
If g(C(1)

n ) is realized as a subalgebra of L(sl2n, C) and written out as
2n× 2n matrices, then for odd j, 1 � j < 2n, we introduce the element

A(2n)m+j = ξ(2n)m+j ⊗
(

0 Ij
I2n−j 0

)
,

where Ij is the j × j identity matrix. We have A(2n)m+j = (A1)(2n)m+j .
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If g(C(1)
n ) is realized as a subalgebra of sl2n[λ, λ−1] and written out as

2n× 2n matrices, then for odd j, 1 � j < 2n, we introduce the element

B(2n)m+j =
(

0 λm+1 ⊗ Ij
λm ⊗ I2n−j 0

)
.

We have B(2n)m+j = (B1)(2n)m+j .

Lemma 3.1. For any m ∈ Z, odd j, 1 � j < 2n, the elements

(τ̃C)−1(A(2n)m+j), (τ̃0)−1(B(2n)m+j),

of z(C(1)
n )(2n)m+j are equal.

Denote the elements (τ̃C)−1(A(2n)m+j) of g(C(1)
n ) by Λ(2)

(2n)m+j . Notice that
Λ(2)

1 =
∑n

i=0 ei = Λ(2). We set Λ(2)
j = 0 if j is even. The element Λ(2)

(2n)m+j

generates z(C(1)
n )(2n)m+j .

3.4. Lie algebra g(C(1)
n ) as a subalgebra of g(A(1)

2n−1)

The map ρ : g(C(1)
n ) → g(A(1)

2n−1),

e0 
→ E0, ei 
→ Ei + E2n−i, en 
→ En,

f0 
→ F0, fi 
→ Fi + F2n−i, fn 
→ Fn,

h0 
→ H0, hi 
→ Hi + H2n−i, hn 
→ Hn,

where i = 1, . . . , n − 1, realizes the Lie algebra g(C(1)
n ) as a subalgebra of

g(A(1)
2n−1). This embedding preserves the standard grading and ρ(Λ(2)) = Λ(1).

We have ρ(z(C(1)
n )j) ⊂ z(A(1)

2n−1)j .

4. mKdV equations

In this section we follow [3].

4.1. The mKdV equations of type A
(1)
2n−1

Denote by B the space of complex-valued functions of one variable x. Given
a finite dimensional vector space W , denote by B(W ) the space of W -valued
functions of x. Denote by ∂ the differential operator d

dx .
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Consider the Lie algebra g̃(A(1)
2n−1) of the formal differential operators

of the form c∂ +
∑k

i=−∞ pi, c ∈ C, pi ∈ B(g(A(1)
2n−1)

i
). Let U =

∑
i<0 Ui,

Ui ∈ B(g(A(1)
2n−1)

i
). If L ∈ g̃(A(1)

2n−1), define

eadU (L) = L + [U,L] + 1
2! [U, [U,L]] + . . . .

The operator eadU (L) belongs to g̃(A(1)
2n−1). The map eadU is an automorphism

of the Lie algebra g̃(A(1)
2n−1). The automorphisms of this type form a group.

If elements of g(A(1)
2n−1) are realized as matrices depending on a parameter as

in Section 2.2, then eadU (L) = eULe−U .
A Miura oper of type A

(1)
2n−1 is a differential operator of the form

L = ∂ + Λ(1) + V,(4.1)

where Λ(1) =
∑2n−1

i=0 Ei ∈ g(A(1)
2n−1) and V ∈ B(g(A(1)

2n−1)
0
). Any Miura oper

of type A
(1)
2n−1 is an element of g̃(A(1)

2n−1). Denote by M(A(1)
2n−1) the space of

all Miura opers of type A
(1)
2n−1.

Proposition 4.1 ([3, Proposition 6.2]). For any Miura oper L of type A
(1)
2n−1

there exists an element U =
∑

i<0 Ui, Ui ∈ B(g(A(1)
2n−1)

i
), such that the oper-

ator L0 = eadU (L) has the form

L0 = ∂ + Λ(1) + H,

where H =
∑

j<0 Hj , Hj ∈ B(z(A(1)
2n−1)j). If U, Ũ are two such elements, then

eadUe−adŨ = eadT , where T =
∑

j<0 Tj, Tj ∈ z(A(1)
2n−1)j.

Let L, U be as in Proposition 4.1. Let r �= 0 mod 2n. The element
φ(Λ(1)

r ) = e−adU (Λ(1)
r ) does not depend on the choice of U in Proposition 4.1.

The element φ(Λ(1)
r ) is of the form

∑k
i=−∞ φ(Λ(1)

r )i, φ(Λ(1)
r )i ∈

B(g(A(1)
2n−1)

i
). We set φ(Λ(1)

r )+ =
∑k

i=0 φ(Λ(1)
r )i, φ(Λ(1)

r )− =
∑

i<0 φ(Λ(1)
r )i.

Let r ∈ Z>0 and r �= 0 mod 2n. The differential equation

∂L

∂tr
= [φ(Λ(1)

r )+,L](4.2)

is called the r-th mKdV equation of type A
(1)
2n−1.
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Equation (4.2) defines vector fields ∂
∂tr

on the space M(A(1)
2n−1) of Miura

opers of type A
(1)
2n−1. For all r, s, the vector fields ∂

∂tr
, ∂

∂ts
commute, see [3,

Section 6].

Lemma 4.2 ([3]). We have

∂L

∂tr
= − d

dx
φ(Λ(1)

r )0.(4.3)

4.2. mKdV equations of type C(1)
n

A Miura oper of type C
(1)
n is a differential operator of the form

L = ∂ + Λ(2) + V,(4.4)

where Λ(2) =
∑n

i=0 ei ∈ g(C(1)
n ) and V ∈ B(g(C(1)

n )
0
). Denote by M(C(1)

n ) the
space of all Miura opers of type C

(1)
n .

Proposition 4.3 ([3, Proposition 6.2]). For any Miura oper L of type C
(1)
n

there exists an element U =
∑

i<0 Ui, Ui ∈ B(g(C(1)
n )i), such that the operator

L0 = eadU (L) has the form

L0 = ∂ + Λ(2) + H,

where H =
∑

j<0 Hj , Hj ∈ B(z(C(1)
n )j). If U, Ũ are two such elements, then

eadUe−adŨ = eadT , where T =
∑

j<0 Tj, Tj ∈ z(C(1)
n )j.

Let L, U be as in Proposition 4.3. Let r be odd. The element φ(Λ(2)
r ) =

e−adU (Λ(2)
r ) does not depend on the choice of U in Proposition 4.3.

The element φ(Λ(2)
r ) is of the form

∑k
i=−∞ φ(Λ(2)

r )i, φ(Λ(2)
r )i∈B(g(C(1)

n )
i
).

We set φ(Λ(2)
r )+ =

∑k
i=0 φ(Λ(2)

r )i, φ(L(2)ar)− =
∑

i<0 φ(Λ(2)
r )i.

Let r ∈ Z>0, r odd. The differential equation

∂L

∂tr
= [φ(Λ(2)

r )+,L](4.5)

is called the r-th mKdV equation of type C
(1)
n .

Equation (4.5) defines vector fields ∂
∂tr

on the space M(C(1)
n ) of Miura

opers. For all r, s, the vector fields ∂
∂tr

, ∂
∂ts

commute, see [3, Section 6].
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Lemma 4.4 ([3]). We have

∂L

∂tr
= − d

dx
φ(Λ(2)

r )0.(4.6)

4.3. Comparison of mKdV equations of types C(1)
n and A

(1)
2n−1

Consider g(C(1)
n ) as a Lie subalgebra of g(A(1)

2n−1), see Section 3.4. If L is a
Miura oper of type C

(1)
n , then it is also a Miura oper of type A

(1)
2n−1. We have

M(C(1)
n ) ⊂ M(A(1)

2n−1),

M(A(1)
2n−1) = {L = ∂ + Λ(1) +

2n∑
i=1

viei,i |
2n∑
i=1

vi = 0},(4.7)

M(C(1)
n ) = {L = ∂ + Λ(1) +

2n∑
i=1

viei,i |

2n∑
i=1

vi = 0, vj + v2n+1−j = 0, j = 1, . . . , n}.

Lemma 4.5. Let r be odd, r > 0. Let LC
(1)
n (tr) be the solution of the r-th

mKdV equation of type C(1)
n with initial condition LC

(1)
n (0) = L. Let LA

(1)
2n−1(tr)

be the solution of the r-th mKdV equation of type A
(1)
2n−1 with initial condition

LA
(1)
2n−1(0) = L. Then LC

(1)
n (tr) = LA

(1)
2n−1(tr) for all values of tr.

Proof. The element U in Proposition 4.3 which is used to construct the mKdV
equation of type C

(1)
n can be used also to construct the mKdV equation of

type A
(1)
2n−1.

4.4. KdV equations of type A
(1)
2n−1

Let B((∂−1)) be the algebra of formal pseudodifferential operators of the form
a =

∑
i∈Z ai∂

i, with ai ∈ B and finitely many terms only with i > 0. The
relations in this algebra are

∂ku− u∂k =
∞∑
i=1

k(k − 1) . . . (k − i + 1)d
iu

dxi
∂k−i

for any k ∈ Z and u ∈ B. For a =
∑

i∈Z ai∂
i ∈ B((∂−1)), define a+ =∑

i�0 ai∂
i.



1294 Alexander Varchenko and Tyler Woodruff

Denote B[∂] ⊂ B((∂−1)) the subalgebra of differential operators a =∑m
i=0 ai∂

i with m ∈ Z�0. Denote D ⊂ B[∂] the affine subspace of differential

operators of the form L = ∂2n +
2n−2∑
i=0

ui∂
i.

For L ∈ D, there exists a unique L
1
2n = ∂ +

∑
i�0 ai∂

i ∈ B((∂−1)) such
that (L 1

2n )2n = L. For r ∈ N, we have L
r
2n = ∂r +

∑r−1
i=−∞ bi∂

i, bi ∈ B. We
set (L r

2n )+ = ∂r +
∑r−1

i=0 bi∂
i.

For r ∈ N, the differential equation

(4.8) ∂L

∂tr
= [L, (L

r
2n )+]

is called the r-th KdV equation of type A
(1)
2n−1.

Equation (4.8) defines flows ∂
∂tr

on the space D. For all r, s ∈ N the flows
∂
∂tr

and ∂
∂ts

commute, see [3].

4.5. Miura maps

Let L = ∂ + Λ(1) + V be a Miura oper of type A
(1)
2n−1 with V =

∑2n
k=1 vkek,k,∑2n

k=1 vk = 0. For i = 0, . . . , 2n, define the scalar differential operator Li =
∂2n +

∑2n−2
j=0 uj,i∂

j ∈ D by the formula:

L0 = L2n = (∂ − v2n)(∂ − v2n−1) . . . (∂ − v2)(∂ − v1),(4.9)
Li = (∂ − vi)(∂ − vi−1) . . . (∂ − v1)(∂ − v2n) . . . (∂ − vi+2)(∂ − vi+1),

for i = 1, . . . , 2n− 1.

Theorem 4.6 ([3, Proposition 3.18]). Let a Miura oper L satisfy the mKdV
equation (4.2) for some r. Then for every i = 0, . . . , 2n − 1 the differential
operator Li satisfies the KdV equation (4.8).

For i = 0, . . . , 2n, we define the i-th Miura map by the formula

mi : M(A(1)
2n−1) → D, L 
→ Li,

see (4.9).
For i = 0, 1, . . . , 2n− 1, an i-oper is a differential operator of the form

L = ∂ + Λ(1) + V + W,

with V ∈ B(g(A(1)
2n−1)

0
) and W ∈ B(n−i ). For w ∈ B(n−i ) and an i-oper L,

the differential operator eadw(L) is an i-oper. The i-opers L and eadw(L) are
called i-gauge equivalent. A Miura oper is an i-oper for any i.
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Theorem 4.7 ([3, Proposition 3.10]). If Miura opers L and L̃ are i-gauge
equivalent, then mi(L) = mi(L̃).

5. Tangent maps to Miura maps

5.1. Tangent spaces

Consider the spaces of Miura opers M(C(1)
n ) ⊂ M(A(1)

2n ). The tangent space
to M(C(1)

n ) at a point L is

TLM(C(1)
n ) = {X =

2n∑
i=1

Xiei,i |
2n∑
i=1

Xi = 0 ,(5.1)

Xj + X2n+1−j = 0, j = 1, . . . , n},

where Xi are functions of variable x. Recall D = {L = ∂2n +
2n−2∑
i=0

ui∂
i}. The

tangent space to D at a point L is TLD = {Z =
∑2n−2

i=0 Zi∂
i}, where Zi are

functions of x.
Consider the restrictions of Miura maps to M(C(1)

n ) and the corresponding
tangent maps

dmi : TLM(C(1)
n ) → Tmi(L)D, i = 1, . . . , 2n.(5.2)

By definition, if L = ∂ + Λ(1) +
∑2n

i=1 viei,i ∈ M(C(1)
n ), X =

∑2n
i=1 Xiei,i ∈

TLM(C(1)
n ), dmi(X) = Zi =

∑2n−2
j=0 Zi

j∂
j , then

Zi = (−Xi)(∂ − vi−1) . . . (∂ − v1)(∂ − v2n) . . . (∂ − vi+1)(5.3)
+ (∂ − vi)(−Xi−1) . . . (∂ − v1)(∂ − v2n) . . . (∂ − vi+1) + . . .

+ (∂ − vi)(∂ − vi−1) . . . (−X1)(∂ − v2n) . . . (∂ − vi+1)
+ (∂ − vi)(∂ − vi−1) . . . (∂ − v1)(−X2n) . . . (∂ − vi+1) + . . .

+ (∂ − vi)(∂ − vi−1) . . . (∂ − v1)(∂ − v2n) . . . (−Xi+1).

In what follows we study the intersection of kernels of these tangent maps
when i runs through certain subsets of {1, . . . , 2n}.
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5.2. Formula for the first coefficient

Proposition 5.1. Let L = ∂+Λ(1)+
∑2n

i=1 viei,i ∈ M(A(1)
2n ), X=

∑2n
i=1 Xiei,i∈

TLM(C(1)
n ), dmi(X) = Zi =

∑2n−2
j=0 Zi

j∂
j. Then

Zi
2n−2 = −

⎛⎝ 2n∑
k=1

vkXk +
i∑

k=1
(i− k)X ′

k +
2n∑

k=i+1
(i + 2n− k)X ′

k

⎞⎠ .(5.4)

Proof. The proof uses only the identity
∑2n+1

j=1 vj = 0 and is straightforward.

Zi
2n−2 = (−Xi) [−vi−1 − vi−2 − · · · − v1 − v2n − · · · − vi+1]

+ (−Xi−1)′ + (−Xi−1)[−vi − vi−2 − · · · − v1 − v2n − · · · − vi+1]
+ (i− 1)(−X1)′ + (−X1)[−vi − vi−1 − · · · − v2 − v2n − · · · − vi+1]
+ (i)(−X2n)′ + (−X2n)[−vi − vi−1 − · · · − v2 − v1 − v2n−1 − . . .

− vi+1] + (2n− 1)(−Xi+1)′ + (−Xi+1)[−vi − vi−1 − · · · − v1 − v2n

− · · · − vi+2] = −

⎛⎝ 2n∑
k=1

vkXk +
i∑

k=1
(i− k)X ′

k +
2n∑

k=i+1
(i + 2n− k)X ′

k

⎞⎠ .

Notice that

2n∑
k=1

vkXk = 2
n∑

k=1
vkXk.

5.3. Intersection of kernels of dmi

Lemma 5.2. Let L = ∂+Λ(1) +
∑2n

k=1 vkek,k ∈ M(C(1)
n ), X =

∑2n
k=1 Xkek,k ∈

TLM(C(1)
n ), dmi(X) = Zi =

∑2n−2
j=0 Zi

j∂
j. Assume that Zi

2n−2 = 0 for i =
1, . . . , 2n− 1, then

X ′
1 − 2v1X1 = 2

n∑
k=2

vkXk, X ′
i = 0, i = 2, . . . , 2n− 1.(5.5)

Proof. By assumption we have the system of equations

X ′
2n−2 + 2X ′

2n−3 + · · · + (2n− 2)X ′
1 + (2n− 1)X ′

2n +
2n∑
k=1

vkXk = 0,(5.6)
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X ′
2n−3 + 2X ′

2n−4 + · · · + (2n− 2)X ′
2n + (2n− 1)X ′

2n−1 +
2n∑
k=1

vkXk = 0,

X ′
2n−4 + 2X ′

2n−5 + · · · + (2n− 2)X ′
2n−1 + (2n− 1)X ′

2n−2

+
2n∑
k=1

vkXk = 0,
. . .

X ′
1 + 2X ′

2n + · · · + (2n− 2)X ′
4 + (2n− 1)X ′

3 +
2n∑
k=1

vkXk = 0,

X ′
2n + · · · + (2n− 2)X ′

3 + (2n− 1)X ′
2 +

2n∑
k=1

vkXk = 0.

By subtracting the first equation from the second we get (2n − 1)X ′
2n−1 −

X ′
2n−2 −X ′

2n−3 − · · · −X ′
1 −X ′

2n = 0, equivalently 2nX ′
2n−1 −

∑2n
k=1 X

′
k = 0.

Since
∑2n

k=1 Xk = 0, we get X ′
2n−1 = 0. By subtracting the second from the

third we get X ′
2n−2 = 0. Similarly we obtain

X ′
i = 0, i = 2, . . . , 2n− 1.(5.7)

Applying (5.7) to the last equation in (5.6) yields

X ′
2n +

2n∑
k=1

vkXk = X ′
2n + 2

n∑
k=1

vkXk = 0.

By pulling out the term for k = 1 we obtain

X ′
2n + 2v1X1 + 2

n∑
k=2

vkXk = −X ′
1 + 2v1X1 + 2

n∑
k=2

vkXk = 0.

Lemma 5.3. Let j ∈ {1, . . . , n − 1}. Let L = ∂ + Λ(1) +
∑2n

k=1 vkek,k ∈
M(C(1)

n ), X =
∑2n

k=1 Xkek,k ∈ TLM(C(1)
n ), dmi(X) = Zi =

∑2n−2
j=0 Zi

j∂
j.

Assume that Zi
2n−2 = 0 for all i /∈ {j, 2n− j}, then

X ′
j + vjXj + vj+1Xj+1 = −

n∑
k=1,k �=j,j+1

vkXk, X ′
j + X ′

j+1 = 0, X ′
i = 0

for i /∈ {j, j + 1, 2n− j, 2n + 1 − j}.
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Proof. By assumption we have the system of equations

X ′
2n−1 + 2X ′

2n−2 + · · · + (2n− 2)X ′
2 + (2n− 1)X ′

1 +
2n∑
k=1

vkXk = 0,

X ′
2n−2 + 2X ′

2n−3 + · · · + (2n− 2)X ′
1 + (2n− 1)X ′

2n +
2n∑
k=1

vkXk = 0,
. . .

X ′
2n−j + · · · + (2n− j)X ′

1 + (2n + 1 − j)X ′
2n + . . .

· · · + (2n− 1)X ′
2n+2−j +

2n∑
k=1

vkXk = 0,

X ′
2n−2−j + · · · + (2n− 2 − j)X ′

1 + (2n− 1 − j)X ′
2n + . . .

+ (2n− 1)X ′
2n−j +

2n∑
k=1

vkXk = 0,
. . .

X ′
j + · · · + jX ′

1 + (j + 1)X ′
2n + · · · + (2n− 1)X ′

j+2 +
2n∑
k=1

vkXk = 0,
. . .

Subtracting the second line from the first gives X ′
2n = 0, cf. the proof of

Lemma 5.2. Similarly, for i /∈ {j, j + 1, 2n − j, 2n + 1 − j} considering the
difference Zi−1

2n−2 − Zi
2n−2 = 0 we obtain X ′

i = 0.
Considering the difference Z2n+1−j

2n−2 − Z2n−1−j
2n−2 = 0 we obtain

X ′
2n−j + · · · + (2n− j)X ′

1 + (2n + 1 − j)X ′
2n + . . .

+ (2n− 1)X ′
2n+2−j +

2n∑
k=1

vkXk

−
(
X ′

2n−2−j + · · · + (2n− 2 − j)X ′
1 + (2n− 1 − j)X ′

2n + . . .

+ (2n− 1)X ′
2n−j +

2n∑
k=1

vkXk

)

= −(2n)(X ′
2n−j + X ′

2n+1−j) + 2
2n∑
k=1

X ′
k = 0.

Hence X ′
2n−j +X ′

2n+1−j = 0 and X ′
j +X ′

j+1 = 0. Now we can rewrite equation
Z2n

2n−2 = 0 as

(j − 1)X ′
2n+1−j + (j)X ′

2n−j + (2n− 1 − j)X ′
j+1
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+ (2n− j)X ′
j +

2n∑
k=1

vkXk = 0.

Or equivalently

2X ′
j +

2n∑
k=1

vkXk = 2X ′
j + 2

n∑
k=1

vkXk

= 2(X ′
j + vjXj + vj+1Xj+1 +

n∑
k=1,k �=j,j+1

vkXk) = 0.

Lemma 5.4. Let L = ∂+Λ(1) +
∑2n

k=1 vkek,k ∈ M(C(1)
n ), X =

∑2n
k=1 Xkek,k ∈

TLM(C(1)
n ), dmi(X) = Zi =

∑2n−2
j=0 Zi

j∂
j. Assume that Zi

2n−2 = 0 for all
i �= n, then

X ′
n + 2vnXn = −2

n−1∑
k=1

vkXk, X ′
i = 0, i /∈ {n, n + 1}.

Proof. By assumption we have the system of equations

X ′
2n−1 + 2X ′

2n−2 + · · · + (2n− 2)X ′
2 + (2n− 1)X ′

1 +
2n∑
k=1

vkXk = 0,

X ′
2n−2 + 2X ′

2n−3 + · · · + (2n− 2)X ′
1 + (2n− 1)X ′

2n +
2n∑
k=1

vkXk = 0,
. . .

X ′
n + · · · + (n)X ′

1 + (n + 1)X ′
2n + . . .

+ (2n− 1)X ′
n+2 +

2n∑
k=1

vkXk = 0,

X ′
n−2 + · · · + (n− 2)X ′

1 + (n− 1)X ′
2n+1 + . . .

+ 2nX ′
n +

2n+1∑
k=1

vkXk = 0,
. . .

X ′
2n + 2X ′

2n−1 + · · · + (2n− 1)X ′
2 +

2n∑
k=1

vkXk = 0.

Subtracting the second line from the first gives X ′
2n = 0, cf. the proof of

Lemma 5.2. Similarly, for i /∈ {n, n + 1} considering the difference Zi−1
2n−2 −

Zi
2n−2 = 0 we obtain X ′

i = 0.
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Now we can rewrite equation Z2n
2n−2 = 0 as

(n− 1)X ′
n+1 + (n)X ′

n +
2n∑
k=1

vkXk = X ′
n + 2vnXn + 2

n−1∑
k=1

vkXk = 0.

6. Critical points of master functions and generation of
tuples of polynomials

In this section we follow [6]. For functions f(x), g(x), we denote

Wr(f, g) = f(x)g′(x) − f ′(x)g(x)

the Wronskian determinant, and f ′(x) := df
dx(x).

6.1. Master function

Choose nonnegative integers k = (k0, k1, . . . , kn). Consider variables u =
(u(j)

i ), where j = 0, 1, . . . , n and i = 1, . . . , kj . The master function Φ(u; k) is
defined by the formula:

Φ(u, k) = 2
∑
i<i′

ln(u(0)
i − u

(0)
i′ ) + 4

n−1∑
j=1

∑
i<i′

ln(u(j)
i − u

(j)
i′ )(6.1)

+ 2
∑
i<i′

ln(u(n)
i − u

(n)
i′ ) − 2

n−1∑
j=0

∑
i,i′

ln(u(j)
i − u

(j+1)
i′ ).

The product of symmetric groups Σk = Σk0 ×Σk1 × · · · ×Σkn acts on the set
of variables by permuting the coordinates with the same upper index. The
function Φ is symmetric with respect to the Σk-action. A point u is a critical
point if dΦ = 0 at u. In other words, u is a critical point if and only if the
following expressions equal zero:

k1∑
l=1

−2
u

(0)
j − u

(1)
l

+
∑
s�=j

2
u

(0)
j − u

(0)
s

, j = 1, . . . , k0,(6.2)

ki−1∑
l=1

−2
u

(i)
j − u

(i−1)
l

+
ki+1∑
l=1

−2
u

(i)
j − u

(i+1)
l

+
∑
s�=j

4
u

(i)
j − u

(i)
s

,

i = 1, . . . , n− 1, j = 1, . . . , ki,
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kn−1∑
l=1

−2
u

(n)
j − u

(n−1)
l

+
∑
s�=j

2
u

(n)
j − u

(n)
s

, j = 1, . . . , kn.

All the orbits have the same cardinality
∏n

i=0 ki!. We do not make distinction
between critical points in the same orbit.

Remark. The definition of master functions can be found in [10], see also
[6, 7]. The master functions Φ(u, k) in (6.1) are associated with the Kac-
Moody algebra with Cartan matrix of type

(6.3) A = (ai,j) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −2 0 0 . . . . . . 0
−1 2 −1 0 . . . . . . . . .
0 −1 2 −1 . . . . . . . . .
0 0 −1 . . . . . . . . . . . .
. . . . . . . . . . . . 2 −1 0
. . . . . . . . . . . . −1 2 −1
0 . . . . . . . . . 0 −2 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which is dual to the Cartan matrix C
(1)
n , see this type of Langlands duality

in [6, 7, 18].

6.2. Polynomials representing critical points

Let u = (u(j)
i ) be a critical point of the master function Φ. Introduce the

(n + 1)-tuple of polynomials y = (y0(x), . . . , yn(x)),

yj(x) =
kj∏
i=1

(x− u
(j)
i ).(6.4)

This tuple of polynomials defines a point in the direct product (C[x])n+1. We
say that the tuple represents the critical point.

Each polynomial of the tuple will be considered up to multiplication by
a nonzero number.

It is convenient to think that the (n+1)-tuple y∅ = (1, . . . , 1) of constant
polynomials represents in (C[x])n+1, the critical point of the master function
with no variables. This corresponds to the case k = (0, . . . , 0).

We say that a given tuple y ∈ (C[x])n+1 is generic if each polynomial
yi(x) has no multiple roots and for i = 0, . . . , n−1 the polynomials yi(x) and
yi+1(x) have no common roots. If a tuple represents a critical point, then it
is generic, see (6.2). For example, the tuple y∅ is generic.
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6.3. Elementary generation

An (n+1)-tuple is called fertile if there exist polynomials ỹ0, . . . , ỹn∈(C[x])n+1

such that

Wr(ỹj , yj) =
∏
i�=j

y
−ai,j
i , j = 0, 1, . . . , n,(6.5)

where ai,j are the entries of the Cartan matrix of type C
(1)
n , that is,

Wr(ỹ0, y0) = y2
1, Wr(ỹi, yi) = yi−1yi+1, i = 1, . . . , n− 1,(6.6)

Wr(ỹn, yn) = y2
n−1.

For example, y∅ is fertile and ỹj = x + cj , where the cj are arbitrary
numbers.

Assume that an (n + 1)-tuple of polynomials y = (y0, . . . , yn) is fertile.
Equations (6.5) are linear first order inhomogeneous differential equations
with respect to ỹi. The solutions are

ỹ0 = y0

∫
y2
1
y2
0
dx + c0y0,(6.7)

ỹi = yi

∫
yi−1yi+1

y2
i

dx + ciyi, i = 1, . . . , n− 1,(6.8)

ỹn = yn

∫
y2
n−1
y2
n

dx + cnyn,(6.9)

where c0, . . . , cn are arbitrary numbers. For each i = 0, . . . , n, the tuple

y(i)(x, ci)(6.10)
= (y0(x), . . . , yi−1(x), ỹi(x, ci), yi+1(x), . . . , yn(x)) ∈ (C[x])n+1

forms a one-parameter family. This family is called the generation of tuples
from y in the i-th direction. A tuple of this family is called an immediate
descendant of y in the i-th direction.

Theorem 6.1 ([6]).

(i) A generic tuple y = (y0, . . . , yn), deg yi = ki, represents a critical point
of the master function Φ(u; k) if and only if y is fertile.

(ii) If y represents a critical point, then for any c ∈ C the tuple y(j)(x, c),
j = 0, . . . , n is fertile.
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(iii) If y is generic and fertile, then for almost all values of the parameter
c ∈ C the tuple y(j)(x, c) is generic. The exceptions form a finite set
in C.

(iv) Assume that a sequence y[�], � = 1, 2, . . . , of fertile tuples has a limit
y[∞] in (C[x])n+1 as � tends to infinity.
(a) Then the limiting tuple y[∞] is fertile.

(b) For j = 0, . . . , n, let y
(j)
[∞] be an immediate descendant of y[∞].

Then for all j there exist immediate descendants y
(j)
[�] of y[�] such

that y(j)
[∞] is the limit of y(j)

[�] as � tends to infinity.

6.4. Degree increasing generation

Let y = (y0, . . . , yn) be a generic fertile (n + 1)-tuple of polynomials. Define
kj = deg yj for j = 0, . . . , n.

The polynomial ỹ0 in (6.7) is of degree k0 or k̃0 = 2k1 + 1 − k0. We say
that the generation (y0, . . . , yn) → (ỹ0, . . . , yn) is degree increasing in the
0-th direction if k̃0 > k0. In that case deg ỹ0 = k̃0 for all c.

For i = 1, . . . , n−1, the polynomial ỹi in (6.8) is of degree ki or k̃i = ki−1+
ki+1 + 1 − ki. We say that the generation (y0, . . . , yi, . . . , yn) → (y0, . . . , ỹi,
. . . , yn) is degree increasing in the i-th direction if k̃i > ki. In that case
deg ỹi = k̃i for all c.

The polynomial ỹn in (6.9) is of degree kn or k̃n = 2kn−1 +1−kn. We say
that the generation (y0, . . . , yn−1, yn) → (y0, . . . , yn−1, ỹn) is degree increasing
in the n-th direction if k̃n > kn. In that case deg ỹn = k̃n for all c.

For i = 0, . . . , n, if the generation is degree increasing in the i-th direction
we normalize family (6.10) and construct a map Yy,i : C → (C[x])n+1 as
follows. First we multiply the polynomials y0, . . . , yn by numbers to make
them monic. Then we choose a monic polynomial yi,0 satisfying the equation
Wr(yi,0, yi) = ε

∏
j �=i y

−aj,i
j , for some nonzero integer ε, and such that the

coefficient of xki in yi,0 equals zero. Set

ỹi(x, c) = yi,0(x) + cyi(x),(6.11)

and define

Yy,i : C → (C[x])n+1,(6.12)
c 
→ y(i)(x, c) = (y0(x), . . . , ỹi(x, c), . . . , yn(x)).

The polynomials of this (n + 1)-tuple are monic.
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6.5. Degree-transformations and generation of vectors of integers

The degree-transformations

k := (k0, . . . , kn) 
→ k(0) = (2k1 + 1 − k0, . . . , kn),(6.13)
k := (k0, . . . , kn) 
→ k(i) = (k0, . . . , ki−1 + ki+1 + 1 − ki, . . . , kn),

i = 1, . . . , n− 1,
k := (k0, . . . , kn) 
→ k(n) = (k0, . . . , 2kn−1 + 1 − kn),

correspond to the shifted action of reflections w0, . . . , wn ∈ W , where W is
the Weyl group associated with the Cartan matrix A in (6.3) and w0, . . . , wn

are the standard generators, see [6, Lemma 3.11] for more detail.
We take formula 6.13 as the definition of degree-transformations:

w0 : k 
→ k(0) = (2k1 + 1 − k0, . . . , kn),(6.14)
wi : k 
→ k(i) = (k0, . . . , ki−1 + ki+1 + 1 − ki, . . . , kn),

i = 1, . . . , n− 1,
wn : k 
→ k(n) = (k0, . . . , 2kn−1 + 1 − kn),

acting on arbitrary vectors k = (k0, . . . , kn).
We start with the vector k∅ = (0, . . . , 0) and a sequence J = (j1, j2, . . . ,

jm) of integers such that ji ∈ {0, . . . , n} for all i. We apply the corresponding
degree transformations to k∅ and obtain a sequence of vectors k∅, k(j1) =
wj1k

∅, k(j1,j2) = wj2wj1k
∅,. . . ,

kJ = wjm . . . wj2wj1k
∅.(6.15)

We say that the vector kJ is generated from (0, . . . , 0) in the direction of J .
We call a sequence J degree increasing if for every i the transformation

wji applied to wji−1 . . . wj1k
∅ increases the ji-th coordinate.

6.6. Multistep generation

Let J = (j1, . . . , jm) be a degree increasing sequence. Starting from y∅ =
(1, . . . , 1) and J , we construct a map

Y J : Cm → (C[x])n+1

by induction on m. If J = ∅, the map Y ∅ is the map C
0 = (pt) 
→ y∅. If

m = 1 and J = (j1), the map Y (j1) : C → (C[x])n+1 is given by formula
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(6.12) for y = y∅ and j = j1. More precisely, equation (6.5) takes the form
Wr(ỹj1 , 1) = 1. Then ỹj1,0 = x and

Y (j1) : C 
→ (C[x])n+1, c 
→ (1, . . . , x + c, . . . , 1).

By Theorem 6.1 all tuples in the image are fertile and almost all tuples
are generic (in this example all tuples are generic). Assume that for J̃ =
(j1, . . . , jm−1), the map Y J̃ is constructed. To obtain Y J we apply the gen-
eration procedure in the jm-th direction to every tuple of the image of Y J̃ .
More precisely, if

Y J̃ : c̃ = (c1, . . . , cm−1) 
→ (y0(x, c̃), . . . , yn(x, c̃)),(6.16)

then

Y J : (c̃, cm) 
→ (y0(x, c̃), . . . , yjm,0(x, c̃) + cmyjm(x, c̃), . . . , yn(x, c̃)).(6.17)

The map Y J is called the generation of tuples from y∅ in the J-th direction.

Lemma 6.2. All tuples in the image of Y J are fertile and almost all tuples are
generic. For any c ∈ C

m the (n+1)-tuple Y J(c) consists of monic polynomials.
The degree vector of this tuple equals kJ .

Lemma 6.3. The map Y J sends distinct points of Cm to distinct points of
(C[x])n+1.

Proof. The lemma is easily proved by induction on m.

6.7. Critical points and the population generated from y∅

The set of all tuples (y0, . . . , yn) ∈ (C[x])n+1 obtained from y∅ = (1, . . . , 1) by
generations in all directions J = (j1, . . . , jm), m � 0, (not necessarily degree
increasing) is called the population of tuples generated from y∅, see [6, 7].

Theorem 6.4 ([8]). If a tuple of polynomials (y0, . . . , yn) represents a critical
point of the master function Φ(u, k) defined in (6.1) for some parameters k =
(k0, . . . , kn), then (y0, . . . , yn) is a point of the population generated from y∅ by
a degree increasing generation, that is, there exist a degree increasing sequence
J = (j1, . . . , jm) and a point c ∈ C

m such that (y0(x), . . . , yn(x)) = Y J(x, c).
Moreover, for any other critical point of that function Φ(u, k) there is a point
c′ ∈ C

m such that the tuple Y J(x, c′) represents that other critical point.
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By Theorem 6.4 a function Φ(u, k) either does not have critical points at
all or all of its critical points form one cell Cm.

Proof. Theorem 3.8 in [7] says that (y0, . . . , yn) is a point of the population
generated from y∅. The fact that (y0, . . . , yn) can be generated from y∅ by
a degree increasing generation is a corollary of Lemmas 3.5 and 3.7 in [7].
The same lemmas show that any other critical point of the master function
Φ(u, k) is represented by the tuple Y J(x, c′) for a suitable c′ ∈ C

m.

7. Critical points of master functions and Miura opers

7.1. Miura oper associated with a tuple of polynomials, [7]

We say that a Miura oper of type C
(1)
n , L = ∂ + Λ(2) + V , is associated to an

(n+1)-tuple of polynomials y if V = −∑n
i=0 ln′(yi)hi, where ln′(f(x)) = f ′(x)

f(x) .
If L is associated to y and V =

∑2n
i=1 viei,i, then for i = 1, . . . , n,

vi = −v2n+1−i = ln′
( yi
yi−1

)
, i = 1, . . . , n.(7.1)

We also have

〈αj , V 〉 = ln′
( n∏

i=0
y
−ai,j
i

)
,(7.2)

where ai,j are entries of the Cartan matrix of type C
(1)
n . More precisely,

〈α0, V 〉 = ln′
(y2

1
y2
0

)
,(7.3)

〈αi, V 〉 = ln′
(yi−1yi+1

y2
i

)
, i = 1, . . . , n− 1,

〈αn, V 〉 = ln′
(y2

n−1
y2
n

)
.

For example,

L∅ := ∂ + Λ(2)(7.4)

is associated to the tuple y∅ = (1, . . . , 1).
Define the map

μ : (C[x] \ {0})n+1 → M(C(1)
n ),
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which sends a tuple y = (y0, . . . , yn) to the Miura oper L = ∂ + Λ(2) + V
associated to y.

7.2. Deformations of Miura opers of type C(1)
n , [7]

Lemma 7.1 ([7]). Let L = ∂ + Λ(2) + V be a Miura oper of type C
(1)
n . Let

αj be the elements of the dual space defined in Section 3. Let g ∈ B and
j ∈ {0, . . . , n}. Then

ead gfjL = ∂ + Λ(2) + V − ghj − (g′ − 〈αj , V 〉g + g2)fj .(7.5)

Corollary 7.2 ([7]). Let L = ∂ + Λ(2) + V be a Miura oper of type C
(1)
n .

Then ead gfjL is a Miura oper if and only if the scalar function g satisfies the
Riccati equation

g′ − 〈αj , V 〉g + g2 = 0.(7.6)

Let L = ∂ + Λ(2) + V be a Miura oper. For j ∈ {0, . . . , n}, we say that L
is deformable in the j-th direction if equation (7.6) has a nonzero solution g,
which is a rational function.

Theorem 7.3 ([7]). Let L = ∂ + Λ(2) + V be the Miura oper associated
to the tuple of polynomials y = (y0, . . . , yn). Let j ∈ {0, . . . , n}. Then L

is deformable in the j-th direction if and only if there exists a polynomial ỹj
satisfying equation (6.5). Moreover, in that case any nonzero rational solution
g of the Riccati equation (7.6) has the form g = ln′(ỹj/yj) where ỹj is a
solution of equation (6.5). If g = ln′(ỹj/yj), then the Miura oper

ead gfjL = ∂ + Λ(2) + V − ghj(7.7)

is associated to the tuple y(j), which is obtained from the tuple y by replacing
yj with ỹj.

7.3. Miura opers associated with the generation procedure

Let J = (j1, . . . , jm) be a degree increasing sequence, see Section 6.5. Let
Y J : Cm → (C[x])n+1 be the generation of tuples from y∅ in the J-th direction.
We define the associated family of Miura opers by the formula:

μJ : C
m → M(C(1)

n ), c 
→ μ(Y J(c)).
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The map μJ is called the generation of Miura opers from L∅ in the J-th
direction, see L∅ in (7.4).

For � = 1, . . . ,m, denote J� = (j1, . . . , j�) the beginning �-interval of the
sequence J . Consider the associated map Y J� : C� → (C[x])n+1. Denote

Y J�(c1, . . . , c�) = (y0(x, c1, . . . , c�; �), . . . , yn(x, c1, . . . , c�; �)).

Introduce

g1(x, c1, . . . , cm) = ln′(yj1(x, c1; 1)),
(7.8)

g�(x, c1, . . . , cm) = ln′(yj�(x, c1. . . . , c�; �)) − ln′(yj�(x, c1, . . . , c�−1; �− 1)),

for � = 2, . . . ,m. For c ∈ C
m, define UJ(c) =

∑
i<0(UJ(c))i, (UJ(c))i ∈

B(g(A(2)
2n )i), depending on c ∈ C

m, by the formula

e− adUJ (c) = eadgm(x,c)fjm · · · eadg1(x,c)fj1 .(7.9)

Lemma 7.4. For c ∈ C
m, we have

μJ(c) = e− adUJ (c)(L∅),(7.10)

μJ(c) = ∂ + Λ(2) −
m∑
�=1

g�(x, c)hj� .(7.11)

Proof. The lemma follows from Theorem 7.3.

Corollary 7.5. Let r > 0, odd. Let c ∈ C
m. Let ∂

∂tr

∣∣
μJ (c) be the value at

μJ(c) of the vector field of the r-th mKdV flow on the space M(C(1)
n ), see

(4.5). Then

∂

∂tr

∣∣∣
μJ (c)

= − ∂

∂x

(
e− adUJ (c)(Λ(2))r

)0
.(7.12)

Proof. The corollary follows from (4.6) and (7.10).

We have the natural embedding M(C(1)
n ) ↪→ M(A(1)

2n−1), see Section 3.4.
Let J = (j1, j2, . . . , jm). Denote J̃ = (j1, . . . , jm−1). Consider the associated
family μJ̃ : Cm−1 → M(C(1)

n ). Denote c̃ = (c1, . . . , cm−1).

Proposition 7.6. For any r > 0 the difference ∂
∂tr

∣∣
μJ (c) −

∂
∂tr

∣∣
μJ̃ (c̃) has the

following form for some scalar functions u1(x, c), u2(x, c):
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(i) if jm ∈ {1, 2, . . . , n− 1}, then

∂

∂tr

∣∣
μJ (c) −

∂

∂tr

∣∣
μJ̃ (c̃) = u1(x, c)(ejm+1,jm+1 − ejm,jm)(7.13)

+ u2(x, c)(e2n+1−jm,2n+1−jm − e2n−jm,2n−jm),

(ii) if jm = 0, then

∂

∂tr

∣∣
μJ (c) −

∂

∂tr

∣∣
μJ̃ (c̃) = u1(x, c)(e2n,2n − e1,1),(7.14)

(iii) if jm = n, then

∂

∂tr

∣∣
μJ (c) −

∂

∂tr

∣∣
μJ̃ (c̃) = u1(x, c)(en+1,n+1 − en,n).(7.15)

Proof. We will write Λ for Λ(2) = Λ(1). Denote

Ar = egm−1fjm−1 . . . eg1fj1 Λre−g1fj1 . . . e−gm−1fjm−1 .

Expand Ar =
∑

i A
i
rΛi where Ai

r =
∑2n

l=1 A
i,l
r el,l with scalar coefficients Ai,l

r .
Then ∂

∂tr

∣∣
μJ̃ (c̃) = − ∂

∂xA
0
r . Assume that jm ∈ {1, . . . , n− 1}. Then

∂

∂tr

∣∣
μJ (c) = − ∂

∂x

[
(1 + gm(ejm,jm + e2n−jm,2n−jm)Λ−1)Ar

×(1 − gm(ejm,jm + e2n−jm,2n−jm)Λ−1)
]0 = − ∂

∂x
A0

r

− ∂

∂x

[
gm(ejm,jm + e2n−jm,2n−jm)Λ−1Ar

]0
+ ∂

∂x

[
Argm(ejm,jm + e2n−jm,2n−jm)Λ−1]0

+ ∂

∂x

[
gm(ejm,jm + e2n−jm,2n−jm)Λ−1Ar

× gm(ejm,jm + e2n−jm,2n−jm)Λ−1]0.
The last term is zero since[

gm(ejm,jm + e2n−jm,2n−jm)Λ−1Argm(ejm,jm + e2n−jm,2n−jm)Λ−1]0
= g2

m[(ejm,jm + e2n−jm,2n−jm)Λ−1ArΛ−1(ejm+1,jm+1 + e2n+1−jm,2n+1−jm)]0

= g2
m(ejm,jm + e2n−jm,2n−jm)[Λ−1ArΛ−1]0(ejm+1,jm+1 + e2n+1−jm,2n+1−jm)

= 0.
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Consider now

∂

∂x

[
gm(ejm,jm + e2n−jm,2n−jm)Λ−1Ar

]0
= ∂

∂x

[
gm(ejm,jm + e2n−jm,2n−jm)Λ−1A1

rΛ1]
= ∂

∂x

[
gm(ejm,jm + e2n−jm,2n−jm)Λ−1

2n∑
l=1

A1,l
r el,lΛ1]

= ∂

∂x

[
gm(ejm,jm + e2n−jm,2n−jm)(A1,1

r e2n,2n +
2n∑
l=2

A1,l
r el−1,l−1)

]
= ∂

∂x

[
gm(A1,jm+1

r ejm,jm + A1,2n+1−jm
r e2n−jm,2n−jm)

]
.

Likewise,

∂

∂x

[
Argm(ejm,jm + e2n−jm,2n−jm)Λ−1]0

= ∂

∂x

[
ArΛ−1gm(ejm+1,jm+1 + e2n+1−jm,2n+1−jm)

]0
= ∂

∂x

[
A1

rgm(ejm+1,jm+1 + e2n+1−jm,2n+1−jm)
]

= ∂

∂x

[
A1,jm+1

r gmejm+1,jm+1 + A1,2n+1−jm
r gme2n+1−jm,2n+1−jm

]
.

So we get

∂

∂tr

∣∣∣
μJ (c)

− ∂

∂tr

∣∣∣
μJ̃ (c̃)

= (gmA1,jm+1
r )′(ejm+1,jm+1 − ejm,jm)

+ (gmA1,2n+1−jm
r )′(e2n+1−jm,2n+2−jm − e2n−jm,2n−jm).

This proves the proposition for jm ∈ {1, . . . , n− 1}. The cases jm = 0, n are
proved similarly. If jm = 0, then

∂

∂tr

∣∣
μJ (c) = − ∂

∂x

[
(1 + gm(e2n,2n)Λ−1)Ar(1 − gm(e2n,2n)Λ−1)

]0
= − ∂

∂x
A0

r −
∂

∂x

[
gm(e2n,2n)Λ−1Ar

]0 + ∂

∂x

[
Argm(e2n,2n)Λ−1]0

+ ∂

∂x

[
gm(e2n,2n)Λ−1Argm(e2n,2n)Λ−1]0.
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The last term is zero since

[
gm(e2n,2n)Λ−1Argm(e2n,2n)Λ−1]0 = g2

m(e2n,2n)[Λ−1ArΛ−1]0(e1,1) = 0,

and we get

∂

∂tr

∣∣∣
μJ (c)

− ∂

∂tr

∣∣∣
μJ̃ (c̃)

= (gmA1,1
r )′(e1,1 − e2n,2n).

If jm = n, then

∂

∂tr

∣∣
μJ (c) = − ∂

∂x

[
(1 + gm(en,n)Λ−1)Ar(1 − gm(en,n)Λ−1)

]0
= − ∂

∂x
A0

r −
∂

∂x

[
gm(en,n)Λ−1Ar

]0 + ∂

∂x

[
Argm(en,n)Λ−1]0

+ ∂

∂x

[
gm(en,n)Λ−1Argm(en,n)Λ−1]0.

The last term is zero since

[
gm(en,n)Λ−1Argm(en,n)Λ−1]0 = g2

m(en,n)[Λ−1ArΛ−1]0(en+1,n+1) = 0,

and we get

∂

∂tr

∣∣∣
μJ (c)

− ∂

∂tr

∣∣∣
μJ̃ (c̃)

= (gmA1,n+1
r )′(en+1,n+1 − en,n).

Let mi : M(A(1)
2n−1) → D, L 
→ Li, be the Miura maps defined in Section

4.5 for i = 0, . . . , n. Below we consider the composition of the embedding
M(C(1)

n ) ↪→ M(A(1)
2n−1) and a Miura map.

Lemma 7.7. If jm = 0, we have mi ◦ μJ(c̃, cm) = mi ◦ μJ̃(c̃) for all i �= 0. If
jm = 1, . . . , n− 1, we have mi ◦μJ(c̃, cm) = mi ◦μJ̃(c̃) for all i �= jm, 2n− jm.
If jm = n, we have mi ◦ μJ(c̃, cm) = mi ◦ μJ̃(c̃) for all i �= n.

Proof. The lemma follows from formula (7.10) and Theorem 4.7.

Lemma 7.8. If jm = 0, then

∂μJ

∂cm
(c̃, cm) = −a

y1(x, c̃,m− 1)2

y0(x, c̃, cm,m)2 h0(7.16)
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for some positive integer a. If jm = 1, . . . , n− 1, then

∂μJ

∂cm
(c̃, cm) = −a

yjm−1(x, c̃,m− 1)yjm+1(x, c̃,m− 1)
yjm(x, c̃, cm,m)2 hjm(7.17)

for some positive integer a. If jm = n, then

∂μJ

∂cm
(c̃, cm) = −a

yn−1(x, c̃,m− 1)2

yn(x, c̃, cm,m)2 hn(7.18)

for some positive integer a.

Notice that the right-hand side of these formulas can be written as

−a
n∏

i=0
yi(x, c,m)−ai,jhj .(7.19)

Proof. Let jm = 0. Then y0(x, c̃, cm,m) = y0,0(x, c̃)+cmy0(x, c̃,m−1), where
y0,0(x, c̃) is such that

Wr(y0,0(x, c̃), y0(x, c̃,m− 1)) = a y1(x, c̃,m− 1)2,

for some positive integer a, see (6.11). We have gm = ln′(y0(x, c̃, cm,m)) −
ln′(y0(x, c̃,m− 1)).

By formula (7.11), we have

∂μJ

∂cm
(c̃, cm) = −∂gm

∂cm
(c̃, cm)h0

= − ∂

∂cm

(
y′0,0(x, c̃) + cmy

′
0(x, c̃,m− 1)

y0,0(x, c̃) + cmy0(x, c̃,m− 1)

)
h0

= − Wr(y0,0(x, c̃), y0(x, c̃,m− 1))
(y0,0(x, c̃) + cmy0(x, c̃,m− 1))2h0 = −a

y1(x, c̃,m− 1)2

y0(x, c̃, cm,m)2 h0 .

This proves formula (7.16). The other formulas are proved similarly.

7.4. Intersection of kernels of dmi

Let J = (j1, . . . , jm) be a degree increasing sequence and μJ : Cm → M(C(1)
n )

the generation of Miura opers from L∅ in the J-th direction. We have μJ(c) =
∂ + Λ(1) +

∑2n
k=1 vk(x, c)ek,k, where

2n∑
k=1

vk(x, c) = 0, vi(x, c) + v2n+1−i(x, c) = 0, i = 1, . . . , n.
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Let X(c) =
∑2n

k=1 Xk(x, c)ek,k ∈ TμJ (c)M(C(1)
n ) be a field of tangent vectors

to M(C(1)
n ) at the points of the image of μJ ,

2n∑
k=1

Xk(x, c) = 0, Xi(x, c) + X2n+1−i(x, c) = 0, i = 1, . . . , n.

Our goal is to show that under certain conditions we have

X(c) = A(c)∂μ
J

∂cm
(c)(7.20)

for some scalar function A(c) on C
m.

Proposition 7.9. Let jm = 0 and X(c) ∈ TμJ (c)M(C(1)
n ). Assume that

dmi

∣∣
μJ (c)(X(c)) = 0 for all i = 1, . . . , 2n − 1 and all c ∈ C

m. Assume that
X(c) has the form indicated in the right-hand side of formula (7.14). Then
equation (7.20) holds.

Proof. Since Xk(x, c) = 0 for k = 2, . . . , 2n − 1, equation (5.5) takes the
form X ′

1 − 2v1X1 = 0, or more precisely, X ′
1 = 2 ln′ ( y1(x,c̃,m−1)

y0(x,c̃,cm,m)
)
X1. Hence

X1(x, c) = −X2n = A(c) y1(x,c̃,m−1)2
y0(x,c̃,cm,m)2 for some scalar A(c). Lemma 7.8 implies

equation (7.20).

Proposition 7.10. Let jm ∈ {1, . . . , n − 1} and X(c) ∈ TμJ (c)M(C(1)
n ). As-

sume that dmi

∣∣
μJ (c)(X(c)) = 0 for all i /∈ {jm, 2n − jm} and all c ∈ C

m.
Assume that X(c) has the form indicated in the right-hand side of formula
(7.13). Then equation (7.20) holds.

Proof. By Lemma 5.3 we have X ′
jm + (vjm − vjm+1)Xjm = 0. Then for jm =

1, . . . , n− 1, we have

Xjm = −Xjm+1 = X2n−jm = −X2n+1−jm

= A(c) yjm−1(x, c̃,m− 1)yjm+1(x, c̃,m− 1)
yjm(x, c̃, cm,m)2 .

Lemma 7.8 yields equation (7.20).

Proposition 7.11. Let jm = n and X(c) ∈ TμJ (c)M(C(1)
n ). Assume that

dmi

∣∣
μJ (c)(X(c)) = 0 for all i �= n, and c ∈ C

m. Assume that X(c) has the
form indicated in the right-hand side of formula (7.15). Then equation (7.20)
holds.
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Proof. By assumptions we have Xi = 0 for i �= n, n + 1. By Lemma 5.4
we have X ′

n + 2vnXn = 0, where vn = ln′ yn
yn−1

. Hence Xn = −Xn+1 =
A(c)yn−1(x,c̃,m−1)2

yn(x,c̃,cm,m)2 for some scalar function A(c). Lemma 7.8 yields equation
(7.20).

8. Vector fields

8.1. Statement

Let r > 0 be odd. Recall that we denote by ∂
∂tr

the r-th mKdV vector field on
the space M(C(1)

n ) of Miura opers of type C(1)
n . We also denote by ∂

∂tr
the r-th

mKdV vector field of type A
(1)
2n−1 on the space M(A(1)

2n−1) of Miura opers of
type A

(1)
2n−1. We have a natural embedding M(C(1)

n ) ↪→ M(A(1)
2n−1). Under this

embedding the vector ∂
∂tr

on M(C(1)
n ) equals the vector filed ∂

∂tr
on M(A(1)

2n−1)
restricted to M(C(1)

n ), see Section 4.3. We also denote by ∂
∂tr

the r-th KdV
vector field on the space D, see Section 4.4.

For a Miura map mi : M → D, L 
→ Li, denote by dmi the associated
derivative map TM(A(1)

2n−1) → TD of tangent spaces. By Theorem 4.6 we
have dmi : ∂

∂tr

∣∣
L

→ ∂

∂tr

∣∣
Li

.
Fix a degree increasing sequence J = (j1, . . . , jm). Consider the associated

family μJ : Cm → M(C(1)
n ) of Miura opers. For a vector field Γ on C

m, we
denote by LΓμ

J the derivative of μJ along the vector field. The derivative is
well-defined since M(C(1)

n ) is an affine space.

Theorem 8.1. Let r > 0 be odd. Then there exists a polynomial vector field
Γr on C

m such that

∂

∂tr

∣∣∣
μJ (c)

= LΓrμ
J(c)(8.1)

for all c ∈ C
m. If r > 2m, then ∂

∂tr

∣∣
μJ (c) = 0 for all c ∈ C

m.

Corollary 8.2. The family μJ of Miura opers is invariant with respect to
all mKdV flows of type C

(1)
n and the family is point-wise fixed by flows with

r > 2m.

In other words, every mKdV flow corresponds to a flow on the space of
integration parameters c ∈ C

m. Informally speaking, we may say, that the
integration parameters c = (c1, . . . , cm) are times of the mKdV flows.
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8.2. Proof of Theorem 8.1 for m = 1

Let J = (j1). Then μJ(c1) = eg1fj1L∅e−g1fj1 = ∂+Λ−g1hj1 , where g1 = 1
x+c1

,
see formula (7.9). We have

∂

∂tr

∣∣∣
μJ (c1)

= − ∂

∂x

[
eg1fj1 Λre−g1fj1

]0
.(8.2)

Assume j1 ∈ {1, . . . , n−1}. Then eg1fj1 = 1+ g1(ej1,j1 + e2n−j1,2n−j1)Λ−1.
For r odd and r > 1, the right-hand side of (8.2) is zero. Hence ∂

∂tr
|μJ (c1) =

Γr = 0. For r = 1 we have

∂

∂t1

∣∣∣
μJ (c1)

= − ∂

∂x

[
eg1fj1 Λe−g1fj1

]0

= ∂

∂x
g1hj1 = − 1

(x + c1)2
hj1 = −∂μJ

∂c1
(c1).

Hence Γ1 = − ∂
∂c1

.
Assume j1 = n. By formula (7.12), we have

∂

∂tr

∣∣∣
μJ (c1)

= − ∂

∂x

[
(1 + g1en,n)Λ−1)Λr(1 − g1en,n)Λ−1

]0
.(8.3)

For r odd and r > 1, we have ∂
∂tr

∣∣
μJ (c1) = 0 by (8.3) and Lemma 2.4.

Hence Γr = 0. For r = 1, we have
∂

∂tr

∣∣∣
μJ (c1)

= −dg1

dx
(en,n − en+1,n+1)

= dg1

dx
hn = − 1

(x + c1)2
hn = −∂μJ

∂c1
(c1).

Hence Γ1 = − ∂
∂c1

.
Assume j1 = 0. By formula (7.12), we have

∂

∂tr

∣∣∣
μJ (c1)

= − ∂

∂x

[
(1 + g1e2n,2n)Λ−1Λr(1 − g1e2n,2n)Λ−1

]0
.(8.4)

For r odd and r > 1, we have ∂
∂tr

∣∣
μJ (c1)

= 0 by (8.4) and Lemma 2.4.
Hence Γr = 0. For r = 1, we have

∂

∂tr

∣∣
μJ (c1) = −dg1

dx
(e2n,2n − e1,1) = dg1

dx
h0 = − 1

(x + c1)2
h0 = −∂μJ

∂c1
(c1).

Hence Γ1 = − ∂
∂c1

. Theorem 8.1 is proved for m = 1.
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8.3. Beginning of proof of Theorem 8.1 for m > 1

We prove the first statement of Theorem 8.1 by induction on m. Let J =
(j1, . . . , jm). Assume that the statement is proved for J̃ = (j1, . . . , jm−1). Let

Y J̃ : C
m−1 → (C[x])n+1, c̃ = (c1, . . . , cm−1) 
→ (y0(x, c̃), . . . , yn(x, c̃))

be the generation of tuples in the J̃-th direction. Then the generation of tuples
in the J-th direction is

Y J : C
m → (C[x])n+1,

(c̃, cm) 
→ (y0(x, c̃), . . . , yjm,0(x, c̃) + cmyjm(x, c̃), . . . , yn(x, c̃),

see (6.16) and (6.17). We have gm = ln′(yjm,0(x, c̃) + cmyjm(x, c̃))
− ln′(yjm(x, c̃)), see (7.8).

By the induction assumption, there exists a polynomial vector field Γr,J̃ =∑m−1
i=1 γi(c̃) ∂

∂ci
on C

m−1 such that for all c̃ ∈ C
m−1 we have

∂

∂tr

∣∣∣
μJ̃ (c̃)

= LΓr,J̃
μJ̃(c̃).(8.5)

Proposition 8.3. There exists a scalar polynomial γm(c̃, cm) on C
m such that

the vector field Γr = Γr,J̃ + γm(c̃, cm) ∂
∂cm

satisfies (8.1) for all (c̃, cm) ∈ C
m.

8.4. Proof of Proposition 8.3

Lemma 8.4. Let jm ∈ {1, 2, . . . , n− 1}, then we have

dmi

∣∣∣
μJ (c̃,cm)

(
∂

∂tr

∣∣∣
μJ (c̃,cm)

− LΓr,J̃
μJ(c̃, cm)

)
= 0,(8.6)

for all i /∈ {jm, 2n− jm}.

Proof. The proof is the same as the proof of Lemma 5.5 in [17]. Namely, by
Theorem 4.7 we have mi ◦ μJ(c̃, cm) = mi ◦ μJ̃(c̃) for all i /∈ {jm, 2n − jm}.
Hence,

dmi

∣∣
μJ (c̃,cm)

(
LΓr,J̃

μJ(c̃, cm)
)

= LΓr,J̃
(mi ◦ μJ)(c̃, cm)(8.7)

= LΓr,J̃
(mi ◦ μJ̃)(c̃).
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By Theorems 4.6 and 4.7, we have

dmi

∣∣∣
μJ (c̃,cm)

(
∂

∂tr

∣∣∣
μJ (c̃,cm)

)
= ∂

∂tr

∣∣∣
mi◦μJ (c̃,cm)

= ∂

∂tr

∣∣∣
mi◦μJ̃ (c̃)

.(8.8)

By the induction assumption, we have

∂

∂tr

∣∣∣
mi◦μJ̃ (c̃)

= LΓr,J̃
(mi ◦ μJ̃)(c̃).(8.9)

These three formulas prove the lemma. The other two cases are proved simi-
larly.

Lemma 8.5. For jm ∈ {1, . . . , n−1}, the difference ∂
∂tr

∣∣
μJ (c)−LΓr,J̃

μJ(c̃, cm)
has the form indicated in the right-hand side of formula (7.13). For jm = 0,
the difference has the form indicated in the right-hand side of formula (7.14).
For jm = n, the difference has the form indicated in the right-hand side of
formula (7.15).

Proof. We have

∂

∂tr

∣∣∣
μJ (c)

− LΓr,J̃
μJ(c̃, cm)

= ∂

∂tr

∣∣∣
μJ (c)

− ∂

∂tr

∣∣∣
μJ̃ (c̃)

+ ∂

∂tr

∣∣∣
μJ̃ (c̃)

− LΓr,J̃
μJ(c̃, cm)

= ∂

∂tr

∣∣∣
μJ (c)

− ∂

∂tr

∣∣∣
μJ̃ (c̃)

+ LΓr,J̃
μJ̃(c̃) − LΓr,J̃

μJ(c̃, cm)

= ∂

∂tr

∣∣∣
μJ (c)

− ∂

∂tr

∣∣∣
μJ̃ (c̃)

+ LΓr,J̃
gm(x, c̃, cm)hjm ,

see formula (7.11). If jm ∈ {1, . . . , n − 1}, then ∂
∂tr

∣∣∣
μJ (c)

− ∂
∂tr

∣∣∣
μJ̃ (c̃)

has the
form indicated in the right-hand side of formula (7.13) by Proposition 7.6
and LΓr,J̃

gm(x, c̃, cm)hjm has that form since hjm = −ejm,jm + ejm+1,jm+1 −
e2n−jm,2n−jm + e2n+1−jm,2n+1−jm . This proves the lemma for jm ∈ {1, . . . , n−
1}. The other two cases of the lemma are proved similarly.

Let us finish the proof of Proposition 8.3. By Lemmas 8.4 and 8.5 the dif-
ference ∂

∂tr

∣∣
μJ (c)−LΓr,J̃

μJ(c̃, cm) has the form indicated in the right-hand side
of one of the formulas (7.13)–(7.15) and lies in the kernels of the differentials
of Miura maps mi for all i /∈ {jm, 2n − jm}. By Propositions 7.9, 7.10, 7.11
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we conclude that the difference has the form γm(c̃, cm) ∂μJ

∂cm
for some scalar

function γm(c̃, cm) on C
m. Therefore,

∂

∂tr

∣∣
μJ (c̃,cm) = LΓr,J̃

μJ(c̃, cm) + γm(c̃, cm)∂μ
J

∂cm
(c̃, cm).

If we set Γr = Γr,J̃ + γm(c̃, cm) ∂
∂cm

, then the vector field Γr will satisfy for-
mula (8.1).

We need to prove that γm(c̃, cm) is a polynomial. The proof of that fact
is the same as the proof of [17, Proposition 5.9]. Proposition 8.3 is proved.

8.5. End of proof Theorem 8.1 for m > 1

Proposition 8.3 implies the first statement of Theorem 8.1. The second state-
ment says that if r > 2m, then ∂

∂tr

∣∣
μJ (c) = 0. But that follows from Corol-

lary 7.5 and Lemma 2.3.
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