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Evolution and monotonicity of a geometric constant
under the Ricci flow∗
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†
, Junwei Yu, and Peng Zhu

Abstract: Let (M, g(t)) be a compact Riemannian manifold and
the metric g(t) evolve by the Ricci flow. In the paper we derive
the evolution equation for a geometric constant λ under the Ricci
flow and the normalized Ricci flow, such that there exist positive
solutions to the nonlinear equation

−Δφf + af ln f + bRf = λf,

where Δφ is the Witten-Laplacian operator, φ ∈ C∞(M), a and b
are both real constants, and R is the scalar curvature with respect
to the metric g(t). As an application, we obtain the monotonicity
of the geometric constant along the Ricci flow coupled to a heat
equation for manifold M with some Ricci curvature condition when
b > 1

4 .
Keywords: Eigenvalue, Perelman’s μ-entropy, Witten-Laplacian
operator, Ricci flow.

1. Introduction

Let M be an n-dimensional compact Riemannian manifold with a time-
dependent Riemannian metric g(t), which is a smooth solution to the Ricci
flow equation

(1) ∂

∂t
gij(t) = −2Rij(t),
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where Rij(t) is the Ricci curvature of metric g(t). The Ricci flow was first in-
troduced by Hamilton [9] to research the geometry of positive Ricci curvature
on three dimensional manifolds. More precisely, he proved that the solution
to Ricci flow converges to a constant curvature metric on a compact three
dimensional manifold with positive Ricci curvature. Later, the Ricci flow was
first treated as a gradient flow by Perelman. In his seminal preprint [16],
Perelman introduced the so-called F -entropy functional and showed that in a
certain sense the Ricci flow is a gradient flow of the functional F . Moreover,
he also proved that along the Ricci flow coupled to a backward heat-type
equation the functional F is nondecreasing, which implies the monotonicity
of the first eigenvalue of −4Δ+R along the Ricci flow. As an application of the
monotonicity, Perelman was able to rule out nontrivial steady or expanding
breathers on compact manifolds.

Since then there has been increasing attentions on the eigenvalue prob-
lems under various geometric flows, especially the Ricci flow. In [15] Ma gave
a monotonicity formula of the first eigenvalue of the Laplacian operator on
a domain with Dirichlet boundary condition under the Ricci flow. Cao [1]
studied the eigenvalues of −Δ + R

2 and showed that they are nondecreas-
ing along the Ricci flow for manifolds with nonnegative curvature operator.
Li [11] obtained the monotonicity of eigenvalues of the operator −4Δ + kR

and ruled out compact steady Ricci breathers by using their monotonicity.
Later, Cao [2] also improved his own previous results and proved that the
first eigenvalues of −Δ + cR(c ≥ 1

4) are nondecreasing under the Ricci flow
on the manifolds without curvature assumption. Ling considered the first
nonzero eigenvalue under the normalized Ricci flow, gave a Faber-Krahn type
of comparison theorem and a sharp bound [13], and constructed a class of
monotonic quantities on closed n-dimensional manifolds [14]. Moreover, Zhao
got the evolution equation for the first eigenvalue of the Laplacian operator
along the Yamabe flow, gave some monotonic quantities under the Yamabe
flow [18], and proved that the first eigenvalue of the p-Laplace operator is in-
creasing and differentiable almost everywhere along the unnormalized powers
of the mth mean curvature flow [19] and the unnormalized Hk-flow [20]. Guo
and his collaborators [8] derived an explicit formula for the evolution of the
lowest eigenvalue of the Laplace-Beltrami operator with potential in abstract
geometric flows. Recently, the first author and his collaborators proved that
the eigenvalues of some geometric operators related to the Witten-Laplacian
are nondecreasing under the Ricci flow in [4], [6] and [7], and derived some
monotonicity formulas of the eigenvalues for some geometric operators along
the Yamabe flow in [5].
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In fact, Perelman [16] also present the other important functional W in
order to study the shrinking breather. The W functional is defined by

W(g, f, τ) =
∫
M

[
τ(R + |∇f |2) + f − n

] e−f

(4πτ)n
2
dν,

where f is a smooth function on M , dν is the Riemannian volume measure
on (M, g), and τ is a positive scale parameter. Like the functional F , the W
functional is also nondecreasing along the Ricci flow coupled to a backward
heat-type equation. The associated μ-entropy is given by the infimum of the
W functional

μ(g, τ) = inf
{
W(g, f, τ)|f ∈ C∞(M), 1

(4πτ)n
2

∫
M

e−fdν = 1
}
.

Thus the monotonicity of μ-entropy is same with the W functional under the
Ricci flow. Now if we let u = e−

f
2 , it is obvious that the μ-entropy corresponds

to the best logarithmic Sobolev constant. More importantly, one can show
that the μ-entropy is achieved by some positive smooth function u (cf. Cao and
Zhu [3] and references therein) which satisfies the Euler-Lagrange equation

τ(−4Δu + Ru) − 2u ln u− nu = μ(g, τ)u.

Recently, the geometric constant μ-entropy has been generalized by Huang
and Li [10]. Under the Ricci flow they obtained the monotonicity of the lowest
constant such that there exist positive solutions to the following nonlinear
equation

−Δu + au ln u + bRu = λb
au

with a normalized condition
∫
M u2dν = 1, where a and b are both real con-

stants. As can be seen, these geometric constants are very similar to the
eigenvalues of geometric operators, which have become a powerful tool in the
study of geometry and topology of manifolds.

In this paper, we consider an n-dimensional compact Riemannian mani-
fold M with a time-dependent Riemannian metric g(t), which evolves by the
(normalized) Ricci flow. Inspired by Perelman’s μ-entropy and Huang and
Li [10], we study a lowest geometric constant λ which satisfies the following
nonlinear equation

(2) − Δφf + af ln f + bRf = λf,
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where f is a positive smooth solution with the normalization
∫
M f2dμ =

1, dμ = e−φ(x)dν is the weighted volume measure on M , a and b are the
same with above, φ ∈ C∞(M), and Δφ is the Witten-Laplacian (also called
symmetric diffusion operator), i.e.

Δφ = Δ −∇φ∇.

When φ is a constant function, the Witten-Laplacian operator is just the
Laplace-Beltrami operator. In particular, the Witten-Laplacian is also a sym-
metric operator on L2(M) analogous to the Laplace-Beltrami operator, and
satisfies the following integration by parts formula

(3)
∫
M

(∇u,∇v)dμ = −
∫
M

Δφuvdμ = −
∫
M

Δφvudμ, ∀u, v ∈ C∞(M).

Therefore, many classical results of the Laplace-Beltrami operator can be
extended to the Witten-Laplacian operator. For example, we can see these
papers ([6], [12] and [17]). The main purpose of this paper is to investigate
the monotonicity of the geometric constant λ along the Ricci flow coupled
to a heat equation on compact Riemannian manifolds under some curvature
assumption for the case b > 1

4 .
The following theorem is our main result.

Theorem 1.1. Let g(t), t ∈ [0, T ), be a solution to the Ricci flow (1) on an
n-dimensional compact Riemannian manifold M , and λ(t) be the lowest con-
stant of the nonlinear equation (2). Suppose that the Ricci curvature satisfies

|Rc| ≥ 1
2
√
b− 1

|∇∇φ|,∀t ∈ [0, T ),

where b > 1
4 and φ(·, t) ∈ C∞(M) satisfies the heat equation ∂φ

∂t = Δφ. Then
λ(t) + na2

8 t is nondecreasing.

Remark 1.1. In fact, when φ is a constant, our result reduces to Theorem
1.1 of Huang-Li in [10].

The rest of this paper is organized as follows. In Section 2, we will derive
the evolution equation of the geometric constant under the Ricci flow. In
Section 3, we consider the system of Ricci flow coupled to a heat equation.
We will first calculate the evolution equation of the geometric constant along
the Ricci flow coupled to the heat equation, and then prove Theorem 1.1 by
using it. In Section 4, we will deduce the evolution equation and monotonicity
of the geometric constant under the normalized Ricci flow.
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2. Evolution equation of the geometric constant

In this section, we establish the evolution equation of the geometric constant λ
in the nonlinear equation (2) under the Ricci flow. For simplicity, the smooth
function φ on M is assumed to be independent of t in the section.

Let (M, g(t)) be a compact Riemannian manifold, and (M, g(t)), t ∈ [0, T )
be a smooth solution to the Ricci flow equation (1). Let λ be the lowest
constant of the nonlinear equation (2) at time t where 0 ≤ t < T , and f be
the corresponding positive solution with the normalization∫

M
f2dμ = 1.

We assume that f(x, t) is a C1-family of smooth functions on M , and satisfies
the following condition

d

dt

[∫
M

f2dμ

]
= 0.

Hence, we have ∫
M

f [ftdμ + (fdμ)t] = 0,(4)

where ft = ∂f
∂t .

We also need to define a functional

λ(f, t) =
∫
M

(
−fΔφf + af2 ln f + bRf2

)
dμ

=
∫
M

(−Δφf + af ln f + bRf) fdμ,

where f satisfies the equality (4). At time t, if f is the positive solution to
the nonlinear equation (2) corresponding to λ, then

λ(f, t) = λ(t).

Let us first derive the evolution equation of the above functional under
the general geometric flow.

Lemma 2.1. Suppose that λ is the lowest constant of the equation (2), f is
the corresponding positive solution of λ at time t0, and the metric g(t) evolves
by

∂

∂t
gij = vij ,
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where vij is a symmetric two-tensor. Then we have

d

dt
λ(f, t)|t=t0 =

∫
M

(
vijfij − vijφifj −

a

4V f + b
∂R

∂t
f

)
fdμ(5)

+
∫
M

(
vij,i −

Vj

2

)
fjfdμ,

where V = Tr(v).

Proof. The proof is only a direct computation. Notice that

∂

∂t
Δφ = Δφ

∂

∂t
− vij∇i∇j −

1
2g

kl(2(divv)k −∇kV )∇l + vij∇iφ∇j .

Hence we have

d

dt
λ(f, t) = d

dt

∫
M

(−Δφf + af ln f + bRf) fdμ

=
∫
M

(
vijfij + 1

2g
kl(2vki,i − Vk)fl − vijφifj + aft + b

∂R

∂t
f

)
fdμ

+
∫
M

(−Δφft + aft ln f + bRft) fdμ

+
∫
M

(−Δφf + af ln f + bRf) (fdμ)t

=
∫
M

(
vijfij − vijφifj + aft + b

∂R

∂t
f

)
fdμ

+
∫
M

(
vij,i −

1
2Vj

)
fjfdμ

+
∫
M

(−Δφf + af ln f + bRf) [ftdμ + (fdμ)t] ,

where we used (3) in the last equality. At time t0, f is the corresponding
positive solution of λ, i.e., the equation (2) holds. Combining (2) with (4),
the last term in the above evolution equation vanishes. Moreover, it follows
from (4) that

∫
M

fftdμ = −1
2

∫
M

f2(dμ)t = −1
4

∫
M

V f2dμ.

Finally, at time t0 we get

d

dt
λ(f, t)|t=t0 =

∫
M

(
vijfij − vijφifj −

a

4V f + b
∂R

∂t
f

)
fdμ
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+
∫
M

(
vij,i −

1
2Vj

)
fjfdμ.

Remark 2.1. In fact, Lemma 2.1 also tell us the evolution of the geometric
constant λ. From the above proof it is easy to see that the evolution equation
(5) does not depend on the evolution equation of f , as long as f satisfies (4).
Hence we have

d

dt
λ(t) = d

dt
λ(f, t)(6)

for any time t, when f is the corresponding positive function with λ at time
t.

Now we can calculate the evolution equation of the geometric constant
under the Ricci flow. In Lemma 2.1, if we choose the symmetric two-tensor
vij = −2Rij , the following result holds.

Theorem 2.1. Let g(t), t ∈ [0, T ), be a solution to the Ricci flow (1) on a
compact manifold Mn. Assume that there is a C1-family of smooth functions
f(x, t) > 0, which satisfy

−Δφf(x, t) + af ln f + bRf(x, t) = λ(t)f(x, t),

and the normalization ∫
M

f(x, t)2dμ = 1.

Then the lowest geometric constant λ(t) satisfies

d

dt
λ(t) =1

2

∫
M

|Rij + ψij |2e−ψdμ + 4b− 1
2

∫
M

|Rc|2e−ψdμ(7)

+ a

2

∫
M

Re−ψdμ + a

2

∫
M

ψΔe−ψ−φdν

+
∫
M

(
ψijφij + 1

2ψi(Δφ)i
)
e−ψdμ,

where ψ satisfies e−ψ = f2.

Proof. The proof also follows from a direct computation. Note that the evo-
lution of scalar curvature is

∂R

∂t
= ΔR + 2|Rc|2,
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and
divRc = 1

2∇R.

Using (6) and substituting vij = −2Rij into the equality (5), we have

d

dt
λ(t) =

∫
M

(
−2Rijfijf + 2Rijφifjf + a

2Rf2
)
dμ(8)

+
∫
M

(
bΔRf2 + 2b|Rc|2f2

)
dμ.

Using integration by parts and 1
2ΔR = div(divRc), we get

1
2

∫
M

ΔRf2dμ =
∫
M

(2Rijfifj + 2Rijfijf − 4Rijφifjf) dμ(9)

+
∫
M

(
Rijφiφjf

2 −Rijφijf
2
)
dμ.

Let ψ be a smooth function satisfying e−ψ = f2 and plug it and (9) into (8),
we have

d

dt
λ(t) =(1 − 2b)

∫
M

Rijψije
−ψdμ + (2b− 1

2)
∫
M

Rijψiψje
−ψdμ(10)

+ 2b
∫
M

|Rc|2e−ψdμ− (1 − 4b)
∫
M

Rijφiψje
−ψdμ

+ 2b
∫
M

Rij(φiφj − φij)e−ψdμ + a

2

∫
M

Re−ψdμ.

By the contracted second Bianchi identity ∇iRij = 1
2∇jR and integration by

parts, it follows that
∫
M

Rij(ψij − ψiψj)e−ψdμ =
∫
M

Rijφiψje
−ψdμ− 1

2

∫
M

RΔe−ψ−φdν(11)

+ 1
2

∫
M

RΔe−φe−ψdν + 1
2

∫
M

Rψiφie
−ψdμ,

and ∫
M

|ψij |2e−ψdμ =1
2

∫
M

|∇ψ|2Δe−ψ−φdν −
∫
M

(Δψ)iψie
−ψdμ

−
∫
M

Rijψiψje
−ψdμ

=1
2

∫
M

|∇ψ|2Δe−ψ−φdν −
∫
M

ΔψΔe−ψ−φdν
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+
∫
M

ΔψΔe−φe−ψdν +
∫
M

Δψφiψie
−ψdμ

−
∫
M

Rijψiψje
−ψdμ

=2b
∫
M

RΔe−ψ−φdν −
∫
M

ψiφiΔe−ψ−φdν(12)

− a

∫
M

ψΔe−ψ−φdν +
∫
M

ΔψΔe−φe−ψdν

+
∫
M

Δψφiψie
−ψdμ−

∫
M

Rijψiψje
−ψdμ.

In the above formula the last equality holds because of (2) and the relation
between f and ψ, i.e.

2λ(t) = Δφψ − 1
2 |∇ψ|2 − aψ + 2bR.

Similar to (11), we also have
∫
M

Rij(φij − φiφj)e−ψdμ =
∫
M

Rijφiψje
−ψdμ− 1

2

∫
M

RΔe−ψ−φdν(13)

+ 1
2

∫
M

RΔe−ψe−φdν + 1
2

∫
M

Rψiφie
−ψdμ.

Plugging (11), (12) and (13) into (10), we arrive at

d

dt
λ(t) =

∫
M

Rijψije
−ψdμ− 1

2

∫
M

Rijψiψje
−ψdμ + 2b

∫
M

|Rc|2e−ψdμ

−
∫
M

Rijφiψje
−ψdμ + b

∫
M

RΔe−ψ−φdν + a

2

∫
M

Re−ψdμ

=
∫
M

Rijψije
−ψdμ + 2b

∫
M

|Rc|2e−ψdμ−
∫
M

Rijφiψje
−ψdμ

+ 1
2

∫
M

|ψij |2e−ψdμ + 1
2

∫
M

ψiφiΔe−ψ−φdν − 1
2

∫
M

ΔψΔe−φe−ψdν

− 1
2

∫
M

Δψφiψie
−ψdμ + a

2

∫
M

ψΔe−ψ−φdν + a

2

∫
M

Re−ψdμ

=1
2

∫
M

|Rij + ψij |2e−ψdμ + 4b− 1
2

∫
M

|Rc|2e−ψdμ + a

2

∫
M

Re−ψdμ(14)

−
∫
M

Rijφiψje
−ψdμ + 1

2

∫
M

ψiφiΔe−ψ−φdν − 1
2

∫
M

ΔψΔe−φe−ψdν

− 1
2

∫
M

Δψφiψie
−ψdμ + a

2

∫
M

ψΔe−ψ−φdν.
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Integrating by parts again, one has the following identity (cf. (2.17) in [4]).
∫
M

ψiφiΔe−ψ−φdν − 2
∫
M

Rijψiφje
−ψdμ−

∫
M

Δψ(Δe−φ + φiψie
−φ)e−ψdν

= 2
∫
M

ψijφije
−ψdμ +

∫
M

ψi(Δφ)ie−ψdμ.(15)

Finally, the desired result (7) is achieved from the above two formulas (14)
and (15).

Remark 2.2. In particular, if φ is a constant, our theorem had been proved
by Huang-Li in [10].

Remark 2.3. Moreover, when a = 0, the above theorem had been obtained
by Fang-Xu-Zhu in [4]. Furthermore, if we also let φ be a constant function
on M , our theorem coincides with Cao’s Theorem 1.5 in [2].

3. Monotonicity of the geometric constant

In this section, we consider the system of Ricci flow coupled to a heat equation.
We will derive the evolution equation of the lowest geometric constant along
the Ricci flow coupled to the heat equation, and prove the monotonicity of
the geometric constant under the system.

In the above section φ does not depend on the time t. Now, we let it
evolve by the following heat equation

(16) ∂φ

∂t
= Δφ.

By the same calculation as Section 2, we can easily get the evolution equation
of the lowest geometric constant λ under the system of Ricci flow coupled to
the above heat equation.

Theorem 3.1. Let g(t), t ∈ [0, T ), be a solution to the Ricci flow (1) on a
compact manifold Mn. Assume that there is a C1-family of smooth functions
f(x, t) > 0, which satisfy

−Δφf(x, t) + af ln f + bRf(x, t) = λ(t)f(x, t),

and the normalization ∫
M

f(x, t)2dμ = 1,
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where φ(·, t) ∈ C∞(M) is a solution to the heat equation (16). Then the lowest
geometric constant λ(t) satisfies

d

dt
λ(t) =1

2

∫
M

|Rij + ψij |2e−ψdμ + 4b− 1
2

∫
M

|Rc|2e−ψdμ(17)

+
∫
M

ψijφije
−ψdμ + a

2

∫
M

Re−ψdμ

+ a

2

∫
M

ψΔe−ψ−φdν + a

2

∫
M

Δφe−ψdμ,

where ψ satisfies e−ψ = f2.

Proof. When the function φ satisfies the heat equation (16), one can find
that the evolution equation of the geometric constant will have two additional
terms

a

2

∫
M

φtf
2dμ +

∫
M

fi(φt)ifdμ = a

2

∫
M

Δφe−ψdμ− 1
2

∫
M

ψi(Δφ)ie−ψdμ.

Therefore, it is obvious that (17) holds by same arguments with Theorem
2.1.

Now let us complete the proof of Theorem 1.1.

Proof. (Proof of Theorem 1.1) Let λ(t) be the lowest constant of the nonlinear
equation (2), and f(x, t) its corresponding solution with the normalization at
time t. From Theorem 3.1 we have

d

dt
λ(t) =1

2

∫
M

|Rij + ψij |2e−ψdμ + 4b− 1
2

∫
M

|Rc|2e−ψdμ +
∫
M

ψijφije
−ψdμ

+ a

2

∫
M

ψΔe−ψ−φdν + a

2

∫
M

Re−ψdμ + a

2

∫
M

Δφe−ψdμ

=1
2

∫
M

|Rij + ψij + a

2gij |
2e−ψdμ + 4b− 1

2

∫
M

|Rc|2e−ψdμ

+
∫
M

ψijφije
−ψdμ− na2

8 + a

2

∫
M

Δφe−ψdμ

=1
2

∫
M

|Rij + ψij + φij + a

2gij |
2e−ψdμ + 4b− 1

2

∫
M

|Rc|2e−ψdμ

− 1
2

∫
M

|φij |2e−ψdμ−
∫
M

Rijφije
−ψdμ− na2

8

≥1
2

∫
M

|Rij + ψij + φij + a

2gij |
2e−ψdμ− na2

8
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+ (2b−
√
b)

∫
M

(
|Rc|2 − 1

(2
√
b− 1)2

|φij |2
)
e−ψdμ.

Hence it follows from the assumption of Ricci curvature that λ(t) + na2

8 t is
nondecreasing.

When M is a two-dimensional surface, the Ricci curvature Rij = 1
2Rgij .

Hence we have the following result in dimension two.

Corollary 3.1. Let g(t), t ∈ [0, T ), be a solution to the Ricci flow (1) on a
two-dimensional compact surface M , and λ(t) be the lowest constant of the
nonlinear equation (2). Suppose that the scalar curvature satisfies

|R| ≥
√

2
2
√
b− 1

|∇∇φ|,∀t ∈ [0, T ),

where b > 1
4 and φ(·, t) ∈ C∞(M) satisfies the heat equation (16). Then the

geometric constant λ(t) + na2

8 t are nondecreasing.

4. Geometric constant under the normalized Ricci flow

In the last section, we come to consider the normalized Ricci flow, i.e,

∂

∂t
gij = −2Rij + 2r

n
gij ,(18)

where

r =
∫
M Rdν∫
M dν

is the average scalar curvature. In Lemma 2.1, if we evolve the metric by the
normalized Ricci flow, we can get the evolution equation of the geometric
constant λ under the normalized Ricci flow.

Theorem 4.1. Let g(t), t ∈ [0, T ), be a solution to the normalized Ricci flow
(18) on a compact manifold Mn. Assume that there is a C1-family of smooth
functions f(x, t) > 0 which satisfy

−Δφf(x, t) + af ln f + bRf(x, t) = λ(t)f(x, t),

and the normalization ∫
M

f(x, t)2dμ = 1.
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Then the lowest geometric constant λ(t) satisfies

d

dt
λ(t) = − 2rλ

n
+ 1

2

∫
M

|Rij + ψij |2e−ψdμ + 4b− 1
2

∫
M

|Rc|2e−ψdμ

+ a

2

∫
M

Re−ψdμ + a

2

∫
M

ψΔe−ψ−φdν − ar

n

∫
M

ψe−ψdμ

+
∫
M

(
ψijφij + 1

2ψi(Δφ)i
)
e−ψdμ− ar

2 ,

where ψ satisfies e−ψ = f2.

Proof. We note that the evolution of scalar curvature is

∂R

∂t
= ΔR + 2|Rc|2 − 2r

n
R,

and
vij = −2Rij + 2r

n
gij .

The proof can be obtained from the similar calculation with Theorem 2.1. So
it is easy to get the extra term

−2r
n

∫
M

(−Δφf + bRf)fdμ− ar

2

∫
M

f2dμ = −2rλ
n

− ar

n

∫
M

ψe−ψdμ− ar

2 .

Remark 4.1. Here our theorem is consistent with Theorem 1.2 of Huang-Li
in [10] if φ is a constant.

When M is a two-dimensional surface, r is a constant. In fact,

r = 4πχ(M)/A,

where χ(M) and A are respectively the Euler class and area of M. We can
also obtain an interesting monotonicity from the above theorem.

Corollary 4.1. Let g(t), t ∈ [0, T ), be a solution to the normalized Ricci
flow (18) on a compact surface M with negative Euler characteristic class,
λ(t) be the lowest constant of the nonlinear equation (2), and λ0 be the first
eigenvalue of −Δφ + bR. Suppose that at the initial time λ0 ≥ −a

2 and the
scalar curvature satisfies

|R| ≥
√

2
2
√
b− 1

|∇∇φ|,∀t ∈ [0, T ),
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where b > 1
4 and φ(·, t) ∈ C∞(M) satisfies the heat equation (16). Then

λ(t) + a2

4 t is nondecreasing.

Remark 4.2. In particular, when φ is a constant, our corollary reduces to
Theorem 1.3 of Huang-Li in [10].
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