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Complex structures on jet spaces and bosonic Fock
space dynamics for causal variational principles

Felix Finster and Niky Kamran

Abstract: Based on conservation laws for surface layer integrals
for critical points of causal variational principles, it is shown how
jet spaces can be endowed with an almost-complex structure. We
analyze under which conditions the almost-complex structure can
be integrated to a canonical complex structure. Combined with the
scalar product expressed by a surface layer integral, we obtain a
complex Hilbert space (h, 〈.|.〉). The Euler-Lagrange equations of
the causal variational principle describe a nonlinear time evolution
on h. Rewriting multilinear operators on h as linear operators on
corresponding tensor products and using a conservation law for a
nonlinear surface layer integral, we obtain a linear norm-preserving
time evolution on bosonic Fock spaces. The so-called holomorphic
approximation is introduced, in which the dynamics is described
by a unitary time evolution on the bosonic Fock space. The error
of this approximation is quantified. Our constructions explain why
and under which assumptions critical points of causal variational
principles give rise to a second-quantized, unitary dynamics on
Fock spaces.
Keywords: causal variational principles, surface layer integrals,
complex structures, bosonic Fock spaces, Hilbert space structures
on jets.

1. Introduction

The purpose of this paper is to work out the connection between two mathe-
matical concepts which at first sight might seem unrelated: causal variational
principles and bosonic Fock spaces. Bosonic Fock spaces are complex Hilbert
spaces which arise in the mathematical formulation of many-particle quan-
tum systems. The dynamics of such systems is described by a unitary time
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evolution on the Fock space. More precisely,

(1) Ψ(t) = e−itH Ψ0 ,

where the Hamiltonian H is a symmetric operator on the Fock space (F ,
〈.|.〉F). Causal variational principles, on the other hand, were introduced
in [11] as a mathematical generalization of the causal action principle, be-
ing the analytical core of the physical theory of causal fermion systems (see
the textbook [13] or the introductions [20, 18]). In general terms, given a
manifold F together with a non-negative function L : F × F → R

+
0 , in a

causal variational principle one minimizes the action S given by

S(ρ) =
∫
F
dρ(x)

∫
F
dρ(y) L(x, y)

under variations of the measure ρ on F, keeping the total volume ρ(F) fixed
(for the precise mathematical setup see Section 2.1 below). Working with
measures on a manifold, there is a-priori no Hilbert space structure, making
the connection to bosonic Fock spaces far from obvious. Here we make use
of two key observations: First, variations of the measure ρ can be described
by so-called jets consisting of scalar functions and vector fields in spacetime
M := supp ρ (see [22] or Section 2.2 below, where supp denotes the support
of the measure ρ). The resulting jet spaces are real vector spaces. The second
observation is that on the jet spaces one can introduce bilinear forms which
have the structure of so-called surface layer integrals∫

Ω

(∫
M\Ω

(· · · ) L(x, y) dρ(y)
)
dρ(x) ,

where (· · · ) stands for a differential operator involving jets. A surface layer
integral generalizes the concept of a surface integral over ∂Ω to the setting of
causal fermion systems (for the general idea see [21, Section 2.3]). Moreover,
as a consequence of the Euler-Lagrange (EL) equations corresponding to the
causal variational principle, there are jet spaces for which the surface layer
integrals do not depend on the choice of the set Ω (see [21, 22, 23] or the
summary in Section 2.6 below).

Starting from these structures, we here analyze how to endow the jet
spaces with a complex structure. Moreover, we study the question of whether
and how the interaction as described by the causal variational principle can
be formulated in terms of a time evolution on the resulting complex vector
spaces. For non-interacting, so-called linear systems, the conserved surface
layer integrals induce a canonical complex structure, giving rise to a com-
plex Hilbert space of jets (h, 〈.|.〉) (see (96) in Section 6.3). The nonlinear
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dynamics as described by the EL equations corresponding to the causal vari-
ational principle yields a complicated mixing of these jets and their complex
conjugates. We rewrite this nonlinear dynamics as a linear dynamics on a
suitable tensor product. More precisely, due to the mixing of jets and their
complex conjugates, the time evolution is not an operator on the bosonic
Fock space F := ⊕∞

n=0h
n, but instead it is real-linear operator on the tensor

product of F with its dual space F∗. An essential step of our construction
is to show that this time evolution preserves the norm on F∗ ⊗ F (see The-
orem 7.11). This result is based on a new conservation law for surface layer
integrals which, because of its nonlinear dependence on the jets, we refer to as
the nonlinear surface layer integral (see Section 4 and Appendix A). The con-
servation law for this nonlinear surface layer integral is intimately related to
so-called inner solutions of the linearized field equations (see Sections 3). Al-
though these inner solutions are very small (see Section 5 and Appendix B.1),
they do contribute to the surface layer integrals via flux integrals (see (81)
in Section 6.1), which in turn give rise to a rescaling of the Fock space norm
as needed for the Fock norm to be preserved. We also derive an approximate
dynamics, the so-called holomorphic approximation, described by a unitary
time evolution on F of the form (1) (see Theorem 8.3 and Definition 8.4).
The error of the holomorphic approximation is quantified by working out the
corrections (see Theorems 8.5 and 8.7 as well as Appendix B.2).

The paper is organized as follows. In Section 2 we give the necessary
background on causal variational principles. In Section 3 we introduce inner
solutions and collect a few important properties. Section 4 is devoted to the
non-linear surface layer integral and the corresponding conservation law. In
Section 5 the approximation of small inner solutions is introduced. In Section 6
we specify how to describe a scattering process in Minkowski space. Moreover,
the conservation laws for surface layer integrals are adapted to this setting,
and the freedom in choosing complex structures are analyzed. In Section 7,
the Fock space description is introduced. After recalling the basics on Fock
spaces (Section 7.1), we introduce field operators and work out their commu-
tation relations (Section 7.2). Then we rewrite the time evolution as a linear
operator on Fock spaces. We begin with the case in which the time evolution
is compatible with the complex structure (as is made precise by the notion
of holomorphic connections; see Definition 6.3). In this case, expanding the
nonlinear dynamics as described by the EL equations of the causal variational
principle in a perturbation series and rewriting the resulting p-multilinear op-
erators as linear operators on the p-fold tensor product, we obtain a unitary
time evolution on the Fock space F := ⊕∞

n=0h
n (Section 7.3). In the general

case that the time evolution is not compatible with the complex structure, we
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obtain instead a norm-preserving complex-linear time evolution on F∗ ⊗ F
(Section 7.4). Section 8 is devoted to the holomorphic approximation, where
the time evolution on F∗ ⊗ F is approximated by a unitary time evolution
on F . In preparation, we need to analyze the conservation laws and the com-
plex structure at intermediate times (Section 8.1). Then the holomorphic
approximation is introduced (Section 8.2) and its corrections are worked out
(Section 8.3). In Section 9 we illustrate our constructions by explaining the
analogies and differences to classical field theory in the example of φ4-theory
in Minkowski space. The appendices provide some background material. In
Appendix A the nonlinear conservation law is considered from a more abstract
perspective, and it is shown how the corresponding conservation law can be
arranged. In Appendix B it is explained how to justify the approximations
made in the article. The approximation of small inner solutions is justified
in Appendix B.1 by considering the scalings for Dirac systems based on the
computations in [14] and [6, Appendix A]. in Appendix B.2 it is explained in
words how the holomorphic approximation is related to the concepts of micro-
scopic mixing as introduced in [12]. A detailed justification of the holomorphic
approximation is not given here, but will be worked out in a separate paper.

We close with two remarks. First, we point out that we here restrict
attention to bosonic Fock spaces; the additional constructions giving rise to
fermionic Fock spaces will be developed separately in [19]. Second, we note
that the connection between causal variational principles and Fock spaces was
first established in [12], however only for causal fermion systems and based
on the classical equations obtained in the continuum limit (a limiting case
giving an interaction via classical bosonic fields in Minkowski space worked
out in detail in [13]). In contrast to this work, we here analyze directly the
EL equations corresponding to the causal variational principle. Moreover, we
work closely with the conservation laws for surface layer integrals. In this
way, the constructions in the present paper give a more general and more
fundamental connection to bosonic Fock spaces.

2. Preliminaries

2.1. Causal variational principles in the non-compact setting

We consider causal variational principles in the non-compact setting as in-
troduced in [22, Section 2]. Thus we let F be a (possibly non-compact)
smooth manifold of dimension m ≥ 1 and ρ a (positive) Borel measure
on F (the universal measure). Moreover, we are given a non-negative func-
tion L : F × F → R

+
0 (the Lagrangian) with the following properties:

(i) L is symmetric: L(x, y) = L(y, x) for all x, y ∈ F.
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(ii) L is lower semi-continuous, i.e. for all sequences xn → x and yn′ → y,

L(x, y) ≤ lim inf
n,n′→∞

L(xn, yn′) .

The causal variational principle is to minimize the action

(2) S(ρ) =
∫
F
dρ(x)

∫
F
dρ(y) L(x, y)

under variations of the measure ρ, keeping the total volume ρ(F) fixed (volume
constraint). Here the notion causal in “causal variational principles” refers to
the fact that the Lagrangian induces on M a causal structure. Namely, two
spacetime points x, y ∈ M are said to be timelike and space-like separated
if L(x, y) > 0 and L(x, y) = 0, respectively. For more details on this notion
of causality, its connection to the causal structure in Minkowski space and to
general relativity we refer to [13, Chapter 1], [16] and [13, Sections 4.9 and 5.4].

If the total volume ρ(F) is finite, one minimizes (2) over all regular Borel
measures with the same total volume. If the total volume ρ(F) is infinite,
however, it is not obvious how to implement the volume constraint, making it
necessary to proceed as follows. We need the following additional assumptions:

(iii) The measure ρ is locally finite (meaning that any x ∈ F has an open
neighborhood U with ρ(U) < ∞).

(iv) The function L(x, .) is ρ-integrable for all x ∈ F, giving a lower semi-
continuous and bounded function on F.

Given a regular Borel measure ρ on F, we then vary over all regular Borel
measures ρ̃ with ∣∣ρ̃− ρ

∣∣(F) < ∞ and
(
ρ̃− ρ

)
(F) = 0

(where |.| denotes the total variation of a measure). These variations of the
causal action are well-defined. It is shown in [22, Lemma 2.3] that a minimizer
satisfies Euler-Lagrange (EL) equations stating that for a suitable value of the
parameter s > 0, the lower semi-continuous function � : F → R

+
0 defined by

(3) �(x) :=
∫
F
L(x, y) dρ(y) − s

is minimal and vanishes on spacetime M := supp ρ,

(4) �|M ≡ inf
F

� = 0 .

For further details we refer to [22, Section 2].
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2.2. The weak Euler-Lagrange equations and jet spaces

The EL equations (4) are nonlocal in the sense that they make a statement
on � even for points x ∈ F which are far away from spacetime M . It turns out
that for the applications we have in mind, it is preferable to evaluate the EL
equations locally in a neighborhood of M . This leads to the weak EL equations
introduced in [22, Section 4]. We here give a slightly less general version of
these equations which is sufficient for our purposes. In order to explain how
the weak EL equations come about, we begin with the simplified situation
that the function � is smooth. In this case, the minimality of � implies that
the derivative of � vanishes on M , i.e.

(5) �|M ≡ 0 and D�|M ≡ 0

(where D�(p) : TpF → R is the derivative). In order to combine these two
equations in a compact form, it is convenient to consider a pair u := (a, u) con-
sisting of a real-valued function a on M and a vector field u on TF along M ,
and to denote the combination of multiplication and directional derivative by

(6) ∇u�(x) := a(x) �(x) +
(
Du�

)
(x) .

Then the equations (5) imply that ∇u�(x) vanishes for all x ∈ M . The
pair u = (a, u) is referred to as a jet.

In the general lower-continuous setting, one must be careful because the
directional derivative Du� in (6) need not exist. Our method for dealing with
this difficulty is to restrict attention to vector fields for which the directional
derivative is well-defined. Moreover, we must specify the regularity assump-
tions on a and u. To begin with, we always assume that a and u are smooth
in the sense that they have a smooth extension to the manifold F. Thus the
jet u should be an element of the jet space

(7) Jρ :=
{
u = (a, u) with a ∈ C∞(M,R) and u ∈ Γ(M,TF)

}
,

where C∞(M,R) and Γ(M,TF) denote the space of real-valued functions and
vector fields on M , respectively, which admit a smooth extension to F. We
remark that the question on whether a function or vector field on M can be
extended smoothly to F is rather subtle. The needed conditions are made
precise by Whitney’s extension theorem (see for example the more recent
account in [10]). Here we do not enter the details of these conditions, but use
them as implicit assumptions entering our definition (7). We remark that these
conditions will be fulfilled in the setting of Definition 2.3 in which M := supp ρ
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carries itself a manifold structure. Clearly, the fact that a jet u is smooth does
not imply that the functions � or L are differentiable in the direction of u.
This must be ensured by additional conditions which are satisfied by suitable
subspaces of Jρ which we now introduce. First, we let Γdiff

ρ be those vector
fields for which the directional derivative of the function � exists,

(8) Γdiff
ρ =

{
u ∈ C∞(M,TF)

∣∣ Du�(x) exists for all x ∈ M
}
.

This gives rise to the jet space

(9) Jdiff
ρ := C∞(M,R) ⊕ Γdiff

ρ ⊂ Jρ .

For the jets in Jdiff
ρ , the combination of multiplication and directional deriva-

tive in (6) is well-defined. We choose a linear subspace Jtest
ρ ⊂ Jdiff

ρ with the
property that its scalar and vector components are both vector spaces,

(10) Jtest
ρ = Ctest(M,R) ⊕ Γtest

ρ ⊆ Jdiff
ρ ,

and the scalar component is nowhere trivial in the sense that

(11) for all x ∈ M there is a ∈ Ctest(M,R) with a(x) �= 0 .

Then the weak EL equations read (for details cf. [22, eq. (4.10)])

(12) ∇u�|M = 0 for all u ∈ Jtest
ρ .

The purpose of introducing Jtest
ρ is that it gives the freedom to restrict atten-

tion to the portion of information in the EL equations which is relevant for the
application in mind. For example, if one is interested only in the macroscopic
dynamics, one can choose Jtest

ρ to be composed of jets pointing in directions
where the microscopic fluctuations of � are disregarded.

We finally point out that the weak EL equations (12) do not hold only
for minimizers, but also for critical points of the causal variational principle.
Therefore, all methods and results of this paper do not apply only to mini-
mizers, but more generally to critical points. For brevity, we also refer to a
measure with satisfies the weak EL equations (12) as a critical measure.

We conclude this section by introducing a few jet spaces and specify-
ing differentiability conditions which will be needed later on. We begin with
the spaces J�ρ, where � ∈ N0 ∪ {∞} can be thought of as the order of dif-
ferentiability if the derivatives act simultaneously on both arguments of the
Lagrangian:

Definition 2.1. For any � ∈ N0 ∪ {∞}, the jet space J�ρ ⊂ Jρ is defined as
the vector space of test jets with the following properties:
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(i) For all y ∈ M and all x in an open neighborhood of M , directional
derivatives

(13)
(
∇1,v1 + ∇2,v1

)
· · ·

(
∇1,vp + ∇2,vp

)
L(x, y)

(computed componentwise in charts around x and y) exist for all p ∈
{1, . . . , �} and all v1, . . . , vp ∈ J�ρ.

(ii) The functions in (13) are ρ-integrable in the variable y, giving rise to
locally bounded functions in x. More precisely, these functions are in the
space

L∞
loc

(
M,L1(M,dρ(y)

)
; dρ(x)

)
.

(iii) Integrating the expression (13) in y over M with respect to the measure ρ,
the resulting function (defined for all x in an open neighborhood of M)
is continuously differentiable in the direction of every jet u ∈ Jtest

ρ .

Here and throughout this paper, we use the following conventions for
partial derivatives and jet derivatives:

• Partial and jet derivatives with an index i ∈ {1, 2}, as for example in (13),
only act on the respective variable of the function L. This implies, for
example, that the derivatives commute,

(14) ∇1,v∇1,uL(x, y) = ∇1,u∇1,vL(x, y) .

• The partial or jet derivatives which do not carry an index act as par-
tial derivatives on the corresponding argument of the Lagrangian. This
implies, for example, that

∇u

∫
F
∇1,v L(x, y) dρ(y) =

∫
F
∇1,u∇1,v L(x, y) dρ(y) .

We point out that, in contrast to the method and conventions used in [22],
jets are never differentiated.

In order for all integral expressions to be well-defined, we impose through-
out the paper that the space Jtest

ρ has the following properties (for details
see [23, Section 3.5]).

Definition 2.2. The jet space Jtest
ρ is surface layer regular if Jtest

ρ ⊂ J2
ρ

(see Definition 2.1) and if for all u, v ∈ Jtest
ρ and all p ∈ {1, 2} the following

conditions hold:
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(i) The directional derivatives

(15) ∇1,u
(
∇1,v + ∇2,v

)p−1L(x, y)

exist.
(ii) The functions in (15) are ρ-integrable in the variable y, giving rise to

locally bounded functions in x. More precisely, these functions are in the
space

L∞
loc

(
M,L1(M,dρ(y)

)
; dρ(x)

)
.

(iii) The u-derivative in (15) may be interchanged with the y-integration, i.e.∫
M
∇1,u

(
∇1,v + ∇2,v

)p−1L(x, y) dρ(y)

= ∇u

∫
M

(
∇1,v + ∇2,v

)p−1L(x, y) dρ(y) .

2.3. The nonlinear solution space and linearized solutions

In what follows, we shall be concerned with families of critical measures,
always for a fixed value of the Lagrange parameter s in (3). In order to obtain
these families of solutions, we want to vary a given measure ρ (typically
a critical measure) without changing its general structure. To this end, we
multiply ρ by a weight function and apply a diffeomorphism, i.e.

(16) ρ̃ = F∗
(
f ρ

)
,

where F ∈ C∞(M,F) and f ∈ C∞(M,R+) are smooth mappings (as defined
before (7)). We now consider a set of such measures which all satisfy the weak
EL equations,

(17) B ⊂ {ρ̃ critical measure of the form (16)} .

In the smooth setting, B can be given the structure of a Fréchet manifold
(see [22, Section 3 and Appendix A]). Here we do not assume smoothness,
but we work instead in the lower semi-continuous setting introduced in [22,
Section 4]. Nevertheless, it might be helpful for the reader to visualize B as
a manifold, to identify jets with scalar functions and vector fields, conserved
quantities with differential forms on B, and so on. For this reason, we always
mention how our objects can be understood geometrically in the smooth
setting.
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A variation of the measure (16) is described by a family (fτ , Fτ ) with τ ∈
(−δ, δ) and δ > 0. Infinitesimally, the variation is again described by a jet

(18) v = (b, v) := d

dτ
(fτ , Fτ )

∣∣
τ=0 .

If the corresponding curve ρτ lies in B and B is a smooth manifold, then the
tangent vector v is a vector in the tangent space TρB. In the non-smooth
setting, the fact that ρτ lies in B means that the weak EL equations (12)
are preserved by the variation. Evaluating this condition infinitesimally in τ
gives rise to the linearized field equations, which we now introduce. Before
beginning, we point out that for the analysis of the above functions fτ and Fτ ,
we always work with Taylor expansions of the component functions in given
charts. Therefore, for any x ∈ M we choose a chart of F around x and work
in components xα. For ease in notation, we usually omit the index α as well
as all vector and tensor indices. But one should keep in mind that, from now
on, we always work in given charts.

The property of the family of measures ρ̃τ of the form (16) for a given
family (fτ , Fτ ) to be critical for all τ means infinitesimally in τ that the
jet v defined by (18) satisfies the linearized field equations (for the derivation
see [15, Section 3.3] and [22, Section 4.2])

(19) 〈u,Δv〉|M = 0 for all u ∈ Jtest
ρ ,

where

(20) 〈u,Δv〉(x) := ∇u

(∫
M

(
∇1,v + ∇2,v

)
L(x, y) dρ(y) −∇v s

)
.

In order for the last expression to be well-defined, we always assume that v ∈
J1
ρ. We denote the vector space of all solutions of the linearized field equations

by Jlin
ρ ⊂ J1

ρ. In the smooth setting, Jlin
ρ can be identified with the tangent

space TρB.

2.4. Green’s operators and the causal fundamental solution

In [8] the existence theory for solutions of the linearized field equations was
developed. In particular, it was shown under suitable assumptions that ad-
vanced and retarded Green’s operators exist. We now recall a few notions and
results from [8]. The inhomogeneous linearized field equations are obtained
by adding an inhomogeneity on the right side of (19), i.e.

〈u,Δv〉|M = 〈u,w〉 for all u ∈ Jtest .
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One way to give the right side of this equation a precise meaning is to regard w

as a dual jet, so that 〈u,w〉 is a dual pairing (for details see [8, Sections 2.2.
and 2.3]). In what follows, it is more suitable to identify jets and dual jets by
a scalar product (for details see [8, Section 3.2]). To this end, we let Γx be
the subspace of the tangent space spanned by the test jets,

(21) Γx :=
{
u(x) | u ∈ Γtest} ⊂ TxF .

We introduce a Riemannian metric gx on Jx. This Riemannian metric also
induces a pointwise scalar product on the jets. Namely, setting

(22) Jx := R⊕ Γx ,

we obtain the scalar product on Jx

(23) 〈v, ṽ〉x : Jx × Jx → R , 〈v, ṽ〉x := b(x) b̃(x) + gx
(
v(x), ṽ(x)

)
.

We denote the corresponding norm by ‖.‖x. By integrating the scalar prod-
uct (23) over M we obtain a scalar product on the jets. We point out that
the choice of the Riemannian metric is not canonical. The freedom in choos-
ing the Riemannian metric can be used in order to satisfy the hyperbolicity
conditions needed for proving existence of solutions (as explained after [8,
Definition 3.3]). Since we will use these existence results later on, we assume
that the Riemannian metric in (23) has been chosen in agreement with these
hyperbolicity conditions.

By integrating the pointwise scalar product (23) over M we obtain Hilbert
spaces of jets. To this end, we first consider jets v = (b, v), where v now is
a measurable section of TF along M with v(x) ∈ Jx for all x ∈ M . The
jets of this form which are square integrable form a Hilbert space denoted
by L2(M,dρ). Likewise, L2

loc(M,dρ) denotes the jets which are locally square
integrable (i.e. which are square integrable over every compact subset of M).
The vector space L2

0(M,dρ) is the subspace of jets with compact support.
We always assume that spacetime is globally hyperbolic (see [8, Defini-

tion 4.19]) and that the Lagrangian has finite range (see [8, Definition 4.6]).
Under these assumptions there exist causal Green’s operators

(24) S∧, S∨ : L2
0(M,dρ) → L2

loc(M,dρ)

(see [8, Section 5.2]). The operator S∧ is retarded and S∨ is advanced in the
sense that the support of the S∧f and S∨f lies in the causal future (respec-
tively past) of the support of f , up to vectors in the orthogonal complement
of the test jets (for details see [8, Section 4.4]). For our purposes, it is most
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convenient to restrict the Green’s operators to a smaller domain, denoted by

(25) J∗ρ,0 :=
{
u ∈ L2

0(M,dρ)
∣∣ S∨u, S∧u ∈ Jvary

ρ

}
,

where Jvary
ρ is a suitably chosen subspace of Jtest

ρ (for details see [8, Sec-
tion 3.2]). Then the Green’s operators satisfy the relations

(26) S∨, S∧ : J∗ρ,0 → Jρ,sc and ΔS∨ = ΔS∧ = −1 ,

where Jρ,sc denotes the jets in Jvary
ρ with spatially compact support (for details

see [8, Section 5.3]). Moreover, the causal fundamental solution is defined by

(27) G := S∧ − S∨ : J∗ρ,0 → Jρ,sc .

Using the right equation in (26), one sees that G maps to linearized solutions.
We denote those solutions by

Jlin
ρ,sc := G J∗ρ,0 ⊂ Jρ,sc ⊂ Jlin ∩ Jtest .

Moreover, the operator G gives rise to the short exact sequence

(28) 0 → J
vary
ρ,0

Δ−→ J∗ρ,0
G−→ Jρ,sc

Δ−→ J∗ρ,sc → 0 ,

where J
vary
ρ,0 is a subspace of the compactly supported test jets, whereas J∗ρ,sc

is a space of spatially compact jets (for details see again [8, Section 5.3]).

2.5. The perturbation map and its linearization

The perturbation expansion developed in [15] provides a method for con-
structing critical measures from a linearized solution. We now recall a few
results from this paper in a form which is most convenient to us. Having a
scattering process in mind where the interaction takes place in a compact
spacetime region, we can assume that all inhomogeneities appearing in the
perturbation expansion have compact support. Assuming suitable regularity,
the inhomogeneities are even in the jet space J∗ρ,0. Then we can work with
the Green’s operators in (24), obtaining jets with spatially compact support
in Jρ,sc. Correspondingly, we consider linearized solutions in Jlin

ρ,sc, again with
spatially compact support. Then the constructions in [15] formally give rise
to the so-called perturbation map

(29) Pρ : U ⊂ Jlin
ρ,sc → B ,

where U is an open neighborhood of the origin (the reason why this equa-
tion is only formal is that the perturbation expansion is not known to con-
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verge). Clearly, the operator Pρ depends on the choice of the Green’s opera-
tors.

In differential geometric language, the mapping Pρ can be regarded as a
local chart of B in a neighborhood of ρ. We use the notation

ρ̃ = Pρ(w) with w ∈ U .

Always working with measures of the form (16), we can identify the measure ρ̃
with the pair (f, F ). This allows us to introduce the short notation where

(30) (f, F ) stands for the measure F∗(f ρ) .

Then the linearization of Pρ maps linearized solutions to linearized solutions,
i.e.

(31) DPρ|w : Jlin
ρ,sc → Jlin

ρ̃,sc , u, v �→ ũ, ṽ

(where DPρ|w is the derivative at w defined as a linear mapping). In [15] ex-
plicit formulas for the perturbation map are derived to every order in pertur-
bation theory. For this perturbation expansion one uses (30) to identify Pρ(w)
with the pair (f, F ), and then expands this pair in suitable charts to obtain a
formal power series of jets. In order to keep the notation as simple as possible,
here we write the perturbation expansion symbolically as

(32) Pρ(λw) =
∞∑
p=1

λp P(p)
ρ

(
w, . . . ,w︸ ︷︷ ︸
p arguments

)
.

The coefficients of the expansions have the properties that P(1)
ρ is the identity

and that

(33) P(p)
ρ :

(
Jlin
ρ,sc

)p → Jρ,sc is p-multilinear and symmetric .

By differentiating, we obtain

(34) DPρ|λw (u) =
∞∑
p=1

p λp−1 P(p)
ρ

(
w, . . . ,w︸ ︷︷ ︸
p− 1 arg.

, u
)
.

2.6. Conserved surface layer integrals for linearized solutions

As explained in the introduction, the main goal of this paper is to get a
connection to quantum field theory in Minkowski space. With this in mind,
from now on we make the following simplifying assumptions:
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Definition 2.3. Spacetime M := supp ρ has a smooth manifold structure
if the following conditions hold:

(i) M is a k-dimensional smooth, oriented and connected submanifold of F.
Equipped with a smooth atlas, we also denote it by M.

(ii) In a chart (x, U) of M, the universal measure is absolutely continuous
with respect to the Lebesgue measure with a smooth, strictly positive
weight function,

(35) dρ = h(x) dkx with h ∈ C∞(M,R+) .

If in addition, the manifold M is topologically of the form M = R×N with a
manifold N which admits a complete Riemannian metric gN , then spacetime
is said to admit a global time function.

We remark that the assumption of M being a smooth submanifold of F
also implies that the conditions of the Whitney extension theorem mentioned
after (7) are satisfied. As a consequence, smoothness as defined after (7) is
consistent with the usual notion of smoothness in the coordinate charts. More-
over, similar to our assumption that the scalar components of the test jets is
nowhere trivial (11), it is sensible and useful to assume that the subspace of
the tangent space spanned by the test jets contains all the tangent vectors
to M ,

(36) TxM ⊂ Γx for all x ∈ M .

We write the points of M as (t,x) with t ∈ R and x ∈ N and interpret
the first component as time. For clarity, we also denote the time coordinate
by T , i.e.

(37) T : M → R , (t,x) �→ t

and denote the surfaces of constant time and the past of these surfaces by

N t := T−1(t)(38)
Ωt := {x ∈ M | T (x) ≤ t} .(39)

It is often convenient to decompose the measure ρ into a time and spatial
integration measure,

(40) dρ = dt dμt ,
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where the measure μt is given in local coordinates (t, x1, . . . , xk−1) by

dμt = h(t,x) dx1 · · · dxk−1

with h as in (35). Clearly, the interpretation of T as “time” also entails addi-
tional assumptions (in particular, the distinction from a “spatial coordinate”).
These additional assumptions will be supplemented in the course of the pa-
per when we need them. We also point out that, thinking of M as Minkowski
space, our global chart does not distinguish a reference frame of Minkowski
space. Indeed, if the conditions in Definition 2.3 hold in one reference frame,
they hold just as well in any other reference frame. But we use the above
diffeomorphism M → M and the global time function in order to distinguish
a spatial orientation and a direction of time.

Let ρ ∈ B be a critical measure. Then, as shown in [22, 23], there are
various conservation laws for surface layer integrals. We now collect those
surface layer integrals and conservation laws which are of relevance for our
constructions.

Definition 2.4. The spatially compact jets Jρ,sc are surface layer finite if
for any t ∈ R the following integrals are finite,

2∑
a,b=1

∫
Ωt

dρ(x)
∫
M\Ωt

dρ(y)
(∣∣∇a,vL(x, y)

∣∣ +
∣∣∇a,v∇b,vL(x, y)

∣∣) < ∞ .

2∑
a,b=1

∫
N t

dμt(x)
∫
M

dρ(y)
(∣∣∇a,vL(x, y)

∣∣ +
∣∣∇a,v∇b,vL(x, y)

∣∣) < ∞ .

Definition 2.5. Assuming that Jρ,sc is surface layer finite, we define the
following surface layer integrals,

γtρ : Jρ,sc → R (conserved one-form)

γtρ(v) =
∫

Ωt
dρ(x)

∫
M\Ωt

dρ(y)
(
∇1,v −∇2,v

)
L(x, y)(41)

σt
ρ : Jρ,sc × Jρ,sc → R (symplectic form)

σt
ρ(u, v) =

∫
Ωt

dρ(x)
∫
M\Ωt

dρ(y)
(
∇1,u∇2,v −∇2,u∇1,v

)
L(x, y)(42)

(., .)tρ : Jρ,sc × Jρ,sc → R (surface layer inner product)

(u, v)tρ =
∫

Ωt
dρ(x)

∫
M\Ωt

dρ(y)
(
∇1,u∇1,v −∇2,u∇2,v

)
L(x, y) .(43)
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Here (41) corresponds to the conservation law for the functional IΩ
1 as

established in [23, Theorem 3.1 and Section 3.3]; see also [23, Corollary 3.9].
The surface layer integral in (42), on the other hand, is the symplectic form
(see [22, Section 4.3]); it is obtained alternatively by anti-symmetrizing the
conservation law for IΩ

2 (u, v) in the jets u and v (see [23, Corollary 3.10]).
Finally, the surface layer integral in (43) is obtained by symmetrizing IΩ

2 (u, v)
in its two arguments (see [23, Theorem 1.1]).

In this paper, we always assume that the bilinear form defined by (42) is
non-degenerate, and that (43) is positive semi-definite. These assumptions
are sensible because they have been justified in Minkowski space in [14].
However, a-priori the bilinear form σt

ρ may be degenerate (thus it would
be more appropriate to call it a “presymplectic form”). In this case, our
method is to choose Jvary so small that the restriction of σt

ρ to Jρ,sc × Jρ,sc
is non-degenerate. This procedure also justifies the name “symplectic form.”
Particular examples where the symplectic form will be degenerate are systems
involving gauge symmetries. In these examples, the choice of Jvary involves a
gauge-fixing procedure or the choice of a specific gauge.

We finally remark that in the smooth setting, the symplectic form is the
exterior derivative of γρ (for details see the proof of [22, Lemma 3.4]). More-
over, the inner product (., .)ρ can be regarded as the symmetrized derivative
of γρ. We will come back to this point in more detail in Section 6.4.

As shown in [22, 23], the above surface layer integrals satisfy conservation
laws. For self-consistency and for a better comparison with the nonlinear
conservation law in Section 4, we now derive these conservation laws again,
but with a different method where we differentiate the above formulas with
respect to time.

Proposition 2.6. For linearized solutions u, v ∈ Jlin
ρ,sc, the surface layer in-

tegrals in Definition 2.5 satisfy the identities

d

dt
γtρ(v) = −

∫
N t

∇vs dμt(x)(44)

d

dt
σt
ρ(u, v) = 0(45)

d

dt
(u, v)tρ =

∫
N t

(
∇u∇vs− 2 Δ2[u, v]

)
dμt ,(46)

where

Δ2[u, v] := 1
2

(∫
M

(
∇1,u + ∇2,u

)(
∇1,v + ∇2,v

)
L(x, y) dρ(y) −∇u∇v s

)
.
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Proof. Using (40), we can rewrite the spacetime integrals using Fubini’s the-
orem as products of a time integral and a spatial integral. Then time deriva-
tives reduce to differentiating the upper or lower limits of integration, like for
example

d

dt

∫
Ωt

(· · · ) dρ(x) = d

dt

∫ t

−∞
dt′

∫
N t′

(· · · ) dμt′ =
∫
N t

(· · · ) dμt .

In this way, we obtain

d

dt
γtρ(v) =

∫
N t

dμt(x)
∫
M\Ωt

dρ(y)
(
∇1,v −∇2,v

)
L(x, y)

−
∫

Ωt
dρ(x)

∫
N t

dμt(y)
(
∇1,v −∇2,v

)
L(x, y)

(∗)=
∫
N t

dμt(x)
∫
M

dρ(y)
(
∇1,v −∇2,v

)
L(x, y)

=
∫
N t

dμt(x)
(
2∇v�− Δv−∇vs

)
= −

∫
N t

∇vs dμt(x) ,(47)

where in (∗) we used that the integrand is anti-symmetric in x and y and
employed (3) and (20). Similarly,

d

dt
σt
ρ(u, v) =

∫
N t

dμt(x)
∫
M

dρ(y)
(
∇1,u∇2,v −∇2,u∇1,v

)
L(x, y)

=
∫
N t

(
〈u,Δv〉(x) − 〈v,Δu〉(x)

)
dμt(x) = 0(48)

d

dt
(u, v)tρ =

∫
N t

dμt(x)
∫
M

dρ(y)
(
∇1,u∇1,v −∇2,u∇2,v

)
L(x, y)

= −
∫
N t

dμt(x)
∫
M

dρ(y)
(
∇1,u + ∇2,u

)(
∇1,v + ∇2,v

)
L(x, y)

+
∫
N t

dμt(x)
∫
M

dρ(y) ∇1,u
(
∇1,v + ∇2,v

)
L(x, y)

+
∫
N t

dμt(x)
∫
M

dρ(y) ∇1,v
(
∇1,u + ∇2,u

)
L(x, y)

=
∫
N t

(
− 2 Δ2[u, v] + 〈u,Δv〉 + 〈v,Δu〉 + ∇u∇vs

)
dμt .(49)

This completes the proof.

We now explain why and in which sense the identities (44)–(46) can be
understood as conservation laws. The relation (45) implies that the symplectic
form is conserved in time. The relation (44) shows that the same is true
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for γ1
ρ(v), provided that the scalar component of v is zero. Thus we get a

conservation law for linearized solutions with vanishing scalar component. The
term ∇u∇vs in (46) involves again only the scalar components of the jets. The
term Δ2[u, v] in (46), on the other hand, can be understood as an interaction
term. Thus we get an exact conservation law only if this interaction term
vanishes. If the interaction term is non-zero, then (46) can still be interpreted
as an approximate conservation law. This approximate conservation law is
indeed very useful for proving existence of solutions (for details see the energy
estimates in [8, Section 3.2]). We remark that the right side of (46) can be
rewritten using Green’s operators; see [23, Theorem 1.1].

2.7. The Cauchy problem and restrictions to surface layers

We now recall a few results of [8] on the Cauchy problem for the linearized field
equations which will be needed later on. We again assume that spacetime is
globally hyperbolic (see [8, Definition 4.19]) and that it has a smooth manifold
structure with global time function T (see Definition 2.3). One of the main
results in [8] is to show that the Cauchy problem is well-posed. However, the
initial data must not be prescribed on a hypersurface, but instead on a surface
layer, i.e. in a spacetime strip which is extended in time on the Compton scale
(i.e. Δt ∼ m−1). More precisely, given initial data v0 ∈ Jρ,sc, there is a unique
solution v ∈ Jlin

ρ,sc which coincides with v0 in the surface layer at time t0 in
the sense that v− v0 ∈ Jρ

t0
(for details see [8, Section 3.5]). It is convenient

to always identify the Cauchy data on a surface layer with the corresponding
linearized solution. We thus obtain a mapping

(50) |t0 : Jρ,sc → Jlin
ρ,sc , v0 �→ v0|t0 = v ,

which we refer to as the restriction map. The restriction map is very useful
because it allows us to identify a nonlinear jet at any time with a correspond-
ing linearized solution, obtained by restricting the nonlinear jet to the Cauchy
surface layer and taking it as the initial data for the Cauchy problem.

Before going on, we briefly discuss and explain this construction. One
should keep in mind that in the Cauchy surface layer, the jets v and v0 do
not need to coincide pointwise, but only in a weak sense when tested in Jtest.
This implies that identifying nonlinear jets with linearized solutions using the
restriction map may involve an error term which takes into account corrections
due to the microscopic spacetime structure. Since the aim in this work is to
get a connection to quantum field theory in Minkowski space, we shall simply
ignore these corrections. But they must clearly be taken into account when
quantum gravity effects are considered.
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3. Inner solutions

3.1. Definition and basic properties

We again assume that spacetime has a smooth manifold structure and admits
a global time function (see Definition 2.3). Let v ∈ Γ(M,TM) be a vector
field. Then its divergence div v ∈ C∞(M,R) may be defined by the relation∫

M
div v η(x) dρ = −

∫
M

Dvη(x) dρ(x) ,

to be satisfied by all test functions η ∈ C∞
0 (M,R). In a local chart (x, U), the

divergence is computed by

(51) div v = 1
h
∂j
(
h vj

)
(where, following the Einstein summation convention, we sum over j = 0, . . . ,
3).

When integrating by parts using Gauß’ theorem, we need to be able to
make sure that we do not get boundary values at infinity. To this end, it is
convenient to choose the Riemannian metric gx introduced before (23) to be
compatible with the smooth manifold structure in the following sense. We
again assume that (36) holds.

Definition 3.1. The Riemannian metric g on Γx is adapted at infinity if
there is a sequence (ηn)n∈N of compactly supported functions, ηn ∈ C∞

0 (M,R),
with the following properties:

(i) The functions ηn are monotone increasing and exhaust M in the sense
that for any compact set K ⊂ M there is N with ηn|K ≡ 1 for all n ≥ N .

(ii) The derivatives tend uniformly to zero, i.e.

lim
n→∞

sup
x∈M

‖Dηn‖x = 0 ,

where ‖.‖x is the norm on TxM ⊂ Γx induced by the Riemannian met-
ric g.

In the later applications when M is topologically Minkowski space (see
Section 6.1), we can choose ηn as η(x/n) with a usual cutoff function η ∈
C∞

0 (R4), and g such that its restriction to TM is equivalent to the Euclidean
metric.
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Definition 3.2. An inner solution is a jet v of the form

v = (div v, v) with v ∈ Γ(M,TM) .

We make the following regularity and decay assumptions:

(i) The vector field v can be extended to a vector field ṽ ∈ Γ(U, TF) defined
in a neighborhood U of M such that the directional derivative (D1,ṽ +
D2,ṽ)L(x, y) exists for all x ∈ U and y ∈ M and is integrable in y, i.e.

∫
M

∣∣∣(D1,ṽ + D2,ṽ
)
L(x, y)

∣∣∣ dρ(y) < ∞ for all x ∈ U .

Moreover, the directional derivative Dṽ�(x) exists for all x ∈ U and is
continuous in U .

(ii) The integral ∫
M

L(x, y) ‖v(y)‖y dρ(y)

is finite and bounded locally uniformly in a neighborhood of M (where
‖.‖y is again the norm corresponding to the scalar product (23) and the
Riemannian metric adapted at infinity according to Definition 3.1).

(iii) For any test jet u ∈ Jtest
ρ , the directional derivative Dvu (computed in the

same charts used for computing the higher derivatives in Definition 2.1)
is again in Jtest

ρ .

The vector space of all inner solutions is denoted by Jin
ρ . The set of all inner

solutions which are compactly supported on every set N t is denoted by Jin
ρ,sc.

Note that (i) implies that every inner solution is in J1
ρ ∩ Jdiff

ρ (see (9) and
Definition 2.1).

The name “inner solution” is justified by the following lemma:

Lemma 3.3. Every inner solution v ∈ Jin
ρ is a solution of the linearized field

equations, i.e.

〈u,Δv〉|M = 0 for all u ∈ Jtest
ρ .

Proof. Applying the Gauss divergence theorem, one finds that for every f ∈
C1

0 (M,R),
∫
M

∇vf dρ =
∫
M

(
div v f + Dvf

)
dρ =

∫
M

div
(
fv

)
dρ = 0 .
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Likewise, in the linearized field equations we may integrate by parts in y. In
a formal computation, we obtain for any x ∈ U ,

(52)
∫
M

(
D1,ṽ + ∇2,v

)
L(x, y) dρ(y) = Dṽ

(
� + s

)
(x) .

However, as the function L(x, .) need not be compactly supported, we need
to insert the cutoff functions ηn in Definition 3.1. Moreover, we need to be
careful because the individual derivatives do not need to exist.

In order to prove (52), making use of Definition 3.2 (i), we know from
Lebesgue’s dominated convergence theorem that for any x ∈ U ,

A(x) :=
∫
M

(
D1,ṽ + ∇2,ṽ

)
L(x, y) dρ(y)

= lim
n→∞

∫
M

(
D1,ṽ + ∇2,ṽ

)
L(x, y) ηn(y) dρ(y) .

Now we can integrate by parts to obtain

(53) A(x) = lim
n→∞

(
Dṽ

∫
M

L(x, y) ηn(y)dρ(y)−
∫
M

L(x, y)
(
Dvηn(y)

)
dρ(y)

)

(here one needs to pull out the derivative Dṽ before the integral, because
the Lagrangian need not be differentiable; the integral, on the other hand, is
well-defined because the last integral is). The last integral can be estimated
by

(54)
∣∣∣∣
∫
M

L(x, y)
(
Dvηn(y)

)
dρ(y)

∣∣∣∣ ≤ sup
M

‖Dvηn‖
∫
M

‖v(y)‖y L(x, y) dρ(y) .

According to Definition 3.2 (ii), the obtained integral is bounded locally uni-
formly in x. Using Definition 3.1 (ii), we conclude that the last integral in (53)
tends to zero as n → ∞, locally uniformly in x.

As a consequence, also the first integral in (53) converges as n → 0, locally
uniformly in x. In order to prove (52), it remains to show that this limit is
given by

(55) lim
n→∞

(
Dṽ

∫
M

L(x, y) ηn(y) dρ(y)
)

= Dṽ

(
� + s

)
(x) .

Assume conversely that this equation does not hold for all x ∈ U . Then by
continuity (note that the left side of (55) is continuous as a locally uniform
limit of continuous function, as is the right side by Definition 3.2 (i)), the
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equation (55) is violated in an open set. Therefore, we may choose a path γ :
[t0, t1] → U along the integral curves of ṽ such that

∫ t1

t0

lim
n→∞

(
Dṽ

∫
M

L
(
γ(t), y

) (
1 − ηn(y)

)
dρ(y)

)
dt �= 0 .

Due to the locally uniform convergence, we may interchange the integral and
the limit to conclude that

lim
n→∞

∫
M

L(x, y)
(
1 − ηn(y)

)
dρ(y)

∣∣∣x=γ(t1)

x=γ(t0)
�= 0 .

On the other hand, using assumption (iv) on page 59, the limits on the left
vanish using Lebesgue’s dominated convergence theorem. This is a contradic-
tion. Hence (55) holds. This concludes the proof of (52).

We rewrite (52) as

Δṽ(x) = ∇ṽ�(x) for all x ∈ U

(where the scalar component of v can be extended to U arbitrarily). The
next and final step is to show that for any u ∈ Jtest

ρ and x ∈ M , the jet
derivative ∇u of this equation exists and vanishes. To this end, we write the
jet derivative of the right side as

∇2�|x(u, v) = ∇v(x)
(
∇u�(x)

)
−∇Dvu�(x)

(where the first summand on the right is an iterated directional deriva-
tive). The last summand vanishes because of the weak EL equations, using
that Dvu ∈ Jtest

ρ (see Definition 3.2 (iii)). In order to treat the first summand,
we note that the function ∇u� vanishes identically on M by the weak EL
equations. Therefore, this function is differentiable in the direction of every
vector field on M , and this directional derivative is zero. This concludes the
proof.

Inner solutions have the nice property that surface layer integrals simplify
to standard surface integrals, as is exemplified in the following proposition
for the conserved one-form and the symplectic form in Definition 2.5.

Definition 3.4. Let v = (div v, v) ∈ Jin
ρ be an inner solution and Ω ⊂

M closed with smooth boundary ∂Ω. On the boundary, we define the mea-
sure dμ(v, x) as the contraction of the volume form on M with v, i.e. in local
charts

(56) dμ(v, x) = h εijkl v
i dxjdxkdxl ,
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where εijkl is the totally anti-symmetric Levi-Civita symbol (normalized by
ε0123 = 1).

We also use the notation

μ(v, Nt) =
∫
Nt

dμ(v, x) .

Proposition 3.5. Let v ∈ Jin
ρ,sc be a spatially compact inner solution and u ∈

Jlin
ρ a linearized solution. Then for any time t,

γtρ(v) = sμ(v, N t)(57)
σt
ρ(u, v) = 0 .(58)

Proof. In (41) we integrate by parts with the help of the Gauß divergence
theorem. We thus obtain

γtρ(v) =
∫
N t

dμ(v, x)
∫
M\Ωt

dρ(y) L(x, y) +
∫

Ωt
dρ(x)

∫
N t

dμ(v, y) L(x, y)

=
∫
N t

dμ(v, x)
∫
M

dρ(y) L(x, y) = s

∫
N t

dμ(v, x) = sμ
(
v, N t) ,

where in the last line we used the symmetry of L and employed the EL
equations. This gives (57).

In order to derive (58), we integrate by parts in (42),

σt
ρ(v, u) =

∫
N t

dμ(v, x)
∫
M\Ωt

dρ(y) ∇2,uL(x, y)

+
∫

Ωt
dρ(x)

∫
N t

dμ(v, y) ∇1,uL(x, y)

=
∫
N t

dμ(v, x)
∫
M

dρ(y) ∇2,uL(x, y) .

Adding the weak EL equations ∇u�(x) = 0, we obtain

σt
ρ(v, u) =

∫
N t

dμ(v, x)
(∫

M

(
∇1,u + ∇2,u

)
L(x, y) dρ(y) −

(
∇u s

)
(x)

)

=
∫
N t

(Δu)(x) dμ(v, x) = 0 ,

giving the result.

We next show that inner solutions can always be used for testing:
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Proposition 3.6. Let v be a solution of the linearized field equations (19).
Then the linearized field equations are also satisfied when testing in Jin

ρ , i.e.

(59) 〈u,Δv〉|M = 0 for all u ∈ Jin
ρ .

Proof. Let u = (div u, u) be an inner solution. Using that the scalar com-
ponent of the test jets form a subspace (10) are nowhere trivial (11), the
linearized field equations (19) imply that∫

M

(
∇1,v + ∇2,v

)
L(x, y) dρ(y) −

(
∇v s

)
(x) = 0 for all x ∈ M .

Hence all the derivatives in the direction of the vector field u vanish. This
gives the result.

Let us explain the significance of above constructions. Inner solutions
can be regarded as infinitesimal generators of transformations of M which
leave the measure ρ unchanged. Therefore, inner solutions do not change the
causal fermion system, but merely describe symmetry transformations of the
universal measure. In view of Proposition 3.6, it is a good idea to enlarge Jtest

such as to include all inner solutions (note that every inner solution is in Jdiff

as defined in (9), simply because the function � vanishes identically on M , so
that its derivative in (8) exists and vanishes for every inner solution). With
this in mind, in what follows we always assume that

(60) Jin
ρ ⊂ Jtest

ρ .

3.2. Construction of spatially compact inner solutions

In this section we use methods of hyperbolic partial differential equations in
order to construct useful classes of inner solutions. We first show that the
scalar component of an inner solution can be chosen arbitrarily:

Proposition 3.7. Let a ∈ C∞
sc (M,R) be a smooth function with spatially

compact support. Then there is a spatially compact vector field with

div v = a .

In the case that a is compactly supported, the vector field v can be chosen to
be supported in the future of a, in the sense that for all t ∈ R the implication

a|Ωt ≡ 0 =⇒ v|Ωt ≡ 0

holds (with Ωt as defined in (39)).
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Proof. Our task is to solve the equation div v = a, which can be written
equivalently as

(61) ∂j
(
h vj

)
= ha .

We first consider the case that a has compact support. In order to solve the
partial differential equation (61), it is useful to choose a Lorentzian metric g.
The choice of the metric is irrelevant, and the arbitrariness in choosing the
metric corresponds to the fact that (61) is an underdetermined equation which
admits many different solutions. For simplicity, we choose g as the Minkowski
metric. Let � be the wave operator in Minkowski space. Using for example
retarded Green’s operators, there is a solution φ ∈ C∞

sc (M,R) with �φ = ha.
Then the vector field

(62) vj := 1
h
gjk ∂kφ .

satisfies (61).
In the case that the function a merely has spatially compact support, we

decompose a as
a = a+ + a− ,

where a+ is supported in the set {t > 0} and a− is supported in the set {t <
1}. Denoting the advanced and retarded Green’s operators of the scalar wave
equation in Minkowski space by S∨ and S∧, respectively, the function

φ := S∧(ha+
)
+ S∨(ha−)

is a well-defined solution of the equation �φ = ha which is smooth and has
spatially compact support. Therefore, we can again define the vector field v
by (62). This gives the result.

In what follows, we always assume that this vector field satisfies all the
regularity and decay assumptions in Definition 3.2. We then obtain a corre-
sponding inner solution

v := (a, v) ∈ Jin
ρ,sc .

According to Lemma 3.5, for a spatially compact inner solution v ∈ Jin
ρ,sc

the surface layer inner product γtρ(v) in (41) reduces to the flux of v through
the surface N t. According to the Gauss divergence theorem, this flux integral
is time independent provided that v is divergence-free. Keeping in mind that
the divergence of v is precisely the scalar component of the resulting inner
solution, we get direct agreement with the conservation law (44). We now
show that the flux integral (57) can be arranged to have an arbitrary value.
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Proposition 3.8. Given c ∈ R, there is a spatially compact inner solu-
tion w = (0, w) ∈ Jin

ρ,sc without scalar component with γtρ(w) = c.

Proof. As in the proof of Proposition 3.7 we consider the scalar wave equa-
tion. We choose a compactly supported smooth vector field v on N t such
that γtρ(v) = c. Next, we let φ be the solution of the Cauchy problem

�φ = 0 , φ|N t = 0, 1
h
gjk ∂kφ = vj .

Due to finite propagation speed, this solution is spatially compact. Moreover,
the vector field w with components

wj := 1
h
gjk ∂kφ

is divergence-free and coincides on N t with v.

3.3. Application: linearized solutions without scalar components

As an application of the above results, we now construct a space of linear
solutions with particularly nice properties. Indeed, combining Propositions 3.7
and 3.8 with the conservation law of (44) immediately gives the following
result:

Corollary 3.9. For any solution v ∈ Jlin
ρ,sc there is an inner solution u ∈ Jin

ρ,sc
such that

(i) The jet v− u has no scalar component.
(ii) γtρ(v− u) = 0 for all t.

Clearly, the jet u is not unique, because the vector field u can be modified
by a divergence-free vector field with no flux through N t. But, similar to a
gauge freedom, this arbitrariness has no physical significance.

Choosing for every basis vector v ∈ Jlin
ρ,sc a corresponding jet u ∈ Jin

ρ,sc,
writing v−u = (0, w) we obtain a vector field on TF along M . All the resulting
vector fields span a vector space which we denote by Γlin

sc . In this way, we
obtain a linear mapping V : Jlin

sc → Γlin
sc with the property that for every w ∈

Γlin
sc , the corresponding jet w = (0, w) is a linearized solution with vanishing

inner flux, i.e. γtρ(w) = 0. Moreover, from 3.5 we know that the symplectic
form is not affected by this construction, i.e. σt

Ω(u, v) = σt
Ω((0,Vu), (0,Vv)).

For ease in notation, in what follows we implicitly identify the vector fields
with corresponding jets with zero scalar components. For example, we simply
write γtρ(Vu) and similar for the symplectic form. In view of (60), the jets
in Γlin

sc again consist of test jets.
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The construction which we just carried out for linearized solutions can
be performed similarly for jets in the image of the causal Green’s operators.
According to Proposition 3.7, this can be arranged while preserving the causal
support properties of these jets (more precisely, by scaling the Minkowski
metric g in (62) appropriately, one can arrange that the light cones of g
lie inside the causal cones of the Green’s operators). With a slight abuse of
notation, we denote these modified operators again by S∨ and S∧. The result
of this construction is summarized as follows.

Corollary 3.10. By adding suitable inner solutions to the jets in J
vary
ρ,0 and

Jρ,sc, we obtain vector spaces of vector fields

Γvary
ρ,0 , Γρ,sc ⊂ Γtest

together with mappings Δ and G related to each other by the exact sequence

(63) 0 → Γvary
ρ,0

Δ−→ J∗ρ,0
G−→ Γρ,sc

Δ−→ J∗ρ,sc → 0 .

Introducing the subspace of solutions by

Γlin
ρ,sc := G

(
J∗ρ,0

)
⊂ Γρ,sc ,

the conserved one-form vanishes on this subspace,

(64) γtρ(v) = 0 for all v ∈ Γlin
ρ,sc and all t ∈ R .

The causal Green’s operators in (26) and the pth order perturbation map
in (33) become mappings

S∨, S∧ : J∗ρ,0 → Γρ,sc(65)
P(p)
ρ :

(
Γlin
ρ,sc

)p → Γρ,sc .(66)

In what follows, we shall work exclusively with the jet spaces in (63) as
well as with the spatially compact inner solutions Jin

ρ,sc.

4. A conservation law for a nonlinear surface layer integral

We now introduce another conservation law for a surface layer integral. In-
stead of working with linearized solutions, we directly compare the perturbed
measure ρ̃, which takes into account the nonlinear interaction, with the vac-
uum measure ρ. We again assume that the measure ρ̃ is of the form (16).
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For technical simplicity and for notational consistency with [21, 22, 23], we
first define the surface layer integral for a compact subset Ω ⊂ M . Later on,
the surface layer integral will also be used as in Definition 2.5 for the set Ωt

in (39).

Definition 4.1. Given a compact subset Ω ⊂ M , the nonlinear surface
layer integral γΩ(ρ̃, ρ) is defined by

(67) γΩ(ρ̃, ρ) =
∫

Ω̃
dρ̃(x)

∫
M\Ω

dρ(y) L(x, y) −
∫

Ω
dρ(x)

∫
M̃\Ω̃

dρ̃(y) L(x, y) ,

where M̃ := supp ρ̃ and Ω̃ := F (Ω).

Using the definition of the push-forward measure, the nonlinear surface
layer integral can be written alternatively as

(68) γΩ(ρ̃, ρ) =
∫

Ω
dρ(x)

∫
M\Ω

dρ(y)
(
f(x)L

(
F (x), y

)
− L

(
x, F (y)

)
f(y)

)
.

Clearly, this surface layer integral is closely related to the surface layer inte-
grals in Definition 2.5. Indeed, expanding the integrand in (68) linearly, one
gets precisely the integrand in (41). Expanding to second order, one gets the
integrand in (43) divided by two. Therefore, the nonlinear surface layer in-
tegral can be regarded as a generalization of (41) and (43) which takes into
account higher order corrections.

The derivation of the corresponding conservation law follows the idea first
given in [21]. In analogy to (3) we set

(69) �̃(x) :=
∫
F
L(x, y) dρ̃(y) − s

Theorem 4.2. The nonlinear surface layer integral can be written as the
volume term

(70) γΩ(ρ̃, ρ) =
∫

Ω

((
f(x) �

(
F (x)

)
− �̃(x)

)
+ s

(
f(x) − 1

))
dρ(x) .

Proof. Using the antisymmetry of the integrand in (68), we obtain

γΩ(ρ̃, ρ) =
∫

Ω
dρ(x)

∫
M

dρ(y)
(
f(x)L

(
F (x), y

)
− L

(
x, F (y)

)
f(y)

)
=

∫
Ω
dρ(x)

(
f(x)

(
�
(
F (x)

)
+ s

)
−

(
�̃(x) + s)

)
,

where in the last line we applied (3) and (69).
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We now prove that the volume term on the right side of (70) can be
arranged to vanish with the help of inner solutions, order by order in per-
turbation theory. The general reason why this method works is clarified in
Appendix A with a non-perturbative argument.

Theorem 4.3. In a perturbative treatment, by adding to every order p a suit-
able spatially compact inner solution v(p) ∈ Jin

sc, one can arrange that γΩ(ρ̃, ρ)
vanishes for every compact Ω ⊂ M .

Proof. Our strategy is to arrange that the integrand in (70) vanishes identi-
cally. Clearly, expanding the integrand to higher order in perturbation theory
gets very complicated. Here it suffices to note that, since the interaction takes
place in a compact set and we have finite propagation speed, we get a func-
tion g of spatially compact support. Our goal is to show that this function
can be compensated by the linear contribution of the spatially compact inner
solution v(p) ∈ Jin

sc. This linear contribution is computed by

f(x) �
(
F (x)

)
− �̃(x) + s

(
f(x) − 1

)
=

∫
M

dρ(y)
(
f(x)L

(
F (x), y

)
− L

(
x, F (y)

)
f(y)

)
�

∫
M

dρ(y)
(
∇1,v(p) −∇2,v(p)

)
L(x, y)

= 2∇v(p)
(
� + s

)
(x) −

(
Δv(p) −∇v(p) s

)
(x) =

(
∇v(p) s

)
(x) ,

where in the last step we used that ρ satisfies the weak EL equations and
that v(p) is a solution of the linearized field equations. As shown in Propo-
sition 3.7, the scalar component of v(p) can be arranged to be −g/s. This
concludes the proof.

In what follows, we shall always work with the modified perturbation ex-
pansion where γΩ(ρ̃, ρ) vanishes for every compact Ω. For clarity, we write the
inner solution separately. Thus we write the resulting perturbation expansion
in modification of (29), (32) and (33) as

Pρ + Nρ : U ⊂ Γlin
ρ,sc → B ,

(
Pρ + Nρ

)
(λw) =

∞∑
p=1

λp (P(p)
ρ + N(p)

ρ

)
(71)

with

(72) P(p)
ρ :

(
Γlin
ρ,sc

)p → Γρ,sc and N(p)
ρ :

(
Γlin
ρ,sc

)p → Jin
ρ,sc .
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We often write the pth order jets as

(73) w(p) = P(p)
ρ (w, . . . , w) ∈ Γρ,sc and n(p) = N(p)

ρ (w, . . . , w) ∈ Jin
ρ,sc .

Since we work with spatially compact jets throughout, the corresponding
surface layer integral at time t introduced in analogy to Definition 2.5 by

(74) γt(ρ̃, ρ) :=
∫

Ω̃t

dρ̃(x)
∫
M\Ωt

dρ(y)L(x, y)−
∫

Ωt
dρ(x)

∫
M̃\Ω̃t

dρ̃(y)L(x, y)

is well-defined to every order in perturbation theory and is time independent.

5. The approximation of small inner solutions

In the above constructions, inner solutions were used twice: in order to arrange
that the linearized solutions have no scalar component (see Corollary 3.10 and
the preceding construction) and in order to arrange the conservation of the
nonlinear surface layer integral (see Theorem 4.3). The inner solutions have
the interpretation as describing an infinitesimal diffeomorphism of spacetime
needed in order to compensate the volume change induced by the interac-
tion. In applications to a physical scattering process in Minkowski space, this
volume change and consequently also the inner solutions are extremely small
(for details see Appendix B.1). With this in mind, in what follows we make
the following approximation:

Definition 5.1. The approximation of small inner solutions is the sim-
plification where the inner solutions are taken into account only linearly. Thus
all contributions to the interaction and to surface layer integrals which involve
one inner solution v ∈ Jin

ρ,sc and another jet in Jin
ρ,sc ∪ Γρ,sc are neglected.

6. Description of a scattering process

We now explain how to describe a physical scattering process. We have the
situation in mind that the interaction takes place in a finite time interval,
whereas before and after this time interval, the dynamics is linear. Moreover,
the interaction should take place in a bounded region space. In order to model
this situation, we first explain how linear systems are described mathemati-
cally (Section 6.1). A scattering process will then be modelled by a measure
which at large positive and large negative times behaves like a linear sys-
tem (Section 6.2). We finally analyze the question how the jet spaces can be
endowed with almost-complex and complex structures (Section 6.3–6.6).
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6.1. Linear systems in Minkowski space

Let ρ ∈ B be a critical measure. Describing the system as a linear system
is the approximation where all second and higher orders in the perturbation
expansion are neglected, i.e. in suitable charts,

(75) Pρ = P(1)
ρ : U ⊂ Γlin

ρ,sc → B .

In other words, B is identified locally with Jlin
ρ,sc. This gives B in a neighbor-

hood of ρ the structure of a vector space. This vector space structure also
gives rise to a canonical connection ∇ on B.

Combining this assumptions with the previous constructions greatly sim-
plify the conservation laws for the surface layer integrals in Section 2.6. In-
deed, since the jets have no scalar components (see Corollary 3.10), both (44)
and the first term in the integrand in (46) vanish. Moreover, the fact that the
higher orders vanish (75) implies that also the second term in the integrand
in (46) vanishes. Therefore, the surface layer integrals γtρ, σt

ρ and (., .)tρ in
Definition 2.5 are all conserved in the sense that they are time independent.

In order to make the setting more concrete, we now assume that the
measure ρ describes a linear perturbation of Minkowski space. To this end, we
let ρvac be a critical measure formed of regularized Dirac seas in Minkowski
space (for example as constructed in [13, Section 1.2]). We always identify
points of Mvac := supp ρvac with corresponding points of Minkowski space M.
Since the system is linear, we can write the interacting measure ρ in suitable
charts as

ρ = F∗(fρvac) with F (x) = x + w(x) + n(x) ,

where w ∈ Γlin
ρvac,sc is a linearized solution and n = (f = divn, n) ∈ Jin

ρvac,sc is
an inner solution. Linearizing the short notation (30), we simply write

(76) ρ = w + n ,

where now and in what follows we always perturb the vacuum measure ρvac.
Using the limiting case of small inner solutions (see Definition 5.1), the surface
layer integrals of Definitions 2.5 and 4.1 can be written for u, v ∈ Γlin

ρ,0 as
follows,

γtρ(u) = (w, u) + σt(w, u)(77)
σt
ρ(u, v) = σt(u, v)(78)
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x
l = −ζ(s)

M̃

tout

tin

scattering region

Mout

Min

ιout

ιin

wout + nout

win + nin

P(w) + N(w)

w

Figure 1: A scattering system with retarded perturbation expansion.

(u, v)tρ = (u, v)t ,(79)

γt(ρ, ρvac) = γtρvac(n) + 1
2 (w,w)t ,(80)

where the bilinear forms (., .) and σ(., .) without index always refer to the
vacuum measure ρvac. In Proposition 3.5, the term γtρvac(n) was computed to
be the flux (57) of the vector field n through the hypersurface N t. We refer
to this contribution as the

(81) inner flux γtρvac(n) = sμ(v, N t) .

All the above surface layer integrals are conserved.
We remark that, as shown in [14], the symplectic form and the surface

layer inner product are non-trivial; they diverge in the limit δ ↘ 0 of the
order ∼ δ−4 (see [14, eqns (1.3)–(1.6)]; here δ denotes a length scale of the
ultraviolet regularization). Moreover, the calculations in [21, Section 5] show
that the one-form γtρvac vanishes to the order ∼ δ−4.

6.2. Scattering systems in Minkowski space

A scattering system is defined as an interacting system ρ̃ which asymptotically
for large negative and for large positive times goes over to linear system ρin
and ρout, respectively (see Figure 1). Thus we let ρ̃ be again a critical measure
which has a smooth manifold structure and admits a global time function (see
Definition 2.3). For simplicity, we assume that this smooth manifold is R

4.
Next, we assume that there are two linear systems ρin and ρout as well as
injections

(82) ιin : Min ↪→ M̃ and ιout : Mout ↪→ M̃ .
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and that the images ιin(Min) and ιout(Mout) contain the asymptotic past
and future of M̃ , respectively. Furthermore, we assume that the mappings ιin
and ιout are close to the identity. For brevity, we do not quantify what “close to
the identity” means. For our purposes, it suffices to have the intuitive picture
that ρin and ρout should be “good approximations” to ρ̃ in the respective
asymptotic ends.

The linear systems describing the asymptotic ends can be described again
in the form (76), where for clarity we add subscripts “in” and “out,” i.e.

ρin =
(
win(x) + nin(x)

)
Θ
(
tin − T (x)

)
ρout =

(
wout(x) + nout(x)

)
Θ
(
T (x) − tout

)(83)

(this means that both ιin and ιout in (82) simplify to the inclusion map).
Moreover, we assume that ρ̃ can be obtained from ρvac perturbatively, i.e.

(84) ρ̃ =
(
P + N

)
(w) + n

for a linearized solution w ∈ Γlin
ρvac,0 and an inner solution n in the Minkowski

vacuum. For ease in notation, P without an index always refers to a pertur-
bation of the vacuum measure ρvac. We also note that the reason for simply
adding the inner solution in (84) is that, in view of the limiting case of small
inner solutions (Definition 5.1), the inner solution enters the perturbation
expansion only linearly.

The Heaviside functions in (83) require a brief explanation. At first sight,
the multiplication might seem problematic because multiplying a critical mea-
sure by a characteristic function does not yield a critical measure. However,
the EL equations will be violated only in a boundary layer around the sur-
faces t = tin and t = tout, respectively. In order not to distract from the main
construction, we here simply disregard such boundary effects.

In order to simplify the situation further, we shall restrict attention the
situation in which the perturbation expansion is performed purely with re-
tarded Green’s operators. This means that the interaction changes the system
only towards the future. As a consequence, the linearized solution w coincides
with the incoming jet win. Moreover, for simplicity we set the incoming inner
solution nin = 0 to zero (this is no loss in generality because, in the approx-
imation of small inner solutions, the linear solutions are treated linearly, so
that an incoming inner solution changes the inner flux only by an additive
constant). Then the outgoing jets are obtained as the sum of all the jets of
the perturbation expansion. Thus, to summarize,(

win + nin
)∣∣

{t<tin} = win
∣∣
{t<tin} = w = P(w)

∣∣
{t<tin}(85)
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(
wout + nout

)∣∣
{t>tout} =

(
P + N

)
(w)

∣∣
{t>tout}(86)

(where we again use the notation (32) and work in charts on F). For clarity,
we point out that working with a retarded time evolution merely is a technical
simplification which makes it possible to identify the incoming jets with the
linear perturbations. But one could work just as well with other choices of
Green’s operators without changing any of our results.

As pointed out above, the surface layer integrals of Definitions 2.5 and 4.1
are conserved both in the asymptotic future and past. But are they also
conserved in the interaction region? In other words, do they coincide for the
in- and outgoing jets? This is a subtle point, and for clarity we collect our
previous results as separate corollaries.

Corollary 6.1. Let ρ̃ be a critical measure describing a scattering system
with incoming and outgoing measures ρin and ρout. Moreover, let ũ, ṽ ∈ Γlin

ρ̃,sc
be linearized solutions. Then

γtρ̃
(
ũ
)∣∣tout

tin
= 0(87)

σt
ρ̃

(
ũ, ṽ

)∣∣tout

tin
= 0(88) (

ũ, ṽ
)t
ρ̃

∣∣tout

tin
= −2

∫
M

Δ2[ũ, ṽ] dρ̃ , .(89)

Proof. Follows immediately from Proposition 2.6.

Corollary 6.2. Let ρ̃ be a critical measure describing a scattering system
with incoming and outgoing measures ρin and ρout. Then the nonlinear surface
layer integral is conserved,

(90) γt(ρ̃, ρvac)
∣∣tout

tin
= 0 .

Moreover, it can be computed at times t = tin and t = tout by

(91) γt
(
ρ̃, ρvac

)
= sμ

(
N(w), N t) + 1

2
(
P(w),P(w)

)t
,

where μ is the measure (56).

Proof. Follows immediately from Theorem 4.3 using the asymptotic form of
the solutions (85) and (86) together with the formulas in the asymptotic
regions (80) and (81).

To avoid confusion, we point out that the jets ũ and ṽ in Corollary 6.1
are linearized solutions with respect to the interacting measure ρ̃, but not the
vacuum measure ρvac. This means that, in order to compute these jets, one
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again needs to invoke a perturbation expansion. More precisely, using (31), ũ
can be written as

(92) ũ = DP|w u with u ∈ Γlin
ρ,sc .

According to (66), in the perturbation expansion we always add suitable inner
solutions such that the jet ũ has no scalar component. As a consequence, the
conserved one-form γtρ is indeed conserved. The symplectic form (88) and the
nonlinear surface layer integral (90) are conserved as well. The surface layer
inner product (89), however, in general is not conserved in an interacting
system.

6.3. The complex structure of linear systems

Our next goal is to endow the linearized solutions with a complex structure.
For clarity, we first give the construction for linear systems. In this case, both
the symplectic form and the surface layer inner product are conserved, and
using the formulas (78) and (79), we obtain the conservation laws

σt(u, v)
∣∣tout

tin
= 0 and

(
u, v

)t∣∣tout

tin
= 0 for all u, v ∈ Γlin

ρ,sc ,

where the bilinear forms are given by (42) and (43) with ρ = ρvac (and we
again omit the subscript ρvac).

For clarity, we first give the basic construction and discuss the involved
assumptions afterward (after (94) below). We assume that (., .) is positive
semi-definite. Then dividing out the null space and forming the completion,
we obtain a real Hilbert space denoted by hR. Next, we assume that σ is a
bounded bilinear functional on this Hilbert space. Then we can represent it
relative to the scalar product by

(93) σ(u, v) = (u, T v) ,

where T is a uniquely determined bounded operator on hR. Since the symplec-
tic form is anti-symmetric and the scalar product is symmetric, it is obvious
that

T∗ = −T

(where the adjoint is taken with respect to the scalar product (., .)). Finally,
we assume that T is invertible. Then setting

(94) J := −(−T2)−
1
2 T

defines a complex structure on the real Hilbert space hR.
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The above assumptions are justified by the fact that they are satisfied
for the surface layer integrals in Minkowski space. Indeed, as shown in [14],
the bilinear form (., .) is positive semi-definite. As explained at the end of
Section 2.6, we choose the jet space Jtest such that σ is non-degenerate. By
choosing Jtest even smaller if necessary (for example by restricting attention
to the bosonic and fermionic jets as analyzed in [14]), we can arrange that
the symplectic form is bounded relative to the scalar product (93) and that
the resulting bounded operator T is invertible.

We next complexify the vector space Γlin
sc and denote its complexifica-

tion by ΓC. We also extend J to a complex-linear operator on ΓC. The fact
that J∗ = −J and J2 = −1 implies that J has the eigenvalues ±i. Conse-
quently, ΓC splits into a direct sum of the corresponding eigenspaces, which
we refer to as the holomorphic and anti-holomorphic subspaces, i.e.

ΓC = Γhol ⊕ Γah with Γhol := χhol ΓC , Γah := χah ΓC ,

where we set

(95) χhol = 1
2 (1− iJ) and χah = 1

2 (1 + iJ) .

We also complexify the inner product (., .) and the symplectic form to sesqui-
linear forms on ΓC (i.e. anti-linear in the first and linear in the second ar-
gument). Moreover, we introduce a positive semi-definite inner product (.|.)
by

(.|.) = ( . , (−T2)
1
2 . ) = σ( . , J . ) : ΓC × ΓC → C .

This positive semi-definite inner product product gives rise to a Hilbert space
structure. In order to work out the similarities and differences to quantum
theory, it is best to form the Hilbert space as the completion of the holomor-
phic subspace, i.e.

(96) h := Γhol(.|.) .

We denote the induced scalar product on h by 〈.|.〉. Then (h, 〈.|.〉) is a complex
Hilbert space. It has the useful property that

(97) Im〈u|v〉 = Im σ(u, Jv) = Reσ(u, v) .

6.4. Complex connections and the holomorphic perturbation
expansion

We now return to the scattering system described by the measure ρ̃ as intro-
duced in Section 6.2. Since this system goes over to linear systems asymptot-
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ically, we can use the construction of the previous section to obtain complex
structures for the incoming and outgoing linearized solutions. The main com-
plication is that, in view of (89), the surface layer inner product in general
is not conserved. As a consequence, also the operator T as defined by (93) in
the two asymptotic regions will in general be different. The same will be true
for the resulting complex structures.

In order to get a better understanding of this fact, it is helpful to consider
the smooth setting with differential geometric notions. Then, as mentioned
at the end of Section 2.6, the symplectic form can be regarded as the exterior
derivative of the conserved one-form, i.e.

(98) σt
ρ̃ = dγtρ̃ .

In this way, the conservation law for σt
ρ̃ follows immediately from that for γtρ̃.

For clarity, we write (98) in more detail as

(99) σt
ρ̃

(
ũ, ṽ

)
=

(
Dũγ

t
ρ̃

)(
ṽ
)
−

(
Dṽγ

t
ρ̃

)(
ũ
)
,

where D denotes the partial derivatives performed in any chart of the non-
linear solution space B. Considering the perturbation map as a chart and
using (92), we can write (99) in even more detail as follows,

γP(w)
(
DP|w .

)
: Γlin

sc → R

D
(
γP(w)

(
DP|w .

))
: Γlin

sc × Γlin
sc → R

σP(w)
(
DP|w u,DP|w v

)
= D

(
γP(w)

(
DP|w .

))
(u, v)

−D
(
γP(w)

(
DP|w .

))
(v, u) .

However, since this notation is rather cumbersome, in what follows we pre-
fer the shorter notation (99). The surface layer inner product, on the other
hand, can be regarded as a symmetrized derivative γtρ̃. In order to give such
symmetric derivatives a differential geometric meaning, one must work with
covariant derivatives. Therefore, we write the surface layer inner product at
time t in analogy to (99) as

(ũ, ṽ)tρ̃ =
(
∇t

ũγρ̃
)(
ṽ
)
+

(
∇t

ṽγρ̃
)(
ũ
)

(100)
=

(
Dũγρ̃

)(
ṽ
)
+

(
Dṽγρ̃

)(
ũ
)
− γρ̃

(
Γt(ũ, ṽ)

)
,(101)
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where in the last line we wrote the covariant derivative in the chart P with
“Christoffel symbols” Γ. Since the resulting bilinear form should be symmet-
ric, the connection must be torsion-free, i.e.

Γt(ũ, ṽ) = Γt(ṽ, ũ) for all ũ, ṽ ∈ Γlin
ρ̃,sc .

As is the case in the classical differential geometric setting, the equation (100)
is invariant and thus does not depend on the choice of charts or Green’s
operators. The representation (101), however, does depend on the chart. For
example, writing it for the perturbation map with advanced Green’s operators
would give rise to different Christoffel symbols. We also point out that the
index t indicates that the connection is time-dependent. In this way, the fact
that the surface layer inner product is not conserved corresponds to the fact
that we have no distinguished connection on B.

Clearly, this procedure raises the question whether there is a canonical
way to choose the connection. Before analyzing this question in detail in
Sections 6.5 and 6.6, we now give a few further constructions. We thus assume
that a connection ∇ on B is given (for example the connection ∇t above).
We denote the corresponding surface layer inner product by

(ũ, ṽ)ρ̃ =
(
∇ũγρ̃

)(
ṽ
)
+

(
∇ṽγρ̃

)(
ũ
)
.

Modifying the construction for linear systems (93) and (94),

(102) σ(ũ, ṽ) = (ũ, T̃ ṽ)ρ̃ and J̃ =
(
− T̃2)− 1

2 T̃ ,

we obtain an almost-complex structure on Jlin
ρ̃ . We again complexify the vector

space Jlin
ρ̃,sc and denote its complexification by ΓC

ρ̃ . It splits into a direct sum
of the holomorphic and anti-holomorphic subspaces, i.e.

ΓC

ρ̃ = Γhol
ρ̃ ⊕ Γah

ρ̃ with Γhol
ρ̃ := χ̃hol ΓC

ρ̃ , Γah
ρ̃ := χ̃ah ΓC

ρ̃ ,

where we set

χ̃hol = 1
2 (1− iJ̃) and χ̃ah = 1

2 (1 + iJ̃) .

We also complexify the scalar product (., .)ρ̃ to a sesquilinear form denoted
by

(.|.)ρ̃ : ΓC

ρ̃ × ΓC

ρ̃ → C .

Here we need to assume that (.|.)ρ̃ is positive semi-definite, and that the
resulting operator T̃ is bounded and invertible. This poses implicit conditions
on the admissible choices of the connection ∇.
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We point out that the operator T̃ is defined independently of the choice
of surface layers. It can be computed in both asymptotic regions. For clarity,
we denote these operators by Tin and Tout, respectively. The fact that these
operators are defined invariantly means that they are compatible with the
linearized time evolution, i.e.

(103) Tout = U Tin U
−1 where U := DP|w : u → ũ .

However, one must keep in mind that the scalar product (., .)ρ̃, and therefore
also the operator T̃, have different forms in the asymptotic regions. Indeed,
using the formulas for the surface layer inner products for linear systems
in (77)–(79) in (101) one sees that

(ũ, ṽ)tinρ̃ = (u, v) −
(
w,Γ(u, v)

)
(104)

(ũ, ṽ)tout
ρ̃ =

(
ũ, ṽ

)
+

(
P(w), D2P|w (u, v)

)
−

(
P(w), DP|w Γ(u, v)

)
.(105)

According to (102), this also modifies the form of T̃ (note that, according
to (88), the symplectic form σ has the same form in both asymptotic re-
gions). In particular, the scalar product in the outgoing region, and conse-
quently also Tout, are not computable from the knowledge of the outgoing
linearized solutions ũ and ṽ alone. Instead, one must know the history of the
scattering process. A more geometric way of understanding this fact is that
the transformation law of the Christoffel symbols depends on the scattering
process. This becomes clearer if one writes (105) as

(ũ, ṽ)tout
ρ̃ =

(
ũ, ṽ

)
−

(
P(w), Γ̃(ũ, ṽ)

)
with the transformed Christoffel symbols

Γ̃(ũ, ṽ) := DP|w Γ(u, v) −D2P|w (u, v) ,

showing that the interaction as described by D2P|w enters the transformation
of the Christoffel symbols.

Next, it is instructive to write (103) as

DP|w Tin = Tout DP|w .

Applying the functional calculus, we obtain a similar relation for the opera-
tors Γin and Γout. We thus obtain

(106) DP|w χhol
in = χhol

out DP|w .
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This means that the linearized time evolution preserves the complex struc-
ture. The equation can be interpreted in analogy to the Cauchy-Riemann
equation as stating that the derivative of P maps the holomorphic subspaces
to each other. Unfortunately, the last equation is of no use for the perturbative
treatment, because expanding (106) in powers of the coupling constant λ, the
operators χhol

in and χhol
out also need to be expanded, leading to a complicated

mixing of the holomorphic and anti-holomorphic components. This compli-
cation can be avoided if the almost-complex structure can be integrated to
give rise to a complex structure. This motivates the following definition.

Definition 6.3. ∇ is a holomorphic connection if the almost-complex
structure J̃ defined in (102) is a complex structure.

We finally explain the implication of a holomorphic connection. Thus
suppose that B admits a holomorphic connection (the problem of existence
will be considered in Section 6.6 below). Then, as in complex geometry, one
can choose holomorphic and anti-holomorphic coordinates. Working in such
a complex chart, the operator J reduces to complex conjugation. This means
in our language that there is a chart P : Γlin

sc → B (no longer retarded, but
involving a specific combination of different Green’s operators) such that the
operator J is constant, i.e.

J = Jin = Jout .

As a consequence, in (106) one can omit the indices “in” and “out,”

(107) DP|w χhol = χhol DP|w .

In contrast to (106), this equation can be evaluated order by order in pertur-
bation theory to obtain the following result:

Theorem 6.4 (holomorphic perturbation expansion). Suppose that P is a
perturbation expansion compatible with a complex structure induced by a holo-
morphic connection on B. Then P preserves the complex structure to every
order in perturbation theory, i.e. for all p ∈ N and all w ∈ Γlin

sc ,

χhol P(p)(w, . . . , w) = χhol P(p)(χhol w, . . . , χhol w
)
.

Proof. Multiplying (107) by χhol and using that χhol is idempotent, we obtain

χhol DP|w u = χhol DP|w (χhol u) .
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Substituting the perturbation series (34), the contribution ∼ λp−1 gives

(108) χhol P(p)( w, . . . , w︸ ︷︷ ︸
p− 1 factors

, u
)

= χhol P(p)( w, . . . , w︸ ︷︷ ︸
p− 1 factors

, χhol u
)
.

We now set u = w and choose w as

(109) w = cos(α) v + sin(α) Jv = eiα vhol + e−iα vah ,

where v ∈ Γlin
sc and vhol := χholv, vah := χahv. Using that P(p) is multilinear

and symmetric, expanding (108) gives

p∑
q=0

(
p
q

)
ei(p−2q)α χhol P(p)( vah, . . . , vah︸ ︷︷ ︸

q factors

, vhol, . . . , vhol︸ ︷︷ ︸
p− q factors

)

=
p−1∑
q=0

(
p− 1
q

)
ei(p−2q)α χhol P(p)( vah, . . . , vah︸ ︷︷ ︸

q factors

, vhol, . . . , vhol︸ ︷︷ ︸
p− q factors

)
.

Since α can be chosen arbitrarily, the contributions must vanish to every
order q. Since the combinatorial factors on the left and right are different
unless q = 0, it follows that

χhol P(p)( vah, . . . , vah︸ ︷︷ ︸
q factors

, vhol, . . . , vhol︸ ︷︷ ︸
p− q factors

)
= 0 for q = 1, . . . , p .

This gives the result.

Stated in words, this result means that the holomorphic component χholP

of the perturbation map to every order in perturbation theory depends only
on the holomorphic jets. This explains the name “holomorphic perturbation
expansion.” Clearly, this theorem holds similarly for the anti-holomorphic
component. The anti-holomorphic component can be obtained from the holo-
morphic component by taking the complex conjugate or, equivalently, by the
replacement J → −J .

6.5. A canonical almost-complex structure with interaction

We now come to the question of how to choose the connection ∇ in (100).
Equivalently, we can ask how to choose the operator T̃, because given T̃ we
can use (102) to define the scalar product (., .)ρ̃, i.e.

(110) (ũ, ṽ)ρ̃ := σ(ũ, T̃−1 ṽ) ,
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which in turn determines the connection ∇ via (100).
The operator T̃ should be determined by its properties, which we now

collect. Since the complex structure at time t should depend only on the state
at time t, but should be independent of the history of the physical system,
the operator T̃ must have the same form in the two asymptotic regions, i.e.
Tin = Tout (where we consider both ρin and ρout as linear perturbations of the
same vacuum measure ρvac). Using (103), we can write this condition as

(111) T̃ U = U T̃ .

Thus we seek for an operator T̃ which commutes with the linearized time
evolution U . Moreover, the operator T̃ must be chosen such that it is invertible
and such that the inner product defined by (110) is positive semi-definite. The
question is whether an operator T with the above properties exists and, if yes,
if it is unique.

For clarity and technical simplicity, we begin with the case that Γlin
ρ̃,sc

is finite-dimensional and treat the infinite-dimensional situation afterward.
Then on the complexification ΓC

ρ̃ , the symplectic form gives rise to an indefi-
nite inner product,

(112) <.|.> : ΓC

ρ̃ × ΓC

ρ̃ → C , <u|v> = Im σ(u, v)

(the bar indicates that we extend σ to a sesquilinear form on ΓC
ρ̃ ). The fact

that U is a symplectomorphism implies that U is a unitary operator on the
indefinite inner product space (ΓC

ρ̃ , <.|.>). The relation (111) implies that
the operators T̃ and U must have the same invariant subspaces. Moreover,
the positivity requirement on the inner product (110) yields that the invari-
ant subspaces of U must be definite eigenspaces, and that the corresponding
eigenvalues of the operator −iT̃ must be positive if the eigenspace is positive
definite, whereas they must be negative if the eigenspace is negative definite.
We conclude that in the formulation with indefinite inner product spaces, the
above questions can be rephrased as follows:

Proposition 6.5. Assume that Γlin
ρ̃ is finite-dimensional. There is an opera-

tor T̃ satisfying (111) with the property that the inner product (., .)ρ̃ defined
by (110) is positive definite if and only if the operator U on (ΓC

ρ̃ , <.|.>) is
diagonalizable and has a pseudo-orthonormal eigenvector basis, i.e.

(113) U =
L∑

�=1
s� λ� |φ�><φ�| with s� := <φ�|φ�> ∈ {±1} .
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The operator −iT̃ can be chosen as any invertible symmetric operator on the
indefinite inner product space (ΓC

ρ̃ , <.|.>) which commutes with U and whose
positive and negative eigenvalues correspond to positive and negative definite
eigenspaces, respectively.

Before going on, we remark that in the non-interacting situation, the
spectral decomposition (113) can be understood as follows. In this situa-
tion, it was shown in [14] that the positive and negative definite subspaces
of (ΓC

ρ̃ , <., .>) reproduce the usual frequency splitting. Moreover, in this set-
ting the time evolution operator can be written as U = e−i(tout−tin)H with
a Hamiltonian H, whose positive and negative spectral subspaces are the
subspaces of positive and negative frequencies, respectively. Therefore, the
Hamiltonian has definite eigenspaces. Applying the functional calculus, we
conclude that also the operator U is diagonalizable and has definite invariant
subspaces, giving (113).

Applying the functional calculus (102) to the operator −iT̃, the positive
eigenvalues become plus one, whereas the negative eigenvalues becomes minus
one. We thus obtain a unique operator J :

Proposition 6.6. Under the assumptions of Proposition 6.5, there is a unique
almost-complex structure given by

(114) J = i
L∑

�=1
|φ�><φ�| .

We finally explain how our findings can be generalized to the infinite-
dimensional setting. In this case, the indefinite inner product (112) gives rise
to the structure of a Krein space (K, <.|.>) (see for example [3]; as the scalar
product generating the Krein space topology one can simply take the surface
layer scalar product in (43)). The linearized time evolution operator U is a
unitary operator on this Krein space. The conditions specified in Proposi-
tion 6.5 are generalized by the condition that the Krein space should have an
orthogonal decomposition into two invariant subspaces of U ,

(115) K = K+ ⊕K− ,

where K+ is a positive and K− a negative definite subspace of K. The oper-
ator J , (114), generalizes to

J =
(
i1K+

)
⊕

(
− i1K−

)
.
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Keeping in mind that a unitary operator on a Krein space does not need
to have a spectral decomposition, the decomposition into indefinite invariant
subspaces (115) poses a strong constraint for the existence of a canonical
almost-complex structure.

6.6. Conditions for a canonical complex structure

We now explore if the canonical almost-complex structure introduced in the
previous section gives rise to a complex structure. We again begin in the
finite-dimensional setting. We assume that the conditions in Proposition 6.5
are satisfied. In order to further simplify the setting, we strengthen these
conditions by assuming that all eigenspaces of U are definite (these assump-
tions will be discussed below). We choose contours Γ+ and Γ− which enclose
the eigenvalues corresponding to the positive definite respectively negative
definite eigenspaces in counter-clockwise orientation. Then the operators

Π± := − 1
2πi

∫
Γ±

(U − λ)−1 dλ

are projection operators in (K, <.|.>) onto the invariant definite subspaces K±
of U . The operator J in (114) can be written as

J = iΠ+ − iΠ− .

Proposition 6.7. Assume that Γlin
ρ̃,sc is finite-dimensional and that all eigen-

spaces of U are definite. Then the almost-complex structure of Proposition 6.6
gives rise to a complex structure if and only if for all w ∈ Γlin

ρ̃,sc the following
implication holds:

(116) λ� �= λ�′ and s�, s�′ > 0 =⇒ Π−D
2P|w(φ�, φ�′) = 0 .

Here we again used the notation (113), and D2P|w is the quadratic correction
to the linearized dynamics from tin to tout.

Proof. The subspaces Γhol
ρ̃ ⊂ ΓC

ρ̃ define a distribution on B. Our goal is to
verify whether this distribution is integrable. This is the case if and only if for
any holomorphic sections uhol and vhol also their commutator is holomorphic.

We first simplify this condition by showing that for any u, v ∈ Γhol
ρ̃ , it

suffices to check the condition [uhol, vhol](w) ∈ Γhol
ρ̃ for arbitrarily chosen

sections uhol and vhol with uhol(w) = u and vhol(w) = v. Indeed, other holo-
morphic sections ûhol and v̂hol with ûhol(w) = u and v̂hol(w) = v can be
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written as

ûhol = uhol + f Δuhol and v̂hol = vhol + gΔvhol

with two holomorphic sections Δuhol and Δvhol and two scalar functions f
and g which vanish at w. A direct computation shows that the commuta-
tors [ûhol, v̂hol] and [uhol, vhol] differ at w by a vector in Γhol

ρ̃ (in fact, this
vector is a linear combination of Δuhol and Δvhol). Therefore, the condi-
tion [uhol, vhol](w) ∈ Γhol

ρ̃ is satisfied if and only if [ûhol, v̂hol](w) ∈ Γhol
ρ̃ .

The latter commutator condition can be verified as follows. We again work
in the chart given by P. According to Proposition 6.5, the vectors in Γhol

ρ̃

are spanned by positive definite eigenvectors of U . Therefore, by linearity
we may assume that the holomorphic tangent vectors u and v are positive
definite eigenvectors of U corresponding to eigenvalues μ and ν (which may
coincide). In order to obtain corresponding holomorphic sections, we apply
the projection operator Π+,

uhol(w̃) := − 1
2πi

∫
Γ+

(dP|w̃ − λ)−1 u dλ ,

valid for all w̃ in a neighborhood of w. Now we can differentiate in the direction
of vhol,

vhol uhol(w) = 1
2πi

∫
Γ+

(U − λ)−1 D2P|w
(
v, (U − λ)−1 u

)
dλ

= 1
2πi

∫
Γ+

(U − λ)−1

μ− λ
D2P|w(v, u) dλ ,

where in the last step we used that Uu = λu. Antisymmetrizing in u and v
gives the commutator,

[
vhol, uhol](w) = 1

2πi

∫
Γ+

(U − λ)−1
( 1
μ− λ

− 1
ν − λ

)
D2P|w(u, v) dλ .

This commutator lies in Γhol if and only if

0 = 1
2πi

∫
Γ+

Π− (U − λ)−1
( 1
μ− λ

− 1
ν − λ

)
D2P|w(u, v) dλ .

All the eigenvalues of the operator Π−U lie outside the contour Γ+. Therefore,
we can compute the contour integral, taking into account only the poles at λ =
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μ and λ = ν. A short computation gives the equation

0 = Π−
(
(U − μ)−1 − (U − ν)−1

)
D2P|w(u, v) .

Using the resolvent identity, we obtain the equivalent condition

Π−
μ− ν

(U − μ) − (U − ν) D2P|w(u, v) = 0 .

This equation is obviously equivalent to the implication (116).

We close with a few remarks. First, the construction could be generalized
to the infinite-dimensional setting by assuming that K again has an orthog-
onal decomposition (115) into definite invariant eigenspaces of U , and that
that the spectrum of U on these invariant subspaces is separated by a spectral
gap in the complex plane, i.e.

(117) K± = Π± K and dist(Γ+,Γ−) > 0 .

Under these assumptions, the spectral decomposition (113) can be generalized
using the spectral theorem for bounded operators in Hilbert spaces. Moreover,
the above contour integrals are again well-defined, and the computation in
the proof of Proposition 6.7 again applies.

We next explain whether the condition (116) is satisfied in physically
interesting examples. In the Minkowski vacuum, this condition is indeed sat-
isfied. Namely, in this case the holomorphic jets are composed of positive
frequencies. Using that the product of two functions of positive frequencies
has again positive frequency and that the Green’s operator preserves four-
momentum, one finds that the operator D2P|0(φ�, φ�′) is again formed of pos-
itive frequencies, so that its projection to the negative frequencies vanishes.
However, the condition (116) does not seem to hold as soon as w is non-zero.
The reason is that w in general will involve positive and negative frequen-
cies, implying that D2P|w(φ�, φ�′) will be composed of mixtures of positive
and negative frequencies. As a consequence, the implication (116) will be vi-
olated. More generally, this consideration shows that the condition (116) is
very strong and seems to be violated for most interacting systems of physical
interest.

We finally discuss the condition in Proposition 6.7 that all eigenspaces
of U must be definite (and similarly in the infinite-dimensional setting that
(117) holds). If this condition is violated, then the perturbation expansion
performed in the proof of Proposition 6.7 is more subtle because even arbi-
trarily small perturbations can destroy the definiteness of the eigenspaces.
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Besides this technical complication, the argument in the proof of Proposi-
tion 6.7 still goes through, showing that in most physical applications, there
will be no canonical complex structure.

7. Linear dynamics on bosonic Fock spaces

From the condition (116) in Proposition 6.7 we concluded that in most physi-
cally interesting examples, there will be no canonical holomorphic connection
which would make it possible to perform a holomorphic perturbation expan-
sion (see Theorem 6.4). But the condition (116) is satisfied in the Minkowski
vacuum, indicating that in the applications, the holomorphic perturbation ex-
pansion should be valid up to small error terms which “mix” the holomorphic
and anti-holomorphic jets. In this section, we shall make this intuitive picture
mathematically precise. It turns out that this analysis can be carried out most
conveniently in the bosonic Fock space formalism. This has two advantages:
First, the nonlinear dynamics can be reformulated with linear operators on
the Fock space. Second, the bra and ket states entering the complex scalar
product on the Fock space will correspond directly to the holomorphic and
anti-holomorphic components.

7.1. Preliminaries on bosonic Fock spaces

We let (h, 〈.|.〉) be a separable complex Hilbert space (the one-particle space).
We let hn = h⊗· · ·⊗h be the n-fold tensor product, endowed with the natural
scalar product

(118) 〈ψ1 ⊗ · · · ⊗ ψn |φ1 ⊗ · · · ⊗ φn〉 := 〈ψ1|φ1〉 · · · 〈ψn|φn〉 .

We denote total symmetrization by an index s, i.e.

(
ψ1 ⊗ · · · ⊗ ψn

)
s := 1

n!
∑
σ∈Sn

ψσ(1) ⊗ · · · ⊗ ψσ(n) ,

where Sn denotes the group of all permutations. The totally symmetric tensors
form a closed subspace denoted by Fn := (hn)s ⊂ hn. The bosonic Fock
space (F , 〈.|.〉F ) is the direct sum of the n-particle spaces,

F =
∞⊕
n=0

Fn .

In order to describe the Fock states more explicitly, we choose an or-
thonormal basis (φ�)�=1,...,N with N ∈ N ∪ {∞}. For ease in notation, we
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set
φp
� := φ� ⊗ · · · ⊗ φ�︸ ︷︷ ︸

p factors

.

Given a finite number of pairs (�i, pi) with i = 1, . . . ,m and �1 < �2 < · · · <
�m, we form the Fock space vectors

(119) Φ :=
(
φp1
�1
⊗ · · · ⊗ φpm

�m

)
s ∈ Fn ,

where
n := p1 + · · · + pm

always denotes the number of particles. According to (118), the resulting vec-
tors are orthogonal unless all the �i and pi coincide. Moreover, by construction
of the tensor product, the vectors of the form (119) are dense in F . In order
to determine their normalization, we compute

〈Φ|Φ〉F =
〈(
φp1
�1
⊗ · · · ⊗ φpm

�m

)
s
∣∣ (φp1

�1
⊗ · · · ⊗ φpm

�m

)
s
〉
F

=
〈
φp1
�1
⊗ · · · ⊗ φpm

�m

∣∣ (φp1
�1
⊗ · · · ⊗ φpm

�m

)
s
〉
F

= 1
n!

∑
σ∈Sp1+···+pm

〈
φp1
�1
⊗ · · · ⊗ φpm

�m

∣∣φjσ(1) ⊗ · · · ⊗ φjσ(p1+···+pm)

〉
F ,

where the indices j1, . . . , jp1+···+pm count all the vectors in Φ with multiplic-
ities. We get zero unless the vectors in the tensor product coincide pairwise,
in which case we get one. We thus obtain

〈Φ|Φ〉F = p1! · · · pm!
n! .

We next introduce the creation and annihilation operators and derive
their commutation relations. For a vector φ ∈ h of the one-particle space, we
introduce the creation operator a†(φ) by

(120) a†(φ) : hns → hn+1
s , Φ �→ cn (φ⊗ Φ)s

with complex constants cn which will be specified below. Clearly, a†(φ) ex-
tends uniquely to a mapping from F to F . The annihilation operator a(φ) is
defined as the adjoint of the creation operator,

a(φ̄) :=
(
a†(φ)

)∗
(here the star denotes the adjoint with respect to the Fock space scalar prod-
uct 〈.|.〉F ; the bar φ indicates that the complex conjugate of φ enters). We
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now apply these operators to vectors of the form (119). By definition (120),

a†
(
φ�1

)(
φp1
�1
⊗ · · · ⊗ φpm

�m

)
s = cn

(
φp1+1
�1

⊗ · · · ⊗ φpm
�m

)
s .

Likewise, the annihilation operator reduces the power of φ�1 , i.e.

(121) a(φ̄�1

)(
φp1
�1
⊗ · · · ⊗ φpm

�m

)
s = d

(
φp1−1
�1

⊗ · · · ⊗ φpm
�m

)
s

with a complex prefactor d (which may depend on p1, . . . , pm). In order to
determine this prefactor, we compute the following scalar product,

〈(
φp1−1
�1

⊗ · · · ⊗ φpm
�m

)
s
∣∣ a(φ̄�1

)(
φp1
�1
⊗ · · · ⊗ φpm

�m

)
s
〉
F

=
〈
a†(φ�1

)(
φp1−1
�1

⊗ · · · ⊗ φpm
�m

)
s
∣∣ (φp1

�1
⊗ · · · ⊗ φpm

�m

)
s
〉
F

= cn−1
〈(
φp1
�1
⊗ · · · ⊗ φpm

�m

)
s
∣∣ (φp1

�1
⊗ · · · ⊗ φpm

�m

)
s
〉
F

= cn−1
p1! · · · pm!

n! .(122)

On the other hand, computing the same scalar product using the right side
of (121), we obtain

〈(
φp1−1
�1

⊗ · · · ⊗ φpm
�m

)
s
∣∣ a(φ̄�1

)(
φp1
�1
⊗ · · · ⊗ φpm

�m

)
s
〉
F

= d
〈(
φp1−1
�1

⊗ · · · ⊗ φpm
�m

)
s
∣∣ (φp1−1

�1
⊗ · · · ⊗ φpm

�m

)
s
〉
F

= d
(p1 − 1)! · · · pm!

(n− 1)! .(123)

The prefactor d can be read of by comparing (122) and (123). Substituting
the result into (121), we obtain

(124) a(φ̄�1

)(
φp1
�1
⊗ · · · ⊗ φpm

�m

)
s = cn−1

p1

n

(
φp1−1
�1

⊗ · · · ⊗ φpm
�m

)
s .

Using (120) and (124), we can compute products of the annihilation and
creation operators, like for example

a†(φ�1

)
a(φ̄�1

)(
φp1
�1
⊗ · · · ⊗ φpm

�m

)
s = |cn−1|2

p1

n

(
φp1
�1
⊗ · · · ⊗ φpm

�m

)
s(125)

a(φ̄�1

)
a†(φ�1

)(
φp1
�1
⊗ · · · ⊗ φpm

�m

)
s = |cn|2

p1 + 1
n + 1

(
φp1
�1
⊗ · · · ⊗ φpm

�m

)
s .(126)

The complex coefficients cn introduced in (120) can be chosen arbitrarily.
The following choice is most convenient and agrees with common conventions
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in physics: First, since (125) and (126) only involve the absolute values of
the cn, there is no point in choosing these coefficients to be complex (indeed,
a phase in cn merely corresponds to introducing irrelevant relative phases
between the subspaces of different particle numbers). Second, the denomina-
tors n and n + 1 in (125) and (126) are unpractical in longer computations.
This leads us to choose

(127) cn =
√
n + 1 .

Our findings are summarized as follows:

Lemma 7.1. Introducing the annihilation and creation operators by

a†(φ) : hns → hn+1
s , Φ �→

√
n + 1 (φ⊗ Φ)s

a(φ̄) : hn+1
s → hns , a(φ̄) =

(
a†(φ)

)∗
,

the following relations hold for any k = 1, . . . ,m:

a†
(
φ
)
Φ =

√
n + 1 (φ⊗ Φ)s(128)

a
(
φ̄�k

) (
φp1
�1
⊗ · · · ⊗ φpk

�k
⊗ · · · ⊗ φpm

�m

)
s

= pk√
n

(
φp1
�1
⊗ · · · ⊗ φpk−1

�k
⊗ · · · ⊗ φpm

�m

)
s(129)

a†
(
φ�k

)
a
(
φ̄�k

) (
φp1
�1
⊗ · · · ⊗ φpm

�m

)
s = pk

(
φp1
�1
⊗ · · · ⊗ φpm

�m

)
s(130) [

a(φ̄), a†(ψ)
]

= 〈φ|ψ〉 1F .(131)

Proof. The relations (128)–(130) follow immediately from (125) and (127).
Likewise, (125) and (126) give rise to the commutation relation[

a(φ̄�k), a†(φ�k)
]

= 1F .

Moreover, it is obvious that the operators a(φ̄�k) and a(φ̄�l) commute if k �= l.
Writing these relations in a basis-independent form gives (131).

In view of (130), the operator product a†(φ) a(φ̄) is referred to as the
number operator. The relations (131) are the usual canonical commutation
relations for the creation and annihilation operators.

7.2. Bosonic field operators and the canonical commutation
relations

In order to apply the bosonic Fock space formalism to causal variational
principles, we again consider the Hilbert space of holomorphic jets (h, (.|.))
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as defined in (96). Applying the Fock space construction of Section 7.1, we
obtain the corresponding Fock space (F , 〈.|.〉F ). In this section we introduce
the usual field operators and show that they satisfy canonical commutation
relations, where on the right side the causal fundamental solution G in (27)
appears. This construction clarifies how the causal structure is built into
the Fock space formulation. Given a compactly supported jet u ∈ J∗0, we
let Gu ∈ Γlin

sc be the corresponding linearized solution. Being a real solution,
we can decompose it into holomorphic and anti-holomorphic components by

Gu = φu + φ̄u with φu := χhol Gu ∈ h

(with χhol according to (95)). We introduce the corresponding field operator
Φ̂(u) by

(132) Φ̂(u) := a
(
φ̄u

)
+ a†

(
φu

)
.

It is obviously a symmetric linear operator on F .
For two jets u, v ∈ J∗0, we can apply (132) and (131) to obtain

[
Φ̂(u), Φ̂(v)

]
=

[
a
(
φ̄u

)
, a†

(
φv

)]
−

[
a
(
φ̄v

)
, a†

(
φu

)]
=

(
〈φu|φv〉 − 〈φv|φu〉

)
1F

= 2i Im
(
〈φu|φv〉

)
1F = 2i Im

((
χhol Gu

∣∣ χhol Gv
))

1F

= 2i Im
((
Gu

∣∣ χhol Gv
))

1F
(95)= i Im

((
Gu

∣∣ (1− iJ)Gv
))

1F

= −iRe
((
Gu

∣∣ J Gv
))

1F = iRe
(
σ(Gu, Gv)

)
1F = iσ(Gu, Gv) 1F ,

where in the last line we used that, since Gu,Gv ∈ Γlin
sc are real solutions,

their surface layer inner product and symplectic form are both real-valued.
In [8, Proposition 5.9] it is shown that

(133) σ(Gu, Gv) = 〈u, G v〉L2(M) .

We thus obtain the commutation relations
[
Φ̂(u), Φ̂(v)

]
= i 〈u, G v〉L2(M) 1F .

These are the usual canonical commutation relations in the Heisenberg pic-
ture (see for example [2, eq. (12.37)] or [26, eq. (2.53)]). We remark that,
following the path of axiomatic quantum field theory, one can also take the
field operators with their commutation relation as the starting point. The
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algebra generated by the field operators is referred to as the algebra of ob-
servables, and representing this algebra on Hilbert spaces gives Fock spaces
(for details see the textbooks [25, 4]). This path can also be taken for causal
fermion systems, as is worked out for linear systems in [7].

7.3. The holomorphic perturbation map as a linear operator on F

In preparation for rewriting the perturbation map in the Fock space formal-
ism, we begin with the situation of Theorem 6.4 in which there is a holomor-
phic perturbation expansion.

We point out that the Fock space was constructed starting from the
space Γlin

sc of linearized solutions. The perturbation map P in (72), however,
does not map to linearized solutions, but to the space Γsc. This is already clear
to second order in perturbation theory, where P(2) will be an inhomogeneous
solutions, where the inhomogeneity takes into account the interaction term.
Therefore, before we can describe P in the Fock space formalism, we must
consider it as an operator which takes values in the linearized solutions. To
this end, we make use of the restriction operator defined in (50). We introduce
the notation

(134) Pt := P|t : Γsc → Γlin
sc .

Taking the holomorphic component gives rise to a nonlinear operator from h

to h which has a perturbation expansion,

(135) Phol := χhol Pt : Γhol ⊂ h → h , Phol(λz) =
∞∑
p=1

λp P
(p)
hol

(
z, . . . , z︸ ︷︷ ︸

p arguments

)
,

where the operators P(p)
hol are multilinear and symmetric. Here the vector z ∈ h

is to be considered as the holomorphic component of w, i.e.

(136) z := χhol w .

To any z ∈ h we want to associate a corresponding unperturbed Fock
state Υ(z). In order for being able to rewrite the non-linear perturbation map
as a linear operator on the Fock space, it is important that Υ(z) involves all
tensor powers of z. We make the ansatz

(137) Υ(z) =
∞∑
n=0

Cn z
n ∈ F
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with complex coefficients Cn to be determined below. Our goal is to construct
a linear operator L : F → F with the property that

LΥ(z) = Υ
(
Phol(z)

)
=

∞∑
n=0

Cn Phol(z)n .

Applying (129) to (137), we obtain

a
(
φ̄
)
Υ(z) = 〈φ|z〉

∞∑
n=1

Cn

√
n zn−1 = 〈φ|z〉

∞∑
n=0

Cn+1
√
n + 1 zn .

Therefore, it seems most convenient to choose

(138) Cn = 1√
n!

,

because we then obtain the simple relation

(139) a
(
φ̄
)
Υ(z) = 〈φ|z〉 Υ(z) .

Next, using (128), we get

a†
(
φ
)
Υ(z) = a†

(
φ
) ∞∑

n=0

zn√
n!

=
∞∑
n=0

√
n + 1√
n!

(
φ⊗ zn

)
s

=
∞∑
n=0

n + 1√
(n + 1)!

(
φ⊗ zn

)
s

=
∞∑
n=1

n√
n!

(
φ⊗ zn−1)

s =
∞∑
n=1

1√
n!

Dφz
n ,

where D denotes the directional derivative. We thus obtain the compact for-
mula

(140) a†
(
φ
)
Υ(z) = DΥ|z φ .

Before going on, we point out that the state (137) with coefficients Cn

given by (138) is well-known in physics and is referred to as a coherent state
(see for example [1, eq. (2.14)] or [5, page 10]). Coherent states are quantum
states which saturate the uncertainty relations and are therefore well-suited
for the descriptions of semi-classical systems. However, in our setting the
context and the objective are completely different: Fock spaces do not appear
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as a consequence of a “quantization procedure,” but they arise instead simply
when “linearizing” the nonlinear dynamics on the tensor algebra. Coherent
states are not “semi-classical states,” but they are used merely as a convenient
tool for describing the dynamics as described by the causal action principle
in terms of operators on Fock spaces.

For completeness, we now collect the properties of the coherent states
which will be needed later on. The relations (139) and (140) are very useful
for computations, as we now explain. To begin with, the operator Υ(z) can
be expressed with an exponential acting on the Fock vacuum.

Lemma 7.2. The state Υ(z) in (137) and (138) can be obtained from the
vacuum by

(141) Υ(z) = exp
(
a(z)†

)
|0〉F .

Proof. Clearly, the Fock vacuum can be written as |0〉F = Υ(0). Using the
exponential series and applying (140) iteratively, we obtain

exp
(
a(z)†

)
|0〉F =

∞∑
n=0

1
n! (a(z)†)n |0〉F =

∞∑
n=0

1
n! D

nΥ|0 zn = Υ(z) ,

where in the last step we used the Taylor formula.

We next compute the Fock scalar product on the image of Υ.

Lemma 7.3. For any φ, z ∈ h,
〈
Υ(φ)

∣∣Υ(z)
〉
F = exp

(
〈φ|z〉

)
.

Proof. For clarity, we give two alternative proofs. First, using (137) and (138),
we obtain

〈
Υ(φ)

∣∣Υ(z)
〉
F =

∞∑
n=0

1
n!

〈
φn

∣∣ zn〉F (∗)=
∞∑
n=0

1
n!

(
〈φ|z〉

)n = exp
(
〈φ|z〉

)
,

where in (∗) we used (118).
In the second proof we apply the formula of Lemma 7.2,

〈
Υ(φ)

∣∣Υ(z)
〉
F = 〈0 | exp

(
a(φ)

)
exp

(
a†(z)

)
|0〉F

=
∞∑
n=0

1
(n!)2 〈0 | a(φ)n

(
a†(z)

)n |0〉F ,
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where we used that we only get a contribution if as many particles are created
as are annihilated. We now iteratively commute the annihilation operators to
the right, where they give zero when acting on the vacuum state. There are n!
terms (because the first factor a is commuted n times, the second factor a is
commuted n− 1 times, etc.). According to (131), every commutation gives a
scalar product. We thus obtain

〈
Υ(φ)

∣∣Υ(z)
〉
F =

∞∑
n=0

1
(n!)2 n! 〈φ|z〉 = exp

(
〈φ|z〉

)
.

This concludes the second proof.

Our next step is to rewrite the nonlinear operator Phol as a linear operator
on the Fock space. To this end, the concept of Wick ordering will be useful.

Definition 7.4. A product of creation and annihilation operators is Wick
ordered by bringing all creation operators to the left and all annihilation
operators to the right. We denote Wick ordered products by putting colons
: · · · : around them.

In the next theorem, we also use the annihilation operator a without
an argument, to be understood as follows. The operator a(φ̄) associates to
every φ ∈ h a linear operator on the Fock space. Thus for any two Fock
vectors Φ, Φ̃ ∈ F , we obtain the linear functional

αΦ,Φ̃ := 〈Φ | a(.) Φ̃〉F : h → C .

The Fréchet-Riesz theorem allows us to identify this functional with a unique
vector ψΦ,Φ̃ ∈ h via

〈ψΦ,Φ̃|φ〉 = αΦ,Φ̃(φ) for all φ ∈ h .

In this way, the operator a gives rise to an operator

a : F → h×F ,

which with a slight abuse of notation we again denote by a. It is defined by
the relation

〈Φ | a Φ̃〉F = ψΦ,Φ̃ ∈ h for all Φ, Φ̃ ∈ F .

The above relations can be summarized alternatively by the relation

〈φ|a〉 = a(φ̄) ∈ L(F) ,

where both sides of the equation are operators on F .
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Theorem 7.5. The linear operator

L = : exp
(
a†
( ∞∑

p=2
P

(p)
hol(a, . . . , a)

))
: : F → F

linearizes the perturbation map in the sense that

LΥ(z) = Υ
(
Phol(z)

)
with Υ according to (137) or (141).

Proof. Iterating (140) similar as the proof of Lemma 7.2, we obtain

(142) exp
(
a†
(
φ
))

Υ(z) =
∞∑
p=0

a†
(
φ
)p

p! Υ(z) =
∞∑
p=0

1
p! D

pΥ|z(φp) = Υ(z + φ) .

Hence

Υ
(
Phol(z)

)
= Υ

(
z +

∞∑
p=2

P
(p)
hol(z, . . . , z)

)
(∗)= exp

(
a†
( ∞∑

p=2
P

(p)
hol(z, . . . , z)

))
Υ(z) ,

where in (∗) we applied the equation (142) backwards for

φ =
∞∑
p=2

P
(p)
hol(z, . . . , z) .

It remains to write the arguments z of the operator P
(p)
hol in terms of field

operators. To this end, we iterate (139) to obtain

a
(
φ̄
)p Υ(z) = 〈φ|z〉p Υ(z) .

Therefore, we may replace each argument z by an operator a acting on Υ(z).
In order to make sure that these operators really act on Υ(z), we must Wick
order all operator products. This gives the result.

This proof can be summarized in a more compact form as follows:

Υ
(
Phol(z)

)
= ea

†(Phol(z)) |0〉F = ea
†(Phol(z))−a†(z) ea

†(z) |0〉F
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= ea
†(Phol(z))−a†(z) Υ(z)

= : ea†(Phol(a))−a†(a) : Υ(z) = : ea
†
(
Phol(a)−a

)
: Υ(z)

In the remainder of this section, we consider if and how the conservation
laws for scattering systems collected in Corollary 6.1 can be formulated with
Fock spaces. In order to describe the scattering process in Figure 1, we choose
the linearized solution z as the holomorphic component of w,

z = χhol w .

Then Phol(z) = χhol wout is the holomorphic component of the outgoing jet.
Since wout is a linearized solution, the scalar product (wout, wout)tout is well-
defined. However, due to the nonlinear interaction region, the jet wout does
not extend to a linearized solution in all of spacetime. Therefore, we cannot
work with the surface integrals in (87)–(89). The only surface layer integral
which makes sense is the nonlinear surface layer integral, whose conservation
law (90) states that

γtin
(
w, ρvac

)
= γtout

(
wout + nout, ρvac

)
.

Rewriting γt using the formula for linear systems in (80) and expressing
γρvac(nout) with the help of (57) as the inner flux, we obtain

(143) 1
2 (w,w)tin = sμ

(
nout, N

tout
)
+ 1

2 (wout, wout)tout .

Here the scalar product can be expressed in terms of the scalar product on the
one-particle Hilbert space (h, 〈.|.〉), making it possible to apply the formula of
Lemma 7.3. Writing wout = P(w) and nout = N(w) gives the following result:

Theorem 7.6. For any z ∈ Γhol ⊂ h,

(144)
〈
LΥ(z)

∣∣LΥ(z)
〉
F = 〈Υ(z)|Υ(z)〉F exp

{
sμ

(
nout, N

tout
)}

.

Proof. First, using that the operator Γ is anti-symmetric,

(
P(w)|P(w)

)
= 1

2 〈χhol P(w) |χholP(w)〉 = 1
2 〈Phol(z) |Phol(z)〉

and similarly (w|w) = 〈z|z〉/2 (where we again used the notation (136) as
well as the assumption that the perturbation expansion is holomorphic). Tak-
ing z = w as the incoming scattering state, we can apply (143) to obtain

〈Phol(z) |Phol(z)〉 = 〈z|z〉 + sμ
(
nout, N

tout
)
.
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Lemma 7.3 yields for the Fock space norms of the corresponding coherent
states〈

Υ(Phol(z))
∣∣Υ(Phol(z))

〉
F = 〈Υ(z)|Υ(z)〉F exp

{
sμ

(
nout, N

tout
)}

.

Applying Theorem 7.5 gives the result.

The main conclusion is that, as a consequence of the inner solutions, the
linear dynamics on the Fock space in general does not preserve the norm on
the Fock space. This is the reason why, although we assume them to be very
small (see Section 5), the inner solutions must be taken into account. We will
explain in the next section (Section 7.4) how to treat this effect in a way
where we do get a norm-preserving time evolution on Fock spaces. In order to
explain another important idea in the present simple setting, we now explain
how one could proceed if the exponential factor in (144) were absent, i.e. if

(145)
〈
LΥ(z)

∣∣LΥ(z)
〉
F = 〈Υ(z)|Υ(z)〉F for all z ∈ h .

This relation is clearly satisfied if L is a unitary operator on F . However,
it is not obvious if, conversely, (145) also implies the unitary of L, because
in (145) we are only allowed to take the expectation value for Fock vectors of
the form Υ(z) with holomorphic one-particle vectors z = χholw. But unitarity
can be obtained with the following method:

Lemma 7.7 (polarization lemma). Assume that an operator A on the Fock
space F satisfies the relation〈

Υ
(
χholw

) ∣∣ AΥ
(
χholw

)〉
F = 0 for all w ∈ Γlin

sc .

Then A vanishes.

Proof. Given p, q ≥ 0, in generalization of (109) we now choose w as

w =
p+q∑
�=1

(
eiα� vhol

� + e−iα� vah
�

)

with vectors vhol
� ∈ h and phases α� ∈ R. Since the phases can be chosen

independently, the contributions with any combination of the phases vanish
separately. In particular, it follows that

e−iα1−···−iαq+iαq+1+···+iαp+q
〈
vhol
1 ⊗ · · · ⊗ vhol

q

∣∣ Avhol
q+1 ⊗ · · · ⊗ vhol

p+q

〉
F = 0 .

Since p and q as well as the vectors vhol
� ∈ h can be chosen arbitrarily, the

result follows.
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Applying this polarization lemma to (145) gives the following result:

Corollary 7.8. Assume in the setting of a holomorphic perturbation expan-
sion that the relation (145) holds for the linear operator L introduced in The-
orem 7.5. Then L is a unitary operator on F .

Proof. After rewriting (145) as〈
Υ(z)

∣∣ {L∗ L− 1
}

Υ(z)
〉
F = 0 for all z ∈ h ,

one can apply the polarization lemma to conclude that the operator in the
curly brackets vanishes.

7.4. The perturbation map as a linear operator on F∗ ⊗ F

The construction in the previous section has two major shortcomings: First,
we concluded in Section 6.6 that in most physical situations there is no canon-
ical complex structure, so that the assumption of a holomorphic perturbation
expansion (135) does not hold. Second, due to the exponential factor in (144),
the Fock space norm in general is not conserved, implying that the scattering
operator L is not unitary. In this section, we explain how to overcome these
difficulties.

Thus we return to the general setting of the scattering process as described
in Section 6.2. Since there is no canonical complex structure to our disposal,
we simply work in the scattering regions with the complex structures of the
linear systems (see Section 6.3). This is a canonical choice. But we must keep
into account that the linearized time evolution is not compatible with the
complex structures, meaning that holomorphic ingoing jets are mapped to
linear combinations of holomorphic and anti-holomorphic outgoing jets. Like-
wise, the perturbation map P mixes holomorphic and anti-holomorphic parts.
Finally, we must take into account the operator N, which generates an inner
solution which contributes to the nonlinear surface layer integral in (90). The
resulting situation is described most conveniently as follows. Similar to (136),
we now denote the holomorphic and anti-holomorphic components of w by

z = χhol w and z = χah w .

Similar to (135) we apply the restriction operator and denote the holomorphic
component of the perturbation map at time t by

Phol := χhol Pt : h∗ × h → h ,

Phol(λz, λz) =
∞∑
p=1

∞∑
q=0

λp+q P
(q,p)
hol

(
z, . . . , z︸ ︷︷ ︸

q arguments

; z, . . . , z︸ ︷︷ ︸
p arguments

)
.

(146)
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One method of dealing with the anti-holomorphic component would be
to enlarge the Fock space F by including the anti-holomorphic component
(i.e. F could be chosen as the bosonic Fock space generated by ΓC instead
of Γhol). However, this method would have the shortcoming that the polariza-
tion lemma (Lemma 7.7) would no longer apply, because both the bra and ket
states would involve both holomorphic and anti-holomorphic components. As
a consequence, we would no longer get operator equations on the Fock space.
This is the reason why it is preferable to work again with the holomorphic
Fock space. The anti-holomorphic contributions give rise to a mixing of the
bra and ket state, as we now describe.

It is convenient to simplify our notation as follows. We let (φi) be an
orthonormal basis of h. We write

a†i = a†(φi) and ai = a
(
φi

)
.

Then the anti-commutation relations (131) become
[
ai, a†j

]
= δij .

Next, we write (146) in components by setting

P
(q,p)
hol

(
φj1 , . . . , φjq ;φk1 , . . . , φkp

)
=

∑
i

i(Phol)j1,...,jqk1,...,kp
φi .

Using (139), we can obtain the components of z by acting with the annihila-
tion operators on Υ(z),

ai Υ(z) = zi Υ(z) .
In the case q = 0 of a holomorphic expansion, this makes it possible to rewrite
the linear operator of Theorem 7.5 as

L = : exp
( ∞∑

p=2
a†i

i(Phol)i1,...,ip ai1 · · · aip
)
: ,

where similar to Einstein’s summation convention we sum over all Hilbert
space indices which appear twice. In the case q �= 0, the indices j1, . . . , jq also
need to be contracted with annihilation operators. However, we cannot work
with an operator acting on Υ(z), because this only gives holomorphic vectors.
Our method for obtaining anti-holomorphic vectors is to let annihilation op-
erators act on a bra vector. For example,

〈aiΥ(z)| · · ·Υ(z)〉F = 〈ziΥ(z)| · · ·Υ(z)〉F = zi 〈Υ(z)| · · ·Υ(z)〉F ,
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where · · · stands for any other Fock space operators. For notational clarity,
we regard the bra vector as a vector in the dual of the Fock space and write

〈Υ(z)| ⊗ |Υ(z)〉F ∈ F∗ ⊗F .

Moreover, we introduce the operators

ai and a†
i

as the operators ai respectively a†i acting on the dual space, i.e.

ai
(
〈Υ(z)| ⊗ |Υ(z)〉F

)
:= 〈ai Υ(z)| ⊗ |Υ(z)〉F

a†
i
(
〈Υ(z)| ⊗ |Υ(z)〉F

)
:= 〈a†i Υ(z)| ⊗ |Υ(z)〉F .

Then

P
(q,p)
hol

(
z, . . . , z; z, . . . , z

) (
〈Υ(z)| ⊗ |Υ(z)〉F

)
= φi

i(Phol)j1,...,jqk1,...,kp
aj1 · · · ajq ak1 · · · akp

(
〈Υ(z)| ⊗ |Υ(z)〉F

)
.

(147)

Next, we introduce Wick ordering for operators acting on F∗ ⊗ F in three
steps: In the first step, the field operators act on the bra respectively ket states
as explained above. In the second step, all the field operators acting on ket
states are Wick ordered in the usual way by writing annihilation operators to
the right. In the third and last step, all the field operators acting on bra states
are Wick ordered as usual. We again denote Wick ordering by : · · · : . Using
Wick ordering, the operators in (147) can be written anywhere, for example

P
(q,p)
hol

(
z, . . . , z; z, . . . , z

) (
〈Υ(z)| ⊗ |Υ(z)〉F

)
= :

〈
Υ(z)

∣∣∣⊗ ∣∣∣φi
i(Phol)j1,...,jqk1,...,kp

aj1 · · · ajq ak1 · · · akp Υ(z)
〉
F

:

= :
〈
aj1 · · · ajq Υ(z)

∣∣∣⊗ ∣∣∣φi
i(Phol)j1,...,jqk1,...,kp

ak1 · · · akp Υ(z)
〉
F

: .

Here one must only keep in mind that the operators acting on the bra state
are complex conjugated, and that complex conjugation makes upper indices
to lower indices and vice versa.

With this notation, Theorem 7.5 can be extended to the non-holomorphic
setting as follows:
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Theorem 7.9. The linear operator LP : F∗ ⊗F → F∗ ⊗F given by

(148) LP = : exp
( ∑

(p,q)	=(1,0)
a†i

i(Phol)j1,...,jqk1,...,kp
aj1 · · · ajq ak1 · · · akp

)
:

linearizes the perturbation map in the sense that

LP

(
〈Υ(z)

∣∣⊗ ∣∣Υ(z)〉F
)

=
〈
Υ
(
Phol(z, z)

)∣∣⊗ ∣∣Υ(
Phol(z, z)

)〉
F .

We point out that the fact that (148) involves the operators a gives rise
to a complicated “mixing” of the bra and ket states in the dynamics.

Our next step is to build in the inner solutions. The formula (144) ob-
tained in the holomorphic approximation shows that the inner flux gives rise
to a prefactor multiplying the Fock scalar product. In order to obtain a con-
servation law for the Fock norm, the obvious idea is to absorb this prefactor
into the Fock vectors. In other words, we want to rescale the Fock vectors by
the exponential of the inner flux. This can be achieved simply by multiply-
ing (149) by this exponential. However, before we can do so, we must rewrite
the inner flux as an operator on the Fock space: Similar to (146) we expand
the inner flux in powers of the holomorphic and anti-holomorphic incoming
jets,

μ
(
n, N t) : h∗ × h → R ,

μ
(
n, N t) =

∞∑
p,q=1

λp+q μ(q,p)(z, . . . , z︸ ︷︷ ︸
q arguments

; z, . . . , z︸ ︷︷ ︸
p arguments

)
,

and expand in the orthonormal basis (φi),

μ(q,p)(z, . . . , z; z, . . . , z) (
〈Υ(z)| ⊗ |Υ(z)〉F

)
= μ

j1,...,jq
k1,...,kp

aj1 · · · ajq ak1 · · · akp
(
〈Υ(z)| ⊗ |Υ(z)〉F

)
.

This gives the following result:

Theorem 7.10. The linear operator L : F∗ ⊗F → F∗ ⊗F given by

L = : exp
( ∞∑

p,q=1
μ
j1,...,jq
k1,...,kp

aj1 · · · ajq ak1 · · · akp

+
∑

(p,q)	=(1,0)
a†i

i(Phol)j1,...,jqk1,...,kp
aj1 · · · ajq ak1 · · · akp

)
:

(149)



Complex structures on jet spaces 117

linearizes the perturbation map in the sense that

L
(
〈Υ(z)

∣∣⊗ ∣∣Υ(z)〉F
)

=
〈
Υ
(
Phol(z, z)

)∣∣⊗ ∣∣Υ(
Phol(z, z)

)〉
F esμ(n,N t) .

Now the linearization takes into account the inner solutions. Therefore,
the conservation law for the nonlinear surface layer integral (90) implies that
the Fock norm is conserved in time, as we now make precise. In order to get a
consistent notation, it is preferable to state this result referring to observables
and expectation values. Exactly as in quantum field theory, an observable O
is a symmetric linear operator on F . The expectation value of an observable
with respect to a state 〈Φ| ⊗ |Φ̃〉F ∈ F∗ ⊗F is denoted by

(150) O
(
〈Φ| ⊗ |Φ̃〉F

)
:= 〈Φ | O Φ̃〉F .

In particular, the scalar product on F is recovered as the expectation value
of the identity, 1

(
〈Φ| ⊗ |Φ̃〉F

)
:= 〈Φ|Φ̃〉F .

Theorem 7.11. For any z ∈ Γhol ⊂ h,

(151) 1
(
L

(
〈Υ(z) | ⊗ |Υ(z)〉F

))
= 〈Υ(z)|Υ(z)〉F .

Proof. First, using that the operator Γ is anti-symmetric,

(
P(w)|P(w)

)
= 1

2 〈χhol P(w) |χholP(w)〉 = 1
2 〈Phol(z, z) |Phol(z, z)〉

and similarly (w|w) = 〈z|z〉/2 (where we again used the notation (136)).
Taking z = w as the incoming scattering state, we can apply (143) to obtain

〈Phol(z, z) |Phol(z, z)〉 = 〈z|z〉 + sμ
(
nout, N

tout
)
.

Lemma 7.3 yields for the Fock space norms of the corresponding coherent
states

〈
Υ(Phol(z))

∣∣Υ(Phol(z))
〉
F = 〈Υ(z)|Υ(z)〉F exp

{
sμ

(
nout, N

tout
)}

.

Applying Theorem 7.10 gives the result.

To summarize our findings, in contrast to the setting of quantum field
theory, the system is not described by a Fock state, but by a pair of two Fock
vectors (one in F and one in F∗). Likewise, the time evolution operator is
not an operator on F , but an operator on F∗ × F . This corresponds to a
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M̃

t

tin

scattering region

Figure 2: Conservation laws at intermediate times.

complicated mixing of the bra and ket states in the time evolution. As a con-
sequence, the time evolution cannot be described by a unitary operator on F .
Despite this mixing, the conservation law for the nonlinear surface layer inte-
gral implies that the Fock norm is conserved under the time evolution (151).

8. The holomorphic approximation

In Theorem 7.5 we saw that the perturbation map gives rise to a complicated
mixing of the holomorphic and anti-holomorphic components of the jets. In
order to analyze this mixing in more detail, we now rewrite the dynamics as
described by the perturbation map as an approximate holomorphic dynamics
with a specific error. The method is to track the jets while time evolves
from tmin to tmax in small consecutive time intervals. In each time step, we
approximate the dynamics by “projecting onto” the holomorphic component.
In this way, the mixing of the holomorphic and anti-holomorphic components
disappears while preserving the Fock space norm.

8.1. Conservation laws and a complex structure in the time
evolution

So far, we only analyzed the in- and outgoing scattering states, but we did
not consider the Fock states and the corresponding conservation laws in the
scattering region. To this end, we now consider the dynamics only up to an
intermediate time t ∈ (tmin, tmax) (see Figure 2) and analyze the resulting
structures and conservation laws.

As discussed in Section 6.6, in most physical situations there is no canon-
ical complex structure. Nevertheless, in order to work with complex Hilbert
spaces at time t, we now introduce a complex structure at time t. To this end,
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we simply use the formulas of Definition 2.5 for the vacuum measure ρ = ρvac
and evaluate them for nonlinear jets, i.e. in suitable charts

(
P(u),P(v)

)∣∣
t
:=

∫
Ωt

dρvac(x)
∫
M\Ωt

dρvac(y)

×
(
D1,Pt(u)D1,Pt(v) −D2,Pt(u)D2,Pt(v)

)
L(x, y)(152)

σ
(
P(u),P(v)

)∣∣∣
t
:=

∫
Ωt

dρvac(x)
∫
M\Ωt

dρvac(y)

×
(
∇1,Pt(u)∇2,Pt(v) −∇1,Pt(v)∇2,Pt(u)

)
L(x, y) ,(153)

where we again applied the restriction map (134). Clearly, these surface layer
integrals are not conserved by the nonlinear dynamics. Having both a scalar
product (152) and a symplectic form (153) to our disposal, we can again
use the construction of Section 6.3 to obtain a complex structure on the
nonlinear jets at time t (the holomorphic components of the nonlinear jets give
a complex chart on the nonlinear solution space; this is why we have indeed
a complex and not merely an almost-complex structure). We again point out
that, since this complex structure depends on time, the time evolution will
mix the holomorphic and anti-holomorphic components.

In the constructions in the previous sections, the conservation of the Fock
norm was based on the conservation law for the nonlinear surface layer inte-
gral of Theorem 4.3. Moreover, we made use of the fact that, in the scattering
regions when the fields are arbitrarily weak, the nonlinear surface layer inte-
gral can be expressed in terms of the inner flux and the surface layer inner
product of the vacuum (see Corollary 6.2). In the interaction region, the non-
linear surface layer integral is still conserved, i.e. in analogy to (90),

γt
(
ρ̃, ρvac

)∣∣t
tin

= 0 .

However, since the jets could be large, it is not obvious that the nonlinear
surface layer integral can still be written similar to (80) in terms of surface
layers defined in the vacuum. We now prove that this can indeed be arranged
by adding suitable inner solutions.

Lemma 8.1. By adding inner solutions which preserve the total volume and
vanish at initial and final times, it can be arranged that the formula (91) for
the nonlinear surface layer also holds at intermediate times.
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Proof. Clearly, (91) also holds at intermediate times approximately,

γt
(
ρ̃, ρvac

)
= sμ

(
N(w), N t) + 1

2
(
P(w),P(w)

)t
+ (higher order corrections) .

(154)

The higher order corrections can be compensated by modifying the inner flux
appropriately, i.e. by choosing ΔN(w) with

sμ
(
N(w), N t) = −(higher order corrections) .

Since the higher order corrections vanish both at initial and final times, the
same is true for the modifications of the inner flux. Therefore, the spacetime
integral of the the scalar component of N(w) vanishes,∫

M
∇N(w) s = 0 .

In other words, the inner solution preserves the total volume. This concludes
the proof.

Following the arguments in Section 5 and Appendix B.1, it is sensible to
assume that the inner solutions introduced in the previous lemma are small
in the sense of Definition 5.1.

In this way, we have arrange that the Fock space construction in Sec-
tion 7.4 also applies at intermediate times. We indicate this simply by adding
an superscript t to the operator L.

Theorem 8.2. For any z ∈ Γhol ⊂ h and any t ∈ R, linearizing the dynamics
up to time t with a Fock space operator

(155) Lt : F∗ ⊗F → F∗ ⊗F ,

the following conservation law holds:

(156) 1
(
Lt (〈Υ(z) | ⊗ |Υ(z)〉F

))
= 〈Υ(z)|Υ(z)〉F .

8.2. A unitary time evolution in the holomorphic approximation

We next consider the evolution of the system in a small time step from t
to t + Δt (by letting Δt → 0, we will later recover the infinitesimal time
evolution). We again work with the nonlinear jets, which we now denote by

ŵ(t) = Pt(w) and n̂(t) = Nt(w)
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(where the superscript t again denotes the restriction map (134)). Similar
to (146), we write the time evolution from t to t + Δt as

χhol(ŵ(t + Δt) − ŵ(t)
)

=: ΔPhol
(
w(t))

= ΔP1
hol

(
w(t)

)
+ ΔP2

hol
(
w(t), w(t)

)
χhol(n̂(t + Δt) − n̂(t)

)
=: Δŵhol

(
w(t))

= Δŵ1
hol

(
w(t)

)
+ Δŵ2

hol
(
w(t), w(t)

)
.

We here omit the higher orders for two reasons: First for notational conve-
nience, noting that the higher orders could be treated in a straightforward
way. Second, the higher orders are irrelevant in the physical applications if Δt
is chosen sufficiently small (for example, the coupling term in the Hamiltonian
of QED is described by a quadratic term in the jets formed of a product of
a bosonic and a fermionic jet). Again choosing an orthonormal basis (φi) of
the holomorphic jets, we decompose the arguments of ΔPhol and Δŵhol into
the holomorphic and anti-holomorphic parts,

ΔPhol
(
w(t)) = φl

(lAjz
j + lBjkz

jzk + lBj
k zjz

k + lBjk zj zk
)
Δt

Δŵhol
(
w(t)) =

(
Ejz

j + Fjkz
jzk + F j

k zjz
k + F jk zj zk

)
Δt .

We next consider the corresponding linear time evolution Lt on F∗ ⊗ F
in (155). Taking the linear contributions in Δt, we obtain

Δ
(〈

Υ
(
z(t)

)∣∣⊗ |Υ
(
z(t)

)〉
F

)
= :

(〈
(−iH) Υ

(
z(t)

)∣∣⊗ ∣∣Υ(
z(t)

)〉
F +

〈
Υ
(
z(t)

)∣∣⊗ ∣∣(−iH)Υ
(
z(t)

)〉
F

)
: Δt

+ O
(
(Δt)2

)
,

where the operator H is defined by

H = ia†l
lAja

j + ia†l
(lBjk a

jak + lBj
k aja

k + lBjk aj ak
)

+ iEja
j + i

(
Fjk a

jak + F j
k aja

k + F jk aj ak
)
.

By decomposing the time evolution from tin to a later time t into time evo-
lutions on small time intervals Δt and taking the limit Δt → 0, one finds
that L is obtained from H by exponentiating,

(157) L(t) = e−i(t−tin) H .
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Due to the complex conjugated field operators, the operator H does not
act on the Fock space F , but it acts instead on the tensor product F∗⊗F and
mixes the holomorphic and anti-holomorphic components. In order to obtain
a corresponding holomorphic time evolution, it is a canonical procedure to
simply replace the complex conjugations by adjoints. We thus introduce the
Hamiltonian H as

H = ia†l
lAja

j + ia†l
(lBjk a

jak + lBj
k a

†
j a

k + lBjk a†j a
†
k

)
+ iEja

j + i
(
Fjk a

jak + F j
k a

†
j a

k + F jk a†j a
†
k

)
: F → F .

(158)

Let us verify that this Hamiltonian is a symmetric operator on F : We apply
the conservation law for the Fock space dynamics of Theorem 8.2. To first
order in Δt, we thus obtain

(159) :
(〈

H Υ
(
z(t)

)∣∣Υ(
z(t)

)〉
F +

〈
Υ
(
z(t)

)∣∣HΥ
(
z(t)

)〉
F

)
: = 0 .

By definition of the complex conjugate field operators, the last summand can
be rewritten as

:
〈
Υ
(
z(t)

)∣∣(−iH)Υ
(
z(t)

)〉
F :

=
〈
Υ
(
z(t)

)∣∣(a†l lAj a
j + a†l

(lBjk a
jak

)
Υ
(
z(t)

)〉
F

+
〈
ajΥ

(
z(t)

) ∣∣ a†l lBj
k a

kΥ
(
z(t)

)〉
F(160)

+
〈
ajakΥ

(
z(t)

) ∣∣ a†l lBjk Υ
(
z(t)

)〉
F + · · ·

=
〈
Υ
(
z(t)

)∣∣(a†l lAj a
j + a†l

lBjk a
jak

)
Υ
(
z(t)

)〉
F

+
〈
Υ
(
z(t)

) ∣∣ a†ja†l lBj
k a

k Υ
(
z(t)

)〉
F(161)

+
〈
Υ
(
z(t)

) ∣∣ a†ja†ka†l lBjk Υ
(
z(t)

)〉
F + · · ·

=
〈
Υ
(
z(t)

) ∣∣ (−iH) Υ
(
z(t)

)〉
F ,(162)

where for brevity we only considered the operators in the first line of (158).
The computation works the same way for the operators in the second line.
Treating the first summand in (159) similarly, we obtain

(159) =
〈
(−iH) Υ

(
z(t)

)∣∣Υ(
z(t)

)〉
F +

〈
Υ
(
z(t)

)∣∣(−iH)Υ
(
z(t)

)〉
F = 0 .

Applying the polarization lemma (Lemma 7.7), we obtain the following result:

Theorem 8.3. The Hamiltonian H defined by (158) is a symmetric operator
on the Fock space F .
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Definition 8.4. The holomorphic approximation is defined as the uni-
tary time evolution generated by the Hamiltonian H, i.e.

z(t) = S(t, tin) z(tin) with S(t, t′) := e−i(t−t′)H : F → F .

Denoting the holomorphic time evolution by S is motivated by the fact
that the operator S(tout, tin) can be identified with the usual scattering oper-
ator of quantum field theory.

8.3. Corrections to the holomorphic approximation

We now give a systematic procedure for describing the error of the holo-
morphic approximation. On the time step from t to t + Δt, the error of the
holomorphic approximation is given by E(t) Δt, where the error term E(t) is
the operator

E(t)
〈
Φ(t)

∣∣⊗ ∣∣Φ̃(t)
〉
F

:= : i
(〈

H Φ(t)
∣∣⊗ ∣∣Φ̃(t)

〉
F −

〈
Φ(t)

∣∣⊗ ∣∣H Φ̃(t)
〉
F

)
:

− i
(〈
HΦ(t)

∣∣⊗ ∣∣Φ̃(t)
〉
F −

〈
Φ(t)

∣∣⊗ ∣∣HΦ̃(t)
〉
F

)
.

(163)

For finite times, the error can be obtained by integrating this expression in a
Dyson series:

Theorem 8.5 (corrections to holomorphic approximation). Denoting the
holomorphic time evolution on F∗ ×F by V (t), i.e.

V (t)
〈
Φ
∣∣⊗ ∣∣Φ̃〉F :=

〈
e−itHΦ

∣∣⊗ ∣∣e−itHΦ̃〉F ,

the dynamics described by L, (157), can be written as

L(t) = V (t) +
∫ t

tin

V (t− τ) E(τ) V (τ) dτ

+
∫ t

tin

dτ1

∫ τ1

tin

dτ2 V (t− τ1) E(τ1) V (τ1 − τ2) E(τ2) V (τ2) + · · · .
(164)

Proof. In order to compare the exact dynamics L(t) with the approximate
dynamics V (t), we go to the interaction picture, taking V (t) as the “free”
dynamics. Thus setting

〈Φ| ⊗ |Φ̃〉I(t) := V (t)−1 〈Φ(t)| ⊗ |Φ̃(t)〉F
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= V (t)−1 L(t) 〈Φ(tin)| ⊗ |Φ̃(tin)〉F ,(165)

the dynamics in the interaction picture is

∂t〈Φ| ⊗ |Φ̃〉I(t) = i V (t)−1
(
:
〈
H Φ(t)

∣∣⊗ ∣∣Φ̃(t)
〉
F : − :

〈
Φ(t)

∣∣⊗ ∣∣H Φ̃(t)
〉
F :

−
〈
H Φ(t)

∣∣⊗ ∣∣Φ̃(t)
〉
F −

〈
Φ(t)

∣∣⊗ ∣∣H Φ̃(t)
〉
F

)
.

This equation can be written in a shorter form as

∂t〈Φ| ⊗ |Φ̃〉I(t) = EI(t) 〈Φ| ⊗ |Φ̃〉I(t) with
EI(t) := V (t)−1 E(t)V (t) .

(166)

This ODE can be solved iteratively by

〈Φ| ⊗ |Φ̃〉I(t)

=
(
1 +

∫ t

tin

EI(τ) V (τ) dτ

+
∫ t

tin

dτ1

∫ τ1

tin

dτ2 E
I(τ1) EI(τ2) + · · ·

)
〈Φ| ⊗ |Φ̃〉I(tin) ,

Transforming back to the Schrödinger picture gives the result.

We finally rewrite this result in terms of the effect on observables. Our
construction is based on the following observation:

Lemma 8.6. The expectation value (150) of the error term (163) can be
written as the expectation value of an operator involving commutators. More
precisely,

O
(
E(t)

〈
Φ(t)

∣∣⊗ ∣∣Φ̃(t)
〉
F

)
= C(O)

(〈
Φ(t)

∣∣⊗ ∣∣Φ̃(t)
〉
F

)
,

where C(O) is the operator

C(O) :=
[
a†j ,O

]
a†l

lBj
k a

k +
[
a†ja

†
k,O

]
a†l

lBjk

+ a†k
lBj

k a
l [aj ,O]

+ al lBjk
[
akaj ,O

]
+

[
a†j ,O

]
F j
k a

k +
[
a†ja

†
k,O

]
F jk

+ a†k F
j
k

[
aj ,O

]
+ F jk

[
akaj ,O

]
.
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Proof. Reconsidering the computation (162), we obtain

O
(
:
〈
Φ(t)

∣∣ (−iH) Φ̃(t)
〉
F :

)
=

〈
Φ(t)

∣∣O (
a†l

lAja
j + a†l

lBjka
jak

)
Φ̃(t)

〉
F

+
〈
aj Φ(t)

∣∣O a†l
lBj

k a
k Φ̃(t)

〉
F +

〈
ajak Φ(t)

∣∣O a†l
lBjk Φ̃(t)

〉
F + · · ·

=
〈
Φ(t)

∣∣O (−iH) Υ
(
z(t)

)〉
F

+
〈
Φ(t)

∣∣ [a†j ,O]
a†l

lBj
k a

k Φ̃(t)
〉
F +

〈
Φ(t)

∣∣ [a†ja†k,O]
a†l

lBjk Φ̃(t)
〉
F

+ · · · ,

where for brevity we again considered only the operators in the first line
of (158). Treating the other summands in (163) similarly, we obtain

O
(
E(t)

〈
Φ(t)

∣∣⊗ ∣∣Φ̃(t)
〉
F

)
=

〈
Φ(t)

∣∣ [a†j ,O]
a†l

lBj
k a

k Φ̃(t)
〉
F +

〈
Φ(t)

∣∣ [a†ja†k,O]
a†l

lBjk Φ̃(t)
〉
F

−
〈[
a†j ,O

]
a†l

lBj
k a

k Φ(t)
∣∣ Φ̃(t)

〉
F −

〈[
a†ja

†
k,O

]
a†l

lBjk Φ(t)
∣∣ Φ̃(t)

〉
F

+ · · · .

Bringing the operators in the last line to the right side by taking the adjoints
gives the result.

Theorem 8.7 (iterated commutators).

O
(
L(t) 〈Φ(tin)| ⊗ |Φ̃(tin)〉F

)
= O′

(
L(t) 〈Φ(tin)| ⊗ |Φ̃(tin)〉F

)
,

where O′ is the transformed observable

O′ = O +
∫ t

tin

S(t, τ) C
(
S(τ, t)O S(t, τ)

)
S(τ, t) dτ

+
∫ t

tin

dτ1

∫ τ1

tin

dτ2 S(t, τ2) C
(
S(τ2, τ1) C

(
S(τ1, t)O S(t, τ1)

)
S(τ1, τ2)

)
S(τ2, t)

+ · · · .

Proof. As in the proof of Theorem 8.5, we again work in the interaction
picture (165) and set

OI(t) = S(t)−1 O S(t) .
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Then

O
(
L(t) 〈Φ(tin)| ⊗ |Φ̃(tin)〉F

)
= OI(t)

(〈
Φ(tin)

∣∣⊗ ∣∣Φ̃(tin)
〉I
F (t)

)
.

Using again (166), we obtain

O
(
L(t) 〈Φ(tin)| ⊗ |Φ̃(tin)〉F

)
= OI(t)

(〈
Φ(tin)

∣∣⊗ ∣∣Φ̃(tin)
〉I
F (tin) +

∫ t

tin

∂τ
〈
Φ(tin)

∣∣⊗ ∣∣Φ̃(tin)
〉I
F (τ) dτ

)

= OI(t)
(〈

Φ(tin)
∣∣⊗ ∣∣Φ̃(tin)

〉I
F (tin) +

∫ t

tin

EI(τ)
〈
Φ(tin)

∣∣⊗ ∣∣Φ̃(tin)
〉I
F (τ)

)

= O
(
V (t)

〈
Φ(tin)

∣∣⊗ ∣∣Φ̃(tin)
〉
F

)
+

∫ t

tin

C
(
OI(τ)

)(〈
Φ(tin)

∣∣⊗ ∣∣Φ̃(tin)
〉I
F (τ)

)
.

This relation can again be iterated. Transforming back to the Schrödinger
picture gives the result.

The corrections in Theorem 8.5 as well as the formula in Theorem 8.7 will
be explained and discussed in Appendix B.2.

9. Comparison with classical φ4-theory

We now illustrate our constructions by comparing the obtained structures
with those of classical field theory. In order to work in a concrete example,
we consider the classical φ4-theory in Minkowski space. As we shall see, the
conserved quantities of classical field theory and the resulting bilinear forms
bear a striking similarity to the structures found for causal variational prin-
ciples. But there are also major differences, which indeed make it impossible
to apply most of our constructions to classical field theory.

9.1. Preliminaries

We introduce classical φ4-theory in the Lagrangian formulation. We consider
the Lagrangian L

L(φ, ∂φ) = 1
2 (∂jφ)(∂jφ) − λ

4! φ
4 for λ > 0 ,

where φ is a real-valued scalar field. Integrating the Lagrangian over Minkow-
ski space (M, g) gives the action S,

S =
∫

M
L(φ, ∂φ) d4x .
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Considering critical points of the action, one obtains the Euler-Lagrange (EL)
equations

(167) �φ = −λ

6 φ3

(where � = ∂2
t − ΔR3 is the wave operator). According to Noether’s theo-

rem, the symmetries of the Lagrangian correspond to conserved quantities. In
particular, the symmetry under time translations gives rise to the conserved
classical energy E,

(168) E(φ) =
∫
t=T

(1
2 φ̇2 + 1

2 |∇φ|2 + λ

4! φ
4
)
d3x .

Given smooth and compactly supported initial data

(φ, ∂tφ)|tin ∈ C∞
0 (R3,R2)

at some initial time tin, the Cauchy problem for the nonlinear wave equa-
tion (167) is locally well-posed. Due to finite propagation speed, the solution
has spatially compact support in the sense that it has compact support at any
later time. Moreover, the solution exists globally and is smooth for sufficiently
small initial data. With our goal of getting a simple explicit example, it suf-
fices to restrict attention to a finite-dimensional manifold B ⊂ C∞

sc (M,R) of
global solutions of the nonlinear wave equation, which are all smooth and
have spatially compact support. Then for any base point ψ ∈ B, the tan-
gent space TψB ⊂ C∞

sc (M,R) is formed of a finite-dimensional subspace of
solutions of the linearized field equations

(169) �φ̃ = −λ

2 ψ2 φ̃ .

On TψB one has the following structures: First, the symplectic form defined
by

(170) σψ(χ̃, φ̃) :=
∫
t=T

(
(∂tχ̃) φ̃− χ̃ (∂tφ̃)

)
d3x

is time independent. This can be verified either explicitly by differentiating
with respect to T , using (169) and integrating by parts, or else more abstractly
by considering the boundary terms arising in the variation of the action in
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a finite time interval (see for example [9, §2.3]). Next, taking a functional
derivative of the energy (168), one gets the conserved quantity

(171) γψ(φ̃) := 1
2

∫
t=T

(
ψ̇ ˙̃φ + ∇ψ · ∇φ̃ + λ

3! ψ
3 φ̃

)
d3x .

By taking another functional derivative, one gets an inner product on the lin-
earized solutions. However, the form of this inner product depends on time, as
we now explain in detail: We consider a two-parameter family φr,s of solutions
of the Cauchy problem defined by the initial conditions

(172) φr,s|t=tin = ψ + r χ0 + s φ0 and ∂tφr,s|t=tin = ∂tψ + r χ1 + s φ1

(with χ0, χ1, φ0, φ1 ∈ C∞
0 (R3)). Then the first derivatives give rise to lin-

earized solutions

χ̃ := ∂rψr,s|t=tin and φ̃ := ∂sψr,s|t=tin .

We next introduce their energy inner product by

(χ̃, φ̃)ψ := ∂r∂sE
(
ψr,s

)∣∣
r=s=0

=
∫
t=T

(
˙̃χ ˙̃φ + (∇χ̃) · (∇φ̃) + λ

2 ψ2 ψ̃ φ̃

)
d3x + γψ

(
∂r∂sψr,s

∣∣
r=s=0

)
.(173)

The integral in (173) has the standard form of an energy, being an integral
over an energy density. It coincides with the energy corresponding to the
effective Lagrangian

(174) Lψ(φ̃, ∂φ̃) = 1
2 (∂jφ̃)(∂jφ̃) − λ

4 ψ2 φ̃2 .

However, the corresponding energy is conserved only if the resulting poten-
tial ψ2 is time-independent. In the general time-dependent setting, however,
the energy corresponding to (174) is not conserved, explaining the appear-
ance of the additional term γψ in (173). In order to compute ∂r∂sψr,s, we
differentiate (167) and (172) to obtain the Cauchy problem

(
� + λ

3 ψ2
)
∂r∂sψr,s

∣∣
r=s=0 = −λ

2 ψ χ̃ φ̃ , ∂r∂sφ
∣∣
t=tin

= 0 .

The solution of this Cauchy problem can be expressed with the help of Green’s
operators by

(175)
(
∂r∂sφ

)
(x) = λ

2

∫
{y0>tin}

Sψ(x, y)
(
ψ χ̃ φ̃

)
(y) d4y ,
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where Sψ is the retarded Green’s operator of the linearized wave equation,
i.e. (

� + λ

3 ψ2
)
Sψ(x, y) = −δ4(x− y) .

Extending the linearized solutions by zero to times t < tin, the y-integration
can be carried out over all of Minkowski space. Introducing the operator
notation

(Sψφ)(x) :=
∫

M
Sψ(x, y) φ(y) d4y

and using (175) in (173) gives the formula

(χ̃, φ̃)ψ =
∫
t=T

(
˙̃χ ˙̃φ + (∇χ̃) · (∇φ̃) + λ

2 ψ2 ψ̃ φ̃

)
d3x(176)

+ λ

2 γψ
(
Sψ

(
ψ χ̃ φ̃

))
.(177)

At initial time tin, the summand (177) vanishes, so that we obtain the form
of the energy as suggested from (174). Since λ > 0, the bilinear form (., .)ψ
is positive definite at time tin and thus defines a scalar product. As a con-
sequence of (177), the inner product (., .)ψ is independent of T . We note
that, more abstractly, (., .)ψ can be understood as the symmetrized covariant
derivative of γψ on B with a connection which is flat at time tin.

9.2. Comparison with the structures of causal variational
principles

The resulting structures are

conserved energy (168) E : B → R

conserved one-form (171) γψ : TψB → R

symplectic form (170) σψ : TψB × TψB → R

scalar product (176), (177) (., .)ψ : TψB × TψB → R .

This is very similar to the structures on the jet spaces in the previous sections.
However, there are also differences, mainly related to the fact that the inner
solutions have no correspondence to classical field theory. More precisely, the
analogy and differences are as follows:

1. The conservation of the energy E bears some similarity with the nonlin-
ear conservation law of Theorem 4.3 and Corollary 6.2. However, the
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physical interpretation is different, because (P(w),P(w)) is to be re-
garded as a probability, not an energy. Nevertheless, from the mathe-
matical or formal point of view, these conservation laws are analogous in
being positive functionals on the space of nonlinear solutions.

2. The conservation of γψ, being the functional derivative of E, is similar
to the conserved one-form (41) in (87).

3. The conserved symplectic form σψ corresponds precisely to the symplec-
tic form; see (42) and (88).

4. The scalar product (., .)ψ on linearized solutions can be regarded as
the analog of the surface layer inner product (43) in (89). The volume
term (177) plays a similar role as the right side of (89).

The main difference between the structures in classical field theory and those
of causal variational principles is that, in contrast to the bilinear form (P(w),
P(w)), the energy E is not quadratic in φ and thus does not gives rise to a
scalar product on the solution space. More precisely, E is quadratic only if
no interaction is present, in which case we obtain the corresponding scalar
product

(χ̃, φ̃) =
∫
t=T

(
˙̃χ ˙̃φ + (∇χ̃) · (∇φ̃)

)
d3x .

In particular, there is a well-defined scalar product on the incoming and out-
going scattering states. Using the constructions in Section 6.3, the symplectic
form gives rise to a canonical complex structure on the asymptotic states.
However, there is no scalar product at intermediate times, making it impos-
sible to apply the constructions in Section 8. We regard this shortcoming as
a major structural difference between classical field theory and causal vari-
ational principles. This shortcoming of classical field theory also shows that
causal variational principles are distinguished by providing precisely the struc-
tures needed for a probabilistic interpretation and a formulation in terms of
bosonic Fock spaces.

Appendix A. General derivation of the nonlinear
conservation law

The goal of this appendix is to show that the nonlinear conservation law
can be arranged in great generality. The construction also sheds light on the
nature of this conservation law. We let ρ and ρ̃ be two measures on F (not
necessarily critical), and denote their supports by M := supp ρ and M̃ :=
supp ρ̃. Moreover, we assume that Φ : M̃ → M is a measurable bijection
whose inverse F := Φ−1 : M → M̃ is also measurable (the existence of
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such a bijection will be shown below). Given a compact subset Ω ⊂ M , in
generalization of (67) we set
(178)
γΩ(ρ̃, ρ) :=

∫
F (Ω)

dρ̃(x)
∫
M\Ω

dρ(y) L(x, y) −
∫

Ω
dρ(x)

∫
M̃\F (Ω)

dρ̃(y) L(x, y)

In order to characterize when this surface layer integral vanishes, we introduce
a measure ν on M and a measure ν̃ on M̃ by

dν(x) :=
(∫

M̃
L(x, y) dρ̃(y)

)
dρ(x)

dν̃(x) :=
(∫

M
L(x, y) dρ(y)

)
dρ̃(x) .

Intuitively speaking, these measures describe how the measures ρ and ρ̃ are
connected to each other by the Lagrangian. We refer to them as the correlation
measures. Then we can rewrite (178) as

γΩ(ρ̃, ρ) =
∫

Ω
d
(
Φ∗ρ̃

)
(x)

∫
M\Ω

dρ(y) L
(
F (x), y

)
−

∫
Ω
dρ(x)

∫
M\Ω

d
(
Φ∗ρ̃

)
(y) L

(
x, F (y)

)
=

∫
Ω
d
(
Φ∗ρ̃

)
(x)

∫
M

dρ(y) L
(
F (x), y

)
−

∫
Ω
dρ(x)

∫
M

d
(
Φ∗ρ̃

)
(y) L

(
x, F (y)

)
=

∫
Ω
d
(
Φ∗ρ̃

)
(x)

∫
M

dρ(y) L
(
F (x), y

)
−

∫
Ω
dρ(x)

∫
M̃

dρ̃(y) L(x, y)

=
∫

Ω
d
(
Φ∗ν̃

)
(x) −

∫
Ω
dν(x) =

(
Φ∗ν̃ − ν

)
(Ω) .

We thus obtain the following result:

Proposition A.1. The surface layer integral (178) vanishes for every com-
pact Ω ⊂ M if and only if the correlation measures are mapped to each other,

(179) ν = Φ∗ν̃ .

The remaining question is whether (179) can be arranged by a suitable
choice of Φ. We consider the measurable and smooth cases separately. In
the measurable setting, we shall assume that the measures ν and ν̃ are both
non-atomic. In that case one can use the methods used in the proof of [11,
Lemma 1.4] to construct a measurable and invertible map Φ with measur-
able inverse such that (179) holds. Next, in the smooth setting, one can ar-
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range (179) by applying a result of Greene and Shiohama [24], which gener-
alizes to the non-compact setting the classical theorem of Moser on volume
forms for compact manifolds. We first quote this result and apply it afterward.

Proposition A.2. Let M be a non-compact oriented manifold and let ω and
τ be volume forms on M . Assume that∫

M
ω =

∫
M

τ ≤ ∞ .

Furthermore, assume that each end of M has finite ω-volume if it has finite
τ -volume, and infinite ω-volume if it has infinite τ -volume. Then there exists
a diffeomorphism Φ : M → M such that

Φ∗ω = τ .

In the setting of scattering systems in Minkowski space introduced in
Section 6, this proposition has the following consequence:

Corollary A.3. For scattering systems in Minkowski space, there is a dif-
feomorphism Φ : M → M̃ such that the correlation measures are mapped to
each other as in (179).

Proof. We need to verify that the assumptions of Proposition A.2 are satisfied.
Since both M and M̃ are by assumption diffeomorphic to R

4, we have one
asymptotic end. Therefore, it suffices to show the equivalence

ν(M) = ∞ ⇐⇒ ν̃(M̃) = 0 .

This equivalence follows immediately from the calculation

ν(M) =
∫
M

(∫
M̃

L(x, y) dρ̃(y)
)
dρ(x)

=
∫
M̃

(∫
M

L(x, y) dρ(x)
)
dρ̃(y) = ν̃(M̃) ∈ R

+
0 ∪ {∞} ,

where in the last line we applied Tonelli’s theorem (i.e. the version of Fu-
bini’s theorem for non-negative functions) and used that the Lagrangian is
symmetric.

We finally explain what this result means infinitesimally. Assume that Φ
is given. Then the measure Φ∗ρ̃ is supported on M . In the considered smooth
setting, the measures can be related to each other by

d
(
Φ∗ρ̃

)
= f dρ



Complex structures on jet spaces 133

with a smooth function f ∈ C∞(M,R+). Then the measures ρ̃ and ρ are again
related by (16) with F = Φ−1. If (f, F ) can be connected to the identity by
a smooth curve (fτ , Fτ ) (with (f0, F0) = (1, id) and (f1, F1) = (f, F )), then
the diffeomorphism M is described infinitesimally in τ by a vector field u
which is indeed the same as the vector field of the inner solution constructed
in Corollary 3.9, and f − 1 goes over infinitesimally to the divergence of u.

Appendix B. Discussion of the validity of the
approximations

B.1. Approximation of small inner solutions

In Section 5 the approximation of small inner solutions was introduced. We
now explain why in the description of a scattering process, this limiting case
should be an extremely good approximation. As explained above, inner so-
lutions are not interesting to study by themselves, because they simply de-
scribe infinitesimal symmetries of the universal measure. In particular, when
describing a physical system, it seems most convenient to choose initial data
in Γlin

ρ,sc with no inner solutions present. At later times, also for the outgoing
dynamics in a scattering process, there will be inner solutions present, and it
is important to keep them into account. Proceeding in this way, all the inner
solutions have been created either by removing the scalar components of the
linearized solutions (Corollary 3.10) or by arranging the nonlinear conserva-
tion law (Theorem 4.3). This makes it possible to determine the size of the
inner solutions. We now explain the findings and derive consequences.

Using the methods and results in [8] one can construct solutions of the
vector component of the linearized field equations using jets with zero scalar
components, i.e.

(180) Du

∫
M

(D1,v + D2,v)L(x, y) dρ(y) = 0 for all u ∈ Jtest .

The scalar component of the linearized field equations is

(181)
∫
M

(D1,v + D2,v)L(x, y) dρ(y) = 0 .

This equation will in general not be satisfied. But we can satisfy it by intro-
ducing a scalar component b. This leads to the equation∫

M
(D1,v + D2,v)L(x, y) dρ(y) +

∫
M

(b(x) + b(y))L(x, y) dρ(y) − b(x) s = 0 .
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Using the weak EL equations (12), this equation can be simplified to

(182)
∫
M

L(x, y) b(y) dρ(y) =
∫
M

D2,vL(x, y) dρ(y) .

Clearly, the scalar component b gives rise to an error term in the vector
component of the linearized field equations, which takes the form

(183)
∫
M

D1,uL(x, y) b(y) dρ(y) .

Let us consider the scaling behavior of the terms in (182) and (183) as
worked out in [14] and [6, Appendix A] for Dirac systems in Minkowski space.
Before beginning, we recall the parameters and their scalings. We always work
in natural units where � = c = 1. Then the gravitational coupling constant κ
has dimension length squared. More precisely,

κ � δ2 ,

where δ ≈ 1.6 · 10−35 meters denotes the Planck length. The rest mass of the
Dirac particles determines another length scale, the Compton length m−1.
Next, there is the regularization length ε. The simplest and most natural
assumption is to identify the regularization length with the Planck length.
However, as is explained in detail in [13, Chapter 4], this assumption is too
naive, because the regularization length should be much smaller than the
Planck length. Therefore, we must treat ε and δ as different parameters. We
merely assume that

ε � δ � 1
m

.

Finally, there is the length scale lmacro of macroscopic physics. Clearly, this
length scale depends on the physical system under consideration. Since en-
ergies much larger than the rest masses of the heaviest fermions are not
accessible to experiments, we always assume that

1
m

� lmacro .

The left side of (182) scales like the integral over the Lagrangian,
∫
M

L(x, y) b(y) dρ(y) ∼ b

∫
M

L(x, y) dρ(y) ∼ s b ,
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where s has the scaling behavior (see [6, eqs (A.11) and (A.17)]; for simplicity
we choose the scaling parameters λ and σ to be one)

(184) s �
1
ε8

(
(εm)p +

(ε
δ

)8−ŝ
)

with ŝ ∈ {0, 2} .

On the right side of (182), however, the perturbation of the Lagrangian by
the matter fields and the bosonic fields comes into play. It has the scaling
behavior (see [6, Proposition A.1])∫

M
D2,vL(x, y) dρ(y) � 1

ε4 T (x)
(ε
δ

)4−s
with s ∈ {0, 2, 4} ,

where T is the energy-momentum tensor of the respective field. The energy-
momentum tensor typically scales like

(185) T �
m

l3macro
� m4 .

Comparing these scalings, one concludes that the scalar component b scales
like

(186) b � mδ4

l3macro
� (mδ)4 .

We conclude that the construction before Corollary 3.10 gives rise to inner
solutions which are by scaling factors of mδ smaller than the original jets
in Jlin

0 .
The back reaction of the scalar component on the vector component as

described by (183) and (180) has the following scaling behavior. Consider the
back reaction on the field equation for the electromagnetic field (for other field
equations, the scaling is similar). The perturbation of the eigenvalues by the
electromagnetic potential A scales like |δλ| ∼ A (ε lmacro)−3 (for details see [13,
Chapter 3]). Since the unperturbed eigenvalues scale like |λ| ∼ δ−4 ε−2, we
find that the variational derivatives in (180) scale like

Dv �
δ4

ε l3macro
A .

Comparing with (186), we conclude that b can be compensated by an elec-
tromagnetic potential A with the scaling behavior

A � εm .
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This argument shows that the back reaction of b on the vector component of
the jet v is also extremely small. This explains why we may disregard this
back reaction in the approximation of small inner solutions.

For the inner solutions generated in order to satisfy the conservation law
for the nonlinear surface layer integral, one can argue similarly. Indeed, in
the proof of Theorem 4.3 the scalar component of the jet v(p) is multiplied
by s, which has the scaling behavior (184). The terms which need to be
compensated, however, involve third variational derivatives of the Lagrangian.
As a consequence, the scalar component of v(p), and consequently also the
resulting inner solution, is again by scaling factors of mδ smaller than the
jets in Γsc,0.

B.2. The holomorphic approximation

In the holomorphic approximation introduced in Section 8.2, the dynamics of
critical points of causal variational principles can be described by a unitary
time evolution on a bosonic Fock space (see Definition 8.4), giving a close
connection to quantum field theory. When working out physical applications,
it is important to justify the holomorphic approximation. Moreover, the er-
rors of this approximations are of major interest because they should give
predictions for physical corrections to standard quantum field theory. With
this in mind, we conclude this paper with a discussion of the holomorphic
approximation and its corrections.

We first recall that for non-interacting systems, there is a canonical com-
plex structure which is preserved by the time evolution (see Section 6.1). As a
consequence, the holomorphic approximation is exact (as is also obvious from
Theorem 8.5, keeping in mind that for linear systems the error E(t) in (163)
vanishes). The question whether the holomorphic approximation is also exact
for interacting systems is equivalent to asking for the existence of a holomor-
phic connection (see Definition 6.3). The answer to this question depends on
the form of the interaction (see Propositions 6.5 and 6.6), making it necessary
to analyze the specific system in detail. As explained in Section 6.5, we expect
that in most physical applications, no holomorphic connections will exist. In
this case, the unitary time evolution merely is an approximation. In order to
justify this approximation, we need to analyze the correction terms as worked
out in Theorems 8.5 and 8.7.

Before discussing these corrections, for clarity we point out that the cor-
rections to the unitary time evolution do not imply that the probabilistic
interpretation breaks down. Instead, the corrections lead to a mixing of the
bra- and ket-state, as is made precise by the operator E(t) in (163). But this
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mixing preserves the norm on F∗⊗F . Therefore, normalizing by 〈Φ|Φ〉F = 1,
the expectation value O(〈Φ| ⊗ |Φ〉F ) defined in (150) really has a sensible in-
terpretation as the expectation value of a measurement by the observable O.
In other words, the corrections to the unitary time evolution are compatible
with the probabilistic interpretation of quantum states.

We now explain the results of Theorems 8.5 and 8.7 in some more detail.
The operator E(t) in (163) describes a mixing of the holomorphic and anti-
holomorphic components of the jets. In other words, E(t) mixes components
of the bra- and ket-states of the Fock space F . According to (164), the time
evolution of this error is described by a Dyson series on F∗ ⊗ F . Since E(t)
preserves the norm, the error becomes apparent only if the expectation value
with an observable O is performed. This is quantified in Theorem 8.7 by it-
erated commutators involving O. These iterated commutators give a good
intuitive understanding of the corrections to the holomorphic approximation,
as we now explain. We consider the situation that we perform a measurement
at time tout. In this case, the field operators in the commutators in Theo-
rem 8.7 enter at a time τ in the interaction region, whereas the observable O
enters at time tout. As a consequence, the time evolution operators S in The-
orem 8.7 must span at least the time tout − τ . This opens the possibility that
the error terms become small due to decoherence effects. For simplicity, we
first explain this effect for the contribution of first order

∫ t

tin

S(t, τ) C
(
S(τ, t)O S(t, τ)

)
S(τ, t) dτ .

Assume that the commutator at time τ involves a phase factor which oscil-
lates rapidly in τ . Then the τ -integral becomes small, implying that the error
is no longer detectable at time t. For the higher order corrections, this deco-
herence effect is even stronger, because the iterated commutators of order p
involve operators at different times τ1, τ2, . . . , τp, giving more possibilities for
destructive interference of phase factors.

In order to justify the holomorphic approximation, one must make this
qualitative argument mathematically precise, and one must quantify it includ-
ing estimates of the error terms. Here two effects specific to causal variational
principles seem to be essential: The first effect is that a critical measure ρ of a
causal variational principle need not be diffeomorphic to Minkowski space or
to a spacetime manifold. Instead, it could consist of many components. This
so-called fragmentation of ρ as introduced in [15, Section 5] (see also [17,
Section 5]) gives rise to the formula for O′ in Theorem 111 which involves ad-
ditional sums over the subsystems. This gives more freedom for phase factors
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to appear. The second effect appears more specifically for the causal action
principle for causal fermion systems (see the textbook [13] and the references
therein). In this setting, the manifold F is formed of linear operators on a
Hilbert space. The vectors in this Hilbert space can be represented by wave
functions in spacetime M := supp ρ (the so-called physical wave functions;
see [13, §1.1.4]). Likewise, the jets can be expressed by variations of these
wave functions (see [13, §1.4.1] and [14]). Modifying the phases of these wave
functions gives a simple way of obtaining the above-mentioned decoherence
effects. This so-called microscopic mixing of wave functions was introduced
in [12] for causal fermion systems formed of Dirac wave functions.

Clearly, the systematic study of these effects goes beyond the scope of the
present paper. It will be carried out separately in a future paper.
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