The complex Monge-Ampère equation with a gradient term

Valentino Tosatti* and Ben Weinkove ${ }^{\dagger}$

Dedicated to Professor D.H. Phong on the occasion of his 65 th birthday

Abstract

We consider the complex Monge-Ampère equation with an additional linear gradient term inside the determinant. We prove existence and uniqueness of solutions to this equation on compact Hermitian manifolds.

1. Introduction

Let M be a compact complex manifold of complex dimension n. When M admits a Kähler metric $g=\left(g_{i \bar{j}}\right)$, Yau [35] proved the now classic result that the complex Monge-Ampère equation

$$
\begin{equation*}
\operatorname{det}\left(g_{i \bar{j}}+u_{i \bar{j}}\right)=e^{F} \operatorname{det}\left(g_{i \bar{j}}\right), \quad\left(g_{i \bar{j}}+u_{i \bar{j}}\right)>0, \tag{1.1}
\end{equation*}
$$

admits a unique solution u with $\sup _{M} u=0$, as long as F is normalized so that $\left(e^{F}-1\right)$ has zero integral. Equivalently, one can prescribe the volume form of a Kähler metric within a given Kähler class.

Yau's result has been extended and built on in various ways. Modulo adding a constant to F, the equation (1.1) can be solved for g Hermitian (by work of Cherrier [6] and the authors [30], see also [16, 29]) and for g almost Hermitian (Chu-Tosatti-Weinkove [7]). Fu-Wang-Wu [11, 12] considered the Monge-Ampère equation obtained by taking the determinant of the ($n-1, n-$ 1) form

$$
\omega^{n-1}+\sqrt{-1} \partial \bar{\partial} u \wedge \omega^{n-2}
$$

Received May 11, 2019.
*Partially supported by NSF grants DMS-1610278 and DMS-1903147. Part of this work was done while the first-named author was visiting the Center for Mathematical Sciences and Applications at Harvard University, which he thanks for the hospitality.
${ }^{\dagger}$ Partially supported by NSF grant DMS-1709544.

This is the natural equation on compact manifolds associated to HarveyLawson's notion of ($n-1$)-plurisubharmonicity [18], and was solved for ω Hermitian by the authors [31, 33]. Building on this work, Székelyhidi-TosattiWeinkove [27] proved existence of solutions for Monge-Ampère equation associated to

$$
\omega^{n-1}+\sqrt{-1} \partial \bar{\partial} u \wedge \omega^{n-2}+L(x, \nabla u)
$$

for the specific first order term

$$
\begin{equation*}
L(x, \nabla u)=\operatorname{Re}\left(\sqrt{-1} \partial u \wedge \bar{\partial} \omega^{n-2}\right) \tag{1.2}
\end{equation*}
$$

introduced by Popovici [25] and independently in [33]. This yielded a solution of the Gauduchon conjecture [15] on the existence of Gauduchon metrics with prescribed volume form. The proof in [27] makes careful use of the specific form of this first order term term $L(x, \nabla u)$. See also [17, 10, 26, 38] for related follow-up work.

Other nonlinear equations involving gradient terms arise naturally by motivations from mathematical physics, including the Fu-Yau equation [13] and its extensions by Phong-Picard-Zhang [21, 22, 23]. In particular, the paper [21] considers the complex Hessian equations

$$
(\chi(z, u)+\sqrt{-1} \partial \bar{\partial} u)^{k} \wedge \omega^{n-k}=\psi(z, u, \nabla u) \omega^{n}
$$

where gradient terms appear on the right hand side.
In light of these results, it is natural to consider fully nonlinear equations in terms of the metric

$$
\tilde{\omega}=\omega+\sqrt{-1} \partial \bar{\partial} u+L(x, \nabla u),
$$

for L a linear term involving the gradient of u. Indeed, this study was initiated recently by R. Yuan [36]. However the family of equations he deals with includes the Monge-Ampère equation $\tilde{\omega}^{n}=e^{F} \omega^{n}$ only in the case of complex dimension $n=2$ [36, Corollary 1.5]. The current paper settles the case $n>2$ left open by Yuan.

More precisely, let (M, g) be a compact Hermitian manifold of complex dimension n. By analogy to (1.2), we consider the term

$$
L(x, \nabla u)=\sqrt{-1} a \wedge \bar{\partial} u-\sqrt{-1} \bar{a} \wedge \partial u
$$

where a is a smooth (1,0)-form. Indeed, this is the most general term of the form $\alpha \wedge \partial u+\beta \wedge \bar{\partial} u$ for 1 -forms α and β, which is also real and of type $(1,1)$. In local coordinates, we may write $L(x, \nabla u)=\sqrt{-1}\left(a_{i} u_{\bar{j}}+a_{\bar{j}} u_{i}\right) d z^{i} \wedge d \bar{z}^{j}$, where $a=a_{i} d z^{i}$ and $a_{\bar{i}}=\overline{a_{i}}$.

We prove the following:
Theorem 1.1. Given $F \in C^{\infty}(M)$ and a smooth $(1,0)$ form a on M, there exists a unique pair (u, b) with $u \in C^{\infty}(M)$ and $b \in \mathbb{R}$ satisfying the equation

$$
\begin{align*}
& \operatorname{det}\left(g_{i \bar{j}}+a_{i} u_{\bar{j}}+a_{\bar{j}} u_{i}+u_{i \bar{j}}\right)=e^{F+b} \operatorname{det}\left(g_{i \bar{j}}\right) \\
& \text { with } \quad\left(\tilde{g}_{i \bar{j}}\right):=\left(g_{i \bar{j}}+a_{i} u_{\bar{j}}+a_{\bar{j}} u_{i}+u_{i \bar{j}}\right)>0, \quad \text { and } \sup _{M} u=0 . \tag{1.3}
\end{align*}
$$

The case $n=2$ is due to Yuan [36]. We also remark that Zhang [37] proved a uniform gradient estimate for a class of equations which includes (1.3).

We can rewrite (1.3) in coordinate-free notation by letting

$$
\tilde{\omega}:=\omega+\sqrt{-1} a \wedge \bar{\partial} u-\sqrt{-1} \bar{a} \wedge \partial u+\sqrt{-1} \partial \bar{\partial} u>0,
$$

be the new Hermitian metric whose volume form equals

$$
\tilde{\omega}^{n}=e^{F+b} \omega^{n}
$$

Remark 1.2. As an aside, note that if we choose a to be a holomorphic 1 -form, then we can write

$$
\begin{equation*}
\tilde{\omega}=\omega+\partial \bar{\gamma}+\bar{\partial} \gamma, \tag{1.4}
\end{equation*}
$$

where γ is the $(1,0)$ form given by

$$
\gamma=-\sqrt{-1}\left(u a+\frac{\partial u}{2}\right)
$$

In this case, if we also have that $\partial \bar{\partial} \omega=0$ (which when $n=2$ is the Gauduchon condition [14]), then ω defines a cohomology class in Aeppli cohomology, and (1.4) shows that the metric $\tilde{\omega}$ also satisfies $\partial \bar{\partial} \tilde{\omega}=0$ and lies in the same Aeppli cohomology class.

The outline of our proof is as follows. We begin by proving a priori estimates for solutions of (1.3). In Section 2, we establish a uniform L^{∞} bound for u, with an approach that uses the Aleksandrov-Bakelman-Pucci estimate. In Section 3 we give an estimate on the second derivatives $\sqrt{-1} \partial \bar{\partial} u$ of u in terms of the first derivatives, using a maximum principle argument involving the largest eigenvalue λ_{1} of the metric \tilde{g}. The particular quantity we use for the maximum principle is

$$
Q=\log \lambda_{1}+\frac{|\partial u|_{g}^{2}}{\sup _{M}|\partial u|_{g}^{2}+1}+e^{-A u}
$$

for a large constant A. This differs (and in many cases is simpler) than the quantities used in the literature mentioned above. To overcome the fact that the eigenvalue λ_{1} is not differentiable in general, we choose to use a viscosity argument (adapted from [5], and hinted to in [26]), which to our knowledge is new in this Hermitian setting. Finally, in Section 4, we complete the proof of Theorem 1.1: we apply a standard blow-up argument to obtain the first order estimate and then standard theory gives the higher order estimates. Given the C^{∞} a priori estimates, the existence follows from a fairly standard continuity argument and uniqueness is a consequence of the maximum principle.

Instead of using a blow-up argument, the gradient estimate can be obtained directly by a maximum principle argument, as shown in an earlier work of Zhang [37, Remark 2] (see also the related works [4, 10, 36]). We thank the referee for pointing out the reference [37], of which we were not aware when we completed the first version of this article.

2. Zero order estimate

Let $u, F \in C^{\infty}(M)$ and $a \in \Lambda^{1,0} M$ satisfy

$$
\begin{gather*}
\operatorname{det}\left(g_{i \bar{j}}+a_{i} u_{\bar{j}}+a_{\bar{j}} u_{i}+u_{i \bar{j}}\right)=e^{F} \operatorname{det}\left(g_{i \bar{j}}\right) \tag{2.1}\\
\left(\tilde{g}_{i \bar{j}}\right):=\left(g_{i \bar{j}}+a_{i} u_{\bar{j}}+a_{\bar{j}} u_{i}+u_{i \bar{j}}\right)>0,
\end{gather*}
$$

with $\sup _{M} u=0$. We will write $\tilde{\omega}$ for the $(1,1)$ form associated to the metric $\tilde{g}_{i \bar{j}}$.

We prove a uniform estimate for u.
Theorem 2.1. There is a constant C that depends only on $\sup _{M}|F|$, $\sup _{M}|a|_{g}$, and on the geometry of (M, g) such that

$$
\begin{equation*}
\sup _{M}|u| \leq C \tag{2.2}
\end{equation*}
$$

Proof. We employ the Aleksandrov-Bakelman-Pucci estimate, whose usage for the complex Monge-Ampère equation originated in work of Cheng-Yau (see [1]), and was more recently revisited by Błocki [2, 3] and Székelyhidi [26]. We follow [7, 26, 32].

First, we observe that

$$
\begin{equation*}
\int_{M}(-u) \omega^{n} \leq C \tag{2.3}
\end{equation*}
$$

for a uniform constant C. Indeed, let

$$
H(u)=\Delta_{g} u+\operatorname{tr}_{\omega}(\sqrt{-1} a \wedge \bar{\partial} u-\sqrt{-1} \bar{a} \wedge \partial u)=\operatorname{tr}_{g} \tilde{g}-n \geq-n
$$

where $\Delta_{g} u=\operatorname{tr}_{\omega} \sqrt{-1} \partial \bar{\partial} u=\frac{n \sqrt{-1} \partial \bar{\partial} u \wedge \omega^{n-1}}{\omega^{n}}$ is the complex Laplacian of g. Since the kernel of H consists of just constants, a classical argument of Gauduchon [14] (cf. [7, Theorem 2.2]) shows that there is a smooth function v such that

$$
\begin{equation*}
\int_{M} H(\psi) e^{v} \omega^{n}=0 \tag{2.4}
\end{equation*}
$$

for all smooth functions ψ. We then define a new Hermitian metric $\hat{\omega}=$ $e^{v /(n-1)} \omega$. Its operator \hat{H}, defined in the same way

$$
\begin{equation*}
\hat{H}(\psi)=\Delta_{\hat{g}} \psi+\operatorname{tr}_{\hat{\omega}}(\sqrt{-1} a \wedge \bar{\partial} \psi-\sqrt{-1} \bar{a} \wedge \partial \psi) \tag{2.5}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\hat{H}(u)=e^{-v /(n-1)} H(u) \geq-C, \tag{2.6}
\end{equation*}
$$

and now we have

$$
\begin{equation*}
\int_{M} \hat{H}(\psi) \hat{\omega}^{n}=0 \tag{2.7}
\end{equation*}
$$

for all ψ. We may then use the Green's function for \hat{H} (with respect to the metric $\hat{\omega}$), to deduce the uniform L^{1} bound for u in (2.3) by the exact same argument as in [33, Proof of Theorem 2.1]. Briefly, standard theory gives us a Green's function $G(x, y)$, normalized to have zero integral, which has a uniform lower bound and such that

$$
\psi(x)=\frac{1}{\int_{M} \hat{\omega}^{n}} \int_{M} \psi \hat{\omega}^{n}-\int_{M} \hat{H}(\psi)(y) G(x, y) \hat{\omega}^{n}(y)
$$

holds for all ψ and all $x \in M$. Thanks to (2.7) we can add a uniform constant to G to make it nonnegative, while preserving the same Green's formula, and we then apply this to u with x a point where $u(x)=0$, so that from (2.6) and the lower bound for G we easily deduce (2.3).

Next, we promote the L^{1} bound (2.3) to the L^{∞} bound (2.2) using ABP, as in [7, Proposition 3.1] and [26,32]. Let $x_{0} \in M$ be a point where u achieves its infimum $I=\inf _{M} u$, and fix a coordinate unit ball B centered at x_{0}. In
this ball, let $v=u+\varepsilon|x|^{2}$, where $\varepsilon>0$ will be a uniform constant to be chosen later. We have $\inf _{\partial B} v \geq v(0)+\varepsilon$, so [26, Proposition 10] gives us that

$$
\begin{equation*}
\varepsilon^{2 n} \leq C \int_{P} \operatorname{det}\left(D^{2} v\right) \tag{2.8}
\end{equation*}
$$

for a universal constant C, where

$$
P=\{x \in B| | D v(x) \mid<\varepsilon / 2, \text { and } v(y) \geq v(x)+D v(x) \cdot(y-x) \forall y \in B\} .
$$

Given now any $x \in P$, we have $D^{2} v(x) \geq 0$ and $|D u(x)| \leq 5 \varepsilon / 2$ so at x

$$
\sqrt{-1} a \wedge \bar{\partial} u-\sqrt{-1} \bar{a} \wedge \partial u+\sqrt{-1} \partial \bar{\partial} u \geq-C \varepsilon \omega
$$

for a uniform constant C, therefore if we choose ε sufficiently small (but uniformly bounded away from zero), we get

$$
\tilde{\omega}(x) \geq \frac{1}{2} \omega(x),
$$

and from the Monge-Ampère equation (2.1) we deduce

$$
\tilde{\omega}(x) \leq C \omega(x),
$$

from which

$$
\sqrt{-1} \partial \bar{\partial} u(x) \leq C \omega(x)
$$

and so $0 \leq \sqrt{-1} \partial \bar{\partial} v(x) \leq C \omega(x)$. But a simple linear algebra inequality (using that $\left(D^{2} v(x)\right) \geq 0$) gives

$$
\operatorname{det}\left(D^{2} v(x)\right) \leq C \operatorname{det}\left(v_{i \bar{j}}\right)^{2}(x) \leq C
$$

which together with (2.8) gives

$$
|P| \geq C^{-1}
$$

where $|P|$ denotes the Lebesgue measure. For all $x \in P$ we have

$$
v(x) \leq v(0)+\frac{\varepsilon}{2}=I+\frac{\varepsilon}{2}
$$

and we may assume that $I+\frac{\varepsilon}{2}<0$, so

$$
C^{-1} \leq|P| \leq \frac{\int_{P}(-v)}{\left|I+\frac{\varepsilon}{2}\right|} \leq \frac{C}{\left|I+\frac{\varepsilon}{2}\right|}
$$

using the L^{1} bound (2.3), which proves (2.2).

3. Second order estimate

In this section we prove a bound on $\sqrt{-1} \partial \bar{\partial} u$ in terms of a bound on the square of the first derivative of u. This estimate takes the same form as the Hou-Ma-Wu estimate [19] for the complex Hessian equations (see also the later works $[7,26,27,31,33]$) although here the quantity to which we apply the maximum principle is slightly simpler.

Theorem 3.1. Let $u, F \in C^{\infty}(M)$ and $a \in \Lambda^{1,0} M$ satisfy (2.1), with $\sup _{M} u=0$. Then there is a constant C that depends only on $\sup _{M}|u|$, $\|a\|_{C^{2}(M)},\|F\|_{C^{2}(M)}$ and on the geometry of (M, g) such that

$$
\sup _{M}|\sqrt{-1} \partial \bar{\partial} u|_{g} \leq C\left(1+\sup _{M}|\partial u|_{g}^{2}\right)
$$

Proof. Define the linearized operator L by

$$
\begin{equation*}
L v=\tilde{g}^{i \bar{j}}\left(v_{i \bar{j}}+a_{i} v_{\bar{j}}+a_{\bar{j}} v_{i}\right)=\tilde{g}^{i \bar{j}} v_{i \bar{j}}+2 \operatorname{Re}\left(\tilde{g}^{i \bar{j}} a_{\bar{j}} v_{i}\right) . \tag{3.1}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
L u=\tilde{g}^{i \bar{j}}\left(\tilde{g}_{i \bar{j}}-g_{i \bar{j}}\right)=n-\operatorname{tr}_{\tilde{g}} g . \tag{3.2}
\end{equation*}
$$

Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}>0$ be the eigenvalues of $\tilde{g}_{i \bar{j}}$ with respect to g. We consider the quantity

$$
Q=\log \lambda_{1}+\varphi\left(|\partial u|_{g}^{2}\right)+\psi(u)
$$

where we define

$$
\varphi(s)=\frac{s}{K}, \quad s \geq 0, \quad \text { and } \quad \psi(t)=e^{-A t}, t \leq 0
$$

with

$$
K=\sup _{M}|\partial u|_{g}^{2}+1
$$

and $A>0$ to be determined. Note that we have

$$
-\psi^{\prime} \geq A>0, \quad \psi^{\prime \prime}=-A \psi^{\prime}
$$

We assume that Q achieves its maximum at $x_{0} \in M$. It suffices to show that at x_{0}, we have $\lambda_{1} \leq C K$ for a uniform C. Hence in what follows we may assume without loss of generality that λ_{1} is large compared to K. We will
calculate at the point x_{0} using coordinates for which g is the identity and \tilde{g} is diagonal with entries $\tilde{g}_{i \bar{i}}=\lambda_{i}$ for $i=1, \ldots, n$.

Since λ_{1} may not be smooth at x_{0}, we define a smooth function f on M by (cf. [5, Proof of Theorem 6])

$$
\begin{equation*}
Q\left(x_{0}\right)=\log f+\varphi\left(|\partial u|_{g}^{2}\right)+\psi(u) \tag{3.3}
\end{equation*}
$$

where the right hand side of (3.3) is evaluated at a general point of M. Observe that f satisfies

$$
\begin{equation*}
f \geq \lambda_{1} \quad \text { on } M, \quad f=\lambda_{1} \quad \text { at } x_{0} \tag{3.4}
\end{equation*}
$$

We have the following lemma, which is a complex version of [5, Lemma $5]$. Here and in the sequel, we use ∇_{i} or simply lower indices (after commas, when needed to avoid confusion) to denote covariant derivatives with respect to the Chern connection of g.

Lemma 3.2. Let μ denote the multiplicity of the largest eigenvalue of \tilde{g} at x_{0}, so that $\lambda_{1}=\cdots=\lambda_{\mu}>\lambda_{\mu+1} \geq \cdots \geq \lambda_{n}$. Then at x_{0}, for each i with $1 \leq i \leq n$,

$$
\begin{equation*}
\tilde{g}_{k \bar{\ell}, i}=f_{i} g_{k \bar{\ell}}, \quad \text { for } 1 \leq k, \ell \leq \mu \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{\bar{i} \bar{i}} \geq \tilde{g}_{1 \overline{1}, i \bar{i}}+\sum_{q>\mu} \frac{\left|\tilde{g}_{q \overline{1}, i}\right|^{2}+\left|\tilde{g}_{q \overline{1}, \bar{i}}\right|^{2}}{\lambda_{1}-\lambda_{q}} . \tag{3.6}
\end{equation*}
$$

Proof. The proof only uses the fact that f is smooth and satisfies (3.4). For a smooth vector field $V=V^{k} \frac{\partial}{\partial z^{k}}$ defined in a neighborhood of x_{0}, we consider the function

$$
h=\tilde{g}_{k \bar{\ell}} V^{k} \overline{V^{\ell}}-f g_{k \bar{\ell}} V^{k} \overline{V^{\ell}}
$$

which is nonpositive. For any choice of V with $V^{k}\left(x_{0}\right)=0$ for $k>\mu$ we have $h\left(x_{0}\right)=0$ and hence h has a local maximum at x_{0}.

For (3.5), choose V with $V^{k}\left(x_{0}\right)=0$ for $k>\mu$ and

$$
\nabla_{i} V^{k}\left(x_{0}\right)=0=\nabla_{\bar{i}} V^{k}\left(x_{0}\right), \quad \text { for } k \leq \mu
$$

Then at x_{0},

$$
0=h_{i}=\tilde{g}_{k \bar{\ell}, i} V^{k} \overline{V^{\ell}}-f_{i} g_{k \bar{\ell}} V^{k} \overline{V^{\ell}}
$$

and (3.5) follows since we can choose $V^{k}\left(x_{0}\right)$ for $k \leq \mu$ to be whatever we like.

For (3.6) we choose V with $V\left(x_{0}\right)=\frac{\partial}{\partial z^{1}}$ and

$$
\nabla_{i} V^{q}\left(x_{0}\right)= \begin{cases}0, & q \leq \mu \\ \frac{\tilde{g}_{1 \bar{q}, i}}{\lambda_{1}-\lambda_{q}}, & q>\mu\end{cases}
$$

and

$$
\nabla_{\bar{i}} V^{q}\left(x_{0}\right)= \begin{cases}0, & q \leq \mu \\ \frac{\tilde{g}_{1 \bar{q}, \bar{i}}}{\lambda_{1}-\lambda_{q}}, & q>\mu .\end{cases}
$$

Then at x_{0},

$$
\begin{align*}
& 0 \geq h_{i \bar{i}}= \tilde{g}_{1 \overline{1}, \bar{i}}-f_{i \bar{i}}+\tilde{g}_{k \bar{\ell}, i}\left(\nabla_{\bar{i}} V^{k}\right) \overline{V^{\ell}}+\tilde{g}_{k \bar{\ell}, i} V^{k} \overline{\nabla_{i} V^{\ell}}+\tilde{g}_{k \bar{\ell}, \bar{i}}\left(\nabla_{i} V^{k}\right) \overline{V^{\ell}} \\
&+\tilde{g}_{k \bar{\ell}, \bar{i}} V^{k}{\overline{\nabla_{\bar{i}} V^{\ell}}+\tilde{g}_{k \bar{\ell}} \nabla_{i} V^{k} \overline{\nabla_{i} V^{\ell}}+\tilde{g}_{k \bar{\ell}} \nabla_{\bar{i}} V^{k} \overline{\nabla_{\bar{i}} V^{\ell}}} \tag{3.7}\\
&-f g_{k \bar{\ell}} \nabla_{i} V^{k} \overline{\nabla_{i} V^{\ell}}-f g_{k \bar{\ell}} \nabla_{\bar{i}} V^{k} \overline{\nabla_{\bar{i}} V^{\ell}},
\end{align*}
$$

noting that terms of the type $f_{i} g_{k \bar{\ell}}\left(\nabla_{\bar{i}} V^{k}\right) \overline{V^{\ell}}$ vanish by definition of V and

$$
\tilde{g}_{k \bar{\ell}}\left(\nabla_{\bar{i}} \nabla_{i} V^{k}\right) \overline{V^{\ell}}-f g_{k \bar{\ell}}\left(\nabla_{\bar{i}} \nabla_{i} V^{k}\right) \overline{V^{\ell}}=0=\tilde{g}_{k \bar{\ell}} V^{k} \bar{\nabla}_{i} \nabla_{\bar{i}} V^{\ell}-f g_{k \bar{\ell}} V^{k} \nabla_{i} \nabla_{\bar{i}} V^{\ell}
$$

since $f g_{1 \overline{1}}=\lambda_{1}=\tilde{g}_{1 \overline{1}}$ at x_{0}. Continuing from (3.7), using the definition of V,

$$
\begin{aligned}
0 \geq & \tilde{g}_{1 \overline{1}, i \bar{i}}-f_{i \bar{i}}+2 \sum_{q>\mu} \frac{\left|\tilde{g}_{q \overline{1}, i}\right|^{2}}{\lambda_{1}-\lambda_{q}}+2 \sum_{q>\mu} \frac{\left|\tilde{g}_{q \overline{1}, \bar{i}}\right|^{2}}{\lambda_{1}-\lambda_{q}} \\
& +\sum_{q>\mu} \lambda_{q} \frac{\left|\tilde{g}_{1 \bar{q}, i}\right|^{2}}{\left(\lambda_{1}-\lambda_{q}\right)^{2}}+\sum_{q>\mu} \lambda_{q} \frac{\left|\tilde{g}_{1 \bar{q}, \bar{i}}\right|^{2}}{\left(\lambda_{1}-\lambda_{q}\right)^{2}} \\
& -\lambda_{1} \sum_{q>\mu} \frac{\left|\tilde{g}_{1 \bar{q}, i}\right|^{2}}{\left(\lambda_{1}-\lambda_{q}\right)^{2}}-\lambda_{1} \sum_{q>\mu} \frac{\left|\tilde{g}_{1 \bar{q}, \bar{i}}\right|^{2}}{\left(\lambda_{1}-\lambda_{q}\right)^{2}} \\
= & \tilde{g}_{1 \overline{1}, i \bar{i}}-f_{i \bar{i}}+\sum_{q>\mu} \frac{\left|\tilde{g}_{q \overline{1}, i}\right|^{2}+\left|\tilde{g}_{q \overline{1}, \bar{i}}\right|^{2}}{\lambda_{1}-\lambda_{q}},
\end{aligned}
$$

as required.
Differentiating (2.1) we obtain

$$
\begin{equation*}
\tilde{g}^{i \bar{i}} \tilde{g}_{i \bar{i}, k}=\tilde{g}^{i \bar{i}}\left(u_{i \bar{i} k}+a_{i, k} u_{\bar{i}}+a_{i} u_{k \bar{i}}+a_{\bar{i}, k} u_{i}+a_{\bar{i}} u_{i k}\right)=F_{k}, \tag{3.8}
\end{equation*}
$$

where here and henceforth we are computing at the point x_{0}. Differentiating again, and setting $k=1$,

$$
\begin{equation*}
\tilde{g}^{i \bar{i}} \tilde{g}_{i \bar{i}, 1 \overline{1}}-\tilde{g}^{i \bar{i}} \tilde{g}^{j \bar{j}} \tilde{g}_{i \bar{j}, 1} \tilde{g}_{j \bar{i}, \overline{1}}=F_{1 \overline{1}} \tag{3.9}
\end{equation*}
$$

Now apply ∇_{i} to the defining equation (3.3) of f to obtain

$$
\begin{equation*}
0=\frac{f_{i}}{\lambda_{1}}+\varphi^{\prime}\left(u_{p} u_{\bar{p} i}+u_{p i} u_{\bar{p}}\right)+\psi^{\prime} u_{i} . \tag{3.10}
\end{equation*}
$$

Next apply the operator L, as defined in (3.1), to the defining equation of f to obtain,

$$
\begin{align*}
0= & \frac{\tilde{g}^{i \bar{i}} f_{i \bar{i}}}{\lambda_{1}}-\frac{\tilde{g}^{i \bar{i}}\left|f_{i}\right|^{2}}{\lambda_{1}^{2}}+\varphi^{\prime} \sum_{p} \tilde{g}^{i \bar{i}}\left(\left|u_{p \bar{i}}\right|^{2}+\left|u_{p i}\right|^{2}\right) \\
& +\varphi^{\prime} \tilde{g}^{i \bar{i}}\left(u_{p i \bar{i}} u_{\bar{p}}+u_{\bar{p} i \bar{i}} u_{p}\right)+\psi^{\prime \prime} \tilde{g}^{i \bar{i}}\left|u_{i}\right|^{2}+\psi^{\prime}\left(n-\operatorname{tr}_{\tilde{g}} g\right) \tag{3.11}\\
& +2 \operatorname{Re}\left(\tilde{g}^{i \bar{i}} a_{\bar{i}} \frac{f_{i}}{\lambda_{1}}\right)+2 \varphi^{\prime} \operatorname{Re}\left(\tilde{g}^{i \bar{i}} a_{\bar{i}}\left(u_{p} u_{\bar{p} i}+u_{p i} u_{\bar{p}}\right)\right)
\end{align*}
$$

where we have made use of (3.2). We wish to compare $\sum_{i} \tilde{g}^{i \bar{i}} f_{i \bar{i}}$ and $\sum_{i} \tilde{g}^{i \bar{i}} \tilde{g}_{\bar{i} \bar{i}, 1 \overline{1}}$. From Lemma 3.2,

$$
\begin{equation*}
f_{i}=\tilde{g}_{11, \bar{i}}, \text { and } f_{i \bar{i}} \geq \tilde{g}_{1 \overline{1}, i \bar{i}}+\sum_{q>\mu} \frac{\left|\tilde{g}_{1 \bar{q}, i}\right|^{2}+\left|\tilde{g}_{q \overline{1}, i}\right|^{2}}{\lambda_{1}-\lambda_{q}} \tag{3.12}
\end{equation*}
$$

To compare $\tilde{g}_{11, i \bar{i}}$ and $\tilde{g}_{i \bar{i}, 1 \overline{1}}$ we first compute, using $T_{i j}^{k}$ and $R_{k \bar{\ell} \bar{i}}{ }^{p}$ to denote the torsion and Chern curvature tensors of g respectively (see for example [33]),

$$
\begin{align*}
u_{i \overline{1} \overline{1} \overline{1}}= & u_{i \overline{1} \overline{1} 1}+R_{1 \overline{1} i}{ }^{p} u_{p \bar{i}}-R_{1 \overline{1}}{ }^{\bar{q}} u_{i \bar{q}} \\
= & u_{i \overline{1} \overline{1} 1}+R_{1 \overline{1} i}{ }^{p} u_{p \bar{i}}-R_{1 \overline{1}}{ }^{\bar{q}} u_{i \bar{q}}+\nabla_{1} \overline{T_{i 1}^{q}} u_{i \bar{q}}+\overline{T_{i 1}^{q}} u_{i \bar{q} 1} \\
= & u_{\overline{1} i \overline{1} \bar{i}}+R_{1 \overline{1} i}{ }^{p} u_{p \bar{i}}-R_{1 \overline{1}}{ }^{\bar{q}} u_{i \bar{q}}+\nabla_{1} \overline{T_{i 1}^{q}} u_{i \bar{q}}+\overline{T_{i 1}^{q}} u_{i \bar{q} 1} \tag{3.13}\\
& +R_{1 \bar{i}}{ }^{\bar{q}} \overline{\overline{1}}_{\bar{q} i}-R_{1 \overline{i \bar{i}}}{ }^{p} u_{\overline{1} p} \\
= & u_{1 \overline{1} \bar{i} \bar{i}}+R_{1 \overline{1} i}{ }^{p} u_{p \bar{i}}-R_{1 \overline{1} \bar{i}} u_{i \bar{q}}+\nabla_{1} \bar{T}_{i 1}^{q} u_{i \bar{q}}+\bar{T}_{i 1}^{q} u_{i \bar{q} 1} \\
& +R_{1 \bar{i} \overline{1}}{ }^{\bar{q}} u_{\bar{q} i}-R_{1 \bar{i} i}{ }^{p} u_{\overline{1} p}+\nabla_{\bar{i}} T_{i 1}^{q} u_{\overline{1} q}+T_{i 1}^{q} u_{\bar{q} \bar{i} \bar{i}},
\end{align*}
$$

where for the second inequality and fourth inequalities, we used the formulae

$$
\begin{equation*}
u_{j \overline{\ell k}}-u_{j \overline{k \ell}}=\overline{T_{\ell k}^{q}} u_{j \bar{q}}, \quad u_{\bar{j} \ell k}-u_{\bar{j} k \ell}=T_{\ell k}^{q} u_{\bar{j} q} \tag{3.14}
\end{equation*}
$$

From (3.13) and the definition of $\tilde{g}_{i \bar{j}}$,

$$
\begin{aligned}
\tilde{g}^{i \bar{i}} \tilde{g}_{1 \overline{1}, \bar{i}}= & \tilde{g}^{i \bar{i}} \tilde{g}_{i \bar{i}, 1 \overline{1}}+\tilde{g}^{i \bar{i}}\left\{u_{1 \overline{1} \bar{i}}-u_{i \bar{i} \overline{1} \overline{1}}+a_{1, i \bar{i}} u_{\overline{1}}-a_{i, 1 \overline{1}} u_{\bar{i}}\right. \\
& +a_{\overline{1}, i \bar{i}} u_{1}-a_{\bar{i}, \overline{1}} u_{i}+a_{1, i} u_{\overline{1} \bar{i}}-a_{i, 1} u_{\bar{i} \overline{1}}+a_{1, \bar{i}} u_{\overline{1} i}-a_{i, \overline{1}} u_{\bar{i} 1} \\
& +a_{\overline{1}, i} u_{1 \bar{i}}-a_{\bar{i}, 1} u_{i \overline{1}}+a_{\overline{1}, \bar{i}} u_{1 i}-a_{\bar{i}, \overline{1}} u_{i 1}+a_{1} u_{\bar{i} \bar{i}}-a_{i} u_{\bar{i} 1 \overline{1}} \\
& \left.+a_{\overline{1}} u_{1 \bar{i} \bar{i}}-a_{\bar{i}} u_{i 1 \overline{1}}\right\} \\
\geq & \tilde{g}^{i \bar{i}} \tilde{g}_{\bar{i} \overline{1}, \overline{1}}+\tilde{g}^{i \bar{i}}\left(\bar{T}_{11}^{q} u_{i \bar{q} 1}+T_{1 i}^{q} u_{\overline{1} \bar{q} \bar{i}}+a_{1} u_{\overline{1} \bar{i} \bar{i}}-a_{i} u_{\bar{i} 1 \overline{1}}+a_{\overline{1}} u_{1 \bar{i}}-a_{\bar{i}} u_{i 1 \overline{1}}\right) \\
& -\sum_{p} \tilde{g}^{i \bar{i}}\left(\left|u_{p \bar{i}}\right|^{2}+\left|u_{p i}\right|^{2}\right)-C\left(\operatorname{tr}_{\tilde{g}} g\right)\left(\operatorname{tr}_{g} \tilde{g}\right),
\end{aligned}
$$

where for the last line we used the assumption that $K \leq \lambda_{1} \leq \operatorname{tr}_{g} \tilde{g}$, and the uniform lower bound of $\operatorname{tr}_{g} \tilde{g}$ which follows from our equation (2.1).

Next, observe that

$$
\begin{equation*}
u_{i \bar{j} k}=u_{k \bar{j} i}+T_{i k}^{p} u_{\bar{j} p}=u_{k i \bar{j}}+T_{i k}^{p} u_{\bar{j} p}-u_{p} R_{i \bar{j} k}{ }^{p} . \tag{3.15}
\end{equation*}
$$

Then, using this and (3.8),

$$
\begin{aligned}
\tilde{g}^{i \bar{i}}\left(a_{1} u_{\overline{1} i \bar{i}}+a_{\overline{1}} u_{1 i \bar{i}}\right)= & 2 \operatorname{Re}\left(\tilde{g}^{i \bar{i}} a_{\overline{1}} u_{1 i \bar{i}}\right)-a_{1} u_{\bar{q}} \tilde{g}^{i \bar{i}} R_{i \bar{i}}^{\bar{q}} \overline{\overline{1}} \\
= & 2 \operatorname{Re}\left(\tilde{g}^{i \bar{i}} a_{\overline{1}}\left(u_{i \overline{1} 1}-T_{i 1}^{p} u_{\bar{i} p}+u_{p} R_{\overline{i \overline{1}}}^{p}\right)\right)-a_{1} u_{\bar{q}} \tilde{g}^{i \bar{i}} R_{i \bar{i}} \bar{q}_{\overline{1}} \\
= & 2 \operatorname{Re}\left(a_{\overline{1}} F_{1}-\tilde{g}^{i \bar{i}} a_{\overline{1}}\left(T_{i 1}^{p} u_{\bar{i} p}-u_{p} R_{i \bar{i} 1}\right.\right. \\
& \left.\left.+a_{i, 1} u_{\bar{i}}+a_{i} u_{1 \bar{i}}+a_{\bar{i}, 1} u_{i}+a_{\bar{i}} u_{i 1}\right)\right)-a_{1} u_{\bar{q}} \tilde{g}^{i \bar{i}} R_{i \bar{i}} \bar{q}_{\overline{1}} .
\end{aligned}
$$

We also have

$$
\begin{aligned}
& \tilde{g}^{i \bar{i}}\left(\overline{T_{1 i}^{q}} u_{i \bar{q} 1}+T_{1 i}^{q} u_{\overline{1} \bar{q}}\right) \\
= & 2 \operatorname{Re}\left(\tilde{g}^{i \bar{i}} \overline{T_{1 i}^{q}} u_{1 \bar{q} i}\right)+\tilde{g}^{i \bar{i}} \overline{T_{1 i}^{q}} T_{1 i}^{p} u_{\bar{q} p} \\
= & 2 \operatorname{Re}\left(\tilde{g}^{i \bar{i}} \overline{T_{1 i}^{q}}\left(\tilde{g}_{1 \bar{q}, i}-a_{1, i} u_{\bar{q}}-a_{1} u_{\bar{q} i}-a_{\bar{q}, i} u_{1}-a_{\bar{q}} u_{1 i}\right)\right) \\
& +\tilde{g}^{i \bar{i}} \overline{T_{1 i}^{q}} T_{i 1}^{p} u_{\bar{q} p .} .
\end{aligned}
$$

Combining the above with (3.9) gives

$$
\begin{gather*}
\tilde{g}^{i \bar{i}} \tilde{g}_{1 \overline{1}, i \bar{i}} \geq \tilde{g}^{i \bar{i}} \tilde{g}^{j} \bar{j}_{i \bar{j}, 1} \tilde{g}_{j \bar{i}, \overline{1}}+2 \operatorname{Re}\left(\tilde{g}^{i \bar{i}} \bar{T}_{1 i}^{q} \tilde{g}_{1 \bar{q}, i}\right)-\tilde{g}^{i \bar{i}}\left\{a_{i} u_{\bar{i} 1 \overline{1}}+a_{\bar{i}} u_{i 1 \overline{1}}\right\} \\
-2 \sum_{i, p} \tilde{g}^{i \bar{i}}\left(\left|u_{p \bar{i}}\right|^{2}+\left|u_{p i}\right|^{2}\right)-C\left(\operatorname{tr}_{\tilde{g} g} g\right)\left(\operatorname{tr}_{g} \tilde{g}\right) . \tag{3.16}
\end{gather*}
$$

Next, using again Lemma 3.2,

$$
\begin{align*}
2 \operatorname{Re}\left(\tilde{g}^{i \bar{i}} a_{\bar{i}} \frac{f_{i}}{\lambda_{1}}\right)= & 2 \operatorname{Re}\left(\tilde{g}^{\bar{i}} a_{\bar{i}} \frac{\tilde{g}_{1 \overline{1}, i}}{\lambda_{1}}\right) \tag{3.17}\\
= & \frac{\tilde{g}^{i \bar{i}}}{\lambda_{1}}\left(a_{\bar{i}} u_{i 1 \overline{1}}+a_{i} u_{\bar{i} 1 \overline{1}}+a_{\bar{i}} T_{1 i}^{p} u_{\overline{1} p}-a_{\bar{i}} u_{p} R_{1 \overline{1} i}^{p}+a_{i} \bar{T}_{1 i}^{q} u_{1 \bar{q}}\right) \\
& +2 \operatorname{Re}\left(\frac{\tilde{g}^{i \bar{i}}}{\lambda_{1}} a_{\bar{i}}\left\{a_{1, i} u_{\overline{1}}+a_{1} u_{\overline{1} i}+a_{\overline{1}, i} u_{1}+a_{\overline{1}} u_{1 i}\right\}\right) \\
\geq & \frac{\tilde{g}^{i \bar{i}}}{\lambda_{1}}\left(a_{\bar{i}} u_{i 1 \overline{1}}+a_{i} u_{\bar{i} \overline{1} \overline{1}}\right)-\frac{1}{\lambda_{1}} \sum_{p} \tilde{g}^{\bar{i}}\left(\left|u_{p \bar{i}}\right|^{2}+\left|u_{p i}\right|^{2}\right) \\
& -C \operatorname{tr}_{\tilde{g}} g,
\end{align*}
$$

and note that the terms involving three derivatives of u exactly match those from (3.16), after multiplying by $-1 / \lambda_{1}$.

Now from (3.8) we have,

$$
\tilde{g}^{i \bar{i}} u_{i \bar{i} p} u_{\bar{p}}=F_{p} u_{\bar{p}}-\tilde{g}^{i \bar{i}} a_{i, p} u_{\bar{i}} u_{\bar{p}}-\tilde{g}^{i \bar{i}} a_{i} u_{\bar{i} p} u_{\bar{p}}-\tilde{g}^{i \bar{i}} a_{\bar{i}, p} u_{i} u_{\bar{p}}-\tilde{g}^{i \bar{i}} a_{\bar{i}} u_{i p} u_{\bar{p}} .
$$

Hence, making use of (3.15), and recalling that $\varphi^{\prime}=1 / K$,

$$
\begin{align*}
& \varphi^{\prime} \tilde{g}^{i \bar{i}}\left(u_{p \bar{i}} u_{\bar{p}}+u_{\bar{p} \bar{i}} u_{p}\right) \\
= & \varphi^{\prime} \tilde{g}^{i \bar{i}}\left(u_{i \bar{i} p} u_{\bar{p}}+u_{\bar{i} i \bar{p}} u_{p}+u_{r} u_{\bar{p}} R_{i \bar{i} p}^{r}-T_{i p}^{r} u_{\bar{p}} u_{\bar{i} r}+\overline{T_{p i}^{q}} u_{p} u_{i \bar{q}}\right) \\
= & 2 \varphi^{\prime} \operatorname{Re}\left(F_{p} u_{\bar{p}}-\tilde{g}^{i \bar{i}} a_{i, p} u_{\bar{i}} u_{\bar{p}}-\tilde{g}^{i \bar{i}} a_{i} u_{\bar{i} p} u_{\bar{p}}-\tilde{g}^{i \bar{i}} a_{\bar{i}, p} u_{i} u_{\bar{p}}-\tilde{g}^{\bar{i}} u_{\bar{i}} u_{i p} u_{\bar{p}}\right) \tag{3.18}\\
& +\varphi^{\prime} \tilde{g}^{\bar{i}} u_{r} u_{\bar{p}} R_{\overline{i \bar{i} p}}^{r}-2 \varphi^{\prime} \operatorname{Re}\left(\tilde{g}^{i \bar{i}} T_{i p}^{r} u_{\bar{p}} u_{\bar{i} r}\right) \\
\geq & -\frac{\varphi^{\prime}}{4} \sum_{p} \tilde{g}^{i \bar{i}}\left(\left|u_{p \bar{i}}\right|^{2}+\left|u_{p i}\right|^{2}\right)-C \operatorname{tr}_{\tilde{g}} g .
\end{align*}
$$

We also have

$$
\begin{equation*}
2 \varphi^{\prime} \operatorname{Re}\left(\tilde{g}^{\bar{i}} a_{\bar{i}}\left(u_{p} u_{\bar{p} i}+u_{p i} u_{\bar{p}}\right)\right) \geq-\frac{\varphi^{\prime}}{4} \sum_{p} \tilde{g}^{i \bar{i}}\left(\left|u_{p \bar{i}}\right|^{2}+\left|u_{p i}\right|^{2}\right)-C \operatorname{tr}_{\tilde{g}} g \tag{3.19}
\end{equation*}
$$

Combining (3.11), (3.12), (3.16), (3.17), (3.18) and (3.19) gives

$$
0 \geq \frac{\tilde{g}^{i \bar{i}} \tilde{g}^{j \bar{j}} \tilde{g}_{i \bar{j}, 1} \tilde{g}_{j \bar{i}, \overline{1}}}{\lambda_{1}}+\sum_{q>\mu} \frac{\tilde{g}^{i \bar{i}}\left(\left|\tilde{g}_{1 \bar{q}, i}\right|^{2}+\left|\tilde{g}_{q \overline{1}, i}\right|^{2}\right)}{\lambda_{1}\left(\lambda_{1}-\lambda_{q}\right)}-\frac{\tilde{g}^{i \bar{i}}\left|\tilde{g}_{1 \overline{1}, i}\right|^{2}}{\lambda_{1}^{2}}
$$

$$
\begin{align*}
& +\frac{2 \operatorname{Re}\left(\tilde{g}^{i \bar{i}} \bar{T}_{1 i}^{q} \tilde{g}_{\bar{q}, i}\right)}{\lambda_{1}}+\left(\frac{1}{2} \varphi^{\prime}-\frac{C}{\lambda_{1}}\right) \sum_{p} \tilde{g}^{i \bar{i}}\left(\left|u_{p i}\right|^{2}+\left|u_{p i}\right|^{2}\right) \tag{3.20}\\
& +\psi^{\prime \prime} \tilde{g}^{\bar{i}}\left|u_{i}\right|^{2}+\psi^{\prime}\left(n-\operatorname{tr}_{\tilde{g}} g\right)-C \operatorname{tr}_{\tilde{g}} g
\end{align*}
$$

for C a universal constant (depending on F, a etc).
We need to get a lower bound of

$$
\begin{equation*}
\frac{\tilde{g}^{i \bar{i}} \tilde{g}^{j \bar{j}} \tilde{g}_{\bar{i}, 1,1} \tilde{g}_{j \bar{i}, \overline{1}}}{\lambda_{1}}-\frac{\tilde{g}^{i \bar{i}}\left|\tilde{g}_{1 \overline{1}, i}\right|^{2}}{\lambda_{1}^{2}} \geq \sum_{i=2}^{n} \frac{\tilde{g}^{i \bar{i}} \tilde{g}_{i \overline{1}, 1} \tilde{g}_{1 \bar{i}, \overline{1}}}{\lambda_{1}^{2}}-\sum_{i=2}^{n} \frac{\tilde{g}^{i \bar{i}}\left|\tilde{g}_{1 \overline{1}, i}\right|^{2}}{\lambda_{1}^{2}} \tag{3.21}
\end{equation*}
$$

where we have discarded the terms with $j \neq 1$. But note that

$$
\tilde{g}_{i \overline{1}, 1}=\tilde{g}_{1 \overline{1}, i}+\lambda_{1} X_{1 \overline{1} i},
$$

where $X_{1 \overline{1} i}$ is defined by

$$
\begin{aligned}
& X_{1 \overline{1} i} \\
:= & \frac{1}{\lambda_{1}}\left(T_{i 1}^{p} u_{\overline{1} p}+a_{i, 1} u_{\overline{1}}+a_{i} u_{1 \overline{1}}+a_{\overline{1}, 1} u_{i}-a_{1, i} u_{\overline{1}}-a_{1} u_{i \overline{1}}-a_{\overline{1}, i} u_{1}+a_{\overline{1}} T_{1 i}^{k} u_{k}\right),
\end{aligned}
$$

and satisfies $\left|X_{1 \bar{i}}\right| \leq C$ for a uniform C. In the above, we used (3.15) and the formula

$$
u_{i j}-u_{j i}=T_{j i}^{k} u_{k}
$$

Then

$$
\begin{equation*}
\sum_{i=2}^{n} \frac{\tilde{g}^{i \bar{i}} \tilde{g}_{i \overline{1}, 1} \tilde{g}_{1 \bar{i}, \overline{1}}}{\lambda_{1}^{2}} \geq \sum_{i=2}^{n} \frac{\tilde{g}^{i \bar{i}}\left|\tilde{g}_{1 \overline{1}, i}\right|^{2}}{\lambda_{1}^{2}}+2 \operatorname{Re}\left(\sum_{i=2}^{n} \frac{\tilde{g}^{i \bar{i}} g_{1 \overline{1}, i} \overline{X_{1 \overline{1} i}}}{\lambda_{1}}\right) . \tag{3.22}
\end{equation*}
$$

To deal with the second term, we use (3.10) to compute

$$
\begin{align*}
& 2 \operatorname{Re}\left(\sum_{i=2}^{n} \frac{\tilde{g}^{i \bar{i}} \tilde{g}_{1 \overline{1}, i} \overline{X_{1 \overline{1} i}}}{\lambda_{1}}\right) \\
= & -2 \operatorname{Re}\left(\sum_{i=2}^{n} \tilde{g}^{i \bar{i}}\left(\varphi^{\prime}\left(u_{p} u_{\bar{p} i}+u_{p i} u_{\bar{p}}\right)+\psi^{\prime} u_{i}\right) \overline{X_{1 \overline{1} i}}\right) \tag{3.23}\\
\geq & -\frac{\varphi^{\prime}}{8} \sum_{p} \tilde{g}^{i \bar{i}}\left(\left|u_{p \bar{i}}\right|^{2}+\left|u_{p i}\right|^{2}\right)-C \operatorname{tr}_{\tilde{g}} g+\psi^{\prime}\left(C \tilde{g}^{i \bar{i}}\left|u_{i}\right|^{2}+\frac{1}{4} \operatorname{tr}_{\tilde{g}} g\right),
\end{align*}
$$

where we recall that $\psi^{\prime}<0$.

Next we deal with the fourth term on the right hand side of (3.20). From Lemma 3.2 we have $\tilde{g}_{1 \bar{q}, i}=0$ for $1<q \leq \mu$ and hence

$$
\begin{equation*}
\frac{2 \operatorname{Re}\left(\tilde{g}^{i \bar{i}} \bar{T}_{1 i}^{q} \tilde{g}_{1 \bar{q}, i}\right)}{\lambda_{1}}=\frac{2 \operatorname{Re}\left(\tilde{g}^{i} \bar{i} \overline{T_{1 i}^{1}} \tilde{g}_{1 \overline{1}, i}\right)}{\lambda_{1}}+2 \sum_{q>\mu} \frac{\operatorname{Re}\left(\tilde{g}^{i \bar{i}} \overline{T_{1 i}^{q}} \tilde{g}_{1 \bar{q}, i}\right)}{\lambda_{1}} \tag{3.24}
\end{equation*}
$$

But using the same argument as in (3.23), replacing $\left|X_{1 \overline{1} i}\right| \leq C$ by $\left|T_{1 i}^{1}\right| \leq C$, we obtain

$$
\begin{align*}
\frac{2 \operatorname{Re}\left(\tilde{g}^{i \bar{i}} \overline{T_{1 i}^{1}} \tilde{g}_{1 \overline{1}, i}\right)}{\lambda_{1}} \geq & -\frac{\varphi^{\prime}}{8} \sum_{p} \tilde{g}^{\bar{i}}\left(\left|u_{p \bar{i}}\right|^{2}+\left|u_{p i}\right|^{2}\right)-C \operatorname{tr}_{\tilde{g}} g \tag{3.25}\\
& +\psi^{\prime}\left(C \tilde{g}^{i \bar{i}}\left|u_{i}\right|^{2}+\frac{1}{4} \operatorname{tr}_{\tilde{g}} g\right)
\end{align*}
$$

On the other hand we have

$$
\begin{align*}
2 \sum_{q>\mu} \frac{\operatorname{Re}\left(\tilde{g}^{i \bar{i}} \bar{T}_{1 i}^{q} \tilde{g}_{1 \bar{q}, i}\right)}{\lambda_{1}} & \geq-\left.\sum_{q>\mu} \frac{\tilde{g}^{i \bar{i}} \mid \tilde{g}_{1} \bar{q}, i}{}\right|^{2} \tag{3.26}\\
\lambda_{1}\left(\lambda_{1}-\lambda_{q}\right) & \sum_{q>\mu} \tilde{g}^{i \bar{i}}\left|T_{1 i}^{q}\right|^{2} \frac{\left(\lambda_{1}-\lambda_{q}\right)}{\lambda_{1}} \\
& \geq-\sum_{q>\mu} \frac{\tilde{g}^{i \bar{i}}\left|\tilde{g}_{1 \bar{q}, i}\right|^{2}}{\lambda_{1}\left(\lambda_{1}-\lambda_{q}\right)}-C \operatorname{tr}_{\tilde{g}} g .
\end{align*}
$$

Combining (3.20) with (3.21), (3.22), (3.23), (3.24), (3.25) and (3.26) we obtain for a uniform constant C,

$$
\begin{aligned}
0 \geq & \left(\frac{1}{4} \varphi^{\prime}-\frac{C}{\lambda_{1}}\right) \sum_{i, p} \tilde{g}^{i \bar{i}}\left(\left|u_{\bar{i}}\right|^{2}+\left|u_{p i}\right|^{2}\right)+\left(-\psi^{\prime} / 2-C\right) \operatorname{tr}_{\tilde{g}} g \\
& +\left(\psi^{\prime \prime}+C \psi^{\prime}\right) \tilde{g}^{\bar{i}}\left|u_{i}\right|^{2}+\psi^{\prime} n
\end{aligned}
$$

But since we may assume that $\lambda_{1} \geq 4 C K$, the first term on the right hand side is nonnegative. Pick $A=2(C+1)$ so that $-\psi^{\prime} / 2-C \geq 1$ and $\psi^{\prime \prime}+C \psi^{\prime} \geq 0$. Then $\operatorname{tr}_{\tilde{g}} g$ and hence λ_{1} is uniformly bounded from above at the maximum of Q, and the result follows.

Remark. In the proof above we used a viscosity type argument to deal with the non-differentiability of the largest eigenvalue λ_{1}. There are other methods to deal with this issue: one is to use a perturbation argument as in [26, 27]; another is to replace λ_{1} by a carefully chosen quadratic function of $\tilde{g}_{i \bar{j}}$ as in [33].

4. Proof of the main theorem

4.1. Higher order estimates

First, we discuss the a priori higher order estimates, in the same setting as Theorems 2.1 and 3.1. Thanks to the estimates in these Theorems, a blowup argument can be employed exactly as in [8, 26, 27, 31] to obtain that $\sup _{M}|\partial u|_{g} \leq C$, and therefore also $\sup _{M} \operatorname{tr}_{g} \tilde{g} \leq C$. Here we use the classical Liouville Theorem stating that a bounded plurisubharmonic function on \mathbb{C}^{n} is constant (indeed, by restricting to complex lines, this reduces to the well-known fact that a bounded subharmonic function in \mathbb{C} is constant).

The PDE (2.1) then implies that \tilde{g} is uniformly equivalent to g, at which point we can then apply the Evans-Krylov theory [9, 20, 34] (see also [28]) to obtain uniform a priori $C^{2, \alpha}$ bounds on u, for some uniform $0<\alpha<$ 1. Differentiating the equation and using Schauder theory, we then deduce uniform a priori C^{k} bounds for all $k \geq 0$.

4.2. Existence of a solution

We employ the continuity method. For $t \in[0,1]$ we consider the family of equations for $\left(u_{t}, b_{t}\right)$

$$
\begin{align*}
& \operatorname{det}\left(g_{i \bar{j}}+a_{i} u_{t, \bar{j}}+a_{\bar{j}} u_{t, i}+u_{t, i \bar{j}}\right)=e^{t F+b_{t}} \operatorname{det}\left(g_{i \bar{j}}\right), \tag{4.1}\\
& \text { with }\left(g_{i \bar{j}}+a_{i} u_{t, \bar{j}}+a_{\bar{j}} u_{t, i}+u_{t, i \bar{j}}\right)>0 .
\end{align*}
$$

Suppose we have a solution for $t=\hat{t}$ and write

$$
\hat{\omega}=\omega+\sqrt{-1} a \wedge \bar{\partial} u_{\hat{t}}-\sqrt{-1} \bar{a} \wedge \partial u_{\hat{t}}+\sqrt{-1} \partial \bar{\partial} u_{\hat{t}},
$$

and \hat{H} for the linearized operator defined as in (2.5). By the same argument of Gauduchon [14] that was mentioned earlier, we may find a smooth function v, normalized by $\int_{M} e^{v} \hat{\omega}^{n}=1$, such that

$$
\int_{M} \hat{H}(\psi) e^{v} \hat{\omega}^{n}=0
$$

for all smooth functions ψ, i.e. e^{v} generates the kernel of the adjoint \hat{H}^{*} of \hat{H} (with respect to the L^{2} inner product with volume form $\hat{\omega}^{n}$). Fix $0<\alpha<1$ and consider the operator

$$
\Upsilon(\psi)=\log \frac{(\hat{\omega}+\sqrt{-1} a \wedge \bar{\partial} \psi-\sqrt{-1} \bar{a} \wedge \partial \psi+\sqrt{-1} \partial \bar{\partial} \psi)^{n}}{\hat{\omega}^{n}}
$$

$$
-\log \left(\int_{M} e^{v}(\hat{\omega}+\sqrt{-1} a \wedge \bar{\partial} \psi-\sqrt{-1} \bar{a} \wedge \partial \psi+\sqrt{-1} \partial \bar{\partial} \psi)^{n}\right)
$$

mapping $C^{3, \alpha}$ functions ψ with zero average (and such that $\hat{\omega}+\sqrt{-1} a \wedge$ $\bar{\partial} \psi-\sqrt{-1} \bar{a} \wedge \partial \psi+\sqrt{-1} \partial \bar{\partial} \psi>0)$ to the space of $C^{1, \alpha}$ functions w satisfying $\int_{M} e^{w+v} \hat{\omega}^{n}=1$ (whose tangent space at 0 consists precisely of $C^{1, \alpha}$ functions orthogonal to the kernel of $\left.\hat{H}^{*}\right)$. For any $C^{3, \alpha}$ function ζ we have

$$
\int_{M} e^{v} \hat{H}(\zeta) \hat{\omega}^{n}=\int_{M} \zeta \hat{H}^{*}\left(e^{v}\right) \hat{\omega}^{n}=0
$$

hence the linearization of Υ at 0 is \hat{H}. Thanks to the Fredholm alternative, \hat{H} is an isomorphism of the tangent spaces, and so the Inverse Function Theorem provides us with $C^{3, \alpha}$ functions ψ_{t} for t near \hat{t} which satisfy

$$
\Upsilon\left(\psi_{t}\right)=(t-\hat{t}) F-\log \left(\int_{M} e^{(t-\hat{t}) F} e^{v} \hat{\omega}^{n}\right)
$$

so that $u_{t}=u_{\hat{t}}+\psi_{t}$ solve (4.1) for some $b_{t} \in \mathbb{R}$. Lastly, differentiating (4.1) and using Schauder estimates and bootstrapping, we easily see that our $C^{3, \alpha}$ solutions are in fact smooth.

This establishes that the set of all $t \in[0,1]$ for which we have a solution $\left(u_{t}, b_{t}\right)$ of (4.1) is open (and nonempty, since we can take $\left.\left(u_{0}, b_{0}\right)=(0,0)\right)$. At this point we can also impose that $\sup _{M} u_{t}=0$ by adding a t-dependent constant. To show that the set of such $t \in[0,1]$ is also closed, it suffices to prove a priori estimates for $u_{t}\left(\right.$ in C^{k} for all $\left.k \geq 0\right)$ and b_{t}. The bound $\left|b_{t}\right| \leq$ $\sup _{M}|F|$ is elementary by the maximum principle, and then the estimates for u_{t} follow from section 4.1 above.

4.3. Uniqueness

In the setting of the main theorem 1.1, uniqueness of b and u follows from a simple maximum principle argument, see e.g. [7].

Acknowledgments

Both authors owe many thanks to Professor Phong, to whom this article is dedicated. His mathematical wisdom and insights are an inspiration to us. Happy birthday Phong!

References

[1] Bedford, E. Survey of pluri-potential theory, in Several complex variables (Stockholm, 1987/1988), 48-97, Math. Notes 38, Princeton Univ. Press, Princeton, NJ, 1993.
[2] BŁocki, Z., On uniform estimate in Calabi-Yau theorem, Sci. China Ser. A 48 (2005), suppl., 244-247.
[3] BŁocki, Z., On the uniform estimate in the Calabi-Yau theorem, II, Sci. China Math. 54 (2011), no. 7, 1375-1377.
[4] BŁocki, Z., A gradient estimate in the Calabi-Yau theorem, Math. Ann. 344 (2009), no. 2, 317-327.
[5] Brendle, S., Choi, K. and Daskalopoulos, P., Asymptotic behavior of flows by powers of the Gaussian curvature, Acta Math. 219 (2017), no.1, 1-16.
[6] Cherrier, P., Équations de Monge-Ampère sur les variétés Hermitiennes compactes, Bull. Sc. Math (2) 111 (1987), 343-385.
[7] Chu, J., Tosatti, V. and Weinkove, B., The Monge-Ampère equation for non-integrable almost complex structures, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 7, 1949-1984.
[8] Dinew, S. and KoŁodziej, S., Liouville and Calabi-Yau type theorems for complex Hessian equations, Amer. J. Math. 139 (2017), no. 2, 403415.
[9] Evans, L.C., Classical solutions of fully nonlinear, convex, second order elliptic equations, Comm. Pure Appl. Math. 25 (1982), 333-363.
[10] Feng, K., Ge, H. and Zheng, T., The Dirichlet problem of fully nonlinear equations on Hermitian manifolds, preprint, arXiv:1905.02412.
[11] Fu, J., Wang, Z. and Wu, D., Form-type Calabi-Yau equations, Math. Res. Lett. 17 (2010), no. 5, 887-903.
[12] Fu, J., Wang, Z. and Wu, D., Form-type Calabi-Yau equations on Kähler manifolds of nonnegative orthogonal bisectional curvature, Calc. Var. Partial Differential Equations 52 (2015), no. 1-2, 327-344.
[13] Fu, J. and Yau, S.-T., The theory of superstring with flux on nonKähler manifolds and the complex Monge-Ampère equation, J. Differential Geom. 78 (2008), no. 3, 369-428.
[14] Gauduchon, P., Le théorème de l'excentricité nulle, C. R. Acad. Sci. Paris Sér. A-B 285 (1977), no. 5, A387-390.
[15] Gauduchon, P., La 1-forme de torsion d'une variété hermitienne compacte, Math. Ann. 267 (1984), 495-518.
[16] Guan, B. and Li, Q., Complex Monge-Ampère equations and totally real submanifolds, Adv. Math. 225 (2010), no. 3, 1185-1223.
[17] Guan, B. and Nie, X., Fully nonlinear elliptic equations with gradient terms on Hermitian manifolds, preprint.
[18] Harvey, F. R. and Lawson, H. B., Geometric plurisubharmonicity and convexity: an introduction, Adv. Math. 230 (2012), no. 4-6, 24282456.
[19] Hou, Z., Ma, X.-N. and Wu, D., A second order estimate for complex Hessian equations on a compact Kähler manifold, Math. Res. Lett. 17 (2010), no. 3, 547-561.
[20] Krylov, N.V., Boundedly nonhomogeneous elliptic and parabolic equations, Izvestia Akad. Nauk. SSSR 46 (1982), 487-523; English translation in. Math. USSR Izv. 20 (1983), no. 3, 459-492.
[21] Phong, D.H., Picard, S. and Zhang, X., A second order estimate for general complex Hessian equations, Anal. PDE 9 (2016), no. 7, 16931709.
[22] Phong, D.H., Picard, S. and Zhang, X., The Fu-Yau equation with negative slope parameter, Invent. Math. 209 (2017), no. 2, 541-576.
[23] Phong, D.H., Picard, S. and Zhang, X., New curvature flows in complex geometry, in Surveys in differential geometry 2017. Celebrating the 50th anniversary of the Journal of Differential Geometry, 331-364, Surv. Differ. Geom., 22, Int. Press, Somerville, MA, 2018.
[24] Phong, D.H., Picard, S. and Zhang, X., Fu-Yau Hessian equations, to appear in J. Differential Geom.
[25] Popovici, D., Aeppli cohomology classes associated with Gauduchon metrics on compact complex manifolds, Bull. Soc. Math. France 143 (2015), no. 4, 763-800.
[26] SzÉkelyhidi, G., Fully non-linear elliptic equations on compact Hermitian manifolds, J. Differential Geom. 109 (2018), no. 2, 337-378
[27] Székelyhidi, G., Tosatti, V. and Weinkove, B., Gauduchon metrics with prescribed volume form, Acta Math. 219 (2017), no. 1, 181-211.
[28] Tosatti, V., Wang, Y., Weinkove, B. and Yang, X., $C^{2, \alpha}$ estimates for nonlinear elliptic equations in complex and almost complex geometry, Calc. Var. Partial Differential Equations 54 (2015), no. 1, 431-453.
[29] Tosatti, V. and Weinkove, B., Estimates for the complex MongeAmpère equation on Hermitian and balanced manifolds, Asian J. Math. 14 (2010), no. 1, 19-40.
[30] Tosatti, V. and Weinkove, B., The complex Monge-Ampère equation on compact Hermitian manifolds, J. Amer. Math. Soc. 23 (2010), no. 4, 1187-1195.
[31] Tosatti, V. and Weinkove, B., The Monge-Ampère equation for ($n-$ 1)-plurisubharmonic functions on a compact Kähler manifold, J. Amer. Math. Soc. 30 (2017), no. 2, 311-346.
[32] Tosatti, V. and Weinkove, B., The Aleksandrov-Bakelman-Pucci estimate and the Calabi-Yau equation, in Nonlinear Analysis in Geometry and Applied Mathematics, Part 2, 147-158, Harvard CMSA Ser. Math., 2, International Press, 2018.
[33] Tosatti, V. and Weinkove, B., Hermitian metrics, ($n-1, n-1$) forms and Monge-Ampère equations, J. Reine Angew. Math. 755 (2019), 67-101.
[34] Trudinger, N.S., Fully nonlinear, uniformly elliptic equations under natural structure conditions, Trans. Am. Math. Soc. 278 (1983), no. 2, 751-769.
[35] Yau, S.-T., On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339-411.
[36] Yuan, R., On a class of fully nonlinear elliptic equations containing gradient terms on compact Hermitian manifolds, Canad. J. Math. 70 (2018), no. 4, 943-960.
[37] Zhang, X. A priori estimates for complex Monge-Ampère equation on Hermitian manifolds, Int. Math. Res. Not. IMRN 2010, 19, 3814-3836.
[38] Zheng, T., A parabolic Monge-Ampère type equation of Gauduchon metrics, Int. Math. Res. Not. IMRN 17 (2019), 5497-5538.

Valentino Tosatti
Department of Mathematics and Statistics
McGill University
Montréal Québec H3A 0B9
Canada
Department of Mathematics
Northwestern University
Evanston IL 60208
USA
E-mail: valentino.tosatti@mcgill.ca
Ben Weinkove
Department of Mathematics
Northwestern University
Evanston IL 60208
USA
E-mail: weinkove@math.northwestern.edu

