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Entropy rigidity for foliations by strictly convex
projective manifolds

Alessio Savini
∗

Abstract: Let N be a compact manifold with a foliation FN

whose leaves are compact strictly convex projective manifolds. Let
M be a compact manifold with a foliation FM whose leaves are
compact hyperbolic manifolds of dimension bigger than or equal
to 3. Suppose we have a foliation-preserving homeomorphism f :
(N,FN ) → (M,FM ) which is C1-regular when restricted to leaves.
In the previous situation there exists a well-defined notion of fo-
liated volume entropies h(N,FN ) and h(M,FM ) and it holds
h(M,FM ) ≤ h(N,FN ). Additionally, if equality holds, then the
leaves must be homothetic.
Keywords: Entropy rigidity, foliation, strictly convex projective
structure, natural map.

1. Introduction

Natural maps revealed a very powerful tool in rigidity issues. For instance,
inspired by the barycenter method introduced by Douady and Earle [25],
Besson, Courtois and Gallot [7, 8, 9] defined natural maps to prove the min-
imal entropy conjecture for locally symmetric manifolds of rank one. Several
applications of natural maps followed this striking result. For instance Fran-
caviglia and Klaff [26] and Francaviglia and the author [27, 33] applied natural
maps to study the PO(m, 1)-representation space of a real hyperbolic lattice
Γ ≤ PO(n, 1), with m ≥ n ≥ 3.

Other relevant applications of natural maps were obtained by Storm [34]
in the proof of the minimal entropy conjecture for non uniform rank-one
lattices. In the same spirit, Connell and Farb showed it for products of rank-
one lattices [17]. They also extended the Degree Theorem for higher rank
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locally symmetric manifolds [16, 18]. A suitable adaptation of the previous
results to the context of continuous foliations were studied by Boland and
Connell [10] and by Connell and Li [19].

Recently natural maps have been exploited for studying measurable co-
cycles of hyperbolic lattices with values into rank-one Lie groups. The author
[32] introduced the notion of natural map associated to a measurable cocycle
with an essentially unique map whose slices are atomless. The existence of
such a map allows to defined the notion of natural volume and to state a
rigidity result for maximal volume cocycles, in the spirit of Margulis [31] and
Zimmer [36].

In this paper we want to apply natural maps to the study of foliations
by strictly convex projective manifolds. A manifold admits a strictly con-
vex projective structure if it can be written as the quotient of a relatively
compact domain in an affine chart of P

n(R) modulo a group of projective
transformations acting freely and properly discontinuously. Thanks to the
pioneering work by Benoist [4, 5, 6], the interest in the study of convex pro-
jective structures grew rapidly. Inspired by the work done by Boland and
Newberger [12] for Finsler manifolds, Adeboye, Bray and Constantine [1, 14]
proved an entropy rigidity result for strictly convex projective manifolds with
finite volume. They showed that the volume entropy rescaled by the eccen-
tricity factor associated to the strictly convex projective structure attains its
minimum value if and only if the structure is actually hyperbolic. Notice that
one has to suppose the existence of a hyperbolic structure a priori, since there
exist strictly convex projective manifolds which do not admit any hyperbolic
structure (see for instance Benoist [6] and Kapovich [30]).

Our purpose here is to study the same problem but in term of foliations.
More precisely we are going to prove the following

Theorem 1.1. Let (N,FN ) be a compact manifold with a continuous folia-
tion FN . Suppose that every leaf is a compact strictly convex projective mani-
fold and that the structure varies continuously in the transverse direction. Let
ν be a quasi-invariant transverse measure. Suppose we have f : (N,FN ) →
(M,FM ) a foliation-preserving homeomorphism which is leafwise C1-regular,
with transversally continuous derivatives and such that f∗ν-almost every leaf
of FM is a compact real hyperbolic manifold of dimension n ≥ 3. Then there
exist two measures μN and μM which can be written locally as the product of
the transverse measures and the Busemann measures on the leaves and such
that ∫

M
h(LM )ndμM (y) ≤

∫
N
h(LN )ne(LN )dμN (x) ,
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where h( · ) and e( · ) are the volume entropy and the eccentricity of the
leaves. Additionally equality holds if and only if ν-almost every leaf in FN is
homothetic to its image.

Once can apply the previous theorem for instance to mapping tori asso-
ciated to an automorphism of a compact strictly convex projective manifold
where the projective structure of each fiber is deformed continuously.

Notice that Theorem 1.1 is not a direct consequence of the main theorem
of [10], since on the leaves of FN we are not considering any Riemannian
structure a priori. Additionally, it is worth mentioning that Theorem 1.1
holds also if we assume that the leaves of N are Finsler manifolds instead of
strictly convex projectives ones. In this way we obtain also a foliated version
of [12].

The proof of the above theorem is quite easy since it relies on the con-
struction of natural maps given by Adeboye, Bray and Constantine [1]. Indeed
it is sufficient to construct a natural map for every leaf of FN and then glue
all the natural maps together to get a global foliation-preserving map. Ap-
plying the foliated area formula by Boland and Connell [10] one immediately
concludes.

Plan of the paper

In Section 2 we introduce the background material we need throughout the
paper. In Section 2.1 we recall the notion of Hilbert geometry and we give
the definition of strictly convex projective manifold. In Section 2.2 we recall
the main aspects of the Patterson-Sullivan theory. The latter is necessary to
give the definition of natural map. Section 3 is devoted to the proof of the
main theorem. We conclude with some comments about our main result.

2. Preliminary definitions

In this introductory section we are going to recall the main notions and results
that we will need throughout the paper. We will first recall the definition
of strictly convex proper domain Ω of P

n(R) and then we move on to the
definition of Hilbert geometry. A strictly convex real projective manifold will
be a quotient of Ω by a group Γ of Hilbert isometries acting freely and properly
discontinuously.

We are going also to recall briefly the work by Crampon [22] about
Patterson-Sullivan theory for Hilbert geometries. The existence of a Patterson-
Sullivan density associated to a discrete group Γ allowed Adeboye, Bray and
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Constantine [1] to mimic the work by Besson, Curtois and Gallot [7, 8, 9] and
to introduce the notion of natural map. We will conclude the section with a
brief overview of this theory.

2.1. Hilbert geometries

In this section we will recall some elements about Hilbert geometries. Since
the following will be a short exposition, we refer the reader for instance either
to the Ph.D. thesis by Crampon [22, Chapter 1] or to the book by Busemann
and Kelly [15] for more details.

Let Ω be a domain of P
n(R), that is an open connected set. We say

that Ω is convex if its intersection with any (projective) line is connected.
This means that if Ω contains two points, then it must contain the segment
determined by them. A convex domain Ω is proper if it does not intersect
some fixed projective hyperplane. Equivalently, Ω is projectively equivalent to
a relatively compact domain in some affine chart. For a convex proper subset
Ω, we denote by ∂Ω its topological boundary. Any hyperplane intersecting
∂Ω but not Ω is called supporting hyperplane. A proper domain Ω is strictly
convex if every supporting hyperplane intersects ∂Ω exactly in one point.

Given any convex proper domain Ω, we can define on it a distance as
follows. Let x, y ∈ Ω be any two points and denote by Lxy the line (or a line,
if they coincide) determined by x and y. If we denote by a and b the points
on ∂Ω obtained by intersecting the boundary with Lxy, we can define

dΩ(x, y) :=
∣∣∣∣12 log[a : x : y : b]

∣∣∣∣ =
∣∣∣∣12 log ‖y − a‖‖x− b‖

‖y − b‖‖x− a‖

∣∣∣∣ ,

where ‖ · ‖ denotes the Euclidean norm in some affine chart where Ω is
relatively compact. The distance dΩ is called Hilbert distance on Ω.

It is worth noticing that any element g ∈ PGL(n+1,R) which preserves Ω
is automatically an isometry with respect to the Hilbert distance dΩ, since g
preserves the Euclidean cross-ratio. Additionally, in the particular case when
Ω is strictly convex, projective transformations preserving Ω represent all the
possible Hilbert isometries, as shown by de la Harpe [24].

Definition 2.1. Let Ω a convex proper domain of Pn(R). Let dΩ the Hilbert
distance and let PGL(Ω) be the set of Hilbert isometries of Ω. The triple
(Ω, dΩ,PGL(Ω)) is called Hilbert geometry.

A well-known example of Hilbert geometry is given by the Klein model
of the real hyperbolic space H

n, where the strictly convex proper domain Ω
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is an ellipsoid. The latter case is the only one for which the Hilbert distance
comes from a Riemannian metric defined on the domain. However, a Hilbert
geometry naturally determines a Finslerian structure on the tangent space
TpΩ at any point p ∈ Ω. More precisely, for any non-zero tangent vector
v ∈ TpΩ we define

FΩ(p, v) := ‖v‖
2

( 1
‖p− p+‖ + 1

‖p− p−‖

)
,

where p± are the intersection points on ∂Ω determined by the line passing
through p with direction v. Here ‖ · ‖ is again the Euclidean norm in some
affine chart.

By defining the length of a C1 curve c : [0, 1] → Ω as

�(c) :=
∫ 1

0
FΩ(c(t))dt ,

it is easy to verify that the Hilbert distance dΩ can be equivalently defined as

dΩ(x, y) = inf{�(c) | c is a C1 curve, c(0) = x, c(1) = y}.

The Hilbert distance will be said Ck-regular, if the Finslerian norm FΩ :
TΩ \ {0} → R is a Ck-regular function. Notice that the regularity of the
latter is strictly related to the regularity of the boundary ∂Ω.

We are going to conclude this brief exposition about Hilbert geometries
by the notion of divisible domain.

Definition 2.2. Let Ω be a proper (strictly) convex domain of P
n(R). A

(strictly) convex real projective manifold Y is given by the quotient Y = Γ\Ω,
where Γ ≤ PGL(Ω) is a group of projective transformations acting freely and
properly discontinuously. We say that Ω is divisible if Y is compact.

An equivalent approach to convex real projective manifolds is given by
the notion of geometric structure in the sense of Thurston [35, Chapter 3].
Indeed a manifold Y is a convex real projective manifold if and only if it
admits a (Ω,PGL(Ω))-structure. Clearly real hyperbolic manifolds are par-
ticular examples of convex real projective manifolds. Other examples are given
us by Coxeter groups studied by Kac and Vinberg [29] and by deformations of
hyperbolic lattices introduced by Johnson and Milson [28]. For convex projec-
tive manifolds of finite volume, other examples have been recently obtained by
Ballas and Marquis [3] and by Ballas and Casella [2]. It is worth noticing that
strictly convex projective structure are more general than hyperbolic ones. In
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fact there exist compact manifolds which admit strictly convex projective
structures but no hyperbolic ones. Such examples are given for instance by
Benoist [6] and Kapovich [30].

In the case of compact manifolds, Benoist [5] proved that the condition
of strict convexity of Ω is actually equivalent to requiring that the boundary
∂Ω is C1-regular, and both conditions imply that the metric space (Ω, dΩ)
is Gromov-hyperbolic. Similar results were later obtained also in the finite
volume case by Cooper, Long and Tillman [20, Theorem 0.15].

2.2. Patterson-Sullivan theory for compact Hilbert manifolds

The following section is devoted to recall the main concepts about Patterson-
Sullivan theory and their application to the definition of natural map in-
troduced by Adeboye, Bray and Constantine [1, 14]. We mainly refer to
[13, 22, 1, 14].

Let Ω be a strictly convex proper domain Ω of Pn(R) and let Γ be a group
acting freely and properly discontinuously on Ω by projective transformations.
We are going to suppose that the quotient Y = Γ\Ω has finite volume with
respect to the Hilbert volume introduced in [1]. As already noticed in Section
2.1, under the previous assumptions the geodesic boundary of Ω coincides with
its topological boundary ∂Ω, which is C1-regular. Additionally any point of
the boundary is smooth (it has only one supporting hyperplane) and extremal
(since it is not contained in any line segment). Recall that for smooth extremal
points in ∂Ω it is well-defined the notion of Busemann function (whereas a
priori there could be two Busemann functions as noticed by Bray [13]). More
precisely, if we fix a basepoint p ∈ Ω, we set

βp : Ω × ∂Ω → R , βp(x, ξ) := lim
t→∞

dΩ(x, c(t)) − dΩ(p, c(t)) ,

where c is any path such that c(0) = p and c(∞) = ξ. The quantity βp(x, ξ) is
nothing else than the signed distance between the point x and the horosphere
passing throgh ξ and based at p, that is

HΩ
ξ (p) := {y ∈ Ω | βp(y, ξ) = 0} .

Busemann functions are a fundamental tool in order to introduce the
notion of Patterson-Sullivan density, but before speaking about that, we need
to give the following



Entropy rigidity for foliations by strictly convex projective manifolds 581

Definition 2.3. Let Ω be a strictly convex proper domain and suppose that
Γ ≤ PGL(Ω) acts freely and properly discontinuously with finite covolume.
The critical exponent δΓ associated to Γ is defined as

δΓ := inf{s > 0 | P(x; s) :=
∑
γ∈Γ

e−sdΩ(x,γ(x)) < ∞} ,

for any point x ∈ Ω.

One can prove that the definition is independent of the choice of the
basepoint x. The function P(x, s) is called Poincaré series based at x. In the
case that the Poincaré series diverges for s = δΓ we are going to say that
Γ is divergent, otherwise it is called convergent. For strictly convex domains,
Crampon and Marquis [21, 23] proved that δΓ is positive and it coincides with
the volume growth entropy.

In the following definition we are going to denote by M1(∂Ω) the set of
Borel probability measures on the boundary ∂Ω.

Definition 2.4. Let α be a positive real number. An α-dimensional Buse-
mann density is a measurable function

μ : Ω → M1(∂Ω), μ(x) = μx ,

which satisfies the following properties:

1. It is Γ-invariant, that is γ∗μx = μγ(x), where γ∗ denotes the push-
forward measure.

2. For every x, y ∈ Ω and ξ ∈ ∂Ω, the measures μx and μy are absolutely
continuous and it holds

dμy

dμx
(ξ) = e−αβx(y,ξ) ,

where βx(· , ·) is the Busemann function pointed at x.

When α = δΓ we are going to call μ Patterson-Sullivan density associated to
Γ.

The generalization of Patterson-Sullivan theory to strictly-convex do-
mains can be found for instance in [22, Chapter 4.2].

Patterson-Sullivan densities were used by Adeboye, Bray and Constan-
tine [1, 14] to introduce the notion of natural map in the spirit of Besson,
Courtois and Gallot [7, 8, 9] and to prove a rigidity result for strictly convex
real projective structures on a finite volume manifold admitting a hyperbolic
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structure. Before recalling the construction of the natural map, we need to fix
some notation. We are going to denote by Y = Γ\Ω a finite volume strictly
convex real projective manifold and by X = Γ\ E the same manifold with the
hyperbolic structure coming from quotienting an ellipsoid E . Let p ∈ Ω and
o ∈ E be two base-points. We are going to use Ω and E as superscripts to
distinguish objects living in different spaces, such as Busemann functions.

Given any Borel probability measure ν ∈ M1(∂ E), one can define the
following function

Bν : E → R , Bν(x) :=
∫
∂ E

βE
o (x, ξ)dν(ξ) .

Since Busemann functions are convex, the above function is strictly convex
provided that the measure does not have any atom with weight greater than
or equal to 1/2. This implies that Bν attains a unique minimum, as shown in
[7, Appendix A]. Thus in the previous situation one can define the barycenter
of ν as

barB(ν) := argmin(Bν) ,

where the subscript B refers to the dependence of the barycenter on the
Busemann functions on E . Since both Y and X are actually the same manifold
with different geometric structures, there exists a homeomorphism f : Y → X
which can be lifted to the universal cover f̃ : Ω → E . It is well-know that
such a map f̃ induces a homeomorphism ϕ : ∂Ω → ∂ E between the geodesic
boundaries of the universal covers (here we are exploiting the fact that Ω is
a strictly convex domain). The boundary map ϕ allows to define the natural
map as follows

Φ̃ : Ω → E , Φ̃(a) := barB(ϕ∗(μa)) ,

where ϕ∗(μa) has no atoms since ϕ is a homeomorphism. Hence we can apply
the barycenter and the map Φ is well-defined. Additionally, since ϕ is Γ-
equivariant, the equivariance of the barycenter construction implies that Φ̃ is
Γ-equivariant as well and it induces a map Φ : Y → X.

Using the implicit equation associated to the barycenter, Adeboye, Bray
and Constantine [1] proved that Φ is actually a smooth map whose Jacobian
satisfies

(1) JacaΦ ≤
(
h(FΩ)
h(g0)

)n

e(FΩ) .

for every a ∈ Ω. Here h(FΩ) is the volume entropy and e(FΩ) is the eccentricity
of the Finsler structure associated to the Hilbert geometry on Ω. For more
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details about those numbers we refer to [12]. Additionally the equality in
Equation (1) is attained if and only if DaΦ is a homothety between the
tangent spaces.

3. Proof of the main theorem

In this section we are going to prove our main theorem. In order to do this we
are going to fix once and for all the notation of the section. Let (N,FN ) be a
compact manifold with a foliation FN whose leaves are compact strictly con-
vex projective manifolds. Similarly, let (M,FM ) be a compact manifold with
a foliation FM whose leaves are compact hyperbolic manifolds of dimension
bigger than or equal to 3. We are going to denote by LN (respectively LM ) a
generic leaf of the foliation FN (respectively FM ).

Suppose we have a foliation-preserving homeomorphism f : (N,FN ) →
(M,FM ) whose restriction to leaves is C1-regular, that is f : LN → LM is a
C1-map.

Following the line of [10, Section 3], we are going to prove the existence
of a foliation-preserving natural map. More precisely, we are going to prove
the following

Proposition 3.1. There exists a measurable map Φ : (N,FN ) → (M,FM )
which is foliation-preserving and it is C1-regular when restricted to leaves.
Additionally the leafwise Jacobian of such a restriction is uniformly bounded.

Proof. Since the restriction f : LN → LM to a generic leaf is a homeomor-
phism, following [1, 14], we have that its lift f̃ : L̃N → L̃M to the universal
covers admits an extension to the visual boundaries

ϕ : ∂L̃N → ∂L̃M ,

which is a homeomorphism. Thus we can define

Φ̃ : L̃N → L̃M , Φ̃(a) := barB(ϕ∗μa) .

where ϕ∗μa is the push-forward through ϕ of the Patterson-Sullivan measure
pointed at a. Notice that the map Φ is well-defined since ϕ is a homeomor-
phism and hence ϕ∗μa has no atoms. Being ϕ equivariant with respect to the
action of the fundamental groups of LN and LM on the boundaries, the map
Φ̃ is equivariant too, by the properties of the barycenter. Hence Φ̃ naturally
descends to a map

Φ : LN → LM .
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Being defined through the barycenter construction, the map Φ is C1-regular
with Jacobian bounded by

(2) JacaΦ ≤
(
h(LN )
h(LM )

)n

e(LN ) .

where h(LN ) (respectively h(LM )) is the volume entropy associated to the
Finsler structure on the leaf LN (respectively LM ), and e(LN ) is the eccen-
tricity.

Notice that the same results contained in [14, Section 5] show that Φ is
(properly) homotopic to f and hence Φ is surjective, having the same degree
of f (compare also with [10, Theorem 3.3] and [11]).

Combining together all the maps we obtained, we get a map

Φ : (N,FN ) → (M,FM ) ,

which is foliation-preserving and it is a bijection on the leaf spaces (since f it
is). Additionally Φ is measurable by the transverse continuity of the metrics
on the leaves. Indeed Φ is defined in terms of the Busemann functions associ-
ated to the strictly convex structure given on each leaf. Since the Busemann
functions varies measurably as the given projective structure varies contin-
uosly and the same holds for the leafwise boundary extension ϕ since we
assumed f transversally continuous, we get the desired measurability of Φ
(see also [10]).

Remark 3.2. Since we are going to exploit it in the proof of the main theorem,
it is worth noticing the Equation (2) implies that the leafwise Jacobian is
actually uniformly bounded. Indeed the leafwise entropy h(LN ) is uniformly
bounded from above by (n− 1), where n is the dimension of the leaf (see [21,
Theorem 1.1]). Additionally since N is compact and the eccentricity varies
continuously with respect to the leaves, then also the leafwise eccentricity
e(LN ) is uniformly bounded from above.

This will guarantee that both the leawise Jacobian and the bound on the
right appearing in Equation (2) are actually integrable functions with respect
to the transverse quasi-invariant measure on N .

We need now to recall that by the work of Zimmer [37, Theorem 2.1]
on (N,FN ) there exists a transverse quasi-invariant measure νN . The notion
of quasi-invariance refers to the holonomy associated to the foliation and for
more details about the definition one can see for instance [37]. As noticed by
Boland and Connell [10] using the measure νN one can provide a global finite
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measure μN on N which is locally the product of the Busemann measure on
the leaves of FN and of the measure νN .

One can exploit the natural map Φ constructed in Proposition 3.1 to
define in a similar way a measure on M . More precisely, set

νM = Φ∗νN ,

the push-forward measure of the transverse measure νN through the map Φ.
The measure νM is a transverse quasi-invariant measure and hence it can be
used to define a global finite measure μM on M which is locally the product
of the Riemannian measure on the leaves of FM and of the measure νM .

Now we have all we need to prove the main theorem.

Proof of Theorem 1.1. We are going to follow the line of [10]. Thanks to the
map f : (N,FN ) → (M,FM ) we know that we can define the natural map

Φ : (N,FN ) → (M,FM ) ,

and the global measures μN and μM described above. Let (Nα,FNα , να) be
the ergodic decomposition described by Boland-Connell [10] on (N,FN ) and
let (Mα,FMα ,Φ∗να) be the corresponding decomposition on (M,FM ). Let
μNα and μMα be the global measures associated to the ergodic components.

Given y ∈ M , we denote by N (y) the cardinality of the preimage Φ−1(y).
It is worth noticing that the proof of foliated area formula [10, Proposition
5.1] holds mutatis mutandis in our context. As a consequence we get the
following chain of inequalities

∫
Mα

dμMα(y) ≤
∫
Mα

N (y)dμMα(y) =

=
∫
Nα

JacxΦ dμNα(x) ≤

≤
∫
Nα

(
h|Nα(LN )
h|Mα(LM )

)n

e|Nα(LN )dμNα(x) ,

where the first inequality is due to the surjectivity of Φ and we moved from
the second line to the third one using the estimate on the Jacobian of Φ.
Notice that the last term is integrable as a consequence of Remark 3.2.

Since h|Mα(LM ) is actually constant, we can rewrite
∫
Mα

h(LM )ndμMα(y) ≤
∫
Nα

h|Nα(LN )ne|Nα(LN )dμNα(x) ,



586 Alessio Savini

and integrating with respect to α we obtain

(3)
∫
M

h(LM )ndμM (y) ≤
∫
N
h(LN )ne(LN )dμN (x) ,

as desired.
Assume now that equality holds in Equation (3). For almost every α it

must hold

Jacx(Φ|Nα) =
(
h|Nα(LN )
h|Mα(LM )

)n

e|Nα(LN ) ,

almost everywhere with respect to μNα . Thus we must have

Jacx(Φ|Nα) =
(
h|Nα(LN )
h|Mα(LM )

)n

e|Nα(LN )

for νNα-every leaf, and hence DxΦ|Nα is a homotethy. This implies that DxΦ
is a homotethy νN -almost every leaf, and the theorem is proved.

As already noticed in the introduction the previous theorem gives an
adaptation of the main theorem of Boland and Connell [10] in the case of
foliation by strictly convex projective manifolds. Theorem 1.1 is not a direct
consequence of such result because here we are not assuming any Riemannian
structure on the leaf LN and hence there is no precise meaning of Patterson
Sullivan structure in the sense of [10]. Additionally, one can notice that fol-
lowing the same proof of Theorem 1.1 and using the constructions by Boland
and Newberger [12] it is possible to replace the strictly convex projective
structure on the leaves of FN with a Finsler structure.
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