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A method in deformation theory
Frans Oort

This paper is dedicated to David Mumford, in gratitude for everything
I learned from him

Abstract: We describe a method in deformation theory that David
Mumford and the present author developed in 1966.
Keywords: Deformation theory, finite group schemes, abelian
varieties, Newton polygons, automorphisms of algebraic curves.

Introduction

0.1. A method in deformation theory

Suppose we study a problem in lifting theory, or we want a deformation with
specific properties of a generic fibre. If the universal deformation theory as
in [30] applies, which is the case in many situations, it seems the problem
is (almost) solved: “just” inspect properties of all fibers; in several cases this
works well, for examples if obstructions vanish and the lifting problem hence
is formally smooth. However in more difficult problems we can encounter
situations not easily solved in this way. This was exactly what David Mumford
and I experienced in 1966/1967. In our discussions then an idea came up.
Now, half a century later we do not know how this originated. I am used to
indicate this idea by “the Mumford method”; I cannot find any earlier case of
this construction.

0.2. Two steps

The basic question is to start with N0 and find a lifting or a deformation
with prescribed properties; please see our four examples for specific cases. It
might be that just an abstract deformation theory does not give an obvious
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solution. We discuss a method that solves such a problem in several cases. It
consists of two steps:
(I) deform N0, the central fiber studied, to a “better” situation M0; we have
to define what better means; usually we have make a non-canonical choice of
such a deformation; in most cases this is the hard part of the proof;
(II) apply general theory to solve the problem at hand for this “good” situ-
ation where lifting of M0 is known for abstract reasons.

0.3. We reproduce the basic idea explained in [27], Lemma 2.1

Suppose given rings and homomorphisms κ ← R ⊂ k
ρ←− Λ and N0 over κ,

and M0 over R, and M over Λ such that

N0 = M0 ⊗R κ, M0 ⊗ k = M ⊗Λ k :
N0 M0 M0 ⊗ k M

Spec(κ) Spec(R) Spec(k) Spec(Λ).

Let Λ′ := {x ∈ Λ | x0 = ρ(x) ∈ R}; in this situation N0 lifts to Λ′ → R → κ.
Usually κ is a field (of positive characteristic in our situations, preferably

perfect), M0/R is a deformation to an integral domain R (of equal character-
istic in our situations), k is an algebraic closure of the field of fractions of R,
and the integral domain Λ → k is for example (a slightly ramified extension
of) the ring of infinite Witt vectors (in three of our four examples). A ring of
mixed characteristic will be an integral domain Λ of characteristic zero with
a homomorphism Λ → K ⊃ Fp.

0.4. We discuss this method in the following situations

• Lifting finite group schemes, 1968, see Section 1.
• Lifting polarized abelian varieties, 1980, see Section 2.
• A conjecture by Grothendieck, 1970, 2000-2001, see Section 3.
• Lifting an algebraic curve with an automorphism, 1985, 1995, 1989,

1999, 2014, see Section 4.

This note does not contain new material.
In each of the situations it was not clear how abstract considerations, as

in deformation theory, could give an answer to the problem posed in general.
Particular situations are solved by just pure thought, Step 2. In Step 1 we
deform to such a situation, where the next step applies. The combination of
the two steps can give insight and an answer asked for.
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0.5. Lifting questions

Definition. If we have an object N0/κ (with certain properties) over κ ⊃ Fp.
We say N/Γ is a lifting of N0 if Γ → κ is a mixed characteristic integral
domain, and N/Γ (with certain properties) satisfies N0 ∼= N ⊗Γ κ. Compare
with 5.1.3.

1. Lifting finite group schemes

1.1. We start with a question

Question. Let κ ⊃ Fp be a field and let N0/κ be a finite group scheme. Does
there exist a lifting to characteristic zero?

1.1.1. Example. Here is an example of a non-commutative finite group
scheme of order p2. We define N0 over R ⊃ Fp by

N0(C) =
(
ρ τ
0 1

)
, ρp = 1, τp = 0

for any commutative R-algebra C. We can easily write out the coordinate
ring of G, and the group axioms. As a group scheme in characteristic zero
is reduced, see [1], [17], we see that any flat lifting N/Γ would give a non-
commutative constant group scheme over k = k ⊃ Γ ⊃ Z. However by
elementary group theory we know there does not exist a non-commutative
group of order p2.

Conclusion. There exist (non-commutative) finite group schemes that can-
not be lifted to characteristic zero.

1.2. Commutative finite group schemes can be lifted

Theorem. Any commutative finite group scheme N0/κ can be lifted to a
commutative finite flat group scheme in mixed characteristics. See [27].

Example. Consider N0 = αp. This finite group scheme does not admit a lift
to an unramified mixed characteristics domain. For example this can be seen
by using the classification as explained in [31]: finding N/Γ, with ρ : Γ → κ
is equivalent by finding a, b ∈ Γ with ab = (unit)·p and ρ(a) = 0 = ρ(b). Also
see 5.1.3.
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1.3. A sketch of the proof

We study deformations and liftings N = Spec(E) of N0 = Spec(E0) by fixing
a base for the algebra E, free over a local base ring. In this way we obtain a
prorepresentable functor. We try to see whether this prorepresenting ring has
a characteristic zero fiber.

Step (I) (the hard part). Choose a deformation to M0 = Spec(E1) over an
integral characteristic p domain R such that over the perfection of field of
fractions K ⊃ Q(R) we know that M0 ⊗K is a direct sum of a local-etale M ′

0
and an etale-local finite group scheme M ′′

0 ; see [27, pp. 319–331],

M0 ⊗K = M ′
0 ×M ′′

0 ; M ′
0 = (M0 ⊗K)loc,et M ′′

0 = (M0 ⊗K)et,loc.

Step (II) (pure thought). As finite etale algebras admit a unique lifting, “une
équivalence remarkable”, EGA44.18.1, see [3], we see that M ′′

0 can be lifted
to W∞(K). Cartier duality gives (M ′

0)D, an etale-local group scheme; we see
this can be lifted to W∞(K), and dualizing back we obtain a lift of M ′

0. We
see M ′

0×M ′′
0 = M0⊗K can be lifted. Hence Step(I) and Step(II) give a proof

of 1.2.

2. Lifting polarized abelian varieties

2.1. Deformations

Question. Suppose (A0, μ) is a polarized abelian variety over κ ⊃ Fp. Does
there exist a lifting to characteristic zero?

Typically this is a question, where the deformation theory is clear, but
where in general deciding whether the deformation space does contain a char-
acteristic zero fiber is something not easily seen by abstract methods in the
most general case.

Classically the problem of (deformations in characteristic zero) was fully
answered in the Kuranishi and in the Kodaira-Spencer theory. Then Sch-
lessinger, Grothendieck and Mumford showed the way to formulated these
problems in terms of algebraic geometry over an arbitrary base scheme. Some
results (we start with a perfect field κ or an algebraically closed field k):

• Serre-Tate theory gives an equivalence between formal deformations of
abelian varieties and of their p-divisible groups, see [9], [11].

• As ordinary p-divisible groups can be lifted, we conclude any polarized
ordinary abelian variety can be lifted, and see [8].



A method in deformation theory 707

• Grothendieck showed obstructions vanish: the deformation space of an
abelian variety of dimension g (obtaining formal abelian schemes) is
formally smooth,

• lifting along a polarization, this space is given by g(g− 1)/2 equations,
as Mumford showed,

• by Chow-Grotendieck we know a polarized formal abelian scheme can
be algebraized, and

• Grothendieck proved that principally polarized abelian varieties have a
formally smooth deformation space, hence liftability in this case; for all
this and for references, see [18], 2.2 ∼ 2.4.

• What can be said about liftability of a polarized abelian variety (and
hence about the dimension of components of the moduli space Ag⊗Fp)?

2.2. Lifting polarized abelian varieties

Theorem (Mumford, Norman-Oort). For any polarized abelian variety
(A0, μ) there exists a lifting to characteristic zero.

See [14]. Also see [13] for the case p > 2.

Corollary. Any irreducible component of Ag ⊗Zp is a complete intersection
of relative dimension g(g + 1)/2.

As so often we encounter in mathematics that a good question asks for a
general idea in order to obtain a solution. Mumford invented the technique
of displays: instead of the step-by-step method of Schlessinger,

write down an equi-characteristic-p deformation of the matrix of the
Frobenius morphism of a p-divisible group;

require this deformation still divides p;
conclude the deformation indeed gives a p-divisible group. This results

(after a difficult computation) in the fact that

(Step 1) any polarized abelian variety (A0, μ) admits a deformation in equi-
characteristic-p to an ordinary polarized abelian variety; see [14, pp. 423–430].
(Step 2) By Serre-Tate theory we know the ordinary case is solved.

By 0.3 we conclude a proof of this theorem.

3. A conjecture by Grothendieck

In this section we describe deformations in characteristic p. In the influen-
tial paper [10] by Manin access is obtained to theory of abelian varieties in
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characteristic p via the study of p-divisible groups. A classification theory via
modules over a certain ring, initiated by Dieudonné and further developed by
Manin, classifies p-divisible groups over a perfect group. For coprime integers
m,n ∈ Z≥0 a p-divisible group Gm,n is defined, it is simple, of dimension m
and the dual Gt

m,n
∼= Gn,m is of dimension n; the “Frobenius slopes” on this

p-divisible group Gm,n are equal to m/(m + n).

3.1. A classification of p-divisible groups

Theorem/Notation (Manin). Any p-divisible group X over an algebraically
closed field k ⊃ Fp is isogenous with a product

X ∼k

∏
i

Gmi,ni , gcd(mi, ni) = 1.

Notation. The Newton polygon N (X) in this case is the lower convex poly-
gon consisting of slopes mi/(mi + ni) with multiplicities mi + ni, the slopes
arranged in non-decreasing order; these are called “the Frobenius slopes” of X.

We obtain a bijective map

{X | d(X) = d, h(X) = h}/ ∼k
∼−→ {NP | d(N ) = d, h(N ) = h}.

For a p-divisible group Y over a field K ⊃ Fp we define N (Y ) as the Newton
polygon of Y ⊗ k for any k ⊃ K. We say a Newton Polygon is isoclinic if all
slopes are equal, i.e. the polygon is straight line segment.

3.2. A partial ordering

We write ζ ′ ≺ ζ if these Newton Polygons have the same end points, i.e. the
same height and dimension, and every point on ζ ′ is on or above ζ; in this
case we say “ζ ′ is above ζ. In 3.3 we see an explanation for this choice of
terminology and partial ordering.

For d(ζ) = d and c(ζ) = c = h− d the isoclinic Newton Polygon of slope
d/(d + c) is the minimal in this ordering. For symmetric Newton Polygons
the supersingular σ = σg = N ((G1, 1)g), isoclinic of slope 1/2, is the minimal
one appearing for abelian varieties of dimension g.

For an abelian variety A we write N (A) := N (X[p∞]). This is a symmet-
ric Newton Polygon: for every slope s appearing in ξ = N (A), the slope 1− s
appears with the same multiplicity.
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3.3. Newton Polygons go up under specialization

Theorem (Grothendieck, Katz). If X → S is a p-divisible group over en
irreducible scheme S/Fp, with 0 ∈ S and generic point η ∈ S. Then

N (X0) ≺ N (Xη);

see [5, page 150; [7], Th. 2.3.1, page 143].

Grothendieck asked whether the converse holds:

3.4. A conjecture by Grothendieck

Conjecture/Theorem. Work in characteristic p. Suppose given a p-divisible
group X0/κ with Newton Polygon N (X0) = ζ ′ and suppose given a Newton
Polygon ζ 
 ζ ′, i.e. ζ ′ is “above” ζ. There exists a p-divisible group over en
irreducible scheme S/Fp, with 0 ∈ S and generic point η ∈ S with X0 = X0
and N (Xη) = ζ, i.e. the partial ordering is realized by a deformation of X0,

ζ ′ = N (X0) ≺ N (Xη) = ζ.

See [6], [21], [23]. An analogous result for principally polarized p-divisible
groups or principally polarized abelian varieties holds.

A systematic way of finding counterexamples in the non-principally po-
larized cases is described in [24].

Comment. For a symmetric Newton Polygon ξ we write

Wξ = {[(A, λ)] ∈ Ag | N (A) = ξ} ⊂ Ag := Ag,1 ⊗ Fp.

The conjecture by Grothendieck asks which Newton polygons appear in

∂(Wξ) =
(
(Wξ)Zar \Wξ

)
⊂ Ag.

The answer is that all ξ′ � ξ appear:

Corollary.

(Wξ)Zar = ∪ξ′≺ξ Wξ′ ⊂ Ag,1 ⊗ Fp.
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3.5. Two steps in proving this conjecture by Grothendieck

For a group scheme G over a field κ ⊃ Fp we write

a(G) := dimK (Hom(αp, G⊗K))

where K is a perfect field containing κ. For a p-divisible group over a perfect
field this is the number of generators of the local-local part of the Dieudonné
module. An abelian variety is ordinary if and only if a(A) = 0.

Step 1. For a p-divisible group X0 there exists a deformation with constant
Newton Polygon with generic fiber a(X0) ≤ 1.

Comments. This result we find in [6], 5.12 + [23], 2.8; the proof, a combi-
nation of an abstract method “purity” plus combinatorial arguments, after
several years has not been simplified.

An analogous results holds for principally polarized p-divisible groups and
for principally polarized abelian varieties. For polarized p-divisible group and
for polarized abelian varieties the analogous statement is not correct.

In many situations a(X) > 1 gives a singular moduli point, and a(X) ≤ 1
gives a regular moduli point; the statement in Step 1 can be seen as a method
to “move out of the singularity”.

It does not come as a surprise that in general there are many deformations
achieving what we want, in many cases the deformation chosen is not unique
nor canonical.

Step 2. For a p-divisible group X0 with a(X0) = 1 the deformation theory
is easier to handle. A variant of the Cayley-Hamilton theorem, “a matrix is a
zero of its own characteristic polynomial” can be formulated for the display-
matrix of Frobenius, proved for the a = 1 case, and equations for all Newton
Polygon strata in the deformation space can be read off easily in this situation,
see [21]. We conclude: this Grothendieck conjecture holds for the a(X0) = 1
situation. Combining these two steps, as in 0.3, gives a proof for Theorem 3.4.

4. Lifting an algebraic curve with an automorphism

Let C0 be an algebraic curve (non-singular, absolutely irreducible and proper)
over a field κ ⊂ Fp of genus g > 1, and H ⊂ Aut(C) a subgroup. In general
there is no chance that the pair (C0, H) can be lifted to characteristic zero.
Indeed, if #(H) > 2g + 2 the Hurwitz bound in characteristic zero shows
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this case cannot be lifted. More subtle counterexamples can be given, e.g. see
[19, I.2].

However:

Conjecture. Let C0 be an algebraic curve over a field κ ⊂ Fp, and ϕ ∈
Aut(C0), i.e. consider the case H is a cyclic subgroup. In [20], 4A it is conjec-
tured that (C0, ϕ) can be lifted to characteristic zero.

This is clear for automorphisms of order prime to p. The case that the
order of ϕ is not divisible by p3 was proved earlier, see [29], [4]; for survey see
[15]. Finally:

4.1. An answer to the question lifting an automorphism of an
algebraic curve

Theorem (Obus-Wewers, Pop). Any (C0, ϕ) can be lifted to characteristic
zero.

See [16], [28]. For a survey see [15]: Andrew Obus – Lifting curves with
automorphisms.

The proof starts with (C0, ϕ) defined over an algebraically closed field. In
[16] a class of coverings C0 → D0 = C0/〈ϕ〉 was shown to liftable (Step 2);
here Step 2 is far from easy. In [28] it was shown that any (C0, ϕ) can be
deformed (Step 1) to a situation as in [16]. Hence the general case follows
by 0.3.

5. Some questions

5.1. Normalizing local rings

The method sketched in this note proves some results. However because of
limitations other aspects can remain unclear. We describe two types of such
questions. At first two easy examples.

5.1.1. Example. Suppose L′ ⊂ L, an inclusion of fields, Λ = L[[t]], with
ρ : L[[t]] → L given by ρ(t) = 0, and

Λ′ = {
∑

ajt
i | aj ∈ L, ρ(t0) ∈ L′} ⊂ Λ.

This local ring has residue field L′; the normalization (Λ′)∼ equals

(Λ′)∼ =: Λ′′ = {
∑

ajt
i | aj ∈ L, ρ(t0) ∈ K} ⊂ Λ,
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where K is the algebraic closure of L′ inside L. We see that normalizing the
local ring Λ′ may extend the residue class field in case L′ �= K ⊂ L.

5.1.2. Example. Suppose Fp ⊂ κ ⊂ κ[[t]] ⊂ K, where K is perfect, ρ : Λ :=
W∞(K) → K the residue class map with τ : K → W∞(K) the Teichmüller
lift, and

Λ′ = {
∑

ajp
j | aj ∈ K, ρ(t0) ∈ κ}.

The residue class map Λ′ → κ factors over

Λ′ −→ Λ′/(τ(t)2 − p) −→ κ.

We see that the unramified situation Λ → K gives rise to a ramified situation
Λ′/(τ(t)2 − p) → κ.

5.1.3. Definition. Suppose given N0/κ (with certain properties). We say
N → Spec(D) is a strong lifting if D → κ where D is a mixed characteristics
integral domain that is a discrete valuation ring with N⊗D κ = N0. Compare
with 0.5.

5.2. Ramification

In general the method described in this note does not determine whether
ramification is needed in the lifting process. We describe the simplest example
illustrating this. Suppose given αp = N0 over a finite field κ. The method gives

κ � R = κ[[t]] ⊂ K � Λ,

a deformation N /R with N ⊗ κ = N0 and N ⊗K ∼= μp,K = M0 ⊗K, and a
lifting to the mixed characteristics integral domain Λ, resulting in a lifting

N → Spec(Λ′), N ⊗ κ ∼= N0.

We see that the process does produce a lifting, as is the case for every commu-
tative finite group scheme over any κ ⊃ Fp, but we do not see how to derive
information about ramification. In this particular case N0 = αp we know that
we have a strong lifting to any ramified situation by the classification in [31].

5.2.1. Question. How much ramification is needed in case N0 is a finite
commutative group scheme?
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The group scheme N0,n = Ga,Fp [F n−1] can be lifted to W [ n
√
p] for every

n > 1. We expect that that N0 cannot be lifted to a mixed characteristics
domain with smaller ramification.

We expect that the results in Section 1 do not admit a bound on the
ramification if all finite commutative group schemes are considered.

5.2.2. In [13] we find that for p > 2 a polarized abelian variety (A0, μ) can
be lifted with ramification e ≤ p− 1. Moreover we find there an example by
Ogus of a polarized superspecial abelian surface that cannot be lifted to an
unramified mixed characteristics ring.

5.2.4. Consider (C0, ϕ) and ask how much ramification is needed. As an
example: see [26], Chapter 2, Question 8.5: it seems unknown whether local
Z/p coverings can be lifted to W [ζpn ].

We expect that results in Section 4 do not admit a bound on the ramifi-
cation if all curves with an automorphism are considered

If we start with an algebraically closed field κ = κ a positive answer to
the lifting question also gives a positive answer to the strong lifting question.
What can be said if we start over an arbitrary field κ ⊃ Fp?

5.3.

Question: residue class field extension. The method provides a positive
answer to the lifting question in the four cases studied. However we have seen
in 5.1.2 we have a priori no control whether a residue class field extension is
necessary in order to obtain a strong lifting (a lifting to a normal domain). Can
we determine in all four cases mentioned whether and how much ramification
is needed?
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