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Abstract: There are many formulas that express interesting prop-
erties of a finite group G in terms of sums over its characters. For
estimating these sums, one of the most salient quantities to under-
stand is the character ratio

trace(π(g))
dim(π) ,

for an irreducible representation π of G and an element g of G.
For example, in [12] the authors stated a formula of this type for
analyzing certain random walks on G.

It turns out [22, 23] that for classical groups G over finite fields
(which provide most examples of finite simple groups) there are
several (compatible) invariants of representations that provide
strong information on the character ratios. We call these invari-
ants collectively rank.

Rank suggests a new way to organize the representations of clas-
sical groups over finite and local fields – a way in which the build-
ing blocks are the “smallest” representations. This is in contrast
to Harish-Chandra’s philosophy of cusp forms that is the main or-
ganizational principle since the 60s, and in it the building blocks
are the cuspidal representations which are, in some sense, among
the the “largest”. The philosophy of cusp forms is well adapted to
establishing the Plancherel formula for reductive groups over local
fields, and led to Lusztig’s classification of the irreducible repre-
sentations of such groups over finite fields. However, analysis of
character ratios seems to benefit from a different approach.

In this note we discuss further the notion of tensor rank for
GLn over a finite field Fq and demonstrate how to get information
on representations of a given tensor rank using tools coming from
the recently studied eta correspondence, as well as the well known
philosophy of cusp forms, mentioned just above.

A significant discovery so far is that although the dimensions
of the irreducible representations of a given tensor rank vary by
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quite a lot (they can differ by large powers of q), for certain group
elements of interest the character ratios of these irreps are nearly
equal to each other. Thus, for purposes of this aspect of harmonic
analysis, representations of a fixed tensor rank form a natural fam-
ily to study.

For clarity of exposition, we illustrate the developments with the
aid of a specific motivational example that shows how one might
apply the results to certain random walks.
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0. Introduction

For a finite group G we consider the set Ĝ of (isomorphism classes of) complex
finite dimensional irreducible representations (irreps for short) of G, and the
corresponding collection of irreducible characters of G,

(0.1) χπ, π ∈ Ĝ,

given by χπ(g) = trace(π(g)), g ∈ G.
Schur’s orthogonality relations [48] imply that (0.1) forms a basis for the

space of class functions on G. This fact gives birth to the theory of harmonic
analysis on G, namely the investigation of class functions on G via their
expansion as a linear combination of irreducible characters.
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Starting with the work of Frobenius [13], through the work of Diaconis-
Shahshahani [12] and others (see, e.g., [39, 46, 51, 52] and references there),
researchers developed explicit formulas that potentially enable one to apply
the harmonic analysis technique to many class functions that express inter-
esting properties of G.

A closer look at these formulas reveals the fact that in order to make use
of them, in many cases, one needs to have a good solution for the following:

Problem (Core problem of harmonic analysis on G). Estimate the character
ratios

(0.2) χπ(g)
dim(π) , π ∈ Ĝ, g ∈ G.

We proceed to give an example.

0.1. Hildebrand’s random walk example

Consider the group G = SLn(Fq) of n × n matrices with entries in a finite
field Fq and determinant equal to one. For this example let us assume that
n ≥ 3. Inside G we look at the conjugacy class C of the transvection

(0.3) T=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
. . .

. . .
. . .

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

with Tii = 1 for i = 1, .., n; T12 = 1, and Tij = 0 elsewhere.
The following is known about C.

Fact. We have,1,2

• The cardinality of C is q2n−2 + o(. . .) [1].
• Every element of G can be written as a product of no more than n

elements from C [36]. Moreover,3

(0.4) #(G� C<n)
#(G) = 1 −O

(1
q

)
,

1The notation a(q) = o(b(q)) means that a(q)/b(q) → 0 as q → ∞.
2The notation c(q) + o(. . .) stands for c(q) + o(c(q)).
3We write a(q) = O(b(q)) if there is constant A with a(q) ≤ A · b(q) for all

sufficiently large q.
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Figure 1: Random walk on G using elements from the conjugacy class C.

where C<n = {g ∈ G; g = cl . . . c1 for ci ∈ C and l < n}.

Formula (0.4) can be justified for example using the fact that the elements
of G with all eigenvalues �= 1 are outside of C<n.

In [27] Hildebrand looked into the problem of generating random elements
of G using random elements from C. The mathematical model is the following
random walk on G – see Figure 1 for illustration. We start at the identity
element 1 of G. Then we take element c1 uniformly at random from C and
“walk” to c1. We can continue in this manner and walk to c2c1, then to c3c2c1
etc.

Let us denote by P ∗l
C (g) the probability that in this way after l steps the

product cl . . . c1 is equal to g. A very general argument [41] implies that P ∗l
C

approaches the uniform distribution U on G as l → ∞.
To say more, [27] consider the distance in total variation between P ∗l

C

and U ,

(0.5)
∥∥∥P ∗l

C − U
∥∥∥
TV

= max
S⊂G

∣∣∣ P ∗l
C (S) − U(S)

∣∣∣ .
It is easy to see that ‖·‖TV is equal 1

2 ‖·‖L1
, i.e., half of the L1-norm on G

[12].
The cutoff phenomenon [11] suggests that convergence to uniformity might

show a sharp cutoff, namely – see Figures 2 and 3 for illustration – the dis-
tance (0.5) stays close to its maximum value (which is 1) for a while, then
suddenly at some step lM (called mixing time) drops to a quite small value
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Figure 2: Numerics suggests that the mixing time for G = SL7(F3) is lM ≈ 7.

Figure 3: Numerics suggests that the mixing rate for G = SL7(F3) is rM ≈ 1
3 .

and then tends to zero exponentially fast with some exponent (called mixing
rate) rM [41].

In our case, Formula (0.4) implies that lM can not be less than n and the
numerics4 that appears in Figure 2 illustrates, in particular, the fact that n

steps are probably enough.

Theorem 0.1.1. The random walk on G = SLn(Fq), n ≥ 3, using the col-
lection C of transvections has, for sufficiently large q,

(1) Mixing time lM = n.
(2) Mixing rate rM = 1

q + O( 1
qn ).

Theorem 0.1.1 was first proved in [27]. The results of this note will, among
other things, provide a new proof.

4The numerics appearing in these notes were generated with John Cannon (Syd-
ney) and Steve Goldstein (Madison).
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0.2. Harmonic analysis of the random walk

Diaconis and Shahshahani developed in [12] formulas that, in principle, enable
one to estimate the mixing time lM and mixing rate rM for random walks on
finite groups. Here is the description that is relevant for us.

The probability distribution P ∗l
C that we defined in Section 0.1 is a class

function on G, and its expansion in terms of irreducible characters can be
computed explicitly.

Proposition 0.2.1. We have,

(0.6) P ∗l
C = 1

#(G)
∑
π∈Ĝ

dim(π)
(
χπ(T )
dim(π)

)l
χπ,

where T is the transvection (0.3).

Indeed, Formula (0.6) can be verified using the fact that P ∗l
C is the l-fold

convolution of PC with itself, and the standard identity for convolution of two
irreducible characters.

From (0.6) we obtain:

Corollary 0.2.2. For the random walk on G using C we have,

(1) The total variation distance of P ∗l
C from uniformity satisfies

(0.7)
∥∥∥P ∗l

C − U
∥∥∥2
TV

≤ 1
4
∑

1�=π∈Ĝ

dim(π)2
∣∣∣∣ χπ(T )
dim(π)

∣∣∣∣2l .
(2) The mixing rate satisfies rM = max

1�=π∈Ĝ

∣∣∣ χπ(T )
dim(π)

∣∣∣.
Part 2 of Corollary 0.2.2 is immediate from (0.6), while for Part 1 one

might in addition use the fact that the total variation norm is half of the
L1-norm, then apply Cauchy–Schwartz inequality, and finally use Schur’s or-
thogonality of characters.

The numerics appearing in Figure 4 illustrates the possibility that a good
bound on the sum at the right-hand side of (0.7) will give the desired infor-
mation on the mixing time lM .

In order to use Corollary 0.2.2 to verify Theorem 0.1.1, we want to have
a method to get information on the dimensions dim(π), and most impor-
tantly on the character ratios χπ(T )

dim(π) of the irreps π of G = SLn(Fq) at the
transvection T (0.3).
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Figure 4: The sum at the right-hand side of (0.7) for G = SL7(F3).

Recently, in [22, 23], we have discovered such a method, that seems to
work nicely for all classical groups over finite fields and probably for character
ratios of many other elements of interest.

0.3. Rank of a representation

Since the 1960s, Harish-Chandra’s philosophy of cusp forms [26] is the main
organizational principle in representation theory of reductive groups over fi-
nite and local fields. The central objects in his approach are the cuspidal
representations. It turns out that cuspidality is a generic property, i.e., these
irreps constitute a major part of all irreps, and most of them are, in some
sense, among the “largest”.

The philosophy of cusp forms is well adapted to establishing the Plancherel
formula for reductive groups over local fields, and leads to Lusztig’s classifi-
cation [42] of the irreps of reductive groups over finite fields.

However, analysis of character ratios seems to require a different approach.
With this motivation in mind, we proposed in [22, 23] to turn, in some

sense, things upside down, and to have an organization of the irreps of finite
classical groups that is generated by the very few “smallest” representations.
As a result, representations that may seem to be anomalies from the philoso-
phy of cusp forms viewpoint play a key role here. This is interesting already
in the case of SL2(Fq), and this example was carried out in [24]. Although
the representations of SL2(Fq) have been known for a long time, we think
that the perspective of rank enhances understanding of them.

Our new organization induces several (compatible) invariants of represen-
tations that provide strong information on the character ratios. We call these
invariants collectively rank.

In this note we describe parts of the development that apply to the group
GLn(Fq), and deduce from it the harmonic analytic information we requested
in Section 0.2 for the group SLn(Fq).

In particular, for each irreducible representation ρ of GLn(Fq) we attach
an integer k between 0 and n, called its tensor rank, and show, among other
things, that on the transvection T (0.3) we have,



1396 Shamgar Gurevich and Roger Howe

Theorem. Fix 0 ≤ k ≤ n. Then for an irrep ρ of GLn(Fq) of tensor rank k,
we have an estimate:

(0.8) χρ(T )
dim(ρ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
qk

+ o(. . .), if k < n
2 ;

cρ
qk

+ o(. . .), if n
2 ≤ k ≤ n− 1;

−1
qn−1−1 , if k = n,

where cρ is a certain integer (independent of q) combinatorially associated
with ρ.

Remark 0.3.1. For irreps ρ of tensor rank n
2 ≤ k ≤ n − 1, the constant cρ

in (0.8) might be equal to zero. In this case, the estimate on χρ(T )
dim(ρ) is simply

o( 1
qk

). However, it is typically non-zero, and in many cases it is 1.

The estimates in (0.8) seem to give a significant improvement to what
currently appears in the literature, and induce similar results for the irreps
of SLn(Fq). In particular, using some additional analytic information, Hilde-
brand’s Theorem 0.1.1 follows.

1. Character ratios and tensor rank

We start with the problem of estimating the character5 ratios (CRs) on the
transvection T (0.3),

(1.1) χρ(T )
dim(ρ) , ρ ∈ ĜLn,

for the group GLn = GLn(Fq) of n×n invertible matrices with entries in Fq.

1.1. Dimension

At first sight one might suspect that the size of the character ratio (1.1)
is to a large extent controlled by the dimension of the representation (this
is how it is usually phrased in the literature – for example see [3]) since it
appears in the denominator of (1.1). This is in general not the case for
the transvection T – see Figure 5 for illustration. In that picture, for each
irreducible representation (irrep) ρ of GL7(F3) we plot6 the (nearest integer of

5In this note, for clarity, we denote irreps of GLn mostly by ρ and of SLn mostly
by π.

6We denote by [x] the nearest integer to the real number x.
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Figure 5: log1/q-scale of CRs vs. logq-scale of dimensions for ρ ∈ ĜL7(Fq),
q = 3.

the) absolute value in log1/3-scale of its character ratio (1.1) vs. the (nearest
integer of the) log3-scale of its dimension. In particular, one learns from this
numerics that there are (see the black circles in Figure 5) irreps of GLn(Fq)
with dimensions that differ by a multiple of large power of q, but with the
same order of magnitude of CRs, and there are (see, e.g., the black-green-
red circles above 15 in Figure 5) irreps of the same order of magnitude of
dimension but CRs that differ by multiple of a large power of 1

q .
A recent significant discovery [22, 23] is that there is an invariant, different

from dimension, that seems to do a much better job in controlling the CRs
(1.1) – see Figure 6 for illustration. We proceed to discuss it now.

1.2. Tensor rank

An important object attached to any finite group G is its representation (aka
Grothendieck) ring [55]

R(G) = Z[Ĝ],
generated from the set Ĝ using the operations of addition and multiplication
given, respectively, by direct sum ⊕ and tensor product ⊗.

It turns out [21, 22, 23, 24, 33, 34] that in the case that G is a finite
classical group the ring R(G) has a natural filtration that we call tensor
rank filtration. In particular, for each irrep we get a non-negative integer
that we call tensor rank and might be considered intuitively as its “size”.
Most importantly, this invariant seems to nicely control analytic properties
of irreps such as character ratio.
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Let us describe the development in the case of G = GLn.
Consider the permutation representation7 ω of GLn on the space L2(Fn

q )
of complex valued functions on Fn

q given by

(1.2) [ω(g)(f) ] (x) = f(g−1x),

for every g ∈ GLn, f ∈ L2(Fn
q ), and x ∈ Fn

q .
Denote by ĜLn(ω⊗k) the set of irreps of GLn that appear in ω⊗k - the

k-fold tensor product of ω, and by 1 the trivial representation.

Proposition 1.2.1. We have a sequence of proper containments

(1.3) {1} � ĜLn(ω⊗1) � . . . � ĜLn(ω⊗n) = ĜLn.

For a proof of 1.2.1 see Appendix D.1.1.
Looking at (1.3), we see one natural way to associate a non-negative

integer to an irrep, i.e.,

Definition 1.2.2 (Strict tensor rank). We say that an irrep ρ of GLn is of
strict tensor rank k, if in (1.3) its 1st occurrence is in ĜLn(ω⊗k).

We may write ⊗-rank�(ρ) = k, r�⊗(ρ) = k, or rank�⊗(ρ) = k, to indicate
that an irrep ρ of GLn is of strict tensor rank k, and denote the set of all
such irreps by (ĜLn)�⊗,k.

But, looking at (1.3), there is also another way to attach a non-negative
integer to each irrep, taking into account the action of characters (i.e., 1-dim
representations) on irreps:

Definition 1.2.3 (Tensor rank). We will say that an irrep ρ of GLn is of
tensor rank k, if it is a tensor product of a character and an irrep of strict
tensor rank k, but not less.

Again, we may use the notations ⊗-rank(ρ) = k, or r⊗(ρ) = k, or
rank⊗(ρ) = k, to indicate that a representation ρ of GLn has tensor rank
k, and denote the set of all such irreps by (ĜLn)⊗,k.

We extend the definition to arbitrary (not necessarily irreducible) repre-
sentation of GLn and say it is of tensor rank k if it contains irreps of tensor
rank k but not of higher tensor rank.

In particular, the tensor rank filtration mentioned above is obtained by
taking F⊗,k to be the elements of R(G) that are sums of irreps of tensor rank

7Up to a sign, ω is the restriction of the oscillator representation of Sp2n to GLn

[18, 30, 53].
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less or equal to k. Then, F⊗,(k−1) ⊂ F⊗,k, F⊗,i⊗F⊗,j ⊂ F⊗,i+j for every i, j, k,
and F⊗,n = R(G).

Sometime it is also convenient to make the following distinction and to
say that a representation of GLn is of low tensor rank if it is of tensor rank
k < n

2 .
We note that,

Remark 1.2.4. The two notions of strict tensor rank and tensor rank differ
because GLn is not simple, and is (almost) the product of SLn and F∗

q. The
two notions agree on restriction to SLn.

The following example tells us how the tensor rank one and strict tensor
rank one look like, and will be vastly generalized later in Section 5.

Example 1.2.5. The irreps of tensor rank k = 1 of GLn, n ≥ 2, are (up to
twist by a character) the (non-trivial) irreducible components of ω (1.2). The
group GL1 = F∗

q acts on the space L2(Fn
q ) through its action by homotheties

on Fn
q . For every character λ of F∗

q we have the λ-isotypic component ωλ =
{f : Fn

q → C∗; f(av) = λ(a)f(v), a ∈ Fq, v ∈ Fn
q }. It is not difficult to see

using direct calculations that,

(1) For λ �= 1 the space ωλ is irreducible as a GLn-representation, it has
dimension qn−1

q−1 ≈ qn−1, and its CR on T (0.3) is

(1.4) χωλ
(T )

dim(ωλ)
= qn−1 − 1

qn − 1 ≈ 1
q

(2) The space ωo
1 = {f ∈ ω1; f(0) = 0 and

∑
v∈Fn

q

f(v) = 0} is irreducible as

a GLn-representation, it has dimension qn−q
q−1 ≈ qn−1, and its CR on T

is
χωo

1
(T )

dim(ωo
1)

= qn−2 − 1
qn−1 − 1 ≈ 1

q
.

In particular, one deduces that there are roughly q2 irreps of ⊗-rank k = 1.

Remark 1.2.6. In the case of the group GL2, using the terminology of the
“philosophy of cusp forms” [26], we have,

(ĜL2)⊗,0 = characters, (ĜL2)⊗,1 = principal series, (ĜL2)⊗,2 = cuspidals.
(1.5)
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1.3. Intrinsic characterization of strict tensor rank and tensor
rank

Definitions 1.2.3 and 1.2.2 of, respectively, tensor rank and strict tensor rank,
are not intrinsic as they use the representation ω (1.2). At various places of
this note, it will be useful for us to use the following intrinsic characterization
(given in [23]) of these notions.

For 0 ≤ k ≤ n, consider the subgroup Hk ⊂ GLn of elements that
pointwise fix the first k-coordinates subspace in Fn

q , i.e.,

Hk =
{(

Ik ∗
0 An−k

)
; An−k ∈ GLn−k

}
.

Note that H0 = GLn, Hn = {1}, and Hk ⊂ Hk−1, for every k = 1, . . . , n.
In [23] we observed that,

Proposition 1.3.1 (Intrinsic characterisation). A representation ρ ∈ ĜLn

is of tensor (respectively, strict tensor) rank k if and only if it admits an
eigenvector (respectively, invariant vector) for Hk, but not for Hk−1.

1.4. Numerics

In this note, we will think on tensor rank as a formal notion of size of a
representation. But, is it going to do a good job in controlling the CRs on the
transvection (0.3)?

At this stage let us present numerical data collected for the group GL7(F3)
that hints toward a positive answer to the above question.

Indeed, a comparison of Figures 6 and 5 indicates that the tensor rank of a
representation does a much better job than dimension in telling what should
be expected for the order of magnitude of the CRs on the transvection T .
Indeed, Figures 6 show something from the general truth: For tensor rank
k < n

2 (i.e., the low tensor rank) irreps, although the dimensions might differ
by a factor of a large power of q, all the CRs are essentially of the same
size 1

qk
(compare the black circles in both figures); Moreover, for higher rank

n
2 ≤ k ≤ n− 1, the CRs are of the order of magnitude of 1

qk
time a constant

(independent of q), and it seems that for all tensor rank n irreps the CRs
are exactly 1

qn−1 in absolute value; Finally, irreps of the same dimensions can
have different character ratios (compare the black-green-red circles above 15
in Figure 5 with how they appear in Figure 6) which are accounted for by
looking at tensor rank.

The above numerical results can be quantified precisely and proved. This
is part of what we do next.
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Figure 6: log1/q-scale of CRs vs. ⊗-rank for ρ ∈ ĜL7(Fq), q = 3.

2. Analytic information on tensor rank k irreps of GLn

In this section we present information concerning the character ratios and
dimensions of the irreps of ⊗-rank k, i.e., the members of (ĜLn)⊗,k, including
the cardinality of that set.

2.1. Character ratios on the transvection

For the CRs on the transvection T (0.3) we obtain the following, essentially
sharp, estimate in term of the tensor rank.

Theorem 2.1.1. Fix 0 ≤ k ≤ n. Then, for ρ ∈ (ĜLn)⊗,k, we have an
estimate:

(2.1) χρ(T )
dim(ρ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
qk

+ o(. . .), if k < n
2 ;

cρ
qk

+ o(. . .), if n
2 ≤ k ≤ n− 1;

−1
qn−1−1 , if k = n,

where cρ is a certain integer (independent of q) combinatorially associated
with ρ.

Remark 2.1.2. For irreps ρ of tensor rank n
2 ≤ k ≤ n − 1, the constant

cρ in (2.1) might be equal to zero. In this case, the estimate on χρ(T )
dim(ρ) is

simply o( 1
qk ). However, the possibility of cρ = 0 is fairly rare, and (at least

for k �= n− 1) we are not sure if it happens at all.
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Figure 7: logq-scale of dimension vs. ⊗-rank for irreps ρ of GL7(Fq), q = 3.

For a derivation of Estimates (2.1), see Section 6.1.
Note that (2.1) is a formal validation to some of the phenomena that

Figure 6 illustrates.

2.2. Dimensions

We proceed to present information on the dimensions of the irreps of tensor
rank k.

Figure 7 gives a numerical illustration for the distribution of the dimen-
sions of the irreps of GL7(F3) within each given tensor rank.

In this note we obtain sharp lower and upper bounds (that formally ex-
plain Figure 7; the black-green-red dots were discussed in Section 1.1) on the
dimensions of the ⊗-rank k irreps. Indeed, we have,

Theorem 2.2.1. Fix 0 ≤ k ≤ n. Then, for ρ ∈ (ĜLn)⊗,k, we have sharp
estimate:

qk(n−k)+ k(k−1)
2 + o(. . .) ≥ dim(ρ)(2.2)

≥

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

qk(n−k) + o(. . .), if k < n
2 ;

q(n−k)(3k−n) + o(. . .), if n
2 ≤ k < 2n

3 ;

qk(n−k)+ k2
4 + o(. . .), if 2n

3 ≤ k ≤ n, even;

qk(n−k)+ (k−3)2
4 +3(k−2) + o(. . .), if 2n

3 ≤ k ≤ n, odd.
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Figure 8: logq-scale of the number of ⊗-rank irreps of GL7(Fq), q = 3.

For a proof of Theorem 2.2.1 see Section 6.2.
In [20], the authors give bounds on the dimensions of irreps of GLn of

tensor rank k. However, the estimates (2.2) are optimal for each tensor rank
k, and in general stronger than those given in the cited paper.

2.3. The number of irreps of tensor rank k of GLn

Finally, we present information concerning the cardinality of the set of irreps
of ⊗-rank k – see Figure 8 for illustration.

In this aspect, we have the following sharp estimate:

Theorem 2.3.1. Fix 0 ≤ k ≤ n. Then, we have an estimate:

(2.3) #((ĜLn)⊗,k) =

⎧⎨⎩q
k+1 + o(. . .), if k ≤ n− 2;

ckq
n + o(. . .), if n− 2 < k,

where 0 < cn−1, cn < 1, cn−1 + cn = 1.

For a proof of Theorem 2.3.1 see Section 6.3.

2.4. Perspective

We would like to make several remarks concerning the analytic information
announced just above, and to put it in some perspective to our storyline, and
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Figure 9: CRs vs. variation in dimensions (in order of magnitude of power of
q) for ĜLn.

to what seems to be the best known estimates in the literature on character
ratios at the transvection.

2.4.1. Tensor rank vs. dimension as indicator for size of character
ratio Looking on the analytic information presented in the sections just
above, we observe the following:

(A) For irreps in a given tensor rank.

A comparison of (2.2) and (2.1) demonstrates – see Figure 9 for a summary
– what we illustrated in Sections 1.1 and 1.4: Within a given tensor rank k

the dimensions may vary by a large factor (around q
k(k−1)

2 for rank k < n
2 , and

between q
k2
4 to q

k2
2 for n

2 ≤ k – quantities are given in approximate order of
magnitude of power of q) but the CRs are practically the same, of size around
1
qk

(for n
2 ≤ k ≤ n− 1 a multiple of 1

qk
by a constant independent of q).

(B) For irreps of different tensor ranks.

Looking on (2.2) we notice that:

• for n > (k+1)(k+2)
2 , the upper bound for the dimension of ⊗-rank k irreps

is (for sufficiently large q) smaller than the lower bound for rank k + 1.
But,

• when n < (k+1)(k+2)
2 , the range of dimensions for ⊗-rank k irreps over-

laps (for large enough q) the range for k + 1, and the overlap grows
with k. For k in this range, representations of the same dimension can
have different character ratios, which are accounted for by looking at
rank.

In conclusion, it seems that tensor rank of a representation is a better
indicator than dimension for the size of its character ratio, at least on elements
such as the transvection.
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Figure 10: Bounds on CRs: Current literature vs. this note (in order of mag-
nitude).

2.4.2. Comparison with existing formulations in the literature In
most of the literature on character ratios that we have seen (see, e.g., [3]
or [20], and the references there), estimates on character ratios are given in
terms of the dimension of representations.

Although the dimension is a standard invariant of representations, as we
have seen in Parts (A) and (B) of Section 2.4.1, the dimensions of representa-
tions with a given tensor rank can vary substantially (i.e., by large powers of
q), while the character ratio stays more or less constant (at least for k < n

2 ).
Thus, using only dimension to bound character ratio will often lead to non-
optimal estimates.

In particular, the estimates in this note for the character ratio on the
transvection are optimal (in term of the tensor rank), and are, in general,
stronger than the corresponding estimates in the papers cited above. For
example, for k < n

2 , rather than the bound of 1
qk

, the paper [3] gives bounds

of the order of magnitude of q
k(k−1)
n−1

qk
, and the exponent k(k−1)

n−1 can be fairly
large when n is large and k is near n

2 (the second cited paper obtained slightly
weaker bounds, on the transvection, from the first, and also formulated the
result only for irreps of tensor rank k <

√
n). The table in Figure 10 gives

some examples of the relationship between the results of this note, and of the
literature cited above.

We proceed to deduce information on irreps of SLn.
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3. Analytic information on tensor rank k irreps of SLn

In this section we describe analytic results for the irreps of SLn, n ≥ 3, of
a given tensor rank k. In some cases these estimates can be derived as an
immediate corollary of the corresponding results for GLn, and sometime we
will need more information on the irreps of GLn and in such cases we will
postpone the proofs to Section 7. The case of SL2 is somewhat special – see
Remark 3.2.8 below.

3.1. Tensor rank for representations of SLn

First we introduce the following terminology. We assume n ≥ 3.

Definition 3.1.1. We will say that an irreducible representation π of SLn

has tensor rank k if it appears in the restriction of a tensor rank k (and not
less) irrep of GLn.

As before, we denote by (ŜLn)⊗,k the set of irreps of SLn of ⊗-rank k.

Remark 3.1.2. Note that the condition that π should satisfy in Defini-
tion 3.1.1 is equivalent to the requirement that (replacing GLn by SLn) in
(1.3) it will appear in the set ŜLn(ω⊗k) but not at earlier stage. In particu-
lar, the two notions of strict tensor rank and tensor rank for irreps of GLn,
agree on restriction to SLn.

Our technique to get information on irreps of SLn is through the way
they appear inside irreps of GLn. Let us start with some information on this
relation.

3.2. Some properties of the restriction of irreps from GLn to
SLn, n ≥ 3

Take a representation ρ of GLn and consider its restriction to SLn. We will
call the set of irreps that appear in this way the SLn-spectrum of ρ. The
group GLn acts on ŜLn through its action by conjugation on SLn. This in
turn induces an action of GLn on the SLn-spectrum of any representation of
GLn.

Irreducibility implies that,

Claim 3.2.1. The SLn-spectrum of an irrep of GLn consists of a single
GLn-orbit.
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It is helpful to know that irreps of GLn that share the same SLn-spectrum
have the following simple relation:

Fact 3.2.2. Two irreps of GLn have the same SLn-spectrum (equivalently
share any representation of SLn) iff they differ by a twist by a character of
GLn.

The restriction can be described more precisely as follows. For each a ∈
C = F∗

q and each π ∈ ŜLn, denote by πa the representation πa(g) =
π(s(a)gs(a)−1), g ∈ SLn, where s(a) ∈ GLn is the diagonal matrix with
a in the first entry and all other diagonal entries equal to 1. Then,

Fact 3.2.3. The restriction of an irreducible representation ρ to SLn is mul-
tiplicity free. Moreover, for any π in the SLn-spectrum of ρ we have,

ρ|SLn
=
∑

a∈C/Cπ

πa,

where Cπ is the stabilizer of π in C.

Facts 3.2.2 and 3.2.3 are special cases of general results (see Corollary
A.2.4) in Clifford-Mackey’s theory [9, 44] (that we recall in Appendix A) on
restriction of representations from a group to general normal subgroups (first
fact), and normal subgroup with cyclic quotient (second fact).

We proceed to derive the estimates on the character ratios.

3.2.1. Character ratios on the transvection We have the following
useful Lemma:

Lemma 3.2.4. Any element of SLn whose centralizer in GLn maps onto F∗
q

under determinant will have the same character ratios on any irrep of GLn

and any irrep appearing in its restriction to SLn.

For a proof of Lemma 3.2.4 see Appendix D.2.1.

Since, in the case n ≥ 3, the transvection T (0.3) meets the conditions of
Lemma 3.2.4, we have, using result (2.1), the following sharp estimates:

Corollary 3.2.5. Fix n ≥ 3, and 0 ≤ k ≤ n. Then, for π ∈ (ŜLn)⊗,k, we
have an estimate:

(3.1) χπ(T )
dim(π) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
qk + o(. . .), if k < n

2 ;
cπ
qk + o(. . .), if n

2 ≤ k ≤ n− 1;
−1

qn−1−1 , if k = n,
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where cπ is a certain integer (independent of q) combinatorially associated
with π.

Remark 3.2.6. For irreps π of tensor rank n
2 ≤ k ≤ n− 1, the constant cπ

in (3.1) might be equal to zero. In this case, the estimate on χπ(T )
dim(π) is simply

o( 1
qk ).

3.2.2. Lower and upper bounds on dimensions of tensor rank k

irreps of SLn It turns out that, most irreps of GLn stay irreducible after
restriction to SLn, among them all the irreps that give the lower bounds and
most of those that give the upper bounds on dimensions of tensor rank k

irreps. As a consequence, from the corresponding results for GLn, we obtain,

Corollary 3.2.7. Fix n ≥ 3, and 0 ≤ k ≤ n. Then, for π ∈ (ŜLn)⊗,k, we
have an estimate:

qk(n−k)+ k(k−1)
2 + o(. . .) ≥ dim(π)(3.2)

≥

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

qk(n−k) + o(. . .), if k < n
2 ;

q(n−k)(3k−n) + o(. . .), if n
2 ≤ k < 2n

3 ;

qk(n−k)+ k2
4 + o(. . .), if 2n

3 ≤ k ≤ n, even;

qk(n−k)+ (k−3)2
4 +3(k−2) + o(. . .), if 2n

3 ≤ k ≤ n, odd.

Moreover, the upper and lower bounds in (3.2) are attained.

The detailed derivation of Corollary 3.2.7 can be found in Section 7.1.

Remark 3.2.8. Corollary 3.2.7 fails for n = 2. In that case, there are one
split principal series and one cuspidal representation of GL2 that when re-
stricted to SL2 decompose, respectively, into two pieces of dimension q+1

2 ,
q−1
2 . Moreover, for these representations, the character ratio is of order 1√

q .
This case, discussed in [24], arises from the “accidental” isomorphism SL2 �
Sp2, and these representations should be thought of as constituents of the
Weil/oscillator representation for Sp2, and to be the representations of ten-
sor rank k = 1 of this group, while both the rest of the split principal series
(dimension = q + 1) and the “discrete series” (dimension = q − 1) of Sp2,
should be considered to have tensor rank k = 2.
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3.3. The number of irreps of tensor rank k of SLn

The fact, mentioned earlier, that most (in a quantified way) tensor rank k
irreps of GLn stay irreducible after restricting them to SLn, implies (see
estimates (2.3)) the following:

Proposition 3.3.1. Fix n ≥ 3, and 0 ≤ k ≤ n. Then, we have an estimate:

(3.3) #((ŜLn)⊗,k) =

⎧⎨⎩q
k + o(. . .), if k ≤ n− 2;

ckq
k−1 + o(. . .), if n− 2 < k,

where 0 < cn−1, cn < 1, with cn−1 + cn = 1.

For a detailed derivation of (3.3) see Section 7.2.

4. Back to the random walk

Having the analytic information on the irreps of SLn, n ≥ 3, we can address
the random walk problem discussed in the introduction.

4.1. Setting

Recall (see the introduction) that we consider the conjugacy class C ⊂ SLn

of the transvection T (0.3), and use it, as a generating set, to do a random
walk on SLn. We denote by P ∗l

C (g) the probability that after l steps we arrive
to a given element g ∈ SLn.

We know that the difference of P ∗l
C from the uniform distribution U is, in

total variation, ∥∥∥P ∗l
C − U

∥∥∥
TV

≈ 1, for l < n,

and want to show that the mixing time lM is n, i.e., there is a dramatic change
at the n-th step where suddenly the two distributions become close, and an
exponential rate of decay – called mixing rate and denoted rM – kicks in.

4.2. The mixing time and mixing rate

We can derive the following sharp estimates for lM and rM :

Theorem 4.2.1. For the random walk on SLn using C, as a generating set,
we have, for sufficiently large q,

(1) The mixing time lM = n.
(2) The mixing rate rM = 1

q + O( 1
qn ).
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Part 2 of Theorem 4.2.1 follows from the fact that

rM = max
1�=π∈ŜLn

∣∣∣∣ χπ(T )
dim(π)

∣∣∣∣ ,
and then use the estimates (1.4) and (3.1).

For a proof of Part 1 of Theorem 4.2.1, first we recall that Formula (0.4)
implies that lM can not be less than n, and then we use,

Proposition 4.2.2. For sufficiently large q we have,

∥∥∥P ∗l
C − U

∥∥∥
TV

≤ 1
2√q

(1
q

)l−n

+ o(. . .).

For a verification of Proposition 4.2.2 see Appendix D.3.1.

5. The eta correspondence and the philosophy of cusp forms

To derive the analytic results that we described in Section 2, we need to
address the following:

Question. How to get information on the ⊗-rank k irreps of GLn?

In this note we would like to describe a technique which leads to an answer
to the above question and is based on the interplay between two methods:
the Philosophy of Cusp Forms (P-of-CF); and the eta Correspondence.

The P-of-CF was put forward in the 60s by Harish-Chandra [26]. It is one
of the main organizing principles in representation theory of reductive groups
over local [2] and finite fields [10, 42].

The eta correspondence was implicitly discovered in the manuscript [29].
This method can be applied in order to investigate irreps of classical groups
over local and finite fields. It is based on the notion of dual pair [31] of
subgroups in a finite symplectic group, and a special correspondence between
certain subsets of their irreps, which is induced by restricting the oscillator
(aka Weil) representation [18, 30, 53] of the relevant symplectic group to the
given dual pair. In recent years we have been developing this theory much
further in order to support our theory of “size” of a representation for finite
classical groups [21, 22, 23, 24, 33, 34] and, in particular, in order to estimate
the dimensions and character ratios of their irreps.

In this note we have refined and essentially completed the development
given in [23] for the η-correspondence for the dual pair (GLk, GLn).



Harmonic analysis on GLn over finite fields 1411

In retrospect, we note that the information we obtain on irreducible
representations of tensor rank k, and strict tensor rank k, gives an essen-
tially explicit description for the set of these representations, and for the
η-correspondence. The combination of the P-of-CF with this (GLk, GLn)-
duality provides a simple and effective way to identify the strict tensor rank
and tensor rank k pieces inside the large representation ω⊗k of GLn that we
used in Section 1.2 to define these notions.

For the rest of this section we assume 0 ≤ k ≤ n.

5.1. The eta correspondence – non-explicit form

We start with a non-explicit form of the eta correspondence.
Recall (see Section 1.2) that the vector space L2(Mk,n), of functions on the

set of k×n matrices over Fq, is a host for all (up to tensoring with characters)
irreps of GLn of strict tensor rank less or equal to k. In Section 1.2 we denoted
the action of GLn on this space by ω⊗k .

Of course we have a larger group of symmetries acting on this space, i.e.,
we have a pair of commuting actions

(5.1) GLk
ωkn� L2(Mk,n) ωkn� GLn,

given by [ωkn(h, g)f ] (m) = f(h−1mg), for every h ∈ GLk, m ∈ Mk,n, g ∈
GLn, and f ∈ L2(Mk,n).

We will also refer to ωkn (5.1) as the oscillator representation of GLk ×
GLn.

For 0 < k ≤ n, the action of GLk does not generate the full commutant
of GLn in End(ωkn), and vice versa (see Example 1.2.5 for k = 1). Let us
look at the action of GLk ×GLn on the smaller space

(5.2) (ωkn)�⊗,k < ωkn,

consisting of the (sums of) components of ωkn that have strict tensor rank
exactly k. On this space we do have,

Theorem 5.1.1. The groups GLk and GLn generate each other’s full com-
mutant in End((ωkn)�⊗,k).

Let us write the decomposition of ωkn into a direct sum of isotypic com-
ponents for the irreps of GLk as follows

(5.3) ωkn =
∑

τ∈ĜLk

τ ⊗ Θ(τ),
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where the multiplicity space Θ(τ) is a representation of GLn.
Now, the Burnside’s double commutant theorem [54] together with The-

orem 5.1.1 implies that

Corollary 5.1.2 (eta correspondence – non explicit form). Each Θ(τ) con-
tains at most one irreducible component η(τ) of strict tensor rank k (and
then, it appears with multiplicity one), in addition to irreps of lower strict
tensor rank. In particular, we have a natural bijective mapping

(5.4) τ �−→ η(τ),

from a subcollection of ĜLk onto the set (ĜLn)�⊗,k) of strict tensor rank k
irreps of GLn.

We call the mapping (5.4) the eta correspondence or (GLk, GLn)-
duality.

Conclusion 5.1.3. Up to twist by a character of GLn, all ⊗-rank k irreps of
GLn appear in the image of the (GLl, GLn)-duality for l = k, and not before.

Remark 5.1.4. A proof of Theorem 5.1.1 first appeared in [29] (there, the
tensor rank k representations were called the “new spectrum” in some rele-
vant “Witt tower” associated with corresponding “oscillator representations”
of symplectic groups), and a similar treatment was given in [23]. The out-
come in both papers is the η-correspondence for general dual pairs in finite
symplectic groups.

In this note, we will prove Theorem 5.1.1 as a by-product of making the
description of the correspondence (5.4) explicit.

5.2. The eta correspondence – explicit form

We want to get a good formula for η(τ) (5.4), including an explicit description
of its domain in ĜLk. In this section we get an approximate one (see Formula
(5.10) in Theorem 5.2.2 below) showing that η(τ) is essentially a certain
simple to write down parabolic induction which, in addition, can be effectively
analyzed. In particular, this description will give us in Section 5.5, using the
P-of-CF, an exact formula for η(τ) (see Equation (5.23) of Theorem 5.5.1).

We fix 0 ≤ k ≤ n and consider inside GLn the maximal parabolic sub-
group

(5.5) Pk,n−k = StabGLn(Vk),
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stabilizing the k-dimensional subspace

(5.6) Vk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
...
xk
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
; x1, . . . , xk ∈ Fq

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⊂ Fn

q .

The group Pk,n−k has Levi decomposition (see Appendix B), i.e., it can be
written as a semi-direct product of subgroups

Pk,n−k = Uk,n−k · Lk,n−k,

where Uk,n−k and Lk,n−k , called, respectively, the unipotent radical and the
Levi component of Pk,n−k, are given by

(1) Uk,n−k =
{(

Ik B
0 In−k

)
; B ∈ Mk,n−k

}
,(5.7)

(2) Lk,n−k =
{(

A 0
0 C

)
; A ∈ GLk, C ∈ GLn−k

}
,

where Ik, In−k, are the corresponding identity matrices.
In particular, we have a surjective homomorphism

(5.8) Pk,n−k

pr
� Pk,n−k/Uk,n−k = Lk,n−k � GLk ×GLn−k.

Now, take τ ∈ ĜLk, tensor it with the trivial representation 1n−k of GLn−k,
and form the parabolic induction (see Appendix B),

(5.9) Iτ = IndGLn
Pk,n−k

(τ ⊗ 1n−k),

namely, the induced representation from Pk,n−k to GLn of the pullback of
τ ⊗ 1n−k from GLk ×GLn−k via (5.8).

It turns out that,

Proposition 5.2.1 (Mutiplicity one). Consider τ ∈ ĜLk. Then, Iτ (5.9) is
multiplicity free.

We give a more informative version of this result in Section 5.3.2.
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It is easy to see that Iτ < Θ(τ) for every τ ∈ ĜLk (see Part (5.3.1) of
Claim 5.3.1).

The representation Iτ gives the “approximate formula” (this is the mean-
ing of Equation (5.10) below) for η(τ), that we mentioned at the beginning
of this section. More precisely,

Theorem 5.2.2 (eta correspondence – explicit form). Take τ ∈ ĜLk,
k ≤ n, and look at the decomposition (5.3) of ωkn. We have,

(1) Existence. The representation Θ(τ) contains a strict tensor rank k
component if and only if τ is of strict tensor rank ≥ 2k − n.
Moreover, if the condition of Part (5.2.2) is satisfied, then,

(2) Uniqueness. The representation Θ(τ) has a unique constituent η(τ)
of strict tensor rank k, and it appears with multiplicity one. and,

(3) Formula. The constituent η(τ) satisfies η(τ) < Iτ < Θ(τ), and we get

(5.10) Iτ = η(τ) +
∑
ρ

ρ,

where the sum is multiplicity free, and over certain irreps ρ which are
of strict tensor rank less then k and dimension smaller than η(τ).
Finally, the mapping

(5.11) τ �−→ η(τ),

gives an explicit bijective correspondence between the collection
(ĜLk)�⊗,≥2k−n of irreps of GLk of strict tensor rank ≥ 2k − n, and
the set (ĜLn)�⊗,k of strict tensor rank k irreps of GLn.

Note that, indeed, Theorem 5.2.2 gives an explicit description of the eta
correspondence (5.4) and hence of all members of (ĜLn)�⊗,k and (up to twist
by a character) of (ĜLn)⊗,k the tensor rank k irreps. In particular, it implies
Theorem 5.1.1.

The rest of this section is devoted to formulations, and proofs, of more
informative versions of Proposition 5.2.1 and Theorem 5.2.2.

Remark 5.2.3. Parts 5.2.2 and 5.2.2 were also formulated and proved, using
extensive character theoretic techniques, in [20]. The techniques we use in
this note, which among other things produce a proof of Theorem 5.2.2, are
different. They are based on the philosophy of cusp forms and, in particular,
are spectral theoretic in nature.
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5.3. Decomposing Iτ = IndGLn

Pk,n−k
(τ ⊗ 1n−k) and the philosophy of

cusp forms

Denote by (Mk,n)k ⊂ Mk,n, the GLk×GLn “open” orbit consisting of matrices
of rank equal to k. We observe that

Claim 5.3.1. The following hold:

(1) The strict tensor rank k part (ωkn)�⊗,k (5.2) of ωkn is contained in
L2((Mk,n)k).

(2) We have
L2((Mk,n)k) �

∑
τ∈ĜLk

τ ⊗ Iτ ,

as a representation of GLk ×GLn, where Iτ is given by (5.9).

For a proof of Claim 5.3.1 see Appendix D.4.2.
From Claim 5.3.1, we see that the proofs of Proposition 5.2.1 and The-

orem 5.2.2 come down to learning the decomposition of Iτ . Our main tool
for doing this involves the description of representations coming from the
philosophy of cusp forms (P-of-CF) [26].

5.3.1. Recollection from the philosophy of cusp forms We recall
some of the basics of the P-of-CF, that are relevant for us, leaving a more
detailed account of this theory, including relevant references, for Appendix B.

A representation κ of GLn is called cuspidal if it does not contain a
non-trivial fixed vector for the unipotent radical of any parabolic subgroup
stabilizing a flag in Fn

q . Given this definition, it is easy to show that any irrep
is contained in a representation induced from a representation of a parabolic
subgroup P that

• is trivial on the unipotent radical UP of P ; and
• is a cuspidal representation of the quotient LP = P/UP .

Note that in the case of GLn, the group LP = P/UP , called the Levi
component of P , is a product of GLm’s for m ≤ n, so that the P-of-CF
provides an inductive construction of all irreps. The main ingredients needed
to carry out this construction explicitly are

(1) knowledge of the cuspidal representations of the GLm, m ≤ n; and
(2) decomposing the representations induced from cuspidal representations.

With regard to (5.3.1), there is a very general result due to Harish-
Chandra that relates different induced-from-cuspidal representations (see also
Theorem B.1.2 and Corollary B.1.3):
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Fact 5.3.2. Two such representations IndGLn
Pj

(κj), for j = 1, 2, are either
equivalent, or they are completely disjoint – they have no irreducible con-
stituents in common. For them to be equivalent, two conditions must be sat-
isfied. First, the inducing parabolics must be associate, meaning that their
Levi components LPj must be conjugate. Secondly, there must be an element
g ∈ GLn that both conjugates LP1 to LP2 , and at the same time, conjugates
the representations κ1 and κ2 to each other. In other words, g(LP1)g−1 = L2,
and moreover, the representation g∗κ2, which sends h in LP1 to κ2(ghg−1), is
equivalent to κ1. In this way, association classes of cuspidal representations
of parabolic subgroups define a partition of the unitary dual ĜLn into disjoint
subsets.

Remark 5.3.3. Fact 5.3.2 can assist in the demonstration of the necessity
statement in Part (1) of Theorem 5.2.2. See Appendix D.4.1 for a detailed
proof.

The split and spherical principal series As noted already, for GLn any Levi
component is a product of copies of groups GLm for m ≤ n. The collection
DP = {mj} of the sizes of the GLmj ’s factors of a Levi component define
a partition of n. Up to conjugation, we can assume that P consists of block
upper triangular matrices, and, given this, we let mj be the size of the j-
th block from the upper left corner of the matrices. We will refer to this as
the P -partition. Also, we will say that a cuspidal representation of GLm has
cuspidal size m. Thus, the cuspidal sizes of a cuspidal representation of a
parabolic subgroup P also define a partition, the same as the P -partition.
Up to association in GLn, we can arrange that the block sizes mj of P ,
equivalently, cuspidal sizes of a cuspidal irrep κ of P , decrease as j increases.
We then also associate to the partition, and to P , a Young diagram [14],
whose j-th row has length mj .

If the block sizes are all equal to 1, then the parabolic is (conjugate to)
the Borel subgroup B of upper triangular matrices. The Levi component of B
is (GL1)n. Since this group is abelian, all of its irreducible representations are
characters – one dimensional representations, specified by homomorphisms
into C∗. We will refer to constituents of representations induced from char-
acters of B as the split principal series. Constituents of the representation
induced from the trivial character 1 of B will be referred to as spherical
principal series (or SPS for short). Any representation induced from a (one
dimensional) character of a parabolic subgroup will have constituents all be-
longing to the split principal series.

There is a second partition, that permits a more refined understanding of
the split principal series, essentially reducing it to understanding the spherical
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principal series. A character χ of the Borel subgroup B is given by a collection
χj , 1 ≤ j ≤ n, of characters of GL1 = F∗

q , where χj is the restriction of the
character χ to the j-th diagonal entry of an element of B. Up to association,
these characters can be reordered as desired. Thus, we may assume that all
diagonal entries j for which the χj are equal to a given character of GL1 are
consecutive. Given this, we can consider a block upper triangular parabolic
subgroup such that, in each diagonal block, the characters χj are equal, and
the χj ’s contained in different diagonal blocks are different. We may also
assume when convenient that the sizes of these blocks decrease from top to
bottom. This associates a well-defined partition to a given character χ of B.

Consider the parabolic subgroup Pχ defined by the blocks associated to
the character χ of B, as in the preceding paragraph. Let the i-th block from
the top of Pχ be GLmi . Let ρ be a constituent (i.e., an irreducible sub-rep)
of the representation of Pχ induced from the character χ of B. Then, the
philosophy of cusp forms tells us that:

(a) the representation IndGLn
Pχ

(ρ) will be irreducible;
(b) ρ � ⊗ρi, where ρi is a constituent of the representation of GLmi induced

from B ∩GLmi ; and
(c) this process gives a bijection from the constituents of IndPχ

B (χ) to the
constituents of IndGLn

B (χ), and this last set is the product (in the nat-
ural sense) of the sets of constituents of the Ind

GLmi
B∩GLmi

(χ).

Moreover, because of the way Pχ was defined, each representation
Ind

GLmi
B∩GLmi

(χ) has the form

(χi ◦ det) ⊗ Ind
GLmi
B∩GLmi

(1),

where χi indicates the common character of GL1 assigned to the diagonal
entries of B ∩GLmi , and det is the determinant homomorphism from GLmi

to GL1. This means that the constituents of each Ind
GLmi
B∩GLmi

(χ) has the form
(χi ◦det)⊗ρi, where ρi is a member of the spherical principal series for GLmi .
This leads us to focus on understanding the spherical principal series.

Spherical principal series The spherical principal series of GLn have been
studied extensively (see Appendices B.2.3 and C). They can be helpfully stud-
ied through the family of induced representations IndGLn

P (1), for all parabolic
subgroups. Up to conjugation, it is enough to consider the parabolics that
contain the Borel subgroup B, i.e., the block upper triangular parabolic sub-
groups. Also, it is standard that if P and P ′ are associate parabolics, then
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the representations IndGLn
P (1) and IndGLn

P ′ (1) are equivalent. Thus, we can
select a representative from each association class of parabolics. We do this
in the usual way, by requiring that the block sizes mi of the diagonal blocks
GLmi of P , listed from top to bottom, are decreasing with increasing i. This
again gives us a partition (our third partition) of n, with an associated Young
diagram DP . (We note that, if all of the above discussion on the P-of-CF is
referenced to a fixed original n, then the successive partitions we have been
describing are partitions of parts of the preceding partition).

Notation. For the rest of this note, let us denote the set of partitions of n
by Pn, and the corresponding set of Young diagrams by Yn.

Let P = PD be a parabolic as above, with blocks whose sizes decrease
down the diagonal, associated to the Young diagram D ∈ Yn. Consider the
induced representation

(5.12) ID = IndGLn
PD

(1).

All the constituents of ID are spherical principal series representations. We
can be somewhat more precise (see Appendix C for a more detailed account).
Recall that the set of isomorphism classes of representations of a group G form
a free abelian semi-group (monoid) on the irreducible representations, and as
such, has a natural order structure ≤ given by the notion of sub-representation
(or equivalently given by dominance of all coefficients in the expression of a
given representation as a sum of irreducibles). The set of partitions/Young
diagrams also has a well-known order structure �, the dominance order (see
Definition C.1.1).

We know the following facts [25, 35] (see also Proposition C.2.1 in Ap-
pendix C):

Facts 5.3.4. Consider the representations ID (5.12). We have,

(1) The map D �→ ID is order preserving from the set Pn of partitions
of n, with its reverse dominance order, to the semigroup of spherical
representations (i.e., contains non-trivial B-invariant vectors) of GLn.

(2) The representation ID contains a constituent ρD with multiplicity one,
and with the property that it is not contained in any ID′ with D′ � D
in the dominance order.

Remark 5.3.5. The representation ρD can also be distinguished by its di-
mension: it is the only constituent of ID whose dimension, as a polynomial
in q, has the same degree as the cardinality of GLn/PD (see Corollary C.4.1
in Appendix C.4)
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Facts 5.3.4 are parallels of similar facts for the symmetric group Sn [35].
For a given partition D of n, let SD denote the stabilizer of D in Sn, and let
YD denote theYoung module [8]

YD = IndSn
SD

(1).

Also let σD be the irrep of Sn associated to the partition D. Then the analog of
Facts 5.3.4 are valid. In particular, σD is contained in YD with multiplicity one.
Moreover, for any two partitions D1 and D2 of n, the Bruhat decomposition
for GLn [4, 6], i.e., that

(5.13) PD1�GLn�PD2 � SD1�Sn�SD1 ,

implies [35] that we have an equality of intertwining numbers

(5.14) 〈ID1 , ID2〉 = 〈YD1 , YD2〉 .

As a consequence of the facts just mentioned above, one can show (see Ap-
pendices C and B.2.3, and the reference [25] for more precise statement) that
the description of the spherical principal series representations of GLn is es-
sentially the same as the representation theory of the symmetric group.

Split, unsplit, and a P-of-CF formula for general irreps In contrast to the
split principal series irreps, we have the irreps that we call unsplit. These are
the components of representations induced from cuspidal representations of
parabolics with block sizes of 2 or larger (i.e., no blocks of size 1).

The general representation is gotten by combining unsplit representations
and split principal series. More precisely, given a parabolic PD ⊂ GLn, let Pu,s

be the maximal parabolic subgroup, with Levi component GLu×GLs, where
GLu contains all the blocks of PD of size greater than 1, and GLs contains all
the blocks of PD of size 1. (We remind the reader of the convention that PD

is block upper triangular, with the block sizes decreasing down the diagonal).
Then a constituent ρU of a representation of GLu induced by a cuspidal
representation of GLu ∩PD will be an unsplit representation of GLu. On the
other hand, PD ∩ GLs will be a Borel subgroup of GLs, and a constituent
ρS of the representation of GLs induced from a cuspidal representation of
GLs∩PD will be a split principal series of GLs. Since GLu×GLs is a quotient
of Pu,s, the tensor product ρU ⊗ ρS will also define a representation of Pu,s,
and this representation will be irreducible. Now if we look at the induced
representation

(5.15) ρU,S = IndGLn
Pu,s

(ρU ⊗ ρS),
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then, the philosophy of cusp forms tells us that
(a) ρU,S is irreducible; and
(b) the map (ρU , ρS) �→ ρU,S is an injection from the relevant subsets of

the unitary dual of GLu ×GLs into the unitary dual of GLn; and
(c) all irreducible representations of GLn arise in this way (including

the cuspidal representations, which are included in the situation when PD =
GLn).

Remark 5.3.6 (Uniqueness and the P-of-CF formula). As discussed above in
Section 5.3.1, the P-of-CF tells us that the split part ρS, appearing in (5.15),
is induced irreducibly from a (standard, upper triangular) parabolic subgroup
PS of GLs (corresponding to a partition S = {s1 ≥ . . . ≥ sl} of s) and repre-
sentation of it such that, on each diagonal block of the parabolic the constituent
representation has the form ρSi = (χi ◦ det) ⊗ ρDi , where ρDi is a spherical
principal series of the relevant GLsi-block of PS, and the characters χi of GL1
are distinct for different blocks of PS. Moreover, the association class of PS,
and the inducing representations, are uniquely determined. Overall, Formula
(5.15) can be replaced by the following more precise formula:

(5.16) ρU,S = IndGLn
Pu,s1,...,sl

(
ρU ⊗
[

l⊗
i=1

(χi ◦ det) ⊗ ρDi

])
,

where Pu,s1,...,sl is the standard upper triangular parabolic with blocks of sizes
u, s1, . . . , sl.

Let us call (5.16) the unsplit-split P-of-CF formula (or parametrization).

5.3.2. Decomposing Iτ = IndGLn

Pk,n−k
(τ ⊗ 1n−k) We are ready to de-

scribe the components of the induced representation Iτ = IndGLn
Pk,n−k

(τ⊗1n−k)
given in (5.9), using their P-of-CF formulas. Let us start with the situation
where the representation τ on the GLk block is a SPS representation. In this
case the Pieri rule produces such a description.

The Pieri rule Consider the induced representation

(5.17) IρD = IndGLn
Pk,n−k

(ρD ⊗ 1n−k),

where ρD is the SPS of GLk associated to the partition D of n.
The parallelism between the spherical principal series and the represen-

tations of the symmetric group implies that,
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Claim 5.3.7. Consider two partitions E of n and D of k. Denote by ρE
and ρD the corresponding SPS representations of GLn and GLk, respectively.
Also, denote by σE and σD the corresponding irreps of Sn and Sk, respectively.
Then, we have an equality

(5.18) 〈ρE , IρD〉 = 〈σE , IσD〉,

where 〈•, •〉 = dim(Hom(•, •)) is the standard intertwining number, and IσD

denotes the induced representation

(5.19) IσD = IndSn
Sk×Sn−k

(σD ⊗ 1n−k),

where the subgroup Sk × Sn−k is contained in the symmetric group Sn in the
standard way, and 1n−k is the trivial representation of Sn−k.

For a proof of Claim 5.3.7, see Appendix D.4.3.
In conclusion, we can replace the spectral analysis of IρD (5.17) by that of

IσD (5.19). On the latter representation we have a complete understanding.
To spell it out, let us recall [14] that if we have Young diagrams D̃ ∈ Yn and
D ∈ Yk such that D̃ contains D, denoted D̃ ⊃ D, then by removing from
D̃ all the boxes belonging to D, we obtain a configuration, denoted D̃ −D,
called skew-diagram. If, in addition, each column of D̃ is at most one box
longer than the corresponding column of D, then we call D̃ −D a skew-row.
With this terminology, we have [8],

Theorem 5.3.8 (Pieri rule). Let D ∈ Yk. Then, the induced representation
IσD (5.19) is a multiplicity-free sum of irreps σ

D̃
of Sn, where, the Young

diagram D̃ ∈ Yn satisfies:

(1) D̃ ⊃ D; and
(2) D̃ −D is a skew-row.

In fact, the Pieri Rule can be understood geometrically as a result about
tensor products of representations of the complex general linear groups
GLm(C) [32]. In particular, in Appendix D.4.4 we give a seemingly new
proof of Theorem 5.3.8, by translating that result from the GLm(C) case to
the Sn case, using the classical Sn-GLm(C) Schur (aka Schur-Weyl) duality
[32, 49, 54]. Our approach was inspired by a remark of Nolan Wallach.

Finally, we would like to remark that, nowadays the Pieri rule can be
understood as a particular case of the celebrated Littlewood-Richardson rule
[40, 43], but was known [47] a long time before this general result.

As noted before, Theorem 5.3.8 together with Identity (5.18), implies the
analogous “Pieri rule” for the decomposition of the induced representation
IρD (5.17) for a spherical principal series ρD of GLk.
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The components of Iτ Next, the components of Iτ = IndGLn
Pk,n−k

(τ⊗1n−k), for
a general τ ∈ ĜLk, can be obtained using the P-of-CF Formula (5.16). Indeed,
take non-negative integers u, s1, . . . , sl, d, such that u+ s1 + . . .+ sl + d = k.
Applying Formula (5.16) with S = {s1, . . . , sl, d}, we obtain an irreducible
representation

(5.20) τU,S = IndGLk
Pu,s1,...,sl,d

(
ρU ⊗
[

l⊗
i=1

(χi ◦ det) ⊗ ρDi

]
⊗ ρD

)
,

where, ρU is unsplit irrep of GLu, the ρDi and ρD are, respectively, SPS irreps
of the corresponding GLsi and GLd blocks. Moreover, the P-of-CF ensures
that the τU,S ’s (5.20) produced in this way are all the irreps of GLk. With the
realization (5.20) of irreps, the Pieri rule implies that IτU,S = IndGLn

Pk,n−k
(τU,S⊗

1n−k) has the following multiplicity free decomposition into sum of irreps

(5.21) IτU,S �
∑
D̃

IndGLn
Pu,s1,...,sl,d+n−k

(
ρU ⊗
[

l⊗
i=1

(χi ◦ det) ⊗ ρDi

]
⊗ ρ

D̃

)
,

where D̃ runs over all Young diagrams in Yd+n−k that satisfies conditions (1)
and (2) of Theorem 5.3.8.

Note that, in particular, we obtained a proof of a more precise version of
Proposition 5.2.1.

5.4. Computing tensor rank using the P-of-CF formula

The Pieri rule implies, as a corollary, that one can compute the strict tensor
rank and tensor rank of a representation from its P-of-CF Formula (5.16),
more precisely directly from its split principal series component. To state
this, and similar results, it is convenient to use the notions of tensor co-rank
and strict tensor co-rank, by which we mean, respectively, n minus the tensor
rank and n minus the strict tensor rank.

Corollary 5.4.1. We have,

(1) For a partition D = {d1 ≥ . . .} of n, the tensor co-rank of the SPS
representation ρD is the same as its strict tensor co-rank and is equal
to d1, that is, the longest row of the associated Young diagram.

(2) The tensor co-rank of the representation ρU,S of GLn described by For-
mula (5.16), is the maximum of the tensor co-ranks of the SPS repre-
sentations ρDi , i = 1, . . . , l, that appear in description of the split part
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of ρU,S. The strict tensor co-rank of ρU,S is the strict tensor rank of the
SPS representation ρDi that is twisted in (5.16) by the trivial character.

For a proof of Corollary 5.4.1 see Appendix D.4.5.

5.5. Back to the explicit description of the eta correspondence

The above development implies a more informative version of Theorem 5.2.2.
Indeed, looking at Formula (5.21), we see that condition (2) of Theo-

rem 5.3.8 (that the difference D̃ − D be a skew row) means that the n − k
boxes of D̃ − D all live in different columns of D̃. In particular, D̃ must
contain at least n − k columns, and the only way that it can contain only
n− k columns is for the boxes of D̃−D to belong to the first n− k columns,
consecutively, of D̃. Thus, for all representations τU,S (5.20) of GLk, of strict
tensor co-rank not exceeding n− k (which is equivalent to strict tensor rank
exceeding k − (n− k) = 2k− n), there is exactly one constituent – let us de-
note it by η(τU,S) – of the corresponding induced representation IτU,S (5.21)
of co-rank not exceeding n− k. Moreover, for such τU,S ’s, by the philosophy
of cusp forms, τU,S �→ η(τU,S) is one-to-one correspondence.

Concluding, we have completed the proof of Theorem 5.2.2 (see also Re-
mark 5.3.3). Moreover, we obtained an explicit form of the eta correspondence.
To write it in a pleasant way, let us express the representation τU,S (5.20) of
GLk as,

(5.22) τU,S,D = IndGLk
Pu,s,d

(ρU ⊗ ρS ⊗ ρD),

where u, s, d are non-negative integers such that u + s + d = k, Pu,s,d is the
corresponding standard block diagonal parabolic with blocks of sizes u, s, d,
ρU is an unsplit irrep of GLu, S is a partition {s1 ≥ . . . ≥ sl} of s, ρS is the
split representation of GLs induced from (χi ◦ det) ⊗ ρDi on the GLsi-block
of the parabolic PS , i = 1, . . . , l (see Formula (5.20)), where χi are non-trivial
and distinct, and, finally, ρD is the SPS representation of GLd associated with
a Young diagram D ∈ Yd.

Theorem 5.5.1 (eta correspondence – explicit formula). Take τU,S,D ∈ ĜLk

of the form (5.22), and of strict tensor rank greater or equal to 2k − n.
Then, the unique constituent η(τU,S,D) of strict tensor rank k of IτU,S,D =
IndGLn

Pk,n−k
(τU,S,D ⊗ 1n−k), satisfies,

(5.23) η(τU,S,D) � IndGLn
Pu,s,d+n−k

(
ρU ⊗ ρS ⊗ ρ

D̃

)
,
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where ρ
D̃

is the SPS representation of GLd+n−k associated with the unique
Young diagram D̃ ∈ Yd+n−k whose first row has length n− k, and the rest of
its rows make D. Moreover, the mapping τU,S,D �−→ η(τU,S,D) agrees with the
eta correspondence (5.11).

6. Deriving the analytic information on ⊗-rank k irreps of
GLn

The concrete descriptions of the tensor rank k irreps of GLn, given in the
previous section, will be used now to derive the analytic information stated
in Section 2.

6.1. Deriving the character ratios on the transvection

Our analysis of the character ratios (CRs) χρ(T )
dim(ρ) , where ρ ∈ ĜLn and T is the

transvection (0.3), proceeds in three steps: We start with the case when ρ is
of tensor rank n, then we treat the case when it is a spherical principal series
(SPS) representation, and finally we combine the first two cases to derive the
CRs estimate for general tensor rank k irrep.

6.1.1. CRs for tensor rank n irreps Let Un−1,1 be the unipotent radical
of the parabolic Pn−1,1 (aka “mirabolic” [17]). This group is isomorphic to
Fn−1
q , and any non-identity element in this group is a transvection. Denote

by reg◦
Un−1,1

= regUn−1,1
− 1Un−1,1 the regular representation of Un−1,1 minus

its trivial representation.
We have,

Proposition 6.1.1. The restriction of a tensor rank n irrep ρ of GLn to
Un−1,1 is a multiple of reg◦

Un−1,1
. In particular, the character ratio of such

irrep on the transvection is equal to the CR of reg◦
Un−1,1

on this element,
namely,

(6.1) χρ(T )
dim(ρ) = −1

qn−1 − 1 .

For a proof of Proposition 6.1.1 see Appendix D.5.1.

6.1.2. CRs for spherical principal series irreps Consider a SPS rep-
resentation ρD of GLn, where D = {d1 ≥ . . . ≥ ds} is a partition of n. The
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tensor rank of ρD is equal to n− d1 (see Corollary 5.4.1). We will show that,

(6.2) χρD(T )
dim(ρD) =

⎧⎨⎩
1

qn−d1 + o(. . .), if d1 > d2;
cD

qn−d1 + o(. . .), otherwise,

where cD is a certain integer depending only on D (and not on q).
An effective description of the representation ρD is given by Proposi-

tion C.2.1 in Appendix C.2. In particular, it tells us that there are integers
mD′D, independent of q, such that,

(6.3) ρD = ID +
∑

D′�D

mD′DID′ ,

where � denotes the dominance relation on partitions/Young diagrams (see
Definition C.1.1), and ID (respectively ID′) is the natural induced module
(5.12) attached to D.

Remark 6.1.2. The integers mD′D will certainly sometimes take negative
values.

We will show that the CR at T of the representation ID on the right-hand
side of (6.3), can be seen as the numerical quantity that implies estimate (6.2).
To justify this assertion, first, recall (see Remark 5.3.5) that,

(6.4) dim(ρD) = dim(ID) + o(. . .).

Second, we have,

Proposition 6.1.3. The character ratio of the induced representation ID at
the transvection satisfies,

(6.5) χID(T )
dim(ID) = md1

qn−d1
+ o(. . .),

where md1 is the number of times the quantity d1 appears in D.

For a proof of Proposition 6.1.3 see Appendix D.5.2.
And third, we use,

Proposition 6.1.4. Suppose D = {d1 ≥ . . . ≥ ds} is a partition of n which
is strictly dominated by another partition D′. Then,

(6.6)
χID′ (T )
dim(ID) =

⎧⎨⎩o(
χID

(T )
dim(ID)), if d1 > d2;

cD,D′ · χID
(T )

dim(ID) + o(. . .), otherwise,
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where cD,D′ is an explicit non-negative integer depending only on D and D′

(and not on q).

For a proof of Proposition 6.1.4 see Appendix D.5.3.
Now, we can derive (6.2). Indeed, we have,

χρD(T )
dim(ρD) =

χID(T ) +
∑

D′�D

mD′DχID′ (T )

dim(ID) + o(. . .)(6.7)

=

⎧⎨⎩
1

qn−d1 + o(. . .), if d1 > d2;
cD

qn−d1 + o(. . .), otherwise;

where cD is an integer depending only on D (and not on q), the first equality
follows from Formulas (6.3) and (6.4), and the second equality is due to (6.5)
and (6.6).

6.1.3. CRs for tensor rank k irreps – general case We now treat the
general case.

We can reduce the estimation task to the specific cases discussed in Sec-
tions 6.1.1 and 6.1.2. Indeed, for the SPS representations, the computation
(6.7) of the character ratios is reduced to the case of induced representations
of the form ID = IndGLn

PD
(1) (5.12) for a Young diagram D. In the same

way, the computation of character ratio on the transvection, for general split
principal series representation is reduced to the case of an induced repre-
sentation from a (one-dimensional) character of a standard parabolic, i.e.,
ID,χ = IndGLn

PD
(χ) where χ is a character of PD. But on the transvection T

the character χ is trivial, so we are back in the case of ID. In particular, using
Formula (5.16) and the standard formula [15] for computing the character of
induced representations, we see that it is enough to estimate the character
ratios of irreps of the form

(6.8) ρU,D = IndGLn
Pu,d

(ρU ⊗ ρD) ,

where

• ρU is an unsplit irrep of GLu;
• D ∈ Yd is a Young diagram with longest row of length d1 = n− k;

and
• there are md1 rows in D of that size, and ρD the associated SPS repre-

sentation.
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Denote by G(u, n) = GLn/Pu,d the Grassmannian of subspaces of dimen-
sion u in V = Fn

q . Its cardinality is [1]

(6.9) #G(u, n) =

n∏
j=u+1

(qj − 1)

n−u∏
j=1

(qj − 1)
.

In particular, using (6.9), we observe that,

(6.10) # (G(u, n− 1))
# (G(u, n)) = qn−u − 1

qn − 1 = 1
qu

+ o(. . .).

The group GLn acts on the set G(u, n), and the collection (G(u, n))T , of
elements fixed by the transvection T , decomposes into a union of two sets:

(6.11) (G(u, n))T = G(u, n− 1) ∪G(u− 1, n− 1).

The first set in the union consists of subspaces of dimension u that live inside
the kernel of T − I, so we can identify it with the Grassmannian G(u, n− 1);
while the second set consists with those subspaces of dimension u containing
the line L = Im(T − I), so we can identify it with the Grassmannian G(u−
1, n − 1). Note that the two sets at the right-hand side of (6.11) overlap on
the set G(u−1, n−2) of those Vu’s that contain L, and live inside ker(T −I).

For each subspace Vu of dimension u, that is fixed by T , we identify
GL(Vu) � GLu and GL(V/Vu) � GLd. In this way, we can think of the
induced actions of T on Vu and on V/Vu, as elements Tu ∈ GLu and Td ∈ GLd,
respectively. In conclusion, we obtain that

χρU,D(T )
dim(ρU,D)

(6.12)

= # (G(u, n− 1))
# (G(u, n)) · χρD(Td)

dim(ρD) + #(G(u− 1, n− 1))
#(G(u, n)) · χρU (Tu)

dim(ρU ) + o(. . .)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
qk

+ o(. . .), if k < n
2 ;

cD
qk

+ o(. . .), if n
2 ≤ k < n− 1;

cD−1
qn−1 + o(. . .), if k = n− 1;
−1
qn−1 + o(. . .), if k = n,
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where: The first equality is a consequence of the standard formula for com-
puting the character of induced reps; The little-o in the first row of Formula
(6.12) comes from the overlap of the two sets on the right-hand side of (6.11);
The second equality incorporates results (6.1), (6.2) – specialized to the case
n − d1 = k, and (6.9), (6.10); Finally, note that appearance in (6.12) of the
constant cD, an integer depending only on D (and not on q) that comes from
its appearance in (6.2).

This completes the derivation of the result (2.1) on the CRs of the irreps
of GLn on the transvection T .

6.2. Deriving the estimates on dimensions

It is enough, as was in the case of the computations of the CRs just above,
to compute the dimensions of the irreps of the form (6.8) where ρU is an
unsplit representation of GLu attached to cuspidal datum associated with
Young diagram U ∈ Yu, with (in case u �= 0) rows all of which are of length
greater or equal 2, and ρD an SPS representation attached to a Young diagram
D ∈ Yd.

To compute the dimension of ρU , we use the following [16, 19] crude
approximation to the dimension of a cuspidal representation:

Proposition 6.2.1. The dimension of a cuspidal representation of GLu is
q

u(u−1)
2 + o(. . .).

Using Proposition 6.2.1, the standard formula for dimension of induced
representation, and the explicit expression for the dimension of ρD (see Corol-
lary C.4.1 in Appendix C.4), we can obtain a sharp estimate on the dimension
of ρU,D. In particular, we can compute sharp upper and lower bounds for the
dimensions of the tensor rank k irreps.

6.2.1. Upper bound for the dimensions of the tensor rank k irreps
Let us start with tensor rank n irreps.

The tensor rank n case From Part (2) of Corollary 5.4.1, we learn that
an irrep ρ of GLn is of tensor rank n if and only if it is an unsplit repre-
sentation of the form ρ = ρU , associated to some Young diagram U ∈ Yn

with rows all of which are of length ≥ 2, and a corresponding cuspidal
datum. The philosophy of cusp forms (in particular, Part (B.2.5) of Corol-
lary B.2.5 in Appendix B.2.2) tells us that the ρU ’s of maximal dimension
are those where the cuspidal datum consists of non-isomorphic cuspidal rep-
resentation on the various blocks of the corresponding Levi component. In
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particular, Proposition 6.2.1 implies that all these ρU ’s are of dimension
dim(ρU ) = q

n(n−1)
2 + o(. . .).

We conclude,

Proposition 6.2.2. The largest possible dimension of a tensor rank n irrep
of GLn is q

n(n−1)
2 + o(. . .).

The tensor rank k < n case Fix 0 ≤ k < n, and consider the SPS repre-
sentation ρD where D is the partition {n − k, 1, . . . , 1} of n. Formula (C.6)
implies that

(6.13) dim(ρD) = qk(n−k)+ k(k−1)
2 + o(. . .).

The dimension appearing in (6.13) is the largest possible for a tensor
rank k irrep. There are several ways to justify this assertion, and we choose
to proceed with a simple construction of all the tensor rank k irreps of the
form ρU,D = IndGLn

Pu,d
(ρU ⊗ ρD) that are candidates for winning the “maximal

dimension competition”, and then observe that they all have dimension as in
(6.13).

First, the rank constraint implies that the Young diagram D, that defines
the ρD datum of ρU,D, must have longest row of size n− k, so we can assume
that d = n−k+l, for some 0 ≤ l ≤ k. In particular, if we want to maximize the
dimension of ρD, under this constraint, the dominance relation on partitions
tells us that, the partition D must be of the form

D = {n− k,

l times︷ ︸︸ ︷
1, . . . , 1}.

Second, to maximize the dimension of the unsplit part ρU of ρU,D, we take it
to be one of the tensor rank u representation of GLu of maximal dimension
constructed in the Section just above (see 6.2.2). In particular, dim(ρU ) =
q

u(u−1)
2 + o(. . .).
Finally, with any inducing ρU and ρD such as these we just described,

the dimension of the corresponding induced representation ρU,D (recall that
u = k − l) is

dim(ρU,D) = q(k−l)(n−k+l) · q
(k−l)(k−l−1)

2 · ql(n−k)+ l(l−1)
2 + o(. . .)

= qk(n−k)+ k(k−1)
2 + o(. . .).

In conclusion, we obtain,
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Proposition 6.2.3. The largest possible dimension of a tensor rank k irre-
ducible representation of GLn is qk(n−k)+ k(k−1)

2 + o(. . .).

Overall, this completes the verification of the assertion on upper bound
on dimensions, appearing in Theorem 2.2.1.

6.2.2. Lower bound for the dimensions of the tensor rank k irreps
Let us start with tensor rank n irreps.

The tensor rank n case Let as assume that n = lλ for some λ ≥ 1. Con-
sider the standard parabolic Pl×λ with Levi component an l-fold product of
GLλ’s, and on each GLλ the same cuspidal representation κλ. Recall (see
Appendix B.2.2) that, such a cuspidal datum is called isobaric and the in-
duced representation IndGLn

P
l×λ

(κ⊗l

λ ) is, in general (e.g., for l > 1), reducible.
Moreover, it has a unique component ρ

l×λ
of smallest dimension (see Formula

(B.9)) with

(6.14) dim(ρ
l×λ

) =
dim(κλ)l · #(GLn/Pl×λ

)
#(GLl(Fqλ)/Bl(Fqλ))

,

where Bl is the standard Borel subgroup in GLl.
We look at two cases:

• n even: Consider the tensor rank n representation ρn
2 ×2 of GLn, given by

the recipe described above with λ = 2 and l = n
2 , i.e., the constituent of

IndGLn
Pn

2 ×2
(κ⊗

n
2

2 ) of smallest dimension. Then, a direct calculation, using
Formula (6.14), gives

(6.15) dim(ρn
2 ×2) = q

n2
4 + o(. . .).

• n odd: Consider the ⊗-rank n representation ρ3,n−3 of GLn, given by
IndGLn

P3,n−3
(κ3⊗ρn−3

2 ×2), where P3,n−3 is the standard parabolic with Levi
blocks GL3 and GLn−3, the κ3 is a cuspidal representation of GL3, and
finally, the ρn−3

2 ×2 is the irrep of GLn−3 defined in the same way as
ρn

2 ×2 above. Then, using (6.15) we get,

(6.16) dim(ρ3,n−3) = q
(n−3)2

4 +3(n−2) + o(. . .).

In fact, optimizing using the philosophy of cusp forms and Formula (6.14),
we see that Examples (6.15) and (6.16) give the minimizers, in the dimension
aspect, among the tensor rank n irreps.
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In conclusion,

Proposition 6.2.4. The smallest possible dimension of a tensor rank n irre-
ducible representation of GLn is q n2

4 +o(. . .) if n is even, and q
(n−3)2

4 +3(n−2) +
o(. . .) if n is odd.

The tensor rank k < n cases We fix 0 ≤ k < n, and consider an irrep ρU,D
of GLn of the form (6.8), i.e., ρU,D = IndGLn

Pu,d
(ρU ⊗ ρD), which is in addition

of tensor rank k, namely, the Young Diagram D ∈ Yd must contains a row
of length n − k and this is its longest one. Optimizing to obtain the lowest
possible dimension of such irreps, we just need to decide what to do with
the “left over” k boxes. Moreover, because there is no interaction between
the unsplit and split inducing data, we just need to decide if k goes to the
diagram U ∈ Yu or to D ∈ Yd.

We divide the discussion to several cases, depending on the size and,
sometime, also the parity of k.

Case k < n
2 : Here applying (replace n by k there) the numerical results (6.15)

and (6.16), we see that the winner is the SPS representation ρD of GLn with
D corresponds to the partition {n− k, k}. The dimension is of course

dim(ρD) = qk(n−k) + o(. . .).

Case n
2 ≤ k < 2n

3 : Here, again, by a direct comparison using the numerical
results (6.15) and (6.16), we see that the lowest possible dimension is of an
SPS representation, this time ρD with D which is associated to the partition
{n− k, n− k, 2k − n}. The dimension is

dim(ρD) = q(n−k)(3k−n) + o(. . .),

using the formula in Corollary C.4.1.

Case 2n
3 ≤ k < n: Here, the comparison shows that the winner is the unsplit

side, i.e., the irreps of tensor rank k and of lowest dimension are of the form
ρU,D = IndGLn

Pk,n−k
(ρU ⊗ ρD), where ρD is the trivial representation of GLn−k

and ρU is the tensor rank k representation of GLk of lowest dimension. In
particular,

dim(ρU,D) =

⎧⎪⎨⎪⎩
qk(n−k)+ k2

4 + o(. . .), if k is even;

qk(n−k)+ (k−3)2
4 +3(k−2) + o(. . .), if k is odd;
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Overall, this completes the verification of the assertions on lower bounds on
dimensions, appearing in Theorem 2.2.1.

6.3. Deriving the cardinality of the collection of tensor rank k
irreps

To calculate the number of irreps of a given tensor rank, we will use infor-
mations that come from the η-correspondence and the philosophy of cusp
forms.

Let us start with the largest collections.

6.3.1. The tensor rank n−1 and n cases The cuspidal representations
of GLn are of tensor rank n, and from their construction [16] one knows [7, 35]
that there are aqn + o(. . .) of them, for some 0 < a < 1. In addition, from
the direct construction of the generic split principal series irreps, i.e., these
induced from generic characters of the Borel (or rather its Levi component –
the diagonal torus) we know that there are bqn + o(..) of them for some 0 <
b < 1. But, #(ĜLn) = qn+o(. . .), and the eta correspondence implies that the
number of irreps of GLn of tensor rank ≤ n−2, is not more than qn−1+o(. . .),
so we deduce that there positive constants cn−1, cn, with cn−1 + cn = 1 such
that

(6.17) #(ĜLn)⊗,n−1 = cn−1q
n + o(. . .), and #(ĜLn)⊗,n = cnq

n + o(. . .).

Remark 6.3.1. We note that,

(1) The estimates (6.17) hold also for #(ĜLn)�⊗,n−1 and #(ĜLn)�⊗,n

(2) It can be shown that the constants cn−1 and cn are independent of q.

We proceed to do the counting in the lower tensor rank cases.

6.3.2. The tensor rank k ≤ n − 2 case The eta correspondence (see
Theorem 5.2.2) gives a bijection between (ĜLk)�⊗,≥2k−n – the irreps of GLk of
strict tensor rank greater or equal to 2k−n, and (ĜLn)�⊗,k – the irreps of GLn

of strict tensor rank k. For k ≤ n − 2, the collection (ĜLk)⊗,≥2k−n includes
the irreps of strict tensor rank k and k−1 of GLk, so (ĜLn)�⊗,k = qk + o(. . .).
Moreover, the description (5.23) tells us that these irreps of strict tensor rank
k and k − 1 of GLk are

• mapped by the eta correspondence to irreps of tensor rank k of GLn;
and,
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• produce non-isomorphic representations upon twist by any non-trivial
character of GLn.

As a result, overall we get

#(ĜLn)⊗,k = qk+1 + o(..).

This completes the verification of Theorem 2.3.1, and the derivation of
all the analytic properties stated in Section 2.

7. Deriving the analytic information on ⊗-rank k irreps of
SLn

Let us now derive the estimates on dimensions of tensor rank k irreps of
SLn, n ≥ 3, and the number of such irreps. In particular, we complete the
verification of the results announced in Section 3.

We start with the dimension aspect.

7.1. Deriving the estimates on dimensions

As we remarked earlier, the estimates in the dimension aspect are the same as
for GLn for a simple reason: the restrictions to SLn of the irreps of GLn that
give the lowest and the largest dimensions in a given tensor rank, typically
stay irreducible.

The main tool we use to check the irreducibility in question is the Clifford-
Mackey criterion which says (see Corollary A.2.6 in Appendix A) that the
restriction to SLn of an irrep GLn, stays irreducible if and only if it is not
fixed by twist of any non-trivial character of GLn.

As was done for GLn, we do some case by case computations.

7.1.1. Upper bound on dimensions of tensor rank k irreps

Tensor rank n case The cuspidal representations of GLn have a parametriza-
tion by the complex characters of the maximal anisotropic torus of GLn mod-
ulo the action of the Galois group of the degree n extension of the finite field
[16, 35]. In particular, there exist cuspidal representations (in fact most of
them have this property) of GLn which are not fixed by any twist by a char-
acter of GLn, and so their restrictions to SLn stay irreducible and have the
dimension q

n(n−1)
2 + o(. . .). This is the sharp upper bound announced in (3.2)

for tensor rank n irreps.
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Tensor rank k < n case Consider the SPS representation ρD, associated to
the partition D given by {n − k, 1, . . . , 1} of n. It gives (see Section 6.2.1)
the upper bound for the dimensions of tensor rank k < n irreps of GLn,
and stays (for example by the criterion stated just above) irreducible after
restriction to SLn. This shows that, indeed, in the range k < n the upper
bound qk(n−k)+ k(k−1)

2 + o(. . .) appearing in (3.2) is sharp.

7.1.2. Lower bound on dimensions of tensor rank k irreps

Tensor rank n case Take a cuspidal representation of GL2 which is not fixed
by a twist of any character of GL2. In addition, take a cuspidal representation
of GL3 with similar property (see Section 7.1.1 for more detailed discussion).
Then, apply the construction of the tensor rank n irreps of GLn of minimal
dimension. They will be irreducible after restriction to SLn, and have the
dimension given as a sharp lower bound in (3.2) for tensor rank n irreps.

Tensor rank k < n case As in the case of GLn (see Section 6.2.2) we go over
several cases.

Case k < n
2 : Here, the representation of GLn with smallest possible dimen-

sion is (up to tensoring with a character) given by the SPS representation
ρD, where D is the partition {n−k, k} of n. By the Clifford-Mackey criterion
it stays irreducible after restriction to SLn, This shows that, indeed, in the
range k < n

2 the dimension qk(n−k)+o(. . .) appearing in (3.2) is a lower bound
and, indeed, a sharp one.

Case n
2 ≤ k < 2n

3 : In this interval, for the GLn, the lowest possible dimension
q(n−k)(3k−n) + o(. . .) is (again up to tensoring by a character) of the SPS
representation ρD with D the partition {n − k, n − k, 2k − n} of n. Again,
by the Clifford-Mackey criterion it stays irreducible after restriction to SLn,
confirming that also in this case what appear in (3.2) is a lower bound, and
a sharp one.

Case 2n
3 ≤ k < n: The same reasoning, using what we have for GLn (see

Section 6.2.2), implies that also for this interval the estimate in (3.2) is a
sharp lower bound.

We proceed to discuss the cardinality aspect.
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7.2. Deriving the number of irreps of tensor rank k of SLn

We have sharp estimate on the number of tensor rank k irreps of GLn – see
Formula (2.3). We also know (see Fact 3.2.2) that irreps of GLn share any
constituent (hence all) after restriction to SLn if and only if they differ by
twist by a character of GLn. Finally, we can show that most tensor rank k
irreps of GLn stay irreducible after restriction to SLn. Indeed, we have the
following quantitative result:

Proposition 7.2.1. Consider the irreps of GLn of tensor rank k. Then,

(1) For k < n
2 all of them stay irreducible after restriction to SLn.

(2) For n
2 ≤ k the proportion of them which stay irreducible after restriction

to SLn is 1 − o(1
q ).

For a proof of Proposition 7.2.1 see Appendix D.6.1.
With the help of Proposition 7.2.1 we can get the exact estimates that

stated in Formula (3.3). We go over two cases:

Case k < n
2 : Here the conclusion is clear, after restriction, taking into account

Fact 3.2.2 and Formula (2.3), we get that #((ŜLn)⊗,k) = qk + o(. . .).

Case n
2 ≤ k: Here, using Part (7.2.1) of Proposition 7.2.1, we see, again using

Fact 3.2.2, that #((ŜLn)⊗,k) = qk + o(. . .) for k < n − 1, and there are two
positive constants cn−1, cn, with cn−1 + cn = 1, such that #((ŜLn)⊗,k) =
ckq

n−1 + o(. . .), for k = n− 1, n.

This completes the derivation of estimates (3.3), and of all the analytic
properties announced in Section 3.

Appendix A. Clifford-Mackey theory

We describe some parts from Clifford theory/Mackey’s little group method
[9, 44] that are relevant to this note.

A.1. Setting

Suppose you have a finite group G which is a semi-direct product

G = C 	N,

where N is a normal subgroup, and C is cyclic.
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A simple version of Clifford-Mackey theory gives the construction of the
irreps of G from the irreps of N , and describes how irreps of G decompose
under restriction to N .

A.2. The construction

Note that the group C acts on N̂ , the unitary dual of N , by conjugation.
We will call the members of N̂ that appear in, the restriction to N , of a
representation ρ ∈ Ĝ, the N -spectrum of ρ. The irreducibility of ρ implies
that,

Claim A.2.1. The N-spectrum of ρ ∈ Ĝ is a single orbit for the action of C
on N̂ .

Let us construct all ρ ∈ Ĝ sharing a given N -spectrum. Take a represen-
tation π ∈ N̂ , and let Cπ ⊂ C be the stabilizer of π in C. Then for each c in
Cπ, there is an operator σ(c) on the space of π such that

(A.1) σ(c)π(n)σ(c)−1 = π(cnc−1),

and this σ(c) is determined up to a scalar multiple, by Schur’s Lemma.

Claim A.2.2. We can choose the operators σ(c), c ∈ Cπ, from (A.1) in such
a way that they form a representation of Cπ.

Claim A.2.2 follows from the fact that Cπ is cyclic.8 Indeed, if c0 is a
generator of Cπ, then we can choose σ(ck0) = σ(c0)k for 0 ≤ k < #Cπ =
m. Moreover, equation (A.1) implies that σ(c0)m is a scalar multiple of the
identity. We can multiply σ(c0) by a scalar to arrange that σ(c0)m is exactly
the identity. Then, with this definition of σ we get an extension π̃ of π to
Cπ 	N , namely the representation π̃ = σ 	 π on the space of π given by

(A.2) π̃(c, n) := σ(c) ◦ π(n), c ∈ Cπ, n ∈ N.

We can get other extensions by twisting this with a character of Cπ.
Clifford-Mackey’s theory [9, 44] then says,

Theorem A.2.3. We have,

(1) The irreps of the form (A.2) are (up to twist by a character of Cπ) all
the possible extensions of π from N to Cπ 	N .

8If Cπ is not cyclic, then it may not happen that the σ(c) can be chosen to form
a representation. The prime example is when G is the Heisenberg group, and N is
its center.
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(2) All irreps ρ of G containing π are obtained by inducing one of these
extensions from Cπ 	N to G.

As a result we obtain,

Corollary A.2.4. We have,

(1) Irreps of G have the same N-spectrum iff they differ by twist by a char-
acter of C.

(2) The restriction to N of any member of Ĝ is multiplicity free.

For a proof of Corollary A.2.4 see Appendix D.7.1 (Part (A.2.4) was
proved in [38]).

Finally, let us rewrite Part (A.2.4) of Corollary A.2.4 in a slightly different
and more quantitative way. Denote by Ĝπ the collection of all irreps of G
having π ∈ N̂ in their N -spectrum. Theorem A.2.3 implies,

Corollary A.2.5. The group of characters of Cπ acts naturally on Ĝπ and
this action is free and transitive.

In particular,

Corollary A.2.6. The restriction to N of an irrep ρ of G stays irreducible
iff ρ is not fixed by a twist of any non-trivial character of C.

Appendix B. Harish-Chandra’s “philosophy of cusp forms”

In this section we recall several facts from Harish-Chandra’s “philosophy of
cusp forms” (P-of-CF) [26] for the description/classification of the set of
irreps of GLn. We follow closely the exposition of ideas given in [35] (where
the reader can find more details, including proofs of the various statements).
Other good sources are [7] and the comprehensive study done in [55].

The upshot of the P-of-CF is a process that exhausts ĜLn in three steps:

Step 1. Determining the “cuspidal” irreps of the groups GLm, m ≤ n.

Step 2. Dividing ĜLn into subsets parametrized by “cuspidal data”.

Step 3. Parametrizing the irreps associated with each cuspidal datum.

We will give now more details on Step 2 (see Section B.1) and Step 3 (see
Section B.2), leaving the classification of the irreps to be given in term of the
building blocks – the cuspidal representations of Step 1, which we will not
discuss explicitly in this note (see [7, 16, 35, 55]).
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B.1. Cuspidal data attached to parabolic subgroups

Let us denote Vn = Fn
q , and for each m ≤ n denote by Vm ⊂ Vn subspace

of Vm of vectors having their last n − m coordinates equal to zero, and by
V o
n−m the complementary subspace consisting of vectors having their first m

coordinates set to zero.
Recall that the standard flag associated with an increasing subsequence

of integers

(B.1) A = {0 = a0 < a1 < . . . < al = n},

is the nested sequence of spaces of Vn,

(B.2) 0 = Va0 ⊂ Va1 ⊂ . . . ⊂ Val = Vn.

To the flag (B.2), we associate the following triple of groups:

(1) PA = {g ∈ GLn; g(Vai) = Vai for every i},(B.3)
(2) UA = {g ∈ PA; (g − 1)(Vai) ⊂ Vai−1 for every i},
(3) LA = {g ∈ PA; g(V o

n−ai) = V o
n−ai for every i}.

The group PA is called the standard parabolic subgroup associated with the
flag (B.2), and the groups UA, LA, are, respectively, the unipotent radical and
Levi component of PA. We have,

(B.4)

⎧⎪⎨⎪⎩
PA = LAUA;

LA � ∏
i
GLλi ,

where λi = ai − ai−1, form a partition of n.
Now, we can illustrate a recursive process leading to the P-of-CF.
Take ρ ∈ ĜLn and consider a standard parabolic subgroup PA ⊂ GLn.

Suppose ρ contains a vector invariant under UA, the unipotent radical of PA.
Then Frobenius reciprocity [50] implies that there is a representation κ of
PA, trivial on UA, such that ρ is contained in the induced representation of κ
from PA to GLn,

ρ < IndGLn
PA

(κ).

Since a representation of PA, trivial on UA, is a representation of LA = PA/UA,
and LA is a product of GLm’s for m < n, the problem of determining the
possibilities for κ (i.e., determining L̂A) is presumably easier than that of
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determining ĜLn. Thus, the problem of determining all ρ ∈ ĜLn with UA

invariant fixed vectors is reduced to the problem of determining L̂A and de-
composing induced representations.

We described above an inductive procedure for determining ĜLn, the
building blocks of which are those representations for which no such reduction
is possible, i.e., those irreps κ of GLm, m ≤ n, which contain no UA-invariant
vectors for any A �= {0, n}. Harish-Chandra called these irreps cuspidal, a
term suggested by the theory of automorphic forms.

To make the P-of-CF description of ĜLn more precise, one introduces the
following key definition:

Definition B.1.1. A cuspidal datum is a pair (PA, κ) where PA ⊂ GLn is
a standard parabolic, and κ is a cuspidal irrep of its Levi subgroup LA. Two
cuspidal data (PA, κ) and (PA′ , κ′) are associate if there is a g ∈ GLn that
conjugates the Levi subgroups LA ⊂ PA to LA′ ⊂ PA′ and the corresponding
cuspidal representations κ to κ′.

A main result of the P-of-CF is

Theorem B.1.2 (Harish-Chandra). Suppose ρ ∈ ĜLn. Up to association,
there exists a unique cuspidal datum (PA, κ) with

(B.5) ρ < IndGLn
PA

(κ).

As a consequence we obtain

Corollary B.1.3. The induced representations IndGLn
PA

(κ) and IndGLn
PA′ (κ′)

have components in common if and only if the cuspidal data (PA, κ) and
(PA′ , κ′) are associated. Moreover, in this case the induced representations
are equivalent.

Remark B.1.4. We would like to elaborate a bit more on the structure of a
cuspidal datum.

Note that since LA is a product of GLλi (see (B.4)) then any irrep κ of
LA will be a tensor product

(B.6) κ =
⊗
i

κλi ,

of representations κλi of the GLλi . In particular, κ will be cuspidal if and
only if every factor κλi in (B.6) is cuspidal.

Moreover, since up to association the factors GLλi of LA can be permuted
arbitrarily, it will be useful for us to have certain “standard” organization of
the cuspidal datum:
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First, we will call the A (see (B.1)) for which the differences λi = ai−ai−1
are monotonically (weakly) decreasing the standard representative of its as-
sociation class. Moreover, in this case we will call a cuspidal representa-
tion of LA of the form (B.6) standard iff, for any cuspidal representation
κλ of GLλ, the set of indices i such that λi = λ and κλi � κλ is a con-
secutive set. When these conditions hold, we will also say that (PA, κ) is a
standard cuspidal datum.

Second, we define the decomposition parabolic P
Ã

attached to a given stan-
dard cuspidal datum with parabolic PA. This is a parabolic P

Ã
that contains

PA and defined by an increasing sequence Ã = {ãi} ⊂ A, where the ãi are
such that, two blocks of LA belong to the same block of L

Ã
if and only if

the cuspidal representations attached to the two blocks by the given cuspidal
datum are isomorphic.

In conclusion, Theorem B.1.2 implies that the process of forming induced
representations from parabolic subgroups using cuspidal representations of
Levi subgroups, partitions ĜLn into disjoint subsets parametrized by associ-
ation classes of standard cuspidal data.

B.2. Parametrizing the irreps associated with a cuspidal datum

The next step in the philosophy of cups forms is to parametrize the irreducible
components of the induced representations IndGLn

PA
(κ).

We first observe that, for a standard cuspidal datum (PA, κ) with decom-
position parabolic P

Ã
, we have

Proposition B.2.1. If σ is any irreducible component of Ind
P
Ã

PA
(κ) then

IndGLn
P
Ã

(σ) is irreducible.

Proposition B.2.1 follows from Theorem B.1.2 and Mackey irreducibility
criteria [45, 50].

B.2.1. Parametrizing the irreducible components of Ind
P

Ã

PA
(κ)

Thus, by Proposition B.2.1, all the reducibility of IndGLn
PA

(κ) happens in the
blocks of the Levi component L

Ã
and analysis of reducibility reduces to anal-

ysis of cuspidal datum for which all the blocks have equivalent representations
– see Figure 11 for illustration. A datum of this kind will be called an isobaric
cuspidal datum.

Let us elaborate a bit more on the reduction to an isobaric case.
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Figure 11: Cuspidal datum consisting of two blocks of an isobaric cuspidal
data.

Indeed, the standard cuspidal datum (PA, κ) is given by a representation

κ =
⊗
λ

κ⊗lλ

λ of the Levi component LA =
∏
λ

(GLλ)lλ ,

and the decomposition parabolic P
Ã
⊃ PA has Levi component

L
Ã

=
∏
λ

GLμλ
, μλ = λlλ.

Moreover, since κ is trivial on UA ⊃ U
Ã
, the representation Ind

P
Ã

PA
(κ) will

be effectively the representation Ind
L

Ã
L

Ã
∩PA

(κ) of L
Ã

induced from κ considered
as a representation of the parabolic subgroup

L
Ã
∩ PA =

∏
λ

(
GLμλ

∩ PA

)
.

In particular, we have

IndLÃ
L

Ã
∩PA

(κ) �
⊗
λ

Ind
GLμλ
GLμλ

∩PA
(κ⊗lλ

λ ).

The Levi component of GLμλ
∩ PA is a product of lλ copies of GLλ.

The conclusion is that, indeed, in order to parametrize the irreducible
components of Ind

P
Ã

PA
(κ) it suffices to analyze the case of parabolic induction

attached to an isobaric cuspidal datum.
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B.2.2. Parametrizing the irreps attached to isobaric cuspidal datum
We take n = lλ and consider a parabolic Pl×λ ⊂ GLn with Levi component
Ll×λ = (GLλ)l equipped with a representation of the form κ⊗l

λ , where κλ is
an irreducible cuspidal representation of GLλ.

We would like to parametrize the irreducible components of IndGLn
Pl×λ

(κ⊗l

λ ).
Consider the intertwining algebra EndGLn(IndGLn

Pl×λ
(κ⊗l

λ )). From general
theory (e.g., from Burnside’s double commutant theorem [54]) follows that

Proposition B.2.2. The joint action of GLn and EndGLn(IndGLn
Pl×λ

(κ⊗l

λ )) on
IndGLn

Pl×λ
(κ⊗l

λ ) induces a canonical bijection between the irreps of
EndGLn(IndGLn

Pl×λ
(κ⊗l

λ )) and the irreducible components of IndGLn
Pl×λ

(κ⊗l

λ ).

Example B.2.3. The standard parabolic attached to the set {0, 1, . . . , n} is
the Borel subgroup B ⊂ GLn of upper triangular matrices. The irreducible
representations that appear in IndGLn

B (1) are called spherical principal series
(SPS) representations. Consider the algebra (under convolution) H(GLn//B)
of functions on GLn which are bi-invariant with respect to B. This algebra is
called the spherical Hecke algebra. Realizing IndGLn

B (1) on the space of func-
tions on G/B we obtain an identification

(B.7) EndGLn(IndGLn
B (1)) = H(GLn//B).

Identity (B.7) has an important generalization as follows. Consider the
spherical Hecke algebra H(GLl(Fqλ)//B(Fqλ)). It turns out that,
EndGLn(IndGLn

Pl×λ
(κ⊗l

λ )) has a presentation in term of generators and relations
that is identical to the presentation using standard generators and relations
for H(GLl(Fqλ)//B(Fqλ)) [28, 35, 42]. In particular,

Theorem B.2.4. There is an explicit isomorphism

EndGLn(IndGLn
Pl×λ

(κ⊗l

λ )) � H(GLl(Fqλ)//B(Fqλ)),

that preserves the natural L2-structures on the two algebras up to multiples.

As a corollary we get

Corollary B.2.5. There is a canonical bijection

(B.8) β : ĜLn(IndGLn
Pl×λ

(κ⊗l

λ )) ←→ ĜLl(Ind
GLl(Fqλ )
B(Fqλ ) (1)),

with the following properties:
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(1) The multiplicity of ρ in IndGLn
Pl×λ

(κ⊗l

λ ) is equal the multiplicity of β(ρ) in

Ind
GLl(Fqλ )
B(Fqλ ) (1).

(2) For every ρ ∈ ĜLn(IndGLn
Pl×λ

(κ⊗l

λ )) we have

(B.9) dim(ρ)
dim(β(ρ)) = dim(κ⊗l

λ )#((GLn(Fq)/Pl×λ(Fq))
#(GLl(Fqλ)/B(Fqλ))

.

According to (B.8), in order to parametrize irreps attached to isobaric
cuspidal datum, it is enough to decompose the space IndGLl

B (1).

B.2.3. Parametrizing the spherical principal series representations
We want to parametrize the SPS representations, i.e., the irreps that appear
in IndGLl

B (1).
Let us denote by W the standard Weyl group (i.e., the permutation matri-

ces) in GLl. In addition, for a standard parabolic PA ⊂ GLl, we consider the
induced representation IA = IndGLl

PA
(1), the subgroup WA = W ∩ PA < W ,

and the induced representation YA = IndWWA
(1)).

The following theorem gives an effective parametrization of the SPS rep-
resentations:

Theorem B.2.6. There is a unique bijection

(B.10) α : ĜLl(IndGLl
B (1)) ←→ Ŵ ,

such that for every standard parabolic subgroup PA we have ρ ∈ ĜLl(IA) if
and only if α(ρ) ∈ Ŵ (YA). Moreover, in that case we have

(B.11) dim(HomGLl
(ρ, IA)) = dim(HomW (α(ρ), YA)).

The standard justification for Theorem B.2.6 that we are aware of (see
[5, 35, 37]), goes by the name “Tits’s deformation argument”. However, due
to its fundamental rule in the representation theory of the finite general linear
groups, it might be worthwhile to give other derivations of Theorem B.2.6.
In particular, in Appendix C we sketch a modified approach to the proof of
Theorem B.2.6, which seems to be more elementary than the approach cur-
rently used in the literature, and might give additional valuable information
on representations of GLl.

In conclusion, we obtain a classification of the irreducible components
that appear in IndGLl

B (1). The parametrization is given in term of partitions
of l as is the case for the irreps of W = Sl [8, 15, 54]. As a consequence, using
(B.8) and (B.10) we get a parametrization of the irreps that appear inside
IndGLn

Pl×λ
(κ⊗l

λ ) in terms of partitions of l.
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B.3. Summary

We have learned that, according to the philosophy of cusp forms, an irrep of
GLn is specified by its cuspidal datum, augmented by a collection of parti-
tions. Precisely, for each cuspidal representation κλ that appears in the datum,
if l is the number of times that κλ appears, then we augment the datum with
a partition of l attached to κλ.

Appendix C. Representations of Sl and the spherical
principal series for GLl

We sketch (for a more comprehensive treatment, including proofs of the main
statements, see [25]) a seemingly not so well known organization of the rep-
resentation theories of – on the one hand the symmetric group Sl, and on the
other hand the spherical principal series (SPS) representations of GLl.

The modified perspective, starts by putting at the forefront two naturally
arising structures – the symmetric and spherical monoids. Then, as a logical
outcome of their intrinsic qualities, one is able to reproduce, in an elegant
way, first the classifications – in terms of partitions – of the irreps of the
symmetric group, and of the SPS representations of the finite general linear
group; and second to recast the bijection stated in Theorem B.2.6, in terms of
an isomorphism – the only one possible – between these two aforementioned
monoids.

As a by-product we get additional valuable information on the SPS rep-
resentations of GLl from those of Sl. For example, this is how we obtained
the Pieri rule for GLl in Section 5.3.2.

C.1. The symmetric monoid and the classification of the irreps
of Sl

Consider the set M(Sl) of representations of the symmetric group Sl up to
equivalence. The direct sum operation ⊕ on representations induces, in a
natural way, a structure of a monoid on M(Sl) with identity element given
by the 0 representation. We will call it the symmetric monoid. It is well known
[50] that the symmetric monoid (and the analogous structure for any finite
group) is a free abelian semigroup on the irreducible representations.

The symmetric monoid is equipped naturally with

• an “inner product”, given by the non-degenerate symmetric bilinear
form,

〈σ, σ′〉 = dim(Hom(σ, σ′)), σ, σ′ ∈ M(Sl);
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and,
• a partial order, given by

σ < σ′ iff σ is a sub-representation of σ′.

The monoid M(Sl) has an easily defined and much-studied collection of
elements, called Young modules, parametrized by partitions of l [8]. Indeed,
for a partition L = {l1 ≥ l2 ≥ . . . ≥ ls} of l, we define the Young module
associated with L, to be the induced module

(C.1) YL = IndSl
Sl1×...×Sls

(1),

where the subgroup Sl1 × . . .× Sls is contained in Sl in the standard way.
We would like to point out two properties of the collection (C.1) of Young

modules. Both involve the dominance relation on the set Pl of partitions of l.
Recall that,

Definition C.1.1. If, in addition to L as above, we have another partition
L′ = {l′1 ≥ l′2 ≥ . . . ≥ l′r} of l, then we say that L′ dominates L, and write
L ≺ L′, if r ≤ s and

j∑
i=1

li ≤
j∑

i=1
l′i, for j = 1, . . . , r.

With this terminology we have,

Proposition C.1.2. Suppose L is a partition of l. Then,

(1) For any partition L′ of l, we have YL′ 
 YL if and only if L � L′.
(2) There is a unique irrep

(C.2) σL < YL,

which is not contained in YL′ , for any partition L′ that strictly domi-
nates L. Moreover, the multiplicity of σL in YL is one.

An elementary proof of Proposition C.1.2 can be found in [25, 35].
As a corollary of Proposition C.1.2 we reproduce the well known classifi-

cation of irreps of the symmetric group:

Corollary C.1.3 (Classification). The irreps σL, L ∈ Pl, are pairwise non-
isomorphic, and exhaust Ŝl. In particular, the irreps of Sl are naturally pa-
rametrized by partitions of l.
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C.2. The spherical monoid and the classification of the
constituents of IndGLl

B (1)

Consider the set MB(GLl) of representations (up to equivalence) of the group
GLl for which all subreps have a B-invariant vector. Mutatis mutandem, as
in the case of the symmetric monoid, the set MB(GLl) with the direct sum
operation ⊕ is a monoid. It is the free abelian semigroup on the irreducible
representations of GLl that appear in IndGLl

B (1), that is, in the permutation
action of GLl on the variety of complete flags in Fl

q. It inherits a partial order
structure < and inner product 〈·, ·〉 from the monoid of all representations of
GLl. We will call it the spherical monoid.

As in the case of the symmetric monoid, also the spherical monoid has
a easily defined and much-studied collection of elements parametrized by
partitions. In this case, starting with a partition L = {l1 ≥ l2 ≥ . . . ≥ ls} of
l, we consider the (parabolically) induced module

(C.3) IL = IA(L) = IndGLl
PA(L)

(1) < IndGLl
B (1),

where PA(L) is the standard parabolic (see Section B.1) associated with the
set A(L) = {0, l1, . . . , l1 + . . . + ls = l}.

The collection of induced modules IL (C.3) satisfies the properties:

Proposition C.2.1. Suppose L is a partition of l. Then,

(1) For any partition L′ of l, we have IL′ 
 IL if and only if L � L′.
(2) There is a unique irrep

(C.4) ρL < IL,

which is not contained in IL′, for any partition L′ that strictly domi-
nates L. Moreover, the multiplicity of ρL in IL is one.

An elementary proof of Proposition C.2.1 can be found in [25, 35].
As a corollary of Proposition C.2.1 we reproduce the well known classifi-

cation of the spherical principal series representations of GLl:

Corollary C.2.2 (Classification). The irreps ρL, L ∈ Pl, are pairwise non-
isomorphic, and exhaust ĜLl(IndGLl

B (1)). In particular, the SPS representa-
tions of GLl are naturally parametrized by partitions of l.
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C.3. Correspondence between irreps of Sl and the spherical
principal series of GLl

Consider the symmetric and spherical monoids, M(Sl) and MB(GLl), respec-
tively. We have,

Theorem C.3.1. The assignment

IL �−→ YL, L ∈ Pl,

extends uniquely to an isomorphism of monoids

(C.5) α : MB(GLl)−̃→M(Sl),

that satisfies the following (equivalent) conditions:

C1 α preserves the partial orders < on both monoids.
C2 α preserves the inner products 〈, 〉 on both monoids.

Moreover, the aforementioned extension α satisfies α(ρL) = σL, for every
L ∈ Pl (see (C.4) and (C.2)).

The uniqueness part of Theorem C.3.1 is immediate, while the existence
part is a direct consequence of the Bruhat decomposition [4, 6] (for more
details see [25, 35]).

Finally, we note that Theorem B.2.6 follows from Theorem C.3.1.

C.4. Estimating the dimensions of the spherical principal series
representations of GLl

Proposition C.2.1 has the following consequences for the dimensions of the
SPS representations:

Corollary C.4.1 (Dimension). We have,

(1) Formula. The dimension of the SPS representation ρL (C.4) attached
to a partition L = {l1 ≥ l2 ≥ . . . ≥ ls}of l, satisfies dim(ρL) =
dim(IL) + o(. . .), as q → ∞, and, in particular,

(C.6) dim(ρL) = qdL + o(. . .),

where dL =
∑

1≤i<j≤s
lilj.

(2) Monotonicity. Suppose L and L′ are two partitions of l, with L � L′.
Then, dL′ < dL.

For a proof of Corollary C.4.1 see Appendix D.8.1.
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Appendix D. Proofs

D.1. Proofs for Section 1

D.1.1. Proof of Proposition 1.2.1

Proof. Note that (L2(Fn
q ))⊗k = L2(Mk,n), where Mk,n denotes the space of

matrices of size k × n over Fq. In particular, the space L2(Mk,n) contains
the regular representation if and only if k = n, and the existence of cuspidal
representations, for example, tells us that the filtration does not stabilize
before that stage. This completes the proof of the Proposition.

D.2. Proofs for Section 3

D.2.1. Proof of Lemma 3.2.4

Proof. Consider the section s for the determinant morphism GLn
det−→ F∗

q ,
sending a ∈ F∗

q to the diagonal matrix with diagonal (a, 1, . . . , 1).
Suppose π ∈ ŜLn appears in the restriction of ρ ∈ ĜLn to SLn. Then,

by Fact 3.2.3 we have,

(D.1) ρ|SLn
=
∑

a∈C/Cπ

πa,

where C = F∗
q , πa ∈ ŜLn for a ∈ C, is given by πa(g) = π(s(a)gs(a)−1), and

Cπ is the stabilizer of π in C.
In particular, for an element g ∈ SLn with centralizer in GLn satisfying

our assumption, we have χπa(g) = χπ(g) for every a ∈ F∗
q . It follows that,

χρ(g)
dim(ρ) = χπ(g)

dim(π) ,

as claimed.

D.3. Proofs for Section 4

D.3.1. Proof of Proposition 4.2.2

Proof. We remark that the tensor rank k = 1 irreps that appear in exam-
ple 1.2.5 stay irreps after restriction to SLn, n ≥ 3 (using the argument given
in Appendix D.6.1).
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Next, we compute,

4
∥∥∥P ∗l

C − U
∥∥∥2
TV

≤
∑

1�=ρ∈ŜLn

dim(ρ)2
∣∣∣∣ χρ(T )
dim(ρ)

∣∣∣∣2l

=
n∑

k=1

∑
ρ∈(ŜLn)⊗,k

dim(ρ)2
∣∣∣∣ χρ(T )
dim(ρ)

∣∣∣∣2l

≤ (q − 1)
(
qn − 1
q − 1

)2
(
qn−1 − 1
qn − 1

)2l

+ o(. . .)

≤ 1
q

( 1
q2

)l−n

+ o(. . .),

where the first inequality is (0.7); the second inequality incorporates Exam-
ple 1.2.5 for tensor rank k = 1, and Formulas (3.1), (3.2), and (3.3) for higher
ranks. This completes the verification of the proposition.

D.4. Proofs for Section 5

D.4.1. Proof of the necessity statement in Part (1) of Theorem 5.2.2

Proof. We make use of characterization of strict tensor rank given by Propo-
sition 1.3.1.

If τ has strict tensor rank 2k − n − a, for some k ≥ a > 0, then τ has
a fixed vector for H

′
2k−n−a, the stabilizer of the first 2k − n − a coordinates

subspace in Fk
q . So, τ is contained in IndGLk

H2k−n−a
(1).

Consider the parabolic P2k−n−a, 2(n−k)+a ⊂ GLn, its unipotent radical
U2k−n−a, 2(n−k)+a, and Levi component L2k−n−a, 2(n−k)+a � GL2k−n−a ×
GL2(n−k)+a. In particular, inside this parabolic we have the group
G2k−n−a,2(n−k)+a = U2k−n−a, 2(n−k)+a ·GL2(n−k)+a.

Next, consider the parabolic Pn−k+a,n−k ⊂ GL2(n−k)+a, with Levi
Ln−k+a,n−k = GLn−k+a × GLn−k and unipotent radical Un−k+a,n−k �
Mn−k+a,n−k, namely,

Pn−k+a,n−k

=
{(

A C
0 B

)
∈ GL2(n−k)+a;A ∈ GLn−k+a, B ∈ GLn−k, C ∈ Mn−k+a,n−k

}
.

Denote by ρ̃n−k+a,n−k the pullback to G2k−n−a,2(n−k)+a of

ρn−k+a,n−k = Ind
GL2(n−k)+a

Pn−k+a,n−k
(1),
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and observe that,

IndGLn
Pk,n−k

(τ ⊗ 1n−k) < IndGLn
G2k−n−a,2(n−k)+a

(ρ̃n−k+a,n−k).

Note that the parabolics Pn−k+a,n−k and Pn−k,n−k+a are associate. This im-
plies, using Theorem B.1.2, that the induced representations ρn−k+a,n−k and
(the similarly defined) ρn−k,n−k+a are equivalent. In particular, the pullback
ρ̃n−k,n−k+a of ρn−k,n−k+a to G2k−n−a,2(n−k)+a satisfies

IndGLn
Pk,n−k

(τ ⊗ 1n−k) < IndGLn
G2k−n−a,2(n−k)+a

(ρ̃n−k,n−k+a).

But the group Hk−a ⊂ GLn, that fixes the first k − a coordinates sub-
space in Fn

q , acts trivially on IndGLn
G2k−n−a,2(n−k)+a

(ρ̃n−k,n−k+a), so, using Propo-
sition 1.3.1, we conclude that IndGLn

Pk,n−k
(τ ⊗ 1n−k) contains irreps of strict

tensor rank at most k − a.
This completes the proof of the necessity statement.

D.4.2. Proof of Claim 5.3.1

Proof. Consider the natural GLk × GLn-action on the set of matrices Mk,n.
An orbit for this action is described by the rank of its elements. The rank r
can vary from 0 to k (we assume k ≤ n), and we denote the corresponding
orbit by (Mk,n)r. In particular, we have a decomposition into direct sum of
GLk ×GLn-representations,

L2(Mk,n) =
k∑

r=0
L2((Mk,n)r).

Note that, if 0 ≤ r < l ≤ k, then as GLn-representation L2((Mk,n)r) <
L2(Mr,n), because each GLn-orbit of matrices of lower rank is equivalent to
the open orbit in the matrices of that rank. So, we see that, representations
supported on matrices of lower rank are of lower strict tensor rank, and, in par-
ticular, the strict tensor rank k part of L2(Mk,n) is contained in L2((Mk,n)k).
This proves Part (5.3.1) of Claim 5.3.1.

Next, we want to compute the isotypic components for the action of GLk

on L2((Mk,n)k). Since GLk acts freely on (Mk,n)k, the space L2((Mk,n)k)
contains a copy of the regular representation of GLk. Let us denote by Hτ a
space on which τ ∈ ĜLk is represented, and calculate the multiplicity space

(D.2) HomGLk
(L2((Mk,n)k),Hτ ) =?
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Considering the matrix Ik,n ∈ (Mk,n)k whose first k diagonal elements are
1, and all other entries are 0, we can identify (Mk,n)k = Hk�GLn, where
Hk = StabGLn(Ik,n). Now, to an intertwiner ι in (D.2) we can associate the
function fι : GLn → Hτ , given by fι(g) = ι(δHkg), where δHkg is the delta
function at the coset Hkg. Note that since GLk · Hk = Pk,n−k, and GLk

normalizes Hk, the assignment ι �→ fι, gives a morphism

HomGLk
(L2(Hk�GLn),Hτ )(D.3)

−→ {f : GLn → Hτ ; f(pg) = τ̃(p)f(g), p ∈ Pk,n−k, g ∈ GLn},

where τ̃ is the composition of τ with the projection Pk,n−k � GLk.
The right-hand side of (D.3) is IndGLn

Pk,n−k
(τ ⊗ 1n−k), and, moreover, the

mapping (D.3) is an isomorphism. This proves Part (5.3.1) of Claim 5.3.1.

D.4.3. Proof of Claim 5.3.7

Proof. We use the development described in Appendix C.
Consider the isomorphism α (C.5) given in Theorem C.3.1, between the

spherical monoid MB(GLn) and the symmetric monoid M(Sn). It preserves
the inner product structures, defined by the intertwining number pairings,
on both sides. But, by the way the SPS representations of the general linear
groups, and the irreps of the symmetric groups, are assigned to partitions
(see Appendices C.2 and C.2, respectively), we know that α sends IρD (5.17)
to IσD (5.19). Concluding, for every partition E of n and D of k, the identity
〈ρE , IρD〉 = 〈σE , IσD〉 (5.18) holds. This completes the proof of Claim 5.3.7.

D.4.4. Proof of Theorem 5.3.8

Proof. Recall Schur duality [49]: the groups GLm(C) and Sn both act in an
obvious way on the n-fold tensor power (Cm)⊗nof Cm. The actions of GLm(C)
and Sn commute with each other, and moreover, they generate mutual com-
mutants in the endomorphisms of (Cm)⊗n . The resulting correspondence of
representations is compatible with the parametrizations of the representations
of Sn and of GLm(C) with Young diagrams [32].

If we look at the action of Sk × GLm(C) on (Cm)⊗k , then the isotypic
subspace for the representation σD of Sk will be isomorphic to σD ⊗ ρD, as
a representation of Sk × GLm(C). Here ρD is the representation of GLm(C)
parametrized by the Young diagram D. Similarly, if we look at the action of
Sn−k ×GLm(C) on the Sn−k invariants, then the action of Sn−k ×GLm(C) is
1n−k ⊗ Sn−k(Cm). Here Sa(Cm) indicates the a-th symmetric power of Cm,
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and is the representation of GLm(C) corresponding to the diagram with a
single row of length a.

Taking the tensor product, we conclude that the isotypic component of
(Cm)⊗n for the representation σD ⊗ 1n−k of Sk × Sn−k, is the Sk × Sn−k ×
GLm(C)-module

(σD ⊗ 1n−k) ⊗ (ρD ⊗ Sn−k(Cm)).

The Pieri rule for the complex general linear group [32] tells us that
the tensor product ρD ⊗ Sn−k(Cm) of GLm(C)-modules decomposes in a
multiplicity-free sum of representations ρD̃, where D̃ is as described in the
statement of the theorem: D̃ has n boxes, contains D, and D̃ −D is a skew
row.

Now consider the Sn × GLm(C)-module generated by ρD ⊗ Sn−k(Cm).
From Schur duality, we know that it is the sum σ

D̃
⊗ ρD̃, where D̃ runs

through the set of diagrams of the previous paragraph, mutatis mutandem, of
the statement of the theorem. On the other hand, this is the Sn ×GLm(C)-
module generated by the Sk × Sn−k-module σD ⊗ 1n−k. It follows that the
restriction of a representation σE of Sn to Sk × Sn−k contains σD ⊗ 1n−k if
and only if E = D̃, as described above, and then the multiplicity of σD⊗1n−k

in σ
D̃

is 1. The theorem now follows by Frobenius reciprocity.

D.4.5. Proof of Corollary 5.4.1

Proof. It is not difficult to see (e.g., using the intrinsic characterization given
by Proposition 1.3.1) that for SPS representation strict tensor rank and tensor
rank agree. Take a Young diagram D ∈ Yn with longest row of size d1, and
consider the corresponding SPS representation ρD. According to the Pieri rule
(see Theorem 5.3.8), k = n − d1 is the first such that ρD appears inside an
induced representation of the form IρE = IndGLn

Pk,n−k
(ρE ⊗ 1n−k) where ρE is a

SPS representation of the GLk-block of the parabolic Pk,n−k. In fact, E ∈ Yk

is the Young diagram obtained from D by deleting its first row. So the strict
co-tensor rank of ρD is d1. This proves Part (5.4.1).

Part (5.4.1), i.e., the case of general irrep, is proved in a similar manner.
The Pieri rule implies Formula (5.21), and using it and all of its twists by
characters, we deduce the statement applying the same argument as in the
SPS case.

This completes the proof of Corollary 5.4.1.
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D.5. Proofs for Section 6

D.5.1. Proof of Proposition 6.1.1

Proof. Recall that the unipotent radical Un−1,1 of the parabolic Pn−1,1 is
isomorphic to Fn−1

q , and that any non-identity element in that group is a
transvection. So all non-identity elements are conjugate, and dually, all non-
identity characters are conjugate. So the restriction of any representation of
GLn to Un−1,1 is a sum of some copies of the trivial representation 1Un−1,1 ,
and some copies of reg◦

Un−1,1
= regUn−1,1

− 1Un−1,1 the regular representation
minus the trivial representation.

Let ρ be an irreducible representation of GLn. If the restriction of ρ to
Un−1,1 contains 1Un−1,1 , then by Frobenius reciprocity, ρ must be contained
in a representation induces from the parabolic Pn−1,1. This means that its
realization in terms of the philosophy of cusp forms must be induction from
a parabolic whose Levi component contains some GL1 factors, which in turn
means, by Corollary 5.4.1, that ρ has tensor rank at most n− 1.

We conclude that tensor rank n irreps restricted to Un−1,1 contain only
multiple of reg◦

Un−1,1
, and the character ratio of such a representation on the

transvection will be the character ratio, on that element, of reg◦
Un−1,1

, which
is −1

qn−1−1 . This completes the proof of Proposition 6.1.1.

D.5.2. Proof of Proposition 6.1.3

Proof. The proof is by a direct computation of the ratio between the car-
dinalities of an appropriate set of flags of vector spaces and its subset of
transvection invariant flags.

The representation ID, where D = {d1 ≥ . . . ≥ dr} is a partition of n, can
be realized on the space of functions on the set XF of flags of vector spaces
in V = Fn

q of the form

(D.4) F : 0 = Va0 ⊂ Va1 ⊂ . . . ⊂ Var−1 ⊂ Var = V ,

where dim(Vaj ) = aj , and dim(Vaj/Vaj−1) = dj , for j = 1, . . . , r.
Let T be a transvection on V , i.e., T − I (here, I stands for the identity

operator) has rank one, and (T − I)2 = 0.
We are interested in knowing what restrictions the flag F (D.4) must

satisfy in order to be invariant under T . We treat two extreme cases, and
then the general case.

Case 1. Suppose the line L = Im(T − I) is not contained in Var−1 .
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In this case for F to be invariant under T , all the Vaj , and in particular,
Var−1 , must be contained in ker(T − I), which is a hyperplane – a subspace
of V of co-dimension 1. In other words, F is actually a flag in (n − 1)-space
rather than n-space.

The collection of flags with the given subspace dimensions in (n−1)-space
rather than n-space has relative cardinality 1

q
dim(Var−1 ) + o(. . .) with respect to

the collection of all such flags in n-space, as one sees by comparing opposite
unipotent radicals in the two situations.

Case 2. Suppose, on another hand, that the line L is contained already in Va1 .

In this case F is guaranteed to be invariant under T . How many flags
can satisfy this condition? If L is contained in Va1 , then the flag F will push
down to define a flag in the (n − 1)-dimensional space V/L. Again compar-
ing opposite unipotent radicals, we see that the relative cardinality of this
collection of T -invariant F with respect to the collection of all possible F is

1
qn−dim(Va1 ) + o(. . .).

Case 3. Now consider the general situation: suppose Vaj � L ⊂ Vaj+1.

Here, by looking only at the sub-flag

Faj : Va1 ⊂ . . . ⊂ Vaj ⊂ V,

we conclude that Faj is part of a collection of flags of relative cardinality
1

q
dim(Vaj ) with respect to the set of all flags with the same dimension set as Faj .

On the other hand, consider the flag

ajF : Vaj+1/Vaj ⊂ . . . ⊂ Var−1/Vaj ⊂ V/Vaj .

It satisfies the second simplified condition of Case 2. This implies that ajF is
part of in a collection of flags of relative cardinality 1

q
n−dim(Vaj+1) + o(. . .) with

respect to the collection of all flags with the dimension set of ajF .
The mapping F �→ Faj defines a surjective map from the set XF of flags

with dimension set the same as F , to the collection of flags with the dimension
set of Faj . This map is a fibration, with fiber equal to the collection of flags
with dimension set equal to that of ajF . Looking at the inverse image of
the T -invariant set in the fiber over each point of the T -invariant set in Faj

satisfying the condition Im(T − I) ⊂ Vaj+1 , we conclude that the set of flags
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with the dimension set of F and such that Im(T − I) is contained in Vaj+1

but not in Vaj has relative cardinality

1
qn−dim(Vaj+1 )+dim(Vaj ) + o(. . .) = 1

qn−dim(Vaj+1/Vaj ) + o(. . .),

with respect to the set XF .
Taking the minimum of the numbers

n− max
j

dim(Vaj+1/Vaj ),

which in our case is n−d1, and denote by md1 the number of times the quantity
d1 appears in the partition D, we conclude that the relative cardinality of the
set XT

F , of T -invariant flags with the dimension set of F , with respect to the
set XF is

(D.5) #XT
F

#XF
= md1

qn−d1
+ o(. . .).

Of course (D.5) is equal to χID
(T )

dim(ID) . This completes the proof of Proposi-
tion 6.1.3.

D.5.3. Proof of Proposition 6.1.4

Proof. Fix an algebraic closure k of Fq. Consider the flag variety XD of flags
in V = kn defined by a partition D = {d1 ≥ . . . ≥ dr} of n [14]. It is
irreducible of dimension

Δ = dim(XD) =
∑

1≤i<j≤r

didj .

Consider a transvection T acting on XD. It has fixed points (this was
explained in the proof just above) that form a Zariski open subset of a union
of flag varieties These flag varieties have dimensions

Δi = Δ − n + di.

Consider a partition D′ that dominates D. Then D′ can be reached from D
by a sequence of transformations of the type da �→ da + 1; and db �→ db − 1,
for a < b, and leaving the other di’s unchanged.
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For this D′, we have

Δ′ = dim(XD′) = Δ +
∑
i�=a

di −
∑
i�=b

di − 1

= Δ − da + db − 1.

Then the subvarieties of fixed points for the transvection on this XD′ have
dimensions

Δ′
i = Δ′ − n + d′i.

Since we have d′i = di except for i = a, b, and since d′b = db − 1, and since
Δ′ < Δ, these dimensions are all less than for the corresponding subvarieties
for D, except possibly for Δ′

a = Δ′ − n + da + 1. For this to be equal to the
largest dimension for D, we would need that Δ′ = Δ − 1, and da = d1.

The condition Δ′ = Δ−1 in turn implies that db = da. Thus, the trace of
the transvection on ID′ = L2(XD′) (where XD′ denotes the set of Fq-rational
points XD′ = XD′(Fq)) will be of smaller order of magnitude than the trace
on ID = L2(XD), except when da = db, in which case, it will be of the same
order of magnitude.

This completes the proof of the Proposition.

D.6. Proofs for Section 7

D.6.1. Proof of Proposition 7.2.1

Proof. According to Corollary (A.2.6) the restriction to SLn of an irrep ρ
of GLn is irreducible iff ρ is not fixed by a twist of any non-trivial charac-
ter of GLn. Moreover, the eta correspondence (see Theorem 5.5.1), and the
description (see Formula (5.23)) of its image, tells us that, a twist by a char-
acter of a tensor rank k representation will produce isomorphic one only if
the corresponding representation of GLk has tensor rank

(D.6) r = 2k − n.

Now, let us go over various cases:

The tensor rank k < n
2 irreps of GLn: In this domain, no irreps of GLk

has tensor rank (D.6). So every irrep of GLn, in this range, stays irreducible
after restriction to SLn. This completes the justification of Part 1 of Propo-
sition 7.2.1.

The tensor rank n
2 ≤ k ≤ n − 2 irreps of GLn: In this interval r =

2k − n ≤ k − 2, so using the counting coming from the eta correspondence
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our knowledge on the cardinality of the tensor rank r irreps of GLk (see
Theorem 2.3.1) we get that at most qk−1 + o(. . .) irreps of tensor rank k
of GLn might be reducible after restriction to SLn. This justify Part 2 of
Proposition 7.2.1, for the range under discussion.

The tensor ranks n − 1 and n irreps of GLn: For the irreps of tensor
rank n−1 of GLn, the “generic” split principal series representation, induced
from characters of the standard Borel subgroup which are not fixed by twist
of any character of GLn, stays irreducible after restriction to SLn (in fact
these contribute the cn−1q

n + o(. . .) to the cardinality of irreps of tensor rank
k = n− 1 given in Formula (2.3)).

A similar argument applies for the irreps of tensor rank n of GLn. Here
we use the cuspidal irreps of GLn parametrized by generic characters of the
torus of GLn defined by the multiplicative group of the field extension Fqn of
degree n of Fq. (See Section 7.1.1 for more information on this parametriza-
tion). This provides 1

nq
n + o(. . .) cuspidal irreps, which all have tensor rank

n, and stays irreducible after restriction to SLn. Similar arguments can be
made for any maximal torus in GLn. Generic characters of a given torus will
parametrize representations of rank n if all the irreducible factors of the torus
are multiplicative groups of proper extensions of Fq. If one or more factors of
the torus is F∗

q , then the corresponding representations will have rank n− 1.
Overall, the above counting gives the cnq

n + o(. . .) irreps of tensor rank
k = n given in Formula (2.3).

This completes the justification of Part 2 of Proposition 7.2.1.

D.7. Proofs for Appendix A

D.7.1. Proof of Corollary A.2.4 We use the notations and definitions
given in Section A.

Proof. We start with the proof of Part (A.2.4).
Of course two irreps of G that differ by a twist by a character of C have

the same N -spectrum.
For the other direction. Suppose π is an irrep of N . Since C is cyclic, all

possible characters of the stabilizer Cπ of π arise by restriction from some
character of C. If we take one irreducible ρ of G containing π, it will be
induced from some representation π̃ of Cπ	N , as described in Section A (see
Part (A.2.3) of Theorem A.2.3). If we twist ρ with a character of C it will
be induced from the representation π̃, twisted with this character restricted
to Cπ. But we know (see Part (A.2.3) of Theorem A.2.3) this will give all
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possible extensions of π to Cπ	N , and so will give all possible representations
of Ĝ containing π when restricted to N . This completes the proof of Part
(A.2.4).

Part (A.2.4), i.e., the multiplicity-freeness also follows from the descrip-
tion of the irreducibles containing π. They are all induced from the extension
of π (which is exactly one copy of π on N) to the stabilizer of π under action
of C by conjugation. So the induced representation restricted to N consists of
one copy of each Ad∗C transform of π, one for each coset in G/(Cπ	N).

D.8. Proofs for Appendix C

D.8.1. Proof of Corollary C.4.1

Proof. Suppose L = {l1 ≥ l2 ≥ . . . ≥ ls} is a partition of l. We have
dim(IL) = #(GLl/PL) = #(UL), where UL is the unipotent radical of PL. An
easy direct computation gives #UL = qdL + o(. . .), where dL =

∑
1≤i<j≤s

lilj . It

follows that

(D.7) dim(IL) = qdL + o(. . .).

We want to show that

(D.8) dL′ < dL, if L′ � L.

Indeed, suppose that for some j0 < j1, we have a partition of l given by L′ =
{l1 ≥ . . . ≥ lj0−1 ≥ lj0 + 1 ≥ lj0+1 ≥ . . . ≥ lj1−1 ≥ lj1 − 1 ≥ lj1+1 ≥ . . . ≥ lr}.
Then L′ � L, and, in fact, the dominance order on partitions is generated by
such inequalities [8]. In particular, it is enough to show that dL′ < dL for such
L,L′. A direct computation implies that dL > dL′ , iff lj0 ·lj1 > (lj0+1)·(lj1−1),
and the latter inequality holds true since lj0 ≥ lj1 .

Now, combining Formulas (D.7) and (D.8), with Proposition C.2.1, we
get that dim(ρL) = dim(IL) + o(. . .) = qdL + o(. . .).

This completes the proof of both parts of Corollary C.4.1.
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