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Abstract: Let G be a real reductive Lie group, L a compact
subgroup, and π an irreducible admissible representation of G.
In this article we prove a necessary and sufficient condition for
the finiteness of the multiplicities of L-types occurring in π based
on symplectic techniques. This leads us to a simple proof of the
criterion for discrete decomposability of the restriction of unitary
representations with respect to noncompact subgroups (the author,
Ann. Math. 1998), and also provides a proof of a reverse statement
which was announced in [Proc. ICM 2002, Thm. D]. A number of
examples are presented in connection with Kostant’s convexity the-
orem and also with non-Riemannian locally symmetric spaces.
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module, convexity theorem.

1. Introduction and statement of main results

This article is a continuation of [13, 14, 15], where we studied the restriction
of an irreducible unitary representation π of a real reductive Lie group G

with respect to a reductive subgroup G′. There, we highlight branching laws
without continuous spectrum. As we mention in Section 1.3 below, a key
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to discrete decomposability is K ′-admissibility of π ([13, Thm. 1.2]), that is,

(1.1) dimC HomK′(τ, π|K′) < ∞ for any τ ∈ K̂ ′,

where K ′ is a maximal compact subgroup of G′.
In this article we prove a necessary and sufficient condition for the K ′-

admissibility of irreducible (g, K)-modules X with K ′ ⊂ K.

1.1. Two closed cones ASK(X) and CK(K′)

In order to state our main results, let us fix some notation.
Let G be a connected linear reductive Lie group, K a maximal compact

subgroup of G, and T a maximal torus of K. Their Lie algebras will be denoted
by the lowercase German letters. Fix a positive system Δ+(kC, tC), and we
write t∗+ (⊂

√
−1t∗) for the dominant Weyl chamber. The set of dominant

weights which lift to the torus T is denoted by Λ+. It is a submonoid of
t∗+ (that is, it contains 0 and is invariant under addition). The Cartan–Weyl
highest weight theory for the group version establishes a bijection between
K̂ with Λ+. We shall denote by Vμ the irreducible representation of K with
highest weight μ ∈ Λ+.

For a subset S in a Euclidean space E, the limit cone S∞ is the set
of E consisting of all elements of the form limj→∞ εjμj for some sequence
(μj , εj) ∈ S × R+ with limj→∞ εj = 0 ([7, Def. 2.4.2]). The asymptotic K-
support ASK(X) of a K-module X is defined to be the limit cone of the
K-support of X (Kashiwara–Vergne [8]):

SuppK(X) := {μ ∈ Λ+ : HomK(Vμ, X) �= {0}} ⊂ Λ+,(1.2)
ASK(X) := SuppK(X)∞ ⊂ t∗+.(1.3)

Let K ′ be a closed subgroup of K, and set (k′)⊥ := {λ ∈ k∗ : λ|k′ ≡ 0}.
We regard t∗ as a subspace of k∗ via a K-invariant inner product on k, and
define a closed cone in

√
−1t∗ by

(1.4) CK(K ′) := t∗+ ∩
√
−1 Ad∗(K)(k′)⊥.

These two closed cones ASK(X) and CK(K ′) are a finite union of convex
polyhedral cones (Propositions 2.6 and 2.3, respectively).
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1.2. Criterion for finite multiplicities

Here is our main theorem:

Theorem 1.1. Let X be a (g, K)-module of finite length, and K ′ a closed
subgroup of K. Then the following two conditions are equivalent:

(i) X is K ′-admissible;
(ii) ASK(X) ∩ CK(K ′) = {0}.

Some remarks are in order.
(1) The main result of [14] was a discovery of the criterion (ii) in Theorem 1.1,
and the implication (ii) ⇒ (i) was proved in [14, Thm. 2.8] based on micro-
local study: the asymptotic K-support ASK(X) played a role in an estimate
of the singularity spectrum of the hyperfunction character of X|K . In this
article we give a new and simple proof for the implication (ii) ⇒ (i) based on
symplectic geometry: the cone CK(K ′) is interpreted as the momentum set
for the natural Hamiltonian action on the cotangent bundle T ∗(K/K ′), see
Section 2.3.
(2) In this article, we also give a proof of the reverse implication (i) ⇒ (ii).
This statement was announced in the proceeding of ICM 2002 [18, Thm. D],
and a sketch of the proof was given in the lecture notes [19, Chap. 6], however,
the full proof has not been published until this article.
(3) Theorem 1.1 still holds for disconnected groups, namely, we may allow
K to have finitely many connected components. In this case, the same proof
works by using the asymptotic K0-support of X regarded as a K0-module,
where K0 is the identity component of K.

1.3. Admissible restriction to noncompact subgroups

Let π be a unitary representation of G, and G′ a subgroup. By the general the-
ory of unitary representations of locally compact groups [29], the restriction
π|G′ is decomposed into the direct integral of irreducible unitary representa-
tions of G′, uniquely up to isomorphisms when G′ is reductive [5], as follows:

(1.5) π|G′ �
∫ ⊕

Ĝ′
mπ(τ)dμ(τ) (direct integral),

where Ĝ′ denotes the unitary dual of G′, that is, the set of equivalence classes
of irreducible unitary representations of G′, dμ is a Borel measure of Ĝ′, and
mπ : Ĝ′ → N ∪ {∞} is a measurable function. The irreducible decomposi-
tion (1.5) is called the branching law of the restriction π|G′ , and mπ is the
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multiplicity. In general the branching law may involve continuous spectrum,
and the multiplicity mπ may take infinite values. The following definition sin-
gles out a framework in which we could expect a simple and detailed algebraic
study of the restriction π|G′ (symmetry breaking, cf. [20]).

Definition 1.2 ([13, Sect. 1]). We say a unitary representation π of G is G′-
admissible if π splits into a direct sum of irreducible unitary representations
of G′

π|G′ �
∑⊕

τ∈Ĝ′

m(τ)τ (Hilbert direct sum)

with multiplicity m(τ) < ∞ for all τ ∈ Ĝ′.

If G′ itself is compact, then the decomposition (1.5) is automatically dis-
crete, and thus, G′-admissibility is nothing but the finiteness of the mul-
tiplicity mπ(τ) for all τ . In the general case where G′ is noncompact, we
take a maximal compact subgroup K ′ of G′. Then K ′-admissibility implies
G′-admissibility ([13, Thm. 1.2]). Therefore, as an immediate corollary of
Theorem 1.1, we recover:

Corollary 1.3 ([14, Thm. 2.9]). Let π ∈ Ĝ, and G′ a reductive subgroup
of G. If ASK(π) ∩

√
−1 Ad∗(K)(k′)⊥ = {0}, then the restriction π|G′ splits

into a discrete sum of irreducible unitary representations of G′ with finite
multiplicities.

1.4. Restriction of discrete series representations

It is plausible, see [17, Conj. D], that the converse of [13, Thm. 1.2] also
holds, namely, G′-admissibility is equivalent to K ′-admissibility if the repre-
sentation arises as the restriction of an irreducible unitary representation of a
real reductive linear Lie group G to its reductive subgroup G′ with maximal
compact subgroup K ′. If this conjecture is affirmative, then the criterion in
Theorem 1.1 will give a necessary and sufficient condition for the restriction
π|G′ to be G′-admissible. In this section we discuss such an example.

An irreducible unitary representation π of G is called a square-integrable
representation if it is realized in a closed invariant subspace of the regular
representation on the Hilbert space L2(G). The isomorphism classes of all such
irreducible, square integrable representations constitute a subset Disc(G) ⊂
Ĝ, the discrete series of G. In this case, the conjecture is true, see [2, 22,
37]. By Theorem 1.1, we can detect whether π is G′-admissible or not when
restricted to a reductive subgroup G′:
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Corollary 1.4. Let π be a square-integrable representation of G, and G′ a
closed reductive subgroup of G. Then the following four conditions on the
triple (G,G′, π) are equivalent:

(i) The restriction π|G′ is G′-admissible.
(i)′ There is a map m : Disc(G′) → N such that

π|G′ �
∑⊕

τ∈Disc(G′)
m(τ)τ (Hilbert direct sum).

(ii) The restriction π|K′ is K ′-admissible.
(iii) ASK(π) ∩

√
−1 Ad∗(K)(k′)⊥ = {0}.

Remark 1.5. In the case where (G,G′) is an irreducible symmetric pair,
the triple (G,G′, π) satisfying the criterion (iii) was classified in Kobayashi–
Oshima [24]. We refer to [1, 12, 13, 21, 35] for some explicit formulas of discrete
branching laws. On the other hand, Duflo–Galina–Vargas [2] studied in detail
the case where the subgroup G′ is isomorphic to SL(2,R) or PSL(2,R).

The proof of Theorem 1.1 and Corollary 1.4 is given in Section 2. Ap-
plications of Theorem 1.1 are given in connection with Kostant’s convexity
theorem for momentum maps and with the boundaries of semisimple sym-
metric spaces in Sections 3 and 4, respectively.

Notation R≥0 := {x ∈ R : x ≥ 0}, Q≥0 := Q ∩ R≥0 and N≥0 := N ∩ R≥0.

2. Proof of main results

In this section, we give an interpretation of the two invariants ASK(π) and
CK(K ′) from a viewpoint of symplectic geometry, and prove Theorem 1.1.

2.1. Rational convex polyhedral cones

Let E be a finite-dimensional vector space over Q, and S a finite subset of E.
The convex polyhedral cone spanned by S is the smallest convex cone in E,
that is,

Q≥0 -spanS =
{ k∑
j=1

ajsj : a1, · · · , ak ∈ Q≥0, s1, · · · , sk ∈ S

}
.

Similarly, we can define Z≥0 -spanS (⊂ E) and R≥0 -spanS (⊂ E ⊗Q R).
Here is an elementary observation of the intersections of two such poly-

hedral cones.
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Lemma 2.1. Let S, T be finite subsets of Qn. Then the following four con-
ditions on S and T are equivalent:

(i) Z≥0-spanS ∩ Z≥0-spanT �= {0};
(ii) Q≥0-spanS ∩Q≥0-spanT �= {0};
(iii) R≥0-spanS ∩ R≥0-spanT �= {0};
(iv) (δ-neighbourhood of R≥0-spanS) ∩ R≥0-spanT is unbounded for some

δ > 0.

Proof. The implications (i) ⇔ (ii) ⇒ (iii) ⇒ (iv) are obvious. The implica-
tion (iv) ⇒ (iii) is immediate by taking the limit cone. For the remaining
implication (iii) ⇒ (ii), we observe that the condition (iii) holds if and only if
R≥0-spanS ∩ R≥0-spanT contains a face of positive dimension, say W ′. We
extend W ′ to the equi-dimensional subspace W in Rn. Then W is defined
over Q, hence Q≥0-spanS ∩ Q≥0-spanT ⊃ W ′ ∩ Qn �= {0}. Thus we have
proved (iii) ⇒ (ii).

2.2. Regular functions on affine KC-varieties

Let V be an irreducible affine KC-variety over C. Then the ring C[V ] of regular
functions is finitely generated. We need some basic fact on the KC-module
structure of C[V ].

Lemma 2.2. The K-support SuppK(C[V ]) is a finitely generated submonoid
of Λ+, that is, there exist finitely many λ1, . . . , λk ∈ Λ+ such that

SuppK(C[V ]) = Z≥0-span {λ1, . . . , λk}.

For the convenience of the reader, we review quickly its proof, see [1, 33].

Proof. We write N(KC) for the maximal unipotent subgroup of KC corre-
sponding to the positive system Δ+(kC, tC). Then the ring C[KC/N(KC)] �⊕

λ∈Λ+ Vλ is finitely generated since VλVμ = Vλ+μ. Then the left-hand side of
the isomorphism:

(C[KC/N(KC)] ⊗ C[V ])KC � C[V ]N(KC)

is finitely generated because KC is reductive. Thus the ring C[V ]N(KC) is
finitely generated, whence the K-support SuppK(C[V ]) is finitely generated
as a monoid.
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2.3. Hamiltonian actions and cotangent bundles

Let (M,ω) be a symplectic manifold, and K a Lie group acting on M as
symplectic diffeomorphisms. The action is called Hamiltonian if there exists
a momentum map Φ: M → k∗ with the property that dΦZ = ι(ZM )ω for all
Z ∈ k, where ZM denotes the vector field on M induced by Z, and ΦZ is the
function on M defined by ΦZ(m) = Φ(m)(Z). The momentum set Δ(M) is
defined by

(2.1) Δ(M) :=
√
−1Φ(M) ∩ t∗+.

Let K ′ be a connected closed subgroup of K. The cotangent bundle
T ∗(K/K ′) of the homogeneous space K/K ′ is given as a homogeneous vector
bundle K×K′ (k′)⊥. Thus the symplectic manifold T ∗(K/K ′) is a Hamiltonian
K-space with moment map

(2.2) Ψ: T ∗(K/K ′) → k∗, (k,X) �→ Ad∗(k)X.

Let K ′
C ⊂ KC be the complexifications of K ′ ⊂ K. For the affine variety

KC/K
′
C, we take λ1, . . . , λk ∈ Λ+ as in Lemma 2.2 such that

(2.3) SuppK(C[KC/K
′
C]) = Z≥0-span {λ1, . . . , λk}.

Proposition 2.3. (1) The momentum set Δ(T ∗(K/K ′)) equals CK(K ′).
(2) CK(K ′) = ASK(C∞(K/K ′)). In particular, we have

CK(K ′) = R≥0-span {λ1, . . . , λk}.

Proof. (1) It follows from the definitions (2.2) and (1.4) that

(2.4) Δ(T ∗(K/K ′)) =
√
−1 Ad∗(K)(k′)⊥ ∩ t∗+ = CK(K ′).

(2) By Sjamaar [33, Thms. 4.9 and 7.6], we have

Δ(T ∗(K/K ′)) = Δ(KC/K
′
C) = R≥0-span {λ1, . . . , λk}.

Combining this with (2.4), we get the second statement.
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2.4. Associated varieties

The associated varieties V(X) are coarse approximation of g-modules X,
which we brought in [15] into an algebraic study of discretely decompos-
able restrictions of Harish-Chandra modules. In this section we collect some
important properties of associated varieties, and reduce the K ′-admissibility
of a Harish-Chandra module on V(X) to that of the space of regular functions
on V(X).

Let {Uj(gC)}j∈N be the standard increasing filtration of the universal en-
veloping algebra U(gC). Suppose X is a finitely generated g-module. Let F
be a finite set of generators, and we set Xj := Uj(gC)F . The graded algebra
grU(gC) :=

⊕
j∈N Uj(gC)/Uj−1(gC) is isomorphic to the symmetric algebra

S(gC) by the Poincaré–Birkhoff–Witt theorem and we regard the graded mod-
ule grX :=

⊕
j∈NXj/Xj−1 as a S(gC)-module. Define

AnnS(gC)(grX) :={f ∈ S(gC) : fv = 0 for any v ∈ grX},
V(X) :={x ∈ g∗C : f(x) = 0 for any f ∈ AnnS(gC)(grX)}.

Then V(X) does not depend on the choice of F , and is called the associated
variety of X. If X is a Harish-Chandra module, that is, a (g, K)-module of
finite length, then the associated variety V(X) is a KC-stable closed subvariety
of N (p∗C), see [36].

For two K-modules X1, X2, we use the notation from [13], and write
X1 ≤K X2 if

dimC HomK(τ,X1) ≤ dimC HomK(τ,X2) for any τ ∈ K̂.

Lemma 2.4 ([25, Prop. 3.3]). Let X be a (g, K)-module of finite length, and
V(X) the associated variety. We write V(X) = O1 ∪ · · · ∪ ON for the de-
composition into irreducible components. Then there exist finite-dimensional
representations Fj (1 ≤ j ≤ N) of K such that

X ≤K

N⊕
j=1

C[Oj ] ⊗ Fj ,(2.5)

X ⊗ F ∗
j ≥K C[Oj ] for any j (1 ≤ j ≤ N).(2.6)

2.5. Basic properties of asymptotic K-support

We recall some basic properties of asymptotic K-support defined in (1.3).
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Lemma 2.5. Let X and Y be K-modules.

(1) If Y ≤K X then ASK(Y ) ⊂ ASK(X).
(2) ASK(X) = ASK(X ⊗ F ) for any finite-dimensional representation F

of K.
(3) ASK(X ⊕ Y ) = ASK(X) ∪ ASK(Y ).

Proof. (1) Clear from SuppK(Y ) ⊂ SuppK(X).
(2) See [14, Lem. 3.1].
(3) Immediate from (S ∪ T )∞ = S∞∪ T∞ for any subsets S and T .

2.6. Asymptotic K-supports of Harish-Chandra modules

The asymptotic K-support ASK(X) of a Harish-Chandra module X is deter-
mined by its associated variety V(X), and is a finite union of convex polyhe-
dral cones. These properties will be used in the proof of Theorem 1.1.

Suppose we are in the setting of Lemma 2.4. For each irreducible compo-
nent Oj of the associated variety V(X), we take a finite set Sj := {β1, . . . , βkj}
so that SuppK(C[Oj ]) = Z≥0-spanSj as in Lemma 2.2. Taking the limit cone,
we have:

(2.7) ASK(C[Oj ]) = R≥0-spanSj .

Proposition 2.6. Let X be a (g, K)-module of finite length, and Sj (1 ≤
j ≤ N) finite subsets of Λ+ as above. Then, ASK(X) = ASK(C[V(X)]) =⋃N

j=1 R≥0-spanSj.

Proof. By Lemmas 2.4 and 2.5, we have

ASK(X) ⊂
N⋃
j=1

ASK(C[Oj ] ⊗ Fj) =
N⋃
j=1

ASK(C[Oj ]).

Again, by Lemmas 2.4 and 2.5, we get the reverse inclusion:

ASK(X) = ASK(X ⊗ F ∗
j ) ⊃ ASK(C[Oj ]).

By (2.7), we obtain Proposition 2.6.

We note that ASK(X) = {0} if and only if SuppK(X) is a finite set.
When X is a (g, K)-module of finite length, this is equivalent to the condition
V(X) = {0}, or equivalently, dimCX < ∞.
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2.7. Transversality of the K-supports of two K-modules

In this section we formulate the “stability of the transversality” of the K-
supports of two K-modules under taking the tensor product with finite-
dimensional representations. For given set S, we denote by 
S the cardinality
of S.

Lemma 2.7. Let X and Y be K-modules.

(1) For any finite-dimensional K-module F , we have


 (SuppK(X) ∩ SuppK(Y ⊗ F ))
≤ dimC F 
 (SuppK(X ⊗ F ∗) ∩ SuppK(Y )) .

(2) The following two conditions are equivalent:
(i) 
 (SuppK(X ⊗ F ∗) ∩ SuppK(Y )) < ∞ for any finite-dimensional

representation F of K.
(ii) 
 (SuppK(X ⊗ F1) ∩ SuppK(Y ⊗ F2)) < ∞ for any finite dimen-

sional representations F1 and F2 of K.

Proof. (1) Suppose μ ∈ SuppK(X) ∩ SuppK(Y ⊗ F ). Since Vμ occurs in
Vν ⊗ F for some ν ∈ SuppK(Y ), one finds a weight v of F such that

(2.8) μ = ν + v.

Then we have HomK(Vν , X⊗F ∗) = HomK(Vν⊗F,X) ⊃ HomK(Vμ, Vμ)
�= {0}. Hence ν ∈ SuppK(X ⊗ F ∗). The above consideration yields to
a (non-canonical) map

SuppK(X) ∩ SuppK(Y ⊗ F )→SuppK(X ⊗ F ∗) ∩ SuppK(Y ), μ �→ ν
(2.9)

with constraints (2.8). The cardinality of each fiber of the map (2.9)
bounded by dimF . Hence (1) is proved.

(2) The second assertion is a direct consequence of (1) by setting F =
F1 ⊗ F ∗

2 .

2.8. Admissible restriction and regular functions on KC/K
′
C

Let K ′ be a closed subgroup of a compact Lie group K, and K ′
C ⊂ KC be their

complexifications. In this section we relate K ′-admissibility of the restriction
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of a K-module with the K-support of the space C[KC/K
′
C] of regular functions

on KC/K
′
C.

Lemma 2.8. The following three conditions on a K-module X are equivalent:

(i) X is K ′-admissible.
(ii) X ⊗ F ′ is K ′-admissible for any finite-dimensional representation F ′

of K ′.
(iii) X is K-admissible, and for any finite-dimensional representation F

of K,

(2.10) 
 (SuppK(X ⊗ F ) ∩ SuppK(C[KC/K
′
C])) < ∞.

Proof. The implication (i) ⇐ (ii) is obvious.
(i) ⇒ (ii): Suppose (i) holds. Then for any τ ∈ K̂ ′, we have

dimC HomK′(τ,X ⊗ F ′) = dimC HomK′(τ ⊗ (F ′)∗, X) < ∞

because τ ⊗ (F ′)∗ is a finite direct sum of irreducible K ′-modules. Hence (ii)
is proved.
(ii) ⇒ (iii): The K-admissibility is obvious from the K ′-admissibility. Let us
verify (2.10). Let 1 denote the one-dimensional trivial representation of K.
Then we have


{μ ∈ SuppK(X ⊗ F ) : HomK′(1, μ|K′) �= {0}} ≤ dimC HomK′(1, X ⊗ F ),

which is finite by the condition (ii). Hence (2.10) holds.
(iii) ⇒ (ii): Fix any τ ∈ K̂ ′, and any finite-dimensional representation F of K.
Let IndK

K′τ be an (algebraically) induced representation. We define a subset
of K̂ by

(2.11) P := SuppK(IndK
K′τ) ∩ SuppK(X ⊗ F ).

We claim P is a finite set. To see this, we take a finite-dimensional K-module
F1 such that HomK′(τ, F1|K′) �= {0}. Then, we have

IndK
K′τ ≤K IndK

K′(F1|K′) � C[KC/K
′
C] ⊗ F1

as K-modules. In particular, we have

(2.12) P ⊂ SuppK(C[KC/K
′
C] ⊗ F1) ∩ SuppK(X ⊗ F ).
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The right-hand side of (2.12) is a finite set by the assumption (iii) and
Lemma 2.7 (2). Therefore, P is a finite set.

Next, let us consider the following equation:

dimC HomK′(τ,X ⊗ F ) =
∑
μ∈K̂

dimC HomK′(τ, μ) dimC HomK(μ,X ⊗ F ).
(2.13)

The summation in (2.13) is actually taken over the finite set P. Furthermore,
each summand is finite because X ⊗ F is K-admissible. Hence, (2.13) is
finite. This means that X⊗F is K ′-admissible. Since F is an arbitrary finite-
dimensional representation of K, (ii) follows.

2.9. Proof of Theorem 1.1

We are ready to complete the proof of the main result of this article.

Proof of Theorem 1.1. Let V(X) be the associated variety of a (g, K)-module
X, and V(X) = O1∪· · ·∪ON the decomposition into irreducible components
(cf. [28]). By Lemma 2.2, there are finite subsets S1, · · · , SN and T such that{

SuppK(C[Oj ]) = Z≥0-spanSj (1 ≤ j ≤ N),
SuppK(C[KC/K

′
C]) = Z≥0-spanT.

In place of the conditions (i) and (ii) in Theorem 1.1, we consider the following
conditions:

(i)′: 
 (SuppK(X ⊗ F ) ∩ SuppK(C[KC/K
′
C])) < ∞ for any finite-dimensional

representation F of K.
(ii)′: R≥0-spanSj ∩ R≥0-spanT = {0} for any j = 1, . . . , N .

We already know the equivalence (i) ⇔ (i)′ from Lemma 2.8, and the
equivalence (ii) ⇔ (ii)′′ from Propositions 2.3 and 2.6. Thus, the proof of
Theorem 1.1 will be completed if we show the equivalence (i)′ ⇔ (ii)′.
(i)′ ⇒ (ii)′: If (i)′ holds, then Lemma 2.4 implies



(
SuppK(C[Oj ]) ∩ SuppK(C[KC/K

′
C])

)
< ∞,

or equivalently, 
 (Z≥0-spanSj ∩ Z≥0-spanT ) < ∞, whence the condition (ii)′
follows from Lemma 2.1.
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(ii)′ ⇒ (i)′: Let Fj be as in Lemma 2.4. It follows from (2.5) that

SuppK(X ⊗ F ) ⊂
N⋃
j=1

SuppK(C[Oj ] ⊗ Fj ⊗ F ).

Take δ := max{‖ν‖ : ν is a weight of Fj ⊗ F for some j}. Then,

N⋃
j=1

SuppK(C[Oj ] ⊗ Fj ⊗ F ) ⊂
N⋃
j=1

δ-neighborhood of SuppK(C[Oj ])

⊂
N⋃
j=1

δ-neighborhood of R≥0-spanSj .

Since the condition (ii)′ implies that the intersection of R≥0-spanT with any
δ-neighborhood of R≥0-spanSj is relatively compact (Lemma 2.1), we get


 (SuppK(X ⊗ F ) ∩ Z≥0-spanT ) < ∞.

This shows the implication (ii)′ ⇒ (i)′. Hence Theorem 1.1 is proved.

2.10. Proof of Corollary 1.4

Proof of Corollary 1.4. The implication (i)′ ⇒ (i) is obvious, and the reverse
implication (i) ⇒ (i)′ follows from the fact that any discrete summand in the
restriction π|G′ for π ∈ Disc(G) belongs to Disc(G′), see [16, Cor. 8.7]. Then
the implication (i)′ ⇒ (ii) follows from the fact that for every μ ∈ K̂ ′ there
are at most finitely many elements in Disc(G′) having μ as a K ′-type, whereas
the implication (ii) ⇒ (i) is proved in [13, Thm. 1.2]. Since the equivalence
(ii) ⇔ (iii) holds by Theorem 1.1, Corollary 1.4 is proved.

3. (g,K)-modules with finite weight multiplicities

In this section, we relate weight multiplicities for (g, K)-modules with cele-
brated Kostant’s convexity theorem [27].

3.1. Simple Lie groups of (non)Hermitian type

Let G be a real reductive linear Lie group, K a maximal compact subgroup,
ZK the center of K, and T s a maximal torus of the derived group Ks :=
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[K,K]. Then T := T sZK is a maximal torus of K. When G is a simple Lie
group, ZK is at most one-dimensional.

A simple Lie group G (or its Lie algebra g) is called of Hermitian type,
if ZK is one-dimensional, or equivalently, if the associated Riemannian sym-
metric space G/K is a Hermitian symmetric space. It is the case when the
Lie algebra g is su(p, q), so(2n), so∗(2n), sp(n,R), e6(−14), or e7(−25), whereas
g = sl(n,R) (n �= 2), so(p, q) (p, q �= 2), su∗(2n), sp(p, q), sl(n,C), so(n,C),
or sp(n,C) are not of Hermitian type.

3.2. Admissibility for the restriction to toral subgroups

In contrast to g-modules in the BGG category O, there are not many (g, K)-
modules with finite weight multiplicities. We formulate this feature as follows.

Theorem 3.1. Suppose that X is a (g, K)-module of finite length. If dimCX =
∞ then dimC HomT s(χ,X) = ∞ for some χ ∈ T̂ s.

We shall see that Theorem 3.1 is derived from Kostant’s convexity theo-
rem (Fact 3.6) and from Theorem 1.1. The following two corollaries for simple
Lie groups G are immediate consequence of Theorem 3.1 and its proof (Sec-
tion 3.3).

Corollary 3.2. Suppose that G is not of Hermitian type. Then for any
infinite-dimensional irreducible (g, K)-module X, there exists χ ∈ T̂ such
that dimC HomT (χ,X) = ∞.

Corollary 3.3. Suppose that G is of Hermitian type, and X a (g, K)-module
of finite length. Then X is T -admissible if and only if X is ZK-admissible.

Remark 3.4. An irreducible (g, K)-module X is called a highest weight mod-
ule if X is b-finite for some Borel subalgebra b of gC = g ⊗R C. There exist
infinite-dimensional irreducible highest weight (g, K)-modules if and only if
G is of Hermitian type. In this case any such X is ZK-admissible (see [14,
Rem. 3.5 (3)]), hence X is also T -admissible.

Corollary 3.3 fits well into the Kirillov–Kostant–Duflo orbit philosophy
(see [3, 11, 23, 26, 30, 31] for instance):

Proposition 3.5. Suppose G is a simple Lie group of Hermitian type, and
O a coadjoint orbit in g∗. Then the following two conditions are equivalent:

(i) The momentum map O → t∗ is proper.
(ii) The momentum map O → z∗k is proper.
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3.3. An application of Kostant’s convexity theorem

Suppose K is a connected compact Lie group, and T is a maximal torus
of K. Let WK be the Weyl group for the root system Δ(kC, tC). By a K-
invariant inner product 〈 , 〉 on k, we identify t⊥ (⊂ k∗) with the orthogonal
complementary subspace of k, and write prk→t : k → t for the projection with
respect to the direct sum decomposition k = t⊕ t⊥.

For a finite subset S = {s1, · · · , sk} of t, the convex hull of S is the
smallest convex set containing S, which is expressed as:

Conv(S) :=
{

k∑
i=1

aisi : a1, · · · , ak ≥ 0, a1 + · · · + ak = 1
}
.

We recall Kostant’s convexity theorem:

Fact 3.6 ([27, Thm. 8.2]). For any Y ∈ t, we have prk→t(Ad(K)Y ) =
Conv(WKY ).

Fact 3.6 determines the momentum set Δ(T ∗(K/T )) of the cotangent
bundle of the flag manifold K/T as follows:

Proposition 3.7. Suppose that K is a connected semisimple compact Lie
group. Then

Δ(T ∗(K/T )) = CK(T ) = t∗+.

Proof. Fix a nonzero element Y ∈ t. Then Kostant’s convexity theorem shows
that prk→t(Ad(K)Y ) contains the origin 0. In particular, there exists k ∈
K such that Y ′ := Ad(k)Y ∈ t⊥. This means that Y ∈ Ad(K)t⊥, hence
prk→t(Ad(K)t⊥) = t. By (2.4), we get Proposition 3.7.

Proof of Theorem 3.1. Applying Proposition 3.7 to Ks/T s, we obtain

CK(T s) = t∗+

because K = KsZK . In turn, Theorem 1.1 tells that X is T s-admissible if
and only if ASK(X) = {0}, or equivalently, dimX < ∞.

Proof of Corollary 3.2. Immediate from Theorem 3.1 because T = T s.

Proof of Corollary 3.3. We regard (ts)∗ as a subspace of t∗ via the direct sum
decomposition t = ts ⊕ zk. By Proposition 3.7, we have CK(T ) = t∗+ ∩ (ts)∗ =
CK(ZK), whence Corollary 3.3.
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4. Admissible restriction of degenerate principal series
representations

In the orbit philosophy due to Kirillov–Kostant, the Zuckerman derived func-
tor modules Aq(λ) are supposed to be attached to elliptic coadjoint orbits,
whereas parabolically induced representations IndG

Q(Cλ) are to hyperbolic
coadjoint orbits. Classification theory of admissible restrictions has been de-
veloped mainly for Aq(λ), see [2, 13, 15, 19, 24, 25] for example. In this section
we apply Theorem 1.1 to induced representations from a parabolic subgroup
Q of G and to their subquotient modules (Q-series).

4.1. Irreducible representations in the Q-series

Suppose that Q is a parabolic subgroup of a reductive Lie group G.

Definition 4.1. An irreducible admissible representation π of G is said to
be in the Q-series if π occurs as a subquotient of the induced representation
IndG

Q τ from a finite-dimensional representation τ of Q.

Example 4.2. When Q = G, π is in the Q-series if and only if dimC π < ∞.

Example 4.3. When Q is a minimal parabolic subgroup P , any irreducible
admissible representation of G belongs to the Q-series by Harish-Chandra’s
subquotient theorem.

The next example is a generalization of Example 4.3.

Example 4.4. Let G/H be a reductive symmetric space, that is, H is an open
subgroup of Gσ = {g ∈ G : σg = g} for some involutive automorphism σ of a
real reductive Lie group G. Take a Cartan involution θ of G commuting with
σ, and a maximal abelian subspace a in g−σ,−θ = {X ∈ g : σX = θX = −X}.
Let Q be a parabolic subgroup of G defined by a generic element X ∈ a, that
is, Q is the normalizer of the real parabolic subalgebra:

q = the sum of the eigenspaces of ad(X) with nonnegative eigenvalues.

Such Q is uniquely determined up to conjugation by an element of G. We say
that Q is a minimal parabolic subgroup for G/H.

Remark 4.5. Let G/H be a reductive symmetric space, and Q a minimal
parabolic subgroup for G/H. Then any irreducible representation that can be
realized as a subquotient in the regular representation on C∞(G/H) belongs
to the Q-series.
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4.2. Restriction of representations in the Q-series

We give a necessary and sufficient condition for all irreducible representations
in the Q-series to be K ′-admissible where K ′ is a (not necessarily, maximal)
compact subgroup.

Theorem 4.6. Let G be a real reductive linear Lie group, K a maximal
compact subgroup, K ′ a closed subgroup of K, and Q a parabolic subgroup
of G. Then the following two conditions are equivalent:

(i) for any irreducible representation π of G in the Q-series, π|K′ is K ′-
admissible;

(ii) CK(Q ∩K) ∩ CK(K ′) = {0}.
Proof. Since the induced representation IndG

Q(τ) is of finite length as a G-
module, the condition (i) is equivalent to the following condition:

(i)′ IndG
Q(τ) is K ′-admissible for any finite-dimensional representation τ

of Q.

By Proposition 2.3 and Lemma 2.5, the asymptotic K-support of IndG
Q(τ)

is given by

ASK(IndG
Q(τ)) = ASK(IndK

Q∩K(τ |Q∩K)) = ASK(IndK
Q∩K(1)) = CK(Q ∩K).

(4.1)

Hence Theorem 4.6 is derived from Theorem 1.1.

Let P = MAN be a minimal parabolic subgroup of G. Applying Theo-
rem 4.6 to the case Q = P , we obtain from Example 4.3 the following:

Corollary 4.7. Let K ′ be a closed subgroup of K. Then the following two
conditions are equivalent:

(i) any irreducible admissible representation of G is K ′-admissible;
(ii) CK(M) ∩ CK(K ′) = {0}.

Remark 4.8. When G is of real rank one, then K/M is isomorphic to a sphere.
In this case, Vargas [34] classified all subgroups K ′ satisfying the condition
in Corollary 4.7.

Example 4.9. Let G = SO(2p, 2q), and K ′ = U(p) × U(q). Suppose Q is a
parabolic subgroup of G with Levi subgroup L � SO(2p−1, 2q−1)×GL(1,R).
Then Q ∩K = L ∩K, and via the standard basis of t∗ � Rp+q,

CK(Q ∩K) ={(a, 0, · · · , 0; b, 0, · · · , 0) : a, b ≥ 0},
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CK(K ′) ={(x1, x1, · · · , x[ p2 ], x[ p2 ], (0); y1, y1, · · · , y[ q2 ], y q
2
, (0)) :

x1 ≥ x2 ≥ · · · , y1 ≥ y2 ≥ · · · }.

Hence CK(Q ∩ K) ∩ CK(K ′) = {0}. Thus the criterion (ii) in Theorem 4.6
is fulfilled. Let G′ = U(p, q) be the natural subgroup of G containing K ′.
Then for any irreducible unitary representation π of G in the Q-series is G′-
admissible when restricted to the subgroup G′ because it is K ′-admissible.
See [6] and [13] for branching laws of representations π in the Q-series with
respect to the pair (G,G′) = (SO(2p, 2q), U(p, q)).

In Example 4.9, the two polyhedral cones CK(Q ∩ K) and CK(K ′) are
easy to compute, in particular, because both (K,Q ∩ K) and (K,K ′) are
symmetric pairs. In the next section, we recall some useful general facts for
this.

4.3. Momentum set Δ(T ∗(K/K′)) for symmetric pair

Suppose that σ is an involutive automorphism of a connected compact Lie
group K. We use the same letter σ to denote its differential, and write k =
kσ + k−σ for the eigenspace decomposition of σ with eigenvalues +1 and −1.
We take a σ-stable Cartan subalgebra j of k such that j−σ is a maximal
abelian subspace of k−σ, and fix a positive system Σ+(kC, j−σ

C ) of the restricted
root system Σ(kC, j−σ

C ). Choose a positive system Δ+(kC, jC) compatible with
Σ+(kC, j−σ

C ) in the following sense:

{α|j−σ
C

: α ∈ Δ+(kC, jC)} \ {0} = Σ+(kC, j−σ
C ).

Let (j−σ)∗+ and j∗+ be the dominant chamber for Σ+(kC, j−σ
C ) and Δ+(kC, jC),

respectively. We may regard (j−σ)∗+ ⊂ j∗+ according to the direct decomposi-
tion j = jσ ⊕ j−σ. When a positive system Δ+(kC, tC) is given independently
of σ, we choose an inner automorphism of k which induces bijections ι : t ∼→ j

and ι∗ : Δ+(kC, jC) ∼→ Δ+(kC, tC), and set

(t−σ)∗+ := ι∗((j−σ)∗+) ⊂
√
−1t∗.

Proposition 4.10. Suppose (K,K ′) is a symmetric pair defined by an invo-
lutive automorphism σ. Then Δ(T ∗(K/K ′)) = CK(K ′) = (t−σ)∗+.

Remark 4.11. Suppose K is a maximal compact subgroup of a connected real
reductive Lie group, and Q a standard parabolic subgroup. If the unipotent
radical of Q is abelian, then (K,Q∩K) forms a symmetric pair, and therefore
we can apply also Proposition 4.10 to the computation of CK(Q ∩ K) in
Theorem 4.6.
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4.4. Boundaries of spherical varieties with hidden symmetries

As typical examples of Theorem 4.6, we formulate the following theorem mo-
tivated by analysis on standard pseudo-Riemannian locally symmetric spaces
Γ\G/H ([9, 10]):

Theorem 4.12. Let G/H be a symmetric space with G simple Lie group,
and Q a minimal parabolic subgroup for the symmetric space G/H. Let G′

be a reductive subgroup of G acting properly on G/H, such that GC/HC is
G′

C-spherical. Then any irreducible admissible representation π of G in the
Q-series is K ′-admissible. In particular, the restriction π|G′ is infinitesimally
discretely decomposable in the sense of [19, Def. 4.2.3].

This theorem is a counterpart of [21, Thm. 5.1] where π was assumed to
be a subquotient of the regular representation of G in the space D′(G/H) of
distributions on G/H.

In the setting of Theorem 4.12, the symmetric space G/H admits a com-
pact Clifford–Klein form Γ\G/H as the quotient by a torsion-free cocompact
subgroup Γ in G′. The classification of the triples (G,H,G′) in Theorem 4.12
is given in [10]. Applications of Theorem 4.12 will be discussed in subsequent
papers. In this article, we illustrate Theorem 4.12 only by some examples:

Example 4.13. The triple (G,H,G′) = (SO(2p, 2q), SO(2p−1, 2q), U(p, q))
satisfies the assumptions of Theorem 4.6. In this case, Example 4.9 is recov-
ered.

Example 4.14. The triple (G,H,G′) = (SO(8, 8), SO(7, 8), Spin(1, 8)) sat-
isfies the assumption of Theorem 4.6. Via the standard basis of t∗ � R8, we
may write as

CK(Q ∩K) = {(a, 0, 0, 0; b, 0, 0, 0) : a, b ≥ 0},
CK(K ′) = {((x1, x2, x3, x4), ζ(x1, x2, x3,−x4)) : x1 ≥ x2 ≥ x3 ≥ |x4|},

where ζ is an outer automorphism of order 3 for the root system D4. Thus the
criterion (ii) in Theorem 4.6 is fulfilled, and Theorem 4.12 is verified in this
case. Explicit branching laws of irreducible square-integrable representations
in the Q-series with respect to (G,G′) = (SO(8, 8), Spin(1, 8)) are obtained
in [21, Thm. 5.5] and in [32].
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