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Abstract: We give a brief overview of Bridgeland’s theory of sta-
bility conditions, focusing on applications to algebraic geometry.
We sketch the basic ideas in Bayer’s proof of the Brill–Noether
Theorem and in the authors’ proof of a theorem by Gruson–Peskine
and Harris on the genus of space curves.
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1. Introduction

The theory of Bridgeland stability conditions ([Bri07]) has seen important
developments in the past few years. Emerging from the mathematical physics
literature ([Dou02]), it now connects to different branches in mathematics
including symplectic geometry ([BS15, Joy15, HKK17, Smi18]) and represen-
tation theory ([KS08, ABM15, Bri17]). This note gives a quick introduction
to the basic theory through applications to problems in algebraic geometry.

A stability condition in the derived category is a direct generalization
of the notion of stability for vector bundles on curves ([Mum63]). The key
property, Bridgeland’s deformation theorem, is that stability conditions can
be varied, and their variations form a complex manifold. More recent results
([AP06, Tod08, PT19, AHLH18]) show that moduli spaces of semistable ob-
jects exist as proper algebraic spaces. Moreover, when the stability condition
varies, the moduli space of semistable objects changes in a controlled way,
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giving rise to a locally-finite wall and chamber structure. Stability condi-
tions and moduli spaces also exist in the relative setting ([BLM+19]). Finally,
the existence of stability conditions is now known in interesting examples,
including surfaces ([Bri08, AB13]), certain Calabi–Yau threefolds ([MP15,
BMS16, Li19b]), Fano threefolds ([Mac14, Sch14, Li19a, Piy17, BMSZ17]),
some product varieties ([Kos18a, Liu19]), and varieties with nef tangent bun-
dles ([Kos18b]). We review the definition and basic properties of Bridgeland
stability conditions in Section 2.

The key approach to apply stability conditions to problems in algebraic
geometry via wall-crossing was originally suggested in [AB11]. The start-
ing point is a certain limit point in the space of stability conditions where
semistable objects are known, for example the large volume limit point, where
stability essentially agrees with Gieseker stability for sheaves. Then the goal is
to study how semistable objects vary when stability conditions move towards
some other limit point determined by the problem in question. In favorable
situations, this study is indeed possible, and leads to non-trivial results.

In this note, we show how to apply this approach to give new proofs
for two fundamental results in algebraic geometry. The first application is
to the Brill–Noether theorem by following [Bay18]. In this case, we look at
stability in the derived category of a K3 surface. At the large volume limit
point we aim to understand pure sheaves supported on curves with rank one.
The theorem will follow once we understand the first wall where semistable
objects change, and the geometry of its destabilized locus. This will be the
subject of Section 3.

The second application is to give bounds to the genus of space curves by
following [MS20]. Again, the starting point is the large volume limit point for
certain weak stability conditions in the derived category of projective space,
but we now look at ideal sheaves of curves. If a curve has a too large genus,
then its ideal sheaf must be destabilized at a certain point. Similarly as in
the case of the Brill–Noether theorem, the aimed result follows once we are
able to give a precise bound on when this could happen. More details will be
given in Section 4.

We do not claim any completeness in this short note. There are many
surveys available on the subject, starting from [Bri06] to the more specific
lecture notes [Huy14, Bay11, Bay19, MS17, MS19].

2. Stability conditions

In this section, after briefly recalling the various notions of stability for sheaves
in Section 2.1, we define stability for objects in a triangulated category and
review some of its basic properties (in Section 2.2).
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2.1. Stability for sheaves

In order to construct separated moduli spaces of vector bundles on curves,
Mumford introduced the notion of stability in [Mum63]. The definition is
surprisingly simple: to quote directly from [Mum63, Page 529], a vector bundle
E on a smooth projective curve C is stable if all its subbundles are “less
ample”, i.e., for all proper subbundles F ⊂ E, we have

(1) μ(F ) := deg(F )
rk(F ) < μ(E).

The set of all stable vector bundles of fixed rank and degree is naturally
isomorphic to the set of points of a smooth quasi-projective variety. There is
a Quot-scheme and an action of PGLn such that stable vector bundles corre-
spond precisely to stable points in the sense of Geometric Invariant Theory
(see [MFK94, New78]).

This notion of stability can also be reinterpreted in terms of unitary rep-
resentations (over the complex numbers). The main result in [NS65] states
that a vector bundle over a curve is stable if and only if it comes from an
irreducible projective unitary representation of the fundamental group of the
curve. Finally, by [Don83] (based on and complementing [AB83]), stability
can also be reinterpreted in terms of connections. A vector bundle E over a
curve is stable if and only if there is a unique unitary connection on E having
constant central curvature −2πiμ(E).

The theory of vector bundles on curves has applications in many areas of
mathematics. For example, in algebraic geometry, there are applications to
syzygies of curves and projective normality (see [Mum70, Laz89]).

In higher dimension, there are several generalizations possible. The first
one ([Tak72]) is to directly extend the definition of stability for vector bundles
on curves in (1) to torsion-free sheaves. In this case, the degree deg(E) is
replaced by the second coefficient of the Hilbert polynomial of E, with respect
to a fixed ample divisor H, or equivalently, in the case where the variety is
sufficiently regular, by the pairing of the first Chern class of E with the ample
numerical class Hn−1 · c1(E). This is called Mumford–Takemoto stability, or
shortly slope stability. An important remark is that it does depend on the
choice of the numerical class of H.

The fact that moduli spaces exist is much less clear, but a deep result by
Donaldson [Don85] and Uhlenbeck–Yau [UY86] states that a vector bundle
E on a smooth complex projective polarized variety (X,H) is stable if and
only if it admits an irreducible Hermitian–Einstein connection. This is the so
called Kobayashi–Hitchin correspondence.
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Gieseker, Maruyama, and Simpson ([Gie77, Mar77, Sim94]) introduced a
definition of stability for coherent sheaves that directly generalizes the GIT
approach, and therefore, produces well-behaved moduli spaces. This stability,
often referred to as Gieseker stability, is based on the full Hilbert polynomial
and does indeed correspond to stability with respect to an appropriate GIT
problem ([HL10, LP97]). Slope stable vector bundles are Gieseker stable and
Gieseker stability also depends on the choice of the polarization. See [Tha96,
DH98] for general results on variation of GIT and [EG95, FQ95, MW97] for
complete results on how variation of stability changes the moduli spaces in
the case of surfaces.

2.2. Bridgeland stability

We now consider the bounded derived category DbX := Db(CohX) of co-
herent sheaves on a smooth complex projective variety X ([GM03, Huy06,
Ver96]).

The notion of stability for DbX comes from the mathematical physics
literature. More precisely, as explained in [Dou02], it is an attempt to un-
derstand Dirichlet branes in the context of Kontsevich’s Homological Mirror
Symmetry ([Kon95]). The basic idea was that such branes of B-type corre-
spond to objects in the derived category ([Dou01]). The ones which are ac-
tually reached physically (BPS branes) are just a subset P ⊂ DbX, and this
subset must depend on so-called “stringy Kähler data”. These BPS branes can
be understood at the large volume limit. They are roughly vector bundles with
irreducible Hermitian–Einstein connections. By using the Kobayashi–Hitchin
correspondence described in the previous section, they are exactly slope stable
vector bundles.

Since both the GIT approach and the differential geometry approach are
more difficult to understand for derived categories, the starting point of Dou-
glas’ construction is to formally isolate the properties that stable objects in
the derived category should satisfy and how they should change on continu-
ous paths in the Kähler moduli space. He called this notion Π-stability. This
definition was formulated mathematically by Bridgeland in [Bri07] and then
further studied by Kontsevich–Soibelman in [KS08] in the context of counting
invariants of Donaldson–Thomas type.

Let K(DbX) denote the Grothendieck group of DbX, which is isomorphic
to the Grothendieck group of X. We abuse notation and denote the class of
an object of DbX in K(DbX) with the same symbol. The next step is to fix
a free abelian group of finite rank Λ and a group homomorphism

v : K(DbX) → Λ.
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A standard choice of Λ is the numerical Grothendieck group Knum(DbX) :=
K(DbX)/ ker(χ) given as the quotient of K(DbX) by the kernel of the Euler
pairing

χ(E,F ) :=
∑
i

(−1)i dim Exti(E,F ).

The following definition is the latest version from [BLM+19]. Bridgeland’s
original definition in [Bri07] only contains conditions (i)-(iv). We recommend
a first time reader to skip the technical parts (v)-(vii).

Definition 2.1. A Bridgeland stability condition on DbX with respect to
(v,Λ) is a pair σ = (Z,P) where

• Z : Λ → C is a group homomorphism, called central charge, and
• P = ∪φ∈RP(φ) is a collection of full additive subcategories P(φ) ⊂ DbX

satisfying the following conditions:

(i) for all nonzero E ∈ P(φ) we have Z(v(E)) ∈ R>0 · eiπφ;
(ii) for all φ ∈ R we have P(φ + 1) = P(φ)[1];
(iii) if φ1 > φ2 and Ej ∈ P(φj), then Hom(E1, E2) = 0;
(iv) (Harder–Narasimhan filtrations) for all nonzero E ∈ DbX there exists

a finite sequence of morphisms

0 = E0
s1−→ E1

s2−→ . . .
sm−→ Em = E

such that the cone of sj is in P(φj) for some sequence φ1 > φ2 > · · · >
φm of real numbers;

(v) (support property) there exists a quadratic form Q on the vector space
ΛR such that

• the kernel of Z is negative definite with respect to Q, and
• for all E ∈ P(φ) for any φ we have Q(v(E)) ≥ 0;

(vi) (openness of stability) for every scheme T and every E ∈ DT -perf(X×T )
the set

{t ∈ T : Et ∈ P(φ)}
is open;

(vii) (boundedness) for any v ∈ Λ and φ ∈ R such that Z(v) ∈ R>0 · eiπφ the
functor

T �→ Mσ(v, φ)(T ) :=
{
E ∈ DT -perf(X × T ) : Et ∈ P(φ) and

v(Et) = v, for all t ∈ T
}

is bounded.
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Remark 2.2. (a) The objects in P(φ) are called σ-semistable of phase φ.
The simple objects in the abelian category P(φ) are called σ-stable.

(b) The phases of the first and last factor in the Harder–Narasimhan
filtration of an object E are denoted φ+(E) and φ−(E).

(c) The support property can be equivalently stated as follows: We fix a
metric ‖ − ‖ on ΛR. There exists a constant C > 0 such that for all E ∈ P

‖v(E)‖ ≤ C · |Z(v(E)|.

(d) Openness and boundedness imply that moduli spaces of (semi)stable
objects exist, even if in general there is no GIT problem associated to such
stability. By using work in [Lie06, AP06, Tod08], it is a consequence of the
general foundational theory developed in [AHLH18] that the moduli spaces
Mσ(v, φ) parametrizing S-equivalence classes of semistable objects of class
v and phase φ exist and are proper algebraic spaces. Moreover, if the mor-
phism v factors through Knum(DbX), by the results in [BM14a], there is a
real numerical Cartier divisor class �σ on Mσ(v, φ) which is strictly nef (see
[BLM+19, Theorem 21.24 and Theorem 21.25]).

(e) An interesting elementary result ([Bri07, Proposition 5.3]), which is
very useful in constructing examples of Bridgeland stability conditions is a
reformulation of Definition 2.1 in terms of slope, thus extending the numerical
definition of stability (1) formally to the derived category. More precisely, the
extension-closed category A := P((0, 1]) generated by all semistable objects
with phases in the interval (0, 1] is an abelian category. It is furthermore the
heart of a bounded t-structure on DbX. The real and imaginary parts of the
central charge Z behave like a degree and rank function on A: for a nonzero
object E ∈ A, 
Z(E) ≥ 0 and if 
Z(E) = 0, then �Z(E) < 0. An object
E ∈ A is σ-semistable if and only if it is slope-semistable with respect to the
slope μσ := −�Z

�Z . The converse is also true. Let Z be a central charge on the
heart of a bounded t-structure A satisfying the above numerical properties.
Then we define (semi)stable objects in A as slope-(semi)stable and extend
them by shifts to DbX. We obtain a stability condition in DbX once Harder–
Narasimhan filtrations exist in A and the remaining properties (v), (vi), (vii)
are satisfied. When we want to stress the category A in the definition of
stability we use the notation σ = (Z,A).

(f) The definition of stability conditions is more general and can be given
for any triangulated category with certain regularity and base change prop-
erties, even in the relative context. See [BLM+19] for more details.

Let Stab(Λ,v)(DbX) be the set of stability conditions on DbX, with re-
spect to a fixed (Λ, v). We will use the simplified notation Stab(DbX) when
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the dependence on (Λ, v) is clear. The set Stab(DbX) is endowed with the
coarsest topology such that φ+(E), φ−(E) for all E ∈ DbX, and the map
Z : Stab(DbX) → Hom(Λ,C) given by (Z,P) �→ Z are all continuous. The
main result of [Bri07] is then the following.

Theorem 2.3 (Bridgeland Deformation Theorem).
The map Z : Stab(DbX) → Hom(Λ,C) given by (Z,P) �→ Z is a local home-
omorphism. In particular, Stab(DbX) is a complex manifold of dimension
rk(Λ).

Remark 2.4. (a) The theorem can be made more precise by explicitly de-
scribing the local structure in terms of the quadratic form Q. See [BMS16,
Appendix A] for more details.

(b) There are two continuous group actions on Stab(DbX). The universal
cover G̃L

+
2 (R) acts from the right on Stab(DbX) by extending the correspond-

ing action of GL+
2 (R) on Hom(Λ,C). Since Definition 2.1 behaves well with

respect to autoequivalences, the group Aut(DbX) acts by isometries from the
left on Stab(DbX). For details see [Bri07, Lemma 8.2].

(c) A fundamental property of stability conditions in the derived category
is that, in contrast to the classical notions of stability for sheaves in higher
dimension, there is a locally-finite wall and chamber structure in Stab(DbX)
(see [Bri08, Proposition 9.3]). More precisely, if we fix the numerical class v

and consider the moduli spaces Mσ(v) as σ varies in Stab(DbX), then Mσ(v)
and Mσ′(v) are isomorphic as long as σ and σ′ are in the same chamber.
We refer to Proposition 3.7 below for an explicit statement in the case of K3
surfaces of Picard rank one.

(d) In the original picture coming from Douglas’ work there should exist a
limit point for the space of stability conditions where stability reduces to the
usual notions for sheaves. This is one of the starting points in the construction
of stability conditions ([Bri08, BMT14, BMS16]). In the case of surfaces this is
[Bri08, Proposition 14.2], extended in [Tod08, Section 6.2]. See Proposition 3.5
below in the case of K3 surfaces.

Example 2.5. Let C be a smooth projective curve. Then σ0 = (Z0,CohC),
where

Z0(−) = − deg(−) + i rk(−),

is a Bridgeland stability condition with respect to Λ = N(Db(C)) ∼= Z
2 and

v = (rk, deg) : K(DbC) → Λ.
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If the genus of C is strictly positive, then, up to the action of G̃L
+
2 (R), these

are the only stability conditions ([Bri07, Mac07]). Semistable objects in CohC
are exactly torsion sheaves and slope semistable vector bundles.

Stability conditions have been applied to problems in algebraic geometry,
for instance to the study of quadratic differentials ([BS15]), to moduli spaces
on the projective plane ([ABCH13, CHW17, LZ19, Bou19]), and to the theory
of Hyperkähler manifolds ([MYY14, YY14, BM14a, BM14b, BLM+19]). In
this note, we will present two applications: how to give a new proof for the
Brill–Noether theorem for curves (see Section 3) and how to bound the genus
of space curves (see Section 4).

3. The Brill–Noether theorem

The Brill–Noether Theorem is a fundamental result in the theory of curves.
It does contain information on morphisms from a general curve to projective
space of a given degree. The result was originally proved in [GH80] by using
degeneration methods (a simpler proof is in [EH83]). See also [CDPR12] for
a recent proof using tropical geometry techniques. Instead, the approach to
the Brill–Noether Theorem by Lazarsfeld in [Laz86] is to use curves on K3
surfaces. In this section, we present ideas of Bayer from [Bay18] to give a new
proof of Lazarsfeld’s theorem by using wall-crossing in Bridgeland stability.
These techniques also lead to new results: for instance, there are applications
to Mukai’s program on reconstructing a K3 surface from a curve ([ABS14,
Fey17]) and to higher rank Clifford indices of curves ([FL18]).

Let X be a K3 surface. For simplicity of the exposition, we assume that
X has Picard rank one, i.e., Pic(X) = Z · H for some ample divisor H. Let
C be any smooth curve in the linear system |H|, d ∈ Z≥1, and r ∈ Z≥0. By
definition the Brill–Noether variety W r

d (C) is the closed subset of Picd(C)
consisting of those degree d lines bundle L on C for which h0(L) ≥ r + 1.
The Brill–Noether number is the naive expected dimension of W r

d (C) given
by ρ(r, d, g) := g − (r + 1)(g − d + r), where g is the genus of C.

Theorem 3.1 (Lazarsfeld). The variety W r
d (C) is non-empty if and only

if ρ(r, d, g) ≥ 0. Moreover, in that case it has expected dimension
min{ρ(r, d, g), g}.

The geometric structure of W r
d (C) is also completely known for a general

curve C: the variety W r
d (C) is smooth away from W r+1

d (C), as well as integral
when ρ(r, d, g) ≥ 1. We refer to the bibliographical notes of [ACGH85, Section
V] for an overview on the rich history of Brill–Noether theory, involving many
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authors including Kempf, Kleiman–Laksov, Fulton, Gieseker (and based on
previous work by Severi, Castelnuovo, Petri, and on unpublished work by
Mumford).

The wall-crossing techniques in [Bay18] deal more naturally with a subset
of W r

d (C), and allow to treat singular curves as well. Let C ∈ |H| be any
curve (integral, by assumption). Let V r

d (C) denote the constructible set of
pure sheaves F ∈ CohX supported on C with rank one, h0(F ) = r + 1, and
χ(F ) = d + 1 − g. Moreover, we define

V r
d (|H|) =

⋃
C∈|H|

V r
d (C).

We will show how to prove the following theorem which is the key step
in [Bay18].

Theorem 3.2. Assume 0 < d ≤ g − 1. The set V r
d (|H|) is non-empty if and

only if ρ(r, d, g) ≥ 0. Moreover, in that case there is a morphism V r
d (|H|) →

M , where M is a non-empty open subset of a smooth projective irreducible
holomorphic symplectic variety of dimension 2ρ(r, d, g). Finally, each fiber is
isomorphic to a Grassmannian variety of (r + 1)-dimensional quotients of a
vector space of dimension g − d + 2r + 1.

A fair warning: we will simply describe the morphism, V r
d (|H|), and the

fibers set-theoretically and ignore any further issues. To get Theorem 3.1 from
this requires arguments disjoint from stability. To stay within the scope of
these notes we refer to [Bay18] for details and simply give some brief ideas
on how Theorem 3.2 implies Theorem 3.1.

The first step is the reduction to d ≤ g − 1 or equivalently χ(L) =
d−g+1 ≤ 0, in the case of a smooth curve C. If χ(L) > 0, then by Serre duality
χ(L∨⊗ωC) = −χ(L) < 0. The degree of L∨⊗ωC is given by 2g− 2− d. Now
h0(L) ≥ r+1 if and only if h0(L∨⊗ωC) = h1(L) = h0(L)−χ(L) ≥ r−d+ g.
Note that ρ(r, d, g) = ρ(r − d + g − 1, 2g − 2 − d, g), and we constructed a
bijective correspondence W r

d (C) → W r−d+g−1
2g−2−d (C). Note in particular, that

if min{ρ(r, d, g), g} = g, then there is no condition on the line bundle. In
particular, all line bundles with the correct invariants are in W r

d (C) and this
case is trivial.

The second step is to connect the statement about V r
d (|H|) to V r

d (C) for
a single curve (here the curve C could be even singular). The idea is to use
the morphism ϕ : V r

d (|H|) → |H| = P
g that maps every such line bundle to

its support. For any C ∈ |H| the fiber ϕ−1(C) is precisely V r
d (C). Therefore,

if V r
d (|H|) is empty, then so is V r

d (C). The converse is more complicated
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and requires techniques related to holomorphic symplectic varieties, analyzing
the morphism V r

d (|H|) → M . The conclusion is that ϕ is surjective and
all its fibers have the same dimension. Given the description of V r

d (|H|) in
Theorem 3.2, we know

dimV r
d (|H|) = dimM + dim Gr(r + 1, g − d + 2r + 1)

= 2ρ(r, d, g) + (r + 1)(g − d + r)
= ρ(r, d, g) + g.

This implies dimV r
d (C) = dimV r

d (|H|) − g = ρ(r, d, g). Lastly, V r
d (C) is

related to W r
d (C) by

W r
d (C) = V r

d (C) =
⋃
r′≥r

V r′
d (C).

Remark 3.3. A simple further argument, when C is smooth, d ≤ g − 1,
and r ≥ 1, also implies that the locus in W r

d (C) consisting of those line
bundles which are globally generated has also dimension ρ(r, d, g), the original
formulation of Theorem 3.1.

3.1. Stability on K3 surfaces

The strategy to prove Theorem 3.2 is to analyze stability of elements F ∈
V r
d (|H|) as torsion sheaves on X. Instead of classical notions of stability, we

will use Bridgeland stability conditions on K3 surfaces. For details beyond
this overview we refer to the original source [Bri08].

In order to construct abelian categories different from CohX the theory
of tilting is used. We refer to [HRS96] for technical details of tilting. For any
β ∈ R, we define

T β := {E ∈ CohX : all quotients E � Q satisfy μ(Q) > β},
Fβ := {E ∈ CohX : all non-trivial subobjects K ↪→ E satisfy μ(K) ≤ β}.

The tilted category Cohβ X is defined as the smallest extension closed sub-
category of DbX containing both T β and Fβ. Said differently, Cohβ X con-
sists of all those complexes E ∈ DbX for which Hi(E) = 0 for i �= −1, 0,
H0(E) ∈ T β, and H−1(E) ∈ Fβ. This category turns out to be abelian, and
a sequence of maps

0 → A → E → B → 0
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is short exact if and only if the induced sequence of maps

A → E → B → A[1]

is a distinguished triangle in DbX.
Recall that the Mukai vector of a sheaf, or more generally an object

E ∈ DbX, is defined as

v(E) = (v0(E), v1(E), v2(E)) := ch(E)·
√

td(X) = (r(E), c1(E), ch2(E)+r(E)).

For any classes v, w ∈ K(DbX) the Mukai pairing is given by

〈v, w〉 := −χ(v, w) = v1 · w1 − v0 · w2 − v2 · w0.

To define a stability condition we fix another real parameter α > 0, and for
any E ∈ Cohβ X set

Zα,β(E) := 〈exp(βH + iαH), v(E)〉.

The corresponding slope function is given by

να,β(E) := −�(Zα,β(E))

(Zα,β(E))

=
v2(E) − βH · v1(E) + β2

2 H2 · v0(E) − α2

2 H2 · v0(E)
H · v1(E) − βH2 · v0(E) .

A class δ ∈ K(DbX) is called spherical if δ2 = −2. The following result
was first proved in [Bri08] with respect to a slightly different definition of
stability condition than the one given in this note. The free abelian group
Λ is Knum(DbX), while v : K(DbX) → Λ is indeed the Mukai vector. The
additional properties on openness and boundedness follow from [Tod08]. The
support property can be found in [Bri08, Lemma 8.1]: it is there proved in
the form stated in Remark 2.2(c).

Theorem 3.4. The pair σα,β = (Cohβ X,Zα,β) is a Bridgeland stability con-
ditions if for all spherical classes δ with 
Zα,β(δ) = 0 and δ0 > 0, we have
�Zα,β(δ) > 0.

It turns out that the hypothesis of Theorem 3.4 on spherical classes is
automatically fulfilled if α2H2 > 2. Moreover, stability conditions will also
exist outside some “holes” in the (α, β)-plane (these holes exactly correspond
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to points (α, β) where there is a spherical class δ with Zα,β(δ) = 0), but their
construction is slightly more involved (we refer to [Bri08, Section 12]; see also
[BB17, Figure 1] for a picture of the (α, β)-plane).

The following result gives an intuition for the large volume limit point
(see [Bri08, Proposition 14.2] and [Tod08, Section 6.2]).

Proposition 3.5. Let E ∈ DbX have positive rank. Fix a real number β <
μ(E). Then E is in CohX and Gieseker-(semi)stable if and only if E is in
Cohβ X and σα,β-(semi)stable for sufficiently large α � 0.

The Mukai vector of a stable object satisfies serious restrictions.

Lemma 3.6. Let E be a σα,β-stable or slope-stable object. Then v(E)2 ≥ −2.

Proof. Since E is stable and the canonical bundle ωX is trivial, we have
ext2(E,E) = hom(E,E) = 1. Since Cohβ X is the heart of a bounded t-
structure exti(E,E) = ext2−i(E,E) = 0 for i < 0 and i > 2. Therefore,

v(E)2 = −χ(E,E) = ext1(E,E) − 2 ≥ −2.

The converse to Lemma 3.6 holds under a genericity condition on the
stability condition. It is a much more difficult result and we will explain it
further below.

By varying α and β stability changes and non-trivial results can often be
obtained from understanding this in detail. There is a locally finite wall and
chamber structure such that stability does not change within each chamber.
More precisely, for linearly independent classes v, w their numerical wall is
defined as

W (v, w) := {(α, β) ∈ R>0 × R : να,β(v) = να,β(w)}.

Such a numerical wall is called an actual wall for v if the set of να,β-semistable
objects with class v are not the same on both sides of W and at W itself. A
technical remark, which we will slightly overlook in this note, is that walls
might have “holes” and break, corresponding indeed to spherical classes being
mapped to 0 by Zα,β. Thus, actual walls might only consist of a subset of a
numerical wall (in between two holes). This will happen, for example, in the
proof of Theorem 3.2. Lastly, to simplify notation we will write W (E,F )
instead of W (v(E), v(F )) for E,F ∈ DbX.

By keeping this last remark in mind, the following result is then an easy
computation.

Proposition 3.7 (Structure theorem for walls). Let v ∈ K(DbX).
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β

α

Figure 1: Numerical walls for v0 = 0 and v1 �= 0.

β

α

Figure 2: Numerical walls for v0 �= 0 and v2 ≥ 0.

β

α

Figure 3: Numerical walls for v2 < 0.

(i) Numerical walls are either semicircles with center on the β-axis or lines
parallel to the α-axis. If v0 �= 0, there is a unique vertical numerical wall
at β = μ(v). If v0 = 0 and v1 �= 0, there is no actual vertical wall.

(ii) All numerical semicircular walls with respect to v have their apex along
the curve να,β(v) = 0. This means the following:
(a) If v0 = 0 and v1 �= 0, then all walls are nested semicircles whose

apex is along the ray β = v2
v1

.
(b) If v0 �= 0 and v2 ≥ 0, then there are two sets of nested semicircles,

one on each side of the vertical wall.
(c) If v2 < 0, then all semicircular walls intersect να,β(v) = 0 in both

its apex and in the unique point (α, β) for which Zα,β(v) = 0.
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The following result is the key technical ingredient in the proof; the state-
ment as written is contained in [BM14a, Section 6] (the version for sheaves is
in [Yos01]). We omit the notation φ from the moduli space Mσα,β

(v).

Theorem 3.8 (Mukai, O’Grady, Huybrechts, Yoshioka, Toda). Let v be a
primitive class, and let σα,β be a stability condition that does not lie on an
actual wall for objects with Mukai vector v. Then Mσα,β

(v), the moduli space of
σα,β-stable objects with class v, is a smooth projective irreducible holomorphic
symplectic variety of dimension v2 + 2. In particular, it is non-empty if and
only if v2 ≥ −2.

3.2. The proof

We define
v = (0, H, d + 1 − g).

Note that any F ∈ V r
d (|H|) satisfies v(F ) = v.

Lemma 3.9. The largest wall for objects with Mukai vector v is given by
W (OX , v). Moreover, F ∈ V r

d (|H|) if and only if F is a pure sheaf with
v(F ) = v that is destabilized along W (OX , v) by a short exact sequence

(2) 0 → O⊕(r+1)
X → F → G → 0,

where G is stable along W (OX , v) with Mukai vector (−r − 1, H, d− g − r).

Proof. The wall W (OX , v) intersects the ray β = 0 for α2 = 1
g−1 . Assume

there is a wall for β = 0 and α2 > 1
g−1 . However, v1 = H and by definition

of Coh0 X any destabilizing subobject A ↪→ F ′ for some F ′ with v(F ′) = v
satisfies v1(A) ∈ {0, H}. In either case, the subobject or quotient has infinite
slope along this ray, while F ′ has finite slope. This cannot define a wall.
Together with Proposition 3.5 this shows that any Gieseker-stable sheaf F ′

with v(F ′) = v (not just F ∈ V r
d (|H|)) is semistable along W (OX , v). With

this Mukai vector, Gieseker-stable simply means being a pure sheaf support
on a curve C ∈ |H|.

Note that the point α2 = 1
g−1 , β = 0 does not correspond to a stability

condition due to Zα,β(OX) = 0. This breaks the wall, and we will study the
part with β < 0 and call it W . It is not hard to see, from Proposition 3.7,
that OX is stable along W .

Assume that F ∈ V r
d (|H|). Then hom(OX , F ) = r + 1 and we get a

morphism O⊕(r+1)
X → F . The first claim is that this map is injective in Cohβ X
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for β < 0 such that there is α > 0 with (α, β) ∈ W . Let A ↪→ K ↪→ O⊕(r+1)
X

be a stable subobject of the kernel K in Cohβ X with να,β(A) ≥ να,β(K) for
such (α, β). Since O⊕(r+1)

X is semistable, we get να,β(A) ≤ να,β(OX). However,
we must have equality because otherwise the quotient of K ↪→ O⊕(r+1)

X would
make F unstable along W . We can choose a quotient O⊕(r+1)

X � OX such that
A → OX is non-trivial. Since OX is stable, this is a contradiction. Therefore,
such an A does not exist and in conclusion the kernel is trivial, i.e., the map
is injective in Cohβ X.

We define G to be the quotient

0 → O⊕(r+1)
X → F → G → 0.

We have to show that G is stable along W . Being the quotient of two semistable
objects with the same slope, it is certainly semistable. Assume G has a stable
subobject A with the same slope along W . Then by definition of Cohβ X we
get

0 ≤ v1(A)H
H2 − βv0(A) ≤ 1 + β(r + 1)

for (α, β) ∈ W . Taking the limit β → 0, we get v1(A) ∈ {0, H}. By exchang-
ing A with the quotient G/A if necessary, we can assume that v1(A) = 0. By
continuity and linearity of Zα,β in (α, β) the complex numbers Zα,0(A) and
Zα,0(G) have to be linearly dependent for α2 = 1

g−1 . Since Zα,0(A) has infi-
nite slope and Zα,0(G) has finite slope, this is only possible if Zα,0(A) = 0 for
α2 = 1

g−1 . A straightforward computation shows v2(A) = v0(A). Therefore,
it is not too hard to see that A = O⊕v0(A)

X . We are done, if we can show that
Hom(OX , G) = Hom(G,OX) = 0. The long exact sequence from applying
Hom(OX , ·) to (2) implies Hom(OX , G) = 0. If there was a non-trivial mor-
phism G → OX , then there would be a non-trivial morphism F → OX . But
that would imply that F is unstable above W , a contradiction.

Assume vice-versa that F ′ is a pure sheaf supported on a curve C with
v(F ′) = v that is destabilized by a short exact sequence as in (2). The long
exact sequence from applying Hom(OX , ·) to (2) implies h0(F ′) = r + 1 +
h0(G) = r+1, since stability of G along the wall implies hom(OX , G) = 0.

Proof of Theorem 3.2. Assume ρ(r, d, g) < 0 and V r
d (|H|) �= 0. By Lemma 3.9,

there is a stable object G ∈ Mσ(−r − 1, H, d− g − r) for σ along W (OX , v).
By Lemma 3.6 this implies

−2 ≤ (−r − 1, H, d− g − r)2 = 2ρ(r, d, g) − 2 < −2,

a contradiction.
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Assume ρ(r, d, g) ≥ 0. We will show non-emptiness and describe the struc-
ture of V r

d (|H|) at the same time. Let F ∈ V r
d (|H|). Then by Lemma 3.9 the

sequence (2) is the Harder–Narasimhan filtration of F below the wall. In
particular, the object G is uniquely determined for fixed F . A morphism
V r
d (|H|) → M stable

σ (−r − 1, H, d− g − r) for σ along W (OX , v) is defined by
F �→ G.

Let σ′ be a point above W in a sufficiently small enough neighborhood. By
Theorem 3.8 the moduli space Mσ′(−r−1, H, d−g−r) is a smooth projective
irreducible holomorphic symplectic variety of dimension (−r − 1, H, d − g −
r)2 + 2 = 2ρ(r, d, g). Since stability is an open property, the locus of stable
objects M stable

σ (−r−1, H, d−g−r) is an open subset of Mσ′(−r−1, H, d−g−r),
hence is also smooth, irreducible, and has the same dimension.

Since both OX and G are stable along W with the same slope, we have
Hom(G,OX) = 0 and Ext2(G,OX) = Hom(OX , G) = 0. Thus, ext1(G,OX) =
〈G,OX〉 = g − d + 2r + 1 > r + 1. Let Ext1(G,OX)∨ � V be an r + 1-
dimensional quotient. Then there is a natural extension

0 → OX ⊗ V → F ′ → G → 0.

We claim that F ′ is stable above W . Any destabilizing subobject A of F ′ above
W has to be semistable along W with the same slope as F ′. Since Jordan-
Hölder filtrations have unique factors up to order, there are two possibilities.
If A does not contain G as stable factor, then A = O⊕s

X . However, this simply
does not destabilize F ′ numerically above the wall. If A does contain G as
a stable factor, then we have a quotient F ′ � OX . Applying Hom(·,OX) to
the defining sequence for F ′ leads to the long exact sequence

0 → Hom(F ′,OX) → Hom(OX ,OX ⊗ V ) → Ext1(G,OX)

By construction the last map is injective with image V ∨. Thus,
Hom(F ′,OX) = 0.

Remark 3.10. The same approach works for arbitrary v if we consider
objects that are stable near the wall W (OX , v) ([Fey17]). To extend Brill–
Noether statements to stable sheaves on curves of higher rank, one first needs
to control their Harder–Narasimhan filtration near W (OX , v). The idea is
then to prove a general bound on the dimension of the space of global sec-
tions purely in terms of the shape of the Harder–Narasimhan filtration near
W (OX , v).
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4. The genus of space curves

A classical subject in algebraic geometry is the attempt to classify space
curves. As usual there are two steps to this. First, understand their discrete
invariants. Second, study their moduli spaces, i.e., Hilbert schemes of curves.

Hilbert scheme of curves in P
3 are notoriously badly behaved. For exam-

ple, in [Mum62] Mumford constructs an open subset of an irreducible com-
ponent parametrizing smooth curves that is non-reduced everywhere. How
to handle problems such as these remains a big open question. Instead, we
would like to concentrate on discrete invariants. This study goes all the way
back to Noether, Halphen [Hal82], and Castelnuovo [Cas37] (see [Har77, IV,
§6]).

Theorem 4.1 (Halphen, Gruson–Peskine). Let C ⊂ P
3 be a smooth curve of

degree d and genus g.

(i) If C is contained in a plane, then g = (d−1)(d−2)
2 .

(ii) If C is not contained in a plane, then g ≤ d2

4 − d + 1.
(iii) If C is not contained in a plane or a quadric, then g ≤ d2

6 − d
2 + 1.

(iv) There are smooth curves C ⊂ P
3 of degree d and genus g whenever

0 ≤ g ≤ d2

6 − d
2 + 1.

This theorem was stated by Halphen ([Hal82]), but the proof was incom-
plete; it was finally proved by Gruson and Peskine over one hundred years
later in [GP78, GP83]. In order to understand for which d and g there are
smooth curves, it is left to understand curves on quadrics, but this is elemen-
tary. We refer to [Har87] for more details on all of this.

This theorem begs an immediate follow up question. Fix a positive integer
k. What happens if C is not contained in a surface of degree l for any l < k.
When d > k(k−1) this was also solved by Gruson and Peskine in [GP78] and
Harris ([Har80]). We gave a completely new proof using stability conditions
in the derived category in [MS20].

Theorem 4.2 (Gruson–Peskine, Harris). Let C ⊂ P3 be a smooth curve of
degree d and genus g that is not contained in a surface of degree l < k. If
d > k(k − 1), then

2d + g − 1 ≤ d2

2k + dk

2 − ε(d, k),

where
ε(d, k) = f

2

(
k − f − 1 + f

k

)
.
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In [MS20] we prove a more general statement that includes a very similar
bound for principally polarized abelian threefolds of Picard rank one (and
holds for integral curves as well). Note how the left hand side of the inequality
is given by 2d + g − 1 = ch3(IC). In fact, the analogous theorem on other
threefolds bounds ch3(IC)

H3 , where H is an ample divisor generating the Picard
group.

What happens in the case d ≤ k(k − 1) is still open. There is a precise
conjectural bound (and examples of curves satisfying this bound) in the case
1
3(k2 + 4k + 6) ≤ d ≤ k(k− 1), due to Hartshorne and Hirschowitz ([HH88]),
but with the exception of a few cases (see e.g., [GP83, Har88, Ell91]), this
is still open. In the case d < 1

3(k2 + 4k + 6), a bound is known (an easy
consequence of the Clifford Theorem), but it is not yet known if this bound
is achieved in all cases (results towards this are in [BBEMR97, BLS18]).

The original proofs of Theorem 4.2 are based on general position results.
For instance, on the generalized trisecant lemma ([Lau78]) that roughly says:
for each curve of degree d that is not contained in a surface of degree < k,
with k(k − 1) < d, there is a hyperplane section which in the corresponding
plane is not contained in a curve of degree < k.

Our approach is different and based on an idea of Mumford to prove the
Kodaira vanishing theorem for surfaces by using the Bogomolov inequality
(see the appendix of [Rei78]). Stability conditions on Db

P
3 are based as well

on a Bogomolov-type inequality (see Theorem 4.4). The basic idea is to run
the same argument as in the proof of the Kodaira vanishing theorem, which
unfortunately in this case involves quite messy computations. Most of the
difficulty though in [MS20] comes from the error term ε(d, k). We will give a
proof without this error term and the slightly weaker condition d ≥ k2. This
makes the argument much simpler, but most of the techniques of the precise
statement are already present.

4.1. Tilt stability

The definition of Bridgeland stability on K3 surfaces is easy to generalize to
other surfaces as pointed out in [AB13]. It is enough to simply replace the
Mukai vector with the Chern character in all definitions. In higher dimensions
this will not lead to a Bridgeland stability condition, but nonetheless a weaker
notion of stability is still well-defined as pointed out in [BMT14]. We will
explain the differences.

To simplify notation, we define the twisted Chern character chβ(E) :=
ch(E) · e−βH for any E ∈ DbX. Note that if β ∈ Z this is nothing but
ch(E ⊗ OX(−βH)). Furthermore, we identify chi(E) with H3−i · chi(E) for
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any E ∈ Db
P

3. In particular, multiplication is happening as numbers, not as
cohomology classes.

The category Cohβ
P

3 is defined in exactly the same manner as on K3
surfaces. The slope function is now given as

να,β :=
chβ

2 −α2

2 chβ
0

chβ
1

.

The sole reason that this does not lead to a Bridgeland stability condition is
the fact that both denominator and numerator are zero in the case of sheaves
supported in dimension zero.

In order to get a grip on the invariants of stable objects, we use the clas-
sical Bogomolov inequality (see [Bog78]) in the following version ([BMT14,
Corollary 7.3.2]):

Theorem 4.3. If E ∈ Cohβ
P

3 is να,β-semistable, then

Δ(E) := ch1(E)2 − 2 ch0(E) ch2(E) ≥ 0.

To get a handling of the third Chern character we require the following
generalized Bogomolov inequality. A close version was proved in [Mac14] and
shown to be equivalent to the stated quadratic inequality in [BMS16].

Theorem 4.4. If E ∈ Cohβ
P

3 is να,β-semistable, then

Qα,β(E) := α2ΔH(E) + 4(chβ
2 (E))2 − 6 chβ

1 (E) chβ
3 (E) ≥ 0.

By design the equation Qα,β(E) = 0 is equivalent to να,β(E) =
να,β(ch1(E), 2 ch2(E), 3 ch3(E)) and thus constitutes a numerical wall for E.

Walls behave very similarly to the case of K3 surfaces with a few key dif-
ferences. Simply replace the Mukai vector with the Chern character and the
Mukai form with Δ in the statement of Proposition 3.7. Due to Theorem 4.3
the quadratic form Δ is never negative for semistable objects, and therefore,
the case of negative quadratic form in Proposition 3.7 can be ignored. More-
over, due to [BMS16, Corollary 3.11] line bundles are stable for all α > 0,
β ∈ R.

In order to study wall-crossing in tilt stability we will frequently use the
following proposition to bound the rank of potentially destabilizing subobjects
([CH16, Proposition 8.3] and [MS20, Lemma 2.4]).

Proposition 4.5. Let E ∈ Cohβ
P

3 with ch0(E) > 0 be να,β-semistable along
some of its numerical walls W with radius ρW . If F is a να,β-semistable
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subobject or quotient of E with ch0(F ) > ch0(E), then

ρ2
W ≤ Δ(E)

4 ch0(F )(ch0(F ) − ch0(E)) .

4.2. The proof

Unfortunately, applying Theorem 4.4 to IC is not good enough to obtain a
strong bound on the genus. However, it can give strong bounds for rank zero
objects that will turn out useful.

Proposition 4.6. Let E ∈ Cohβ
P

3 be να,β-semistable for some (α, β) with
ch(E) = (0, c, d, e). Then

e ≤ c3

24 + d2

2c .

Proof. If (α, β) satisfy α2 + (β − d
c )

2 ≤ c2

4 , then Qα,β(E) ≥ 0 implies the
statement. Therefore, we may assume α2 +(β− d

c )
2 > c2

4 . If we can show that
there is no wall for E with radius > c

2 , then we could vary α, β to reduce to
the previous case.

Assume 0 → F → E → G → 0 is a short exact sequence inducing a wall
W with ρW > c

2 . If F is an object with ch0(F ) = 0, then a straightforward
computation shows that να,β(F ) = να,β(E) holds independently of (α, β).
Therefore, such objects F destabilize E everywhere or nowhere and thus,
cannot induce a wall.

Assume that ch0(F ) > 0. Then Proposition 4.5 implies

c2

4 < ρ2
W ≤ Δ(E)

4 ch0(F )2 = c2

4 ch0(F )2 ≤ c2

4 ,

a contradiction. If ch0(F ) < 0, the same calculation with G instead of F leads
to a contradiction.

The fact that C is smooth allows to reduce the possible walls for IC as
follows.

Lemma 4.7. Let F ↪→ IC be a rank one subobject in Cohβ
P

3 destabilizing
IC along a semicircular actual wall W (F, IC). Then F is a line bundle.

Proof. Let G be the quotient of F ↪→ IC in Cohβ
P3. Taking the long exact

sequence in cohomology, we get a long exact sequence of sheaves

0 → H−1(F ) → 0 → H−1(G) → H0(F ) → IC → H0(G) → 0.
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In particular, H−1(F ) = 0 and F is a sheaf. By definition H−1(G) ∈ Fβ is
torsion-free, thus F is also torsion-free. Since the quotient of H−1(G) ↪→ F
embeds into IC it must be either trivial or H−1(G) = 0. However, if it were
trivial, then the map F → IC is trivial, in contradiction to being an injection.
Overall, we showed that 0 → F → IC → G → 0 is also a short exact sequence
in CohP

3.
There is a subscheme W ⊂ P

3 of codimension at least two and a positive
integer m > 0 such that F = IW (−m) ↪→ IC . Since C is integral, it is
contained in either W or a surface of degree m.

Assume that C is contained in W . We can compute that Δ(F ) is twice the
degree of W . Similarly, Δ(IC) is twice the degree of C. However, this implies
the contradiction Δ(F ) ≥ Δ(IC). Indeed, the discriminant must decrease
in this situation, for semistable subobjects of the same slope (see [BMS16,
Corollary 3.10]).

Assume that C is contained in a degree m surface. Then there is
a morphism O(−m) ↪→ IC . A straightforward computation shows that
W (O(−m), IC) is larger than or equal to W (F, IC) and indeed, IC is desta-
bilized by a line bundle.

It holds more generally that any destabilizing subobject of IC for integral
C is reflexive (see [MS20, Lemma 3.12]), but we do not require this statement
here.

Lemma 4.8. As long as d ≥ k2, the function

E(d, k) = d2

2k + dk

2

is decreasing in k.

Proof. This follows from the derivative of E(d, k) by k.

Theorem 4.9. Let C ⊂ P
3 be a smooth curve of degree d and genus g that

is not contained in a surface of degree l < k. If d ≥ k2, then

ch3(IC) ≤ d2

2k + dk

2 .

Proof. Let e = ch3(IC). Then ch(IC) = (1, 0,−d, e). Assume for a contradic-
tion

e >
d2

2k + dk

2 .
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We can compute Qα,β(IC) ≤ 0 if and only if

α2 +
(
β + 3e

2d

)2
≤ 9e2 − 8d3

4d2 .

The equation Qα,β(IC) = 0 is the equation of a numerical wall, and therefore,
another numerical wall is contained in Qα,β(IC) < 0 if its radius is smaller
than the square root of the right hand side. By Theorem 4.4 we get that any
radius ρ of a semicircular wall for IC satisfies

ρ2 ≥ 9e2 − 8d3

4d2 >
9(k2 − d)2

16k2 + d

4 ≥ d

4 = Δ(IC)
8 .

By Proposition 4.5 we get that IC is destabilized by a subobject of rank one.
By Lemma 4.7 it has to be a line bundle, too. Therefore, we can find an
integer h > 0 such that IC is destabilized via an exact sequence

0 → O(−h) → IC → Q → 0.

Applying Proposition 4.6 to Q leads to

e ≤ d2

2h + dh

2 = E(d, h).

By Lemma 4.8 this leads to a contradiction unless d < h2. The wall
W (IC ,O(−h)) is given by

α2 +
(
β + h

2 + d

h

)2
= (2d− h2)2

4h2 .

For d < h2

2 , we get that the wall is to the right of β = −h. In particular,
O(−h)[1] ∈ Cohβ

P
3 and O(−h) cannot be a subobject. Therefore, we are

left to deal with the situation h2

2 ≤ d < h2. We can compute

(2d− h2)2

4h2 <
d

4 <
9e2 − 8d3

4d2 .

Hence the wall lies in the region where Qα,β(IC) < 0, a contradiction to
Theorem 4.4.
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