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Singular mappings and their zero-forms
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∗
and Stanisław Janeczko

Abstract: We study the quotient complexes of the de Rham com-
plex on singular mappings; the complex of algebraic restrictions,
the complex of geometric restrictions and the residual complex.
Vanishing theorem for algebraic, geometric and residual cohomolo-
gies on quasi-homogeneous map-germs was proved. The finite or-
der and symplectic zero-forms were characterized on parametric
singularities. In this context the singular parametric Lagrangian
surfaces were investigated, with the classification list of A-simple
Lagrangian singularities of R2 into R

4.
Keywords: Differential forms, singularities, geometric restriction,
algebraic restriction, residual cohomology, parametric curves and
surfaces.

1. Introduction

We consider smooth or holomorphic map-germs f : (Fn, 0) → (Fm, 0), F = R

or C. The set of such map-germs is denoted by En,m.
Let Λq

m denote the space of germs of q-forms of m-variables at zero. Note
that Λ0

m = Em is the space of function-germs on (Fm, 0). The subspace Zq
f of

q-forms ω, with vanishing pullbacks (geometric restriction to the image of f)
f∗ω = 0 is called the space of zero forms on f ([6]). This is a module over
smooth (or holomorphic) function-germs and its properties depend heavily
on n,m, q and the singularity of f .

In this paper we study problems related to zero forms on map-germs from
various viewpoints and provide some observations on them.

One of main problems in geometric singularity theory is the classification
of the pairs (f, ω) such that ω is a zero-form on f . Two pairs (f, ω) and (f ′, ω′)
are equivalent if there exist diffeomorphisms σ on (Fn, 0) and τ on (Fm, 0)
such that f ′ = τ ◦ f ◦ σ−1 and ω = τ ∗ω′. If ω is a symplectic form, then the
problem is weakened to the classification and the characterization under the
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left-right equivalence of map-germs having zero-form which is symplectic ([5]).
Regarding Darboux theorem for symplectic forms, the problem is reduced, for
a fixed symplectic form ω, to classify map-germs under right-left equivalences
(σ, τ) with τ ∗ω = ω, i.e. τ is a symplectomorphism. Such a classification
problem is understood well by introducing the notion of algebraic restrictions
of differential forms ([3]). In §2, we observe the related notions for the study
of zero forms of map-germs.

By the condition f∗ω = 0 that ω is a zero form on f is approximated by
the nullity of finite jets jk(f∗ω)(0) = 0 of forms. In §3, we provide several
observations on the “order of nullity” or “order of isotropness” for map-germs
and differential forms.

The Darboux normal form for symplectic forms is linear, i.e. represented
by its 0-jet. Then, for a fixed system of coordinates on (Fm, 0), with even m, it
has a sense to ask the existence of linear symplectic zero forms for a given map-
germ f : (Fn, 0) → (Fm, 0) related to the original problem. In §4 we provide
several basic observations on the problem on the existence of symplectic zero
forms and in §5, in particular the case n = 2,m = 4. Moreover related to the
results in §5, we provide some examples of map-germs with many symplectic
zero forms in §6.

The authors would like to thank an anonymous referee for his/her valuable
comment and suggestion.

2. Algebraic, geometric and residual cohomologies of
map-germs

Let (Λ∗
m, d) be de Rham complex over (Fm, 0). Then (Z∗

f , d), the pair of the
differential ideal of zero forms on f and the exterior differential d, is a sub-
complex of (Λ∗

m, d). Moreover we consider the differential ideal AZ∗
f in Λ∗

m

generated by
Z0
f = {h ∈ Λ0

m | f∗h = 0},
namely,

AZq
f := Z0

fΛq
m + d(Z0

f )Λq−1
m

= {∑r
i=1 hiαi+

∑s
j=1(dkj) ∧ βj | hi ∈ Z0

f , αi ∈ Λq
m, kj ∈ Z0

f , βj ∈ Λq−1
m }.

Then AZq
f ⊂ Zq

f for any q. We call the forms in AZ∗
f algebraically zero forms

on f . Then (AZ∗
f , d) is a sub-complex of (Z∗

f , d). This is the parametric version
of algebraically zero forms on subsets of manifolds introduced in [3]. In fact
we have
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Lemma 2.1. If f : U(⊂ F
n) → V (⊂ F

m) be a representative of f , and
Z = f(U), then the set of algebraically null forms on Z in Λq(V ) is equal
to the set of forms γ + d(δ) with γ ∈ Λq(V ), γ(z) = 0(z ∈ Z) and δ ∈
Λq−1(V ), δ(z) = 0(z ∈ Z).

Now, by setting A∗
f := Λ∗

m/AZ
∗
f ,G∗

f := Λ∗
m/Z

∗
f and R∗

f := Z∗
f/AZ

∗
f , we

have the quotient complexes (A∗
f , d), (G∗

f , d) and (R∗
f , d), which we call the

complex of algebraic restrictions, the complex of geometric restrictions and
the residual complex on f respectively (see [6]). Then we have the exact
sequences of complexes

(i) 0 −→ (AZ∗
f , d) −→ (Λ∗

m, d) −→ (A∗
f , d) −→ 0,

(ii) 0 −→ (Z∗
f , d) −→ (Λ∗

m, d) −→ (G∗
f , d) −→ 0,

(iii) 0 −→ (AZ∗
f , d) −→ (Z∗

f , d) −→ (R∗
f , d) −→ 0,

and
(iv) 0 −→ (R∗

f , d) −→ (A∗
f , d) −→ (G∗

f , d) −→ 0.

Note that AZ0
f = Z0

f and therefore R0
f = 0.

Definition 2.2. We call the cohomology H•(A∗
f , d), H•(G∗

f , d) and H•(R∗
f , d)

the algebraic cohomology, the geometric cohomology and the residual cohomol-
ogy on f respectively.

These objects are invariant under the right-left equivalence of map-germs:
If f is right-left equivalent to a germ g, then each cohomology of f and g are
isomorphic. The algebraic and geometric cohomologies are studied in [2] for
arbitrary subsets in manifolds. The homogeneity and quasi-homogeneity are
important notions in singularity theory. See for the characterization problem
of (quasi-)homogeneity the papers [8, 1, 9, 10, 11, 12, 13, 14]. Here we intend
to reformulate the results in [2] for map-germs and apply them to the study on
zero forms, regarding the notion of homogeneity of map-germs in a generalized
sense.

A map-germ f = (f1, . . . , fm) : (Fn, 0) → (Fm, 0) is called weakly quasi-
homogeneous if there exist non-negative integers λ1, . . . , λm and μ1, . . . , μn

such that

f(tμ1x1, . . . , t
μnxn) = (tλ1f1(x1, . . . , xn), . . . , tλmfm(x1, . . . , xn)).

Suppose, by some permutations of coordinates, that λi = 0 (1 ≤ i ≤ m1), λi >
0 (m1 + 1 ≤ i ≤ m) and that μi = 0 (1 ≤ i ≤ n1), μi > 0 (n1 + 1 ≤ i ≤ n).



1622 Goo Ishikawa and Stanisław Janeczko

Define the families of map-germs, for t ≥ 0, ϕt : (Fn, 0) → (Fn, 0) and
Φt : (Fm, 0) → (Fm, 0) by

ϕt(x1, . . . , xn) = (tμ1x1, . . . , t
μnxn), Φt(y1, . . . , ym) = (tλ1y1, . . . , t

λmym).

Then we have f ◦ ϕt = Φt ◦ f : (Fn, 0) → (Fm, 0). Moreover ϕt (resp. Φt)
defines a contraction of (Fn, 0) to (Fn1 ×0, 0) (resp. a contraction of (Fm, 0) to
(Fm1×0, 0)). Note that ϕt (resp. Φt) is smooth or holomorphic on (x1, . . . , xn)
(resp. on (y1, . . . , ym)) and is smooth on t. Define f1 : (Fn1 , 0) → (Fm1 , 0), by
f1 := p1 ◦ f ◦ i1, called the zero-weight part of f , where

i1(x1, . . . , xn1) = (x1, . . . , xn1 , 0, . . . , 0) and p1(y1, . . . , ym) = (y1, . . . , ym1).

In general, we say that f is contractible to f1 if there exist contractions
ϕt of (Fn, 0) to (Fn1 × 0, 0) and Φt from (Fm, 0) to (Fm1 × 0, 0), smooth or
holomorphic on (x1, . . . , xn) and on (y1, . . . , ym), smooth on t respectively,
such that f ◦ ϕt = Φt ◦ f with

ϕt|Fn1×0 = idFn1×0, ϕ1 = idFn , ϕ0(Fn) ⊂ F
n1 × 0,

Φt|Fm1×0 = idFm1×0,Φ1 = idFm ,Φ0(Fm) ⊂ F
m1 × 0.

Since f ◦ϕ0 = Φ0◦f , we see that f |Fn1×0 is a mapping to F
m1 ×0, is identified

with f1 = Φ0 ◦ f ◦ i1 using the above notations. Note that Φ0 = p1 in the
quasi-homogeneous case. Then, based on the ideas in [2] applied and modified
to our parametric version, we have the following result:

Lemma 2.3. If f is contractible to f1, then H•(AZ∗
f , d) and H•(AZ∗

f1 , d)
(resp.H•(Z∗

f , d) and H•(Z∗
f1 , d)) are isomorphic. Moreover the algebraic (resp.

geometric, residual) cohomology of f is isomorphic to the algebraic (resp. ge-
ometric, residual) cohomology of f1.

Proof. Let j1 : (Fm1 , 0) → (Fm, 0) be the inclusion defined by

j1(y1, . . . , ym1) = (y1, . . . , ym1 , 0, . . . , 0).

Let h ∈ Z0
f . Then (f1)∗(j∗1h) = (j1 ◦ f1)∗h = (j1 ◦ Φ0 ◦ f ◦ i1)∗h = (f ◦

i1)∗h = i∗1(f∗h) = 0. Therefore we have j∗1(AZq
f ) ⊂ AZq

f1 . Hence j1 induces a
morphism (j1)∗AZ : Hq(AZ∗

f , d) → Hq(AZ∗
f1 , d). Similarly we have j∗1(Zq

f ) ⊂
Zq
f1 and j1 induces a morphism (j1)∗Z : Hq(AZ∗

f , d) → Hq(Z∗
f1 , d).

To show (j1)∗AZ is surjective, take any ω ∈ AZq
f1 with dω = 0. Consider

Φ∗
0ω where Φ0 is regarded as a map-germ (Fm, 0) → (Fm1 , 0). Then d(Φ∗

0ω) =
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Φ∗
0(dω) = 0. Now Φ∗

0 : Λq
m1 → Λq

m satisfies Φ∗
0(AZ

q
f1) ⊂ AZq

f . In fact, let k ∈
Z0
f1 . Then f∗(Φ∗

0k) = (Φ0 ◦ f)∗k = (f1 ◦ ϕ0)∗k = ϕ∗(f1)∗k = 0. Thus Φ∗
0k ∈

AZq
f . We have d(Φ∗

0ω) ∈ AZq+1
f and j∗1(Φ∗

0ω) = (Φ0 ◦ j1)∗ω = ω. Therefore
(j1)∗AZ([Φ∗

0ω]) = [ω], and we have that (j1)∗AZ is surjective. Similarly we have
Φ∗

0(Z
q
f1) ⊂ Zq

f and (j1)∗Z is surjective.
Let us show (j1)∗AZ and (j1)∗Z are injective. Take ω ∈ AZq+1

f with dω = 0.
Suppose (j1)∗AZ [ω] = 0, i.e. j∗1ω = dη for some η ∈ AZq

f1 . We have Φ∗
1ω −

Φ∗
0ω =

∫ 1

0
( d
dtΦ

∗
tω)dt =

∫ 1

0
Φ∗

t (LVtω)dt, where Vt = dΦt

dt as a vector field
along Φt. Since LVtω = Vt	dω + d(Vt	ω) = d(Vt	ω) and Φ1 = idFm , we have

ω = Φ∗
0ω + dα, α =

∫ 1

0
(Vt	ω)dt.

Since Φ∗
0ω = Φ∗

0j
∗
1ω = Φ∗

0(dη) = d(Φ∗
0η), we have ω = d(Φ∗

0η + α), with
Φ∗

0η + α ∈ AZq
f . So [ω] = 0 ∈ Hq(AZ∗

f , d). Therefore (j1)∗AZ is injective.
Thus we have that (j1)∗AZ : Hq(AZ∗

f , d) → Hq(AZ∗
f1 , d) is an isomorphism.

Similarly we have (j1)∗Z is injective. Note that if ω ∈ Zq+1
f then α defined as

above belongs to Zq
f , since f ◦ ϕt = Φt ◦ f and Vt is contained in the image

of differential map of f . Thus we have that (j1)∗Z : Hq(Z∗
f , d) → Hq(Z∗

f1 , d) is
an isomorphism.

Moreover we have the commutative diagram

0 −−−−→ (AZ∗
f , d) −−−−→ (Λ∗

m, d) −−−−→ (A∗
f , d) −−−−→ 0,

(j1)∗
⏐⏐� (j1)∗

⏐⏐� (j1)∗A

⏐⏐�
0 −−−−→ (AZ∗

f1 , d) −−−−→ (Λ∗
m1 , d) −−−−→ (A∗

f1 , d) −−−−→ 0,

of complexes induced by j1, related to the exact sequence (i), and the in-
duced homomorphism (j1)∗A : Hq(A∗

f , d) → Hq(A∗
f1 , d). Similarly we have

the induced morphism (j1)∗G : Gq
f → Gq

f1 and the commutative diagram

0 −−−−→ (Z∗
f , d) −−−−→ (Λ∗

m, d) −−−−→ (G∗
f , d) −−−−→ 0,

(j1)∗
⏐⏐� (j1)∗

⏐⏐� (j1)∗G
⏐⏐�

0 −−−−→ (Z∗
f1 , d) −−−−→ (Λ∗

m1 , d) −−−−→ (G∗
f1 , d) −−−−→ 0,

related to the exact sequence (ii), and thus the induced homomorphism (j1)∗G :
Hq(G∗

f , d) → Hq(G∗
f1 , d).
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Regarding the long exact sequences of cohomologies, by virtue of the
fact that de Rham complexes are acyclic, the Poincaré lemma, we have the
commutative diagram

Hq(AZ∗
f , d) −−−−−−→ Hq(Λ∗

m, d) −−−−−−→ Hq(A∗
f , d) −−−−−−→ Hq+1(AZ∗

f , d) −−−−−−→ Hq+1(Λ∗
m, d),

(j1)∗
AZ

⏐� (j1)∗Λ

⏐� (j1)∗A

⏐� (j1)∗
AZ

⏐� (j1)∗Λ

⏐�
Hq(AZ∗

f1 , d)−−−−−−→Hq(Λ∗
m1 , d)−−−−−−→Hq(A∗

f1 , d)−−−−−−→Hq+1(AZ∗
f1 , d)−−−−−−→Hq+1(Λ∗

m1 , d),

with isomorphisms (j1)∗AZ and (j1)∗Λ. Thus, by the five lemma, we have that
(j1)∗A is an isomorphism. Similarly we have that (j1)∗G is an isomorphism.
Finally by the exact sequence (iii) or (iv), we have that Hq(R∗

f , d) and
Hq(R∗

f1 , d) are isomorphic.

A map-germ f is called contractible if there exists a sequence of map-
germs f i : (Fni , 0) → (Fmi , 0), (1 ≤ i ≤ r) with n1 ≥ n2 ≥ · · · ≥ nr = 0,m1 ≥
m2 ≥ · · · ≥ mr = 0 such that f i−1 is contractible to f i, (1 ≤ i ≤ r) with
f0 = f .

Theorem 2.4 (Vanishing theorem [2]). Let f : (Fn, 0) → (Fm, 0) be right-left
equivalent to a contractible map-germ in the above sense. Then the algebraic
and geometric complexes of f are acyclic, i.e.,

Hq(A∗
f , d) = 0, (q 
= 0), H0(A∗

f , d) = R,

Hq(G∗
f , d) = 0, (q 
= 0), H0(G∗

f , d) = R.

Furthermore we have that the residual cohomologies vanish:

Hq(R∗
f , d) = 0, for any q.

Proof. First note that our cohomologies are invariant under the right-left
equivalence of map-germs. Then by Lemma 2.3 and that (A∗

fr , d) is acyclic
for f r : F0 → F

0, we have Hq(A∗
f , d) ∼= Hq(A∗

f1 , d) ∼= Hq(A∗
f2 , d) ∼= · · · ∼=

Hq(A∗
fr , d), which is 0 if q 
= 0 and is isomorphic to R if q = 0. The proof

for (G∗
fr , d) is similar. Finally by the long exact sequence of (iv), we have the

result for H•(R∗
f , d).

Since R0
f = 0 in general, we have

Corollary 2.5. If f : (Fn, 0) → (Fm, 0) be contractible, then the sequence

0 −−−−→ R1
f

d−−−−→ R2
f

d−−−−→ · · · d−−−−→ Rm−1
f

d−−−−→ Rm
f −−−−→ 0,

induced by the exterior differential is exact.
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Remark 2.6. We call f quasi-homogeneous in the generalized sense if f is
weakly quasi-homogeneous, the zero-weight part f1 : (Fn1 , 0) → (Fm1 , 0) of
f is weak quasi-homogeneous, the zero-weight part f2 of f1 is weak quasi-
homogeneous, and so on, with n1 ≥ n2 ≥ · · · ≥ nr = 0,m1 ≥ m2 ≥ · · · ≥
mr = 0 for some r. Then f is contractible, and therefore we have the same
results as in Theorem 2.4 for such an f .

Example 2.7. The formulations in this section coincide with those in [3], if f
has a well-defined image Z as a set-germ of (Fm, 0), for instance, if n ≤ m and
f is finite, i.e. dimF(En/f∗mmEn) < ∞. However in general the image-germ
of a map-germ is not necessarily well-defined, for instance, for the map-germ
π : (F2, 0) → (F2, 0) defined by π(x1, x2) = (x1, x1x2), the germ of image is
not well-defined.

3. Finite order zero-forms on parametric singularities

There is a natural stratification of Λq
m associated with an order of multiplicity

of geometric restriction of differential forms. Let ω ∈ Λq
m. We say that the

order of vanishing of the germ ω is k if (j(k−1)ω)(0) = 0 and (jkω)(0) 
= 0.
By Λq

m,k we denote the germs of q-forms of m-variables at zero having order
of vanishing ≥ k. (cf. [3, 6, 11]). Note that Λq

m,k = mk
mΛq

m, where mm = {h ∈
Λ0
m = Em | h(0) = 0}.

Let f : (Fn, 0) → (Fm, 0) be a smooth map-germ at zero. Now the finite
order zero forms are defined as follows.

Zq
f,k = {ω ∈ Λq

m | f∗ω ∈ Λq
n,k}.

And we have the sequence of ideals in Λq
m:

Zq
f ⊂ . . . ⊂ Zq

f,k+1 ⊂ Zq
f,k ⊂ Zq

f,k−1 ⊂ . . . ⊂ Zq
f,0 = Λq

m.

In C∞ case Zq
f,∞ means that f∗ω has the zero Taylor expansion. The corre-

sponding sequence

dqf,k = dim
Zq
f,k

Zq
f,k+1

defines the invariant spectrum of the approximation.
If f : N → R

2n is a smooth mapping from a C∞ manifold N , and we
denote Z = f(N), then there is a natural symplectic invariant of Z in the
symplectic space (R2n, ω) called the index of isotropness of Z defined as a
maximal order of vanishing of the two forms ω |TM over all non-singular
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submanifolds M containing Z. If Z is contained in a non-singular Lagrangian
submanifold, then the index of isotropness is ∞. This is a measure of maximal
order of tangency between non-singular submanifolds containing Z and non-
singular isotropic submanifolds of the same dimension (see [3]).

We define the index of isotropness for a map-germ f : (Fn, 0) → (Fm, 0)
by

I(f) := sup{ord(f∗ω) | ω : symplectic forms on (Fm, 0)}.
Then clearly we have

Lemma 3.1. The index of isotropness I(f) is an invariant of the right-left
equivalence class of f . Moreover I(f) = ∞ if and only if f is isotropic for
some symplectic form on (Fm, 0).

4. Symplectic zero-forms on parametric singularities

A smooth 2-form Ω ∈ Λ2
m is called linear (for the system of coordinates

x1, . . . , xm of R
m) if Ω is of the form

∑
i<j aijdxi ∧ dxj for some aij ∈ F.

We denote by L2
m the space of linear 2-forms on (Fm, 0) which is isomorphic

to ∧2(T ∗
0F

m). There is the evaluation map Λ2
m → L2

m, ω → ω(0)(= ω|T0Fm),
where ω(0) is regarded as a linear form. Then, for the given coordinates on
(Fm, 0), we have the decomposition Λ2

m = L2
m⊕mmΛ2

m, where mm ⊂ Λ0
m is the

maximal ideal of the R-algebra Λ0
m = Em, the algebra of all function-germs

(Fm, 0) → F.
Given f : (Fn, 0) → (Fm, 0), let us set

L̃Z2
f := {ω(0) | ω ∈ Z2

f}, r̃(f) := max{rank(ω(0)) | ω ∈ Z2
f}.

Note that, if f and g are A-equivalent, then r̃(f) = r̃(g).
Moreover we set LZ2

f = L2
2n ∩Z2

f , the space of linear 2-forms Ω satisfying
f∗Ω = 0, and set

r(f) := max{rank(Ω) | Ω ∈ LZ2
f}.

Note that LZ2
f ⊂ L̃Z2

f and both LZ2
f , L̃Z

2
f are linear subspaces of the space

L2
2n

∼= ∧2(T ∗
0F

2n) of linear 2-forms on F
2n. We set

R(f) := max{r(g) | g ∼L f} = max{r(g) | g ∼A f}.

Then we have that 0 ≤ r(f) ≤ R(f) ≤ r̃(f) ≤ m.
A differential 2-form ω ∈ Λ2

m is called symplectic if ω is non-degenerate
and closed.
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Let f : (Fn, 0) → (Fm, 0) be a map-germ and ω ∈ Z2
f a symplectic zero

form of f . Then, since ω is non-degenerate, we have ω 
∈ AZ2
f and therefore

[ω] 
= 0 in R2
f . Moreover, since f is closed, [ω] ∈ Ker(d : R2

f → R3
f ). If f is

contractible in the sense of §2, then by Corollary 2.5 there exists the unique
[α] ∈ R1

f such that α ∈ Λ1
n, f∗α = 0, and [ω] = d[α] = [dα].

A linear 2-form Ω =
∑

i<j aijdxi ∧ dxj is symplectic if and only if Ω is
non-degenerate i.e. det(aij) 
= 0, where we set aji = −aij for i < j and aii = 0.
Note that any linear symplectic form is transformed to the Darboux normal
form

∑n
i=1 dxi ∧ dxn+i by a linear transformation of F2n. If m is odd, then

there are no symplectic forms on (Fm, 0). Let m be even and m = 2n. Let
P denote the Pfaffian of the skew-symmetric matrix (aij). Note that P is a
homogeneous polynomial of degree n of variables aij . Then the non-symplectic
forms in L2

2n form a hypersurface Σ defined by P = 0.
Let ω be a symplectic form on F

2n. A map-germ f : (Fn, 0) → (F2n, 0) is
called a (parametric) Lagrangian map-germ for ω, if f∗ω = 0.

Then we propose the problem:
Characterize map-germs f : (Fn, 0) → (F2n, 0) such that Z2

f contains a smooth
(or holomorphic) symplectic form on (F2n, 0). In other words, characterize
possible singularities of parametric Lagrangian map-germs.

Then we naturally concern the condition that r̃(f) = 2n, R(f) = 2n or
r(f) = 2n.

The followings are clear.

Lemma 4.1. We have, for a map-germ f : (Fn, 0) → (F2n, 0),
(1) If r̃(f) < 2n, then f is never Lagrangian, for any symplectic form on

(F2n, 0).
(2) r(f) = 2n if and only if LZ2

f \ Σ 
= ∅.
(3) If r(f) = 2n, then f is Lagrangian for a linear symplectic form on

(F2n, 0).
(4) If R(f) = 2n, then f is L-equivalent to a Lagrangian map-germ for a

linear symplectic form on (F2n, 0).

Note that LZ2
f \Σ and L̃Z2

f \Σ are invariant under R×-multiplication, and
semi-algebraic. Therefore P (LZ2

f \Σ), P (L̃Z2
f \Σ) are defined as semi-algebraic

sets in the projective space P (L2
2n) ∼= P n(2n−1)−1. Moreover we have

Lemma 4.2. If f and g are right-equivalent, then Z2
f = Z2

g , and L̃Z2
f = L̃Z2

g .

We define
̃(f) := dimP (L̃Z2

f \ Σ).

If f and g are A-equivalent, then ̃(f) = ̃(g).
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We consider, given f ∈ En,2n, the sets P (LZ2
g \Σ) ⊂ P (L2

2n) for all germs
g ∈ En,2n which are left equivalent to f . Then define

(f) := max{dimP (LZ2
g \ Σ) | g ∼L f}

where we define that the dimension of the empty set dim(∅) = −1. Then we
see

(f) = max{dimP (LZ2
g \ Σ) | g ∼A f}.

In fact, the inequality ≤ is clear. Moreover, if g is A-equivalent to f , then g is
right equivalent to g′ such that g′ is left equivalent to f . Then by Lemma 4.2,
we have L2

g′ = L2
g, and therefore we have the required equality.

Now we have

−1 ≤ (f) ≤ ̃(f) ≤ n(2n− 1) − 1.

Then we obtain

Lemma 4.3. For an f ∈ En,2n, the following conditions are equivalent to
each other:

(i) f is Lagrangian for some symplectic form on (F2n, 0).
(ii) R(f) = 2n.
(iii) (f) ≥ 0.

Proof. (i) ⇒ (iii): Let f be Lagrangian for a symplectic form ω on F
2n. By the

Darboux theorem, there exists a diffeomorphism-germ τ : (F2n, 0) → (F2n, 0)
such that ω = τ ∗(Ω) for the linear symplectic form Ω =

∑n
i=1 dxi ∧ dxn+i,

Darboux normal form. Set g = τ ◦ f . Then g is left equivalent to f and
g∗Ω = f∗ω = 0. Therefore Ω ∈ LZ2

g \ Σ, hence dimP (LZ2
g \ Σ) 
= ∅, and

(f) ≥ 0.
(iii) ⇒ (ii): By (iii), there exists g ∈ En,2n such that g is L-equivalent to

f and r(g) = 2n. Therefore we have (ii).
(ii) ⇒ (i): Suppose R(f) = 2n. Then there exists g ∈ En,2n such that

g is left equivalent to f and a linear symplectic form Ω on (F2n, 0) with
g∗Ω = 0. Since g is left equivalent to f , there exists a diffeomorphism-germ
τ : (F2n, 0) → (F2n, 0) such that g = τ ◦ f . Set ω = τ ∗Ω. Then ω is a
symplectic form on (F2n, 0) and f∗ω = f∗(τ ∗Ω) = g∗Ω = 0. Therefore f is
Lagrangian for some symplectic form on (F2n, 0).

Lemma 4.4. If f : (Fn, 0) → (F2n, 0) satisfies the condition that {t ∈ (Fn, 0) |
rank(f∗ : TtF

n → Tf(t)F
2n) ≥ 2} is dense in (Fn, 0). Then ̃(f) ≤ n(2n−1)−2

and therefore (f) ≤ n(2n− 1) − 2.
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Proof. Suppose ̃(f) = n(2n − 1) − 1. Then LZ2
f \ Σ contains a non-void

open set U in L2
2n. By the assumption, there exists a two-dimensional plane

Π ⊂ T0F
2n such that Ω|Π = 0 for any Ω ∈ U . Then for any 1 ≤ i < j ≤ 2n,

dxi ∧ dxj = 0 on Π. Then we have a contradiction. Therefore ̃(f) ≤ n(2n−
1) − 2.

Now we remark a general result which is going to be applied to our case.
Let f : (Fn, 0) → (Fm, 0) be a map-germ whose immersion locus is dense.

Then Nash limit set N(f) of f is the closure of the set of n-planes Π in
Gr(n,Fm), Grassmannian of n-planes in F

m = T0F
m, such that there exists

a sequence of immersive point t(i) ∈ F
n of f converging to 0 as i → ∞ and

Π = limi→∞ f∗(Tt(i)F
n).

Then we have

Lemma 4.5. Let f : (Fn, 0) → (Fm, 0), ω ∈ Zn
f and Π ∈ N(f). Then

ω(0)|Π = 0.

Let Gr(n,Fm) ↪→ P (Λn(T0F
m)) be Plücker embedding. Then we have

Lemma 4.6. Let ω ∈ Zn
f . Then ω(0) vanishes on the projective linear hull

of N(f) in P (Λn(T0F
m)).

5. Parametric Lagrangian surfaces

In particular, setting n = 2 and F = R, we consider smooth map-germs f :
(R2, 0) → (R4, 0) whose immersion locus is dense. Then (f) = −1, 0, 1, 2, 3
or 4 by Lemma 4.4.

Let

A =

⎛
⎜⎜⎜⎝

0 a12 a13 a14
−a12 0 a23 a24
−a13 −a23 0 a34
−a14 −a24 −a34 0

⎞
⎟⎟⎟⎠

be a skew symmetric 4 × 4-matrix. Then det(A) = P (A)2, where P (A) =
a12a34−a13a24+a14a23. Then the hypersurface Σ ⊂ L2

4 is defined by P (A) = 0.

Example 5.1. Let f : (R2, 0) → (R4, 0) be the immersion defined by
f(t1, t2) = (t1, t2, 0, 0). Then LZ2

f is defined by a12 = 0 in L2
4
∼= R

6. Then
LZ2

f ∩ Σ is given by a12 = 0, a13a24 − a14a23 = 0. Thus dimP (LZ2
f \ Σ) = 4.

Therefore we have (f) = 4.

Example 5.2 (Open Whitney umbrella). Let f ∈ E2,4 be defined by

f(t1, t2) = (t1, t22, t1t2, t2k+1
2 ).
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If k ≥ 2, then r̃(f) < 4. Therefore f is never Lagrangian for any symplectic
form. If k = 1, then f is called an open Whitney umbrella and we have that
r(f) = 4 and that (f) = ̃(f) = 0. Thus, if k = 1, then f is Lagrangian for
the linear symplectic form Ω = 3dx1 ∧ dx4 + 2dx2 ∧ dx3, which is unique up
to non-zero constant multiplication.

Moreover we determine the invariants (f) and ̃(f) for all simple singu-
larities f : (R2, 0) → (R4, 0) ([7]). In fact we have:

Proposition 5.3. A simple map-germ f(R2, 0) → (R4, 0) is Lagrangian for
some symplectic form on (R4, 0) if and only if f is right-left equivalent to one
of the following list (among the list in [7]):

(t1, t2) → (t1, t22, t1t2, t32) (I1),
(t1, t22, t32 + (±1)j+1tj1t2, t2j−1

1 t2), (j = 2, 3, 4, . . . ) (IIIj,2j−1),
(t1, t1t2, t33, t1t

2
2 + t42) (IV1),

(t1, t22, t21t2 + t32, t1t
3
2) (V II1),

(t1, t1t2, t32, t42) (IX1).

In all of above cases, we have (f) = ̃(f) = 0.

Example 5.4 (Open swallowtail). Let f : (R2, 0) → (R4, 0) be the germ
defined by

f(t1, t2) = (t1, t32 + t1t2,
3
4 t

4 + 1
2 t1t

2
2,

3
5 t

5
1 + 1

3 t1t
3
2),

which is called open swallow-tail. Then, by calculation, we see that (f) =
̃(f) = 0. In fact f is Lagrangian for the linear symplectic form Ω = 2dx1 ∧
dx4 − dx2 ∧ dx4, which is unique up to non-zero constant multiplication.

6. Lagrangian mappings for plenty of symplectic forms

A plane (2-dimensional linear subspace) Π ⊂ L2
4 = R

6 is called elliptic (resp.
hyperbolic, parabolic) if Π∩Σ = {0} (resp. Π∩Σ consists of two lines, Π ⊂ Σ).
Recall that Σ is the set of non-symplectic forms.

A projective line P (Π) in P (L2
4) = P 5 is called elliptic (resp. hyperbolic,

parabolic) if Π is elliptic (resp. hyperbolic, parabolic).

Example 6.1 (Product of curves). Let a, b : (R, 0) → (R2, 0) be planer
curve-germs. Then define f : (R2, 0) → (R4, 0) by f(t1, t2) = (a(t1), b(t2)).
Then (f) ≥ 1. In fact there exist two-parameter linear symplectic forms

Ωλ,μ = λdx1 ∧ dx2 + μdx3 ∧ dx4,



Singular mappings and their zero-forms 1631

λμ 
= 0, which satisfy f∗(Ωλ,μ) = 0. In this case P (LZ2
f ) contains a hyperbolic

line.
For example, taking a and b are planar cusps, then we have the germ

defined by
f(t1, t2) = (t21, t31, t22, t32),

which is called the product of cusps. Then Z0
f is generated by x3

1−x2
2, x

3
3−x2

4.
Then R1

f is described as the set of equivalence classes [α] of 1-forms of form

α = (a(x3, x4) + x1b(x3, x4))(−3x2dx1 + 2x1dx2)
+ (c(x1, x2) + x3e(x1, x2))(−3x4dx3 + 2x3dx4),

where the function-germs a, b, c, e are regarded modulo Z0
f . Since the product

of cusps is quasi-homogeneous and therefore contractible, we conclude that
any symplectic zero form ω of f is described as

ω =d{(a(x3, x4) + x1b(x3, x4))(−3x2dx1 + 2x1dx2)
+ (c(x1, x2) + x3e(x1, x2))(−3x4dx3 + 2x3dx4)},

modulo AZ2
f .

Note that the products of singular curves and regular curves were studied
in [4].

Example 6.2 (Holomorphic curves, anti-holomorphic curves). Let f : (R2, 0)
= (C, 0) → (C2, 0) = (R4, 0) be a holomorphic or anti-holomorphic map-
germ regarded as an element in E2,4. Then (f) ≥ 1. In fact there exist
two-parameter linear symplectic forms

Ωw = Re(wdz1 ∧ dz2),

w ∈ C = R
2, w 
= 0, which satisfy f∗(Ωw) = 0. In this case P (LZ2

f ) contains
an elliptic line.

For example, we have, from z ∈ C → (z2, z3), the germ

f(t1, t2) = (t21 − t22, 2t1t2, t31 − 3t1t22, 3t21t2 − t32),

which is called complex cusp.

We are naturally led to the problem: Classify singularities of f : R2 → R
4

with (f) ≥ 1, in particular for the cases with (f) = 2, 3.
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