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On the sum of Ricci-curvatures for weighted graphs

SHULIANG BaAl, AN HuanG, LINYUAN LU, AND SHING-TUNG YAU*

Abstract: In this paper, we generalize Lin-Lu—Yau’s Ricci cur-
vature to weighted graphs and give a simple limit-free definition.
We prove two extremal results on the sum of Ricci curvatures for
weighted graph. A weighted graph G = (V| E, d) is an undirected
graph G = (V, E) associated with a distance function d: £ —
[0,00). By redefining the weights if possible, without loss of gen-
erality, we assume that the shortest weighted distance between
u and v is exactly d(u,v) for any edge uv. Now consider a ran-
dom walk whose transitive probability from an vertex w to its
neighbor v (a jump move along the edge wv) is proportional to
Wyy = F(d(u,v))/d(u,v) for some given function F'(e). We first
generalize Lin—Lu—Yau’s Ricci curvature definition to this weighted
graph and give a simple limit-free representation of x(x,y) using
a so called *-coupling functions. The total curvature K(G) is de-
fined to be the sum of Ricci curvatures over all edges of G. We
proved the following theorems: if F'(e) is a decreasing function,
then K(G) > 2|V| — 2|E|; if F(e) is an increasing function, then
K(G) < 2|V| — 2|E|. Both equations hold if and only if d is a
constant function plus the girth is at least 6.

In particular, these imply a Gauss—Bonnet theorem for (un-
weighted) graphs with girth at least 6, where the graph Ricci cur-
vature is defined geometrically in terms of optimal transport.

1. Introduction

Ricci curvature is a fundamental concept from Riemannian Geometry [7] that
has been extended to a discrete setting. There are different definitions of Ricci
curvature defined on graphs, see references [5, 9, 13]. Among the various cur-
vature notions the Ollivier Ricci curvature, is defined on arbitrary metric
spaces equipped with a Markov chain, and has extended some of results for
positively curved manifolds such as the Bonnet—-Myers theorem bounding the
diameter of the space via curvature, the Lichnerowicz theorem for the spec-
tral gap of the Laplacian, a control on mixing properties of Brownian motion
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and the Levy—-Gromov theorem for isometric inequalities and concentration of
measures [14]. In the special setting of graphs, the Ollivier Ricci curvature is
based on optimal transport of probability measures associated to a lazy ran-
dom walk [13, 14]. Analogously to a Riemannian manifold the Ricci curvature
defined on Riemannian manifold measures the local amount of non-flatness
of the manifold, while the Ollivier Ricci curvature measures the distance (via
the Wasserstein transportation distance) between two small balls centered at
two given nodes. By this notion, positive curvature implies that the neighbors
of the two centers are close or overlapping, negative curvature implies that
the neighbors of two centers are further apart, and zero curvature or near-
zero curvature implies that the neighbors are locally embeddable in a flat
surface. The Ollivier Ricci curvature provides a curvature of any two nodes
and it depends on an idleness parameter of the random walk. In 2011, Lin,
Lu, and Yau [8] modified this notion to a limit version so that it does not
depend on the idleness parameter, which is more suitable for graphs, such as
computing the curvature on random graphs or Cartesian product of graphs.
Later on, many properties and consequences of the Ollivier Ricci curvature
and the modified version have been done, see [3, 1, 2, 10, 16|, etc. More re-
cently, these curvatures has been applied in various research areas such as
network analysis [12, 15], quantum computation, dynamic Networks [6], etc.

When it comes to the applications of Ricci curvature, the weighted graph
models are more useful than the unweighted graphs models, as in the real-
world networks, not all relation have the same capacity. For this, the Ricci
curvatures of graphs have been generalized to weighted graphs according to
different needs, see [11, 6]. In this paper, we study a more general definition
of Ricci curvature defined on weighted graphs. For any weighted graph, there
are two symmetric positive valued functions d, w defined on edges, the d(3, j)
represent the distance between 7, j € V' and w;; represent weight distribution
on edge (7,7) which is used to define the probability distribution functions.
For any vertex z € V and any value o € [0, 1], the probability distribution
1S assigns amount o at vertex x and amount Umwsi 4 4] its neighbors 1.

y~a Y

Then a-Ricci-curvature x, of edge (z,y) is defined to be
W, py)
Ra\T,Y) = 1— 7/ N
=T i)

where W (ug, p5y) is the Wasserstein transportation distance transporting ug
to . By Lin-Lu-Yau’s definition, the Ricci curvature k(x,y) is defined as

. kolz,y
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Given a weighted graph with fixed d, the curvature k(z,y) is a multi-
variate function with variables w;;. We consider K(G) = >, r(,y): the
sum of Ricci-curvatures over all edges of graph G. It is interesting to know the
extremal value of K (G) and the conditions for weighted graph G to achieve
these values. As the weight distribution function w varies, the behavior of the
extremal value of K(G) changes. In this paper we study the maximal value
and the minimal value of K(G) in two different cases, and prove a version of
the Gauss—Bonnet theorem for graphs with girth at least 6: Corollary 3.7.

The paper is organized as follows, in Section 2, we set up the notations
of generalized Ricci curvature defined on weighted graphs and compare our
definition with the existing ones, we also give a more simple expression of the
generalized Ricci curvature using x-coupling function; in Section 3, we state

and prove the results about the minimal and maximal of total curvature
K(G).

2. Notations

In this section, we generalize the definition of Ricci-curvature of graphs to the
weighted graphs. A weighted graph G = (V, E, d) is a connected simple graph
on vertex set V and edge set E where set F is associated by the distance
function (or edge length function) d : E — R* which assigns a positive value
to each edge e € E. For any two adjacent vertices x,y, we represent the
length of edge e = (x,y) as d(x,y) or d(e). We call G as a combinatorial
graph if the distance function d is uniform on all edges, that is d(e) = 1 by a
scaling for all edges e € E. The length of a path is the sum of edge lengths
on the path, for any two non-adjacent vertices z,y, the distance d(z,y) is
the length of a minimal weight path among all paths that connect x and y.
For any vertex z,y € V, notation x ~ y represents that two vertices x and
y are adjacent, I'(x) represents the set of vertices that are adjacent to x
and N(z) = I'(z) U {z}. In this paper, we study the undirected weighted
graph, that is, d(x,y) = d(y,z) for all (z,y) € E. The girth of a weighted
graph, denoted girth(G) is the size of the smallest cycle contained in the
combinatorial graph. If the graph does not contain any cycles (i.e. it’s an
acyclic graph), its girth is defined to be infinity.

We introduce another positive symmetric function defined on the edges
of graph G, which is used to define the probability distribution function p,.
We call it as weight distribution function w : E — R™. For better distinction,
we write the value of w on edge (7,y) as wyy. Let Dy =37, Wy, then for
any vertex x € V and any value a € [0, 1], the probability distribution g is
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defined as:
a, if z=u,
1) W)= (1— )%=, ifz~a,
0, otherwise.

Definition 2.1. Let G = (V, E,d) be a weighted graph. A probability dis-
tribution over the vertex set V is a mapping u : V — [0,1] satisfying
> zcv i(x) = 1. Suppose that two probability distributions p; and pg have
finite support. A coupling between 1 and ps is a mapping A : V xV — [0, 1]
with finite support so that

> Az, y) = m(x) and D A(z,y) = pa(y).

yeVv zeV

The transportation distance between two probability distributions p; and
1o is defined as follows:

(2) W, p2) =inf Y Az, y)d(,y),

z,yeV

where the infimum is taken over all coupling A between uq and ps.

A coupling function provides a lower bound for the transportation dis-
tance, the following definition can provide an upper bound for the transporta-
tion distance.

Definition 2.2. Let G = (V, E,d) be a locally finite weighted graph. Let
f:V —R. Wesay f is 1-Lipschitz if

f(x) = fy) < d(z,y),

for each x,y € V.

By the duality theorem of a linear optimization problem, the transporta-
tion distance can also be written as follows:

(3) W (s pz) = sup Y f(2)[p () — pa(a)],

zeV

where the supremum is taken over all 1-Lipschitz functions f. We will call a
A € VXV satisfying the above infimum in equation (2) an optimal transporta-
tion plan and call a f € Lip(1) satisfying the above supremum an optimal
Kantorovich potential transporting g to pe.
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Definition 2.3. Let G = (V, E,d,w) be a locally finite weighted graph as-
sociated with a weight distribution function w. Let p$ be the probability
distribution function defined in equation (1) for any 0 < « < 1. For any
xz,y € V, the a-Ricci-curvature k, is defined as

Wug, py)

/fa(ﬂf,y) =1- d(l‘,y) )

where W (ug, pg) is the the Wasserstein distance transporting pg to iy
The Ricci curvature k(z,y) is defined as

The total curvature of G is defined as

K(G)= ) ula.y).

zyelE

In the following we state some basic properties of this generalized defi-
nition in the results Remark 2.9 for d restricted to a set of positive rational
numbers and results in Theorem 2.10. These results are not logically necessary
for this paper, the readers can skip this part and go directly to Theorem 2.14.

In the case of combinatorial graphs and w = d = 1, k(z,y) is the Lin—
Lu-Yau’s curvature and kq(z,y) is Ollivier’s curvature. In the a-Ollivier—
Ricci curvature, for every edge zy in G, the value « is called the idleness,
and function oo — ko (z,y) is called the Ollivier—Ricci idleness function. The
authors [3] proved that the idleness function k,, is a piece-wise linear function
with at most three pieces.

Theorem 2.4 ([3]). Let G = (V, E) be a locally finite graph. Let x,y € V
such that © ~ y and d(x) > d(y). Then o — kq(x,y) is a piece-wise linear
function over [0, 1] with at most 3 linear parts. Furthermore, kq(x,y) is linear
on [0, m] and is also linear on [m, 1]. Thus, if we have
further condition d(x) = d(y), then ko(x,y) has at most two linear parts.

One of two key ingredients of their proof in [3] is the “integer-valuedness”
of optimal Kantorovich potentials which can be generalized to weighted graphs
in our setting only if the distance function d is integer valued, the second one
is the Complementary Slackness Theorem showing below which can be easily
applied to weighted graphs.
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Lemma 2.5 ([3]). Let G = (V, E,d,w) be a locally finite weighted graph. Let
x,y € V with x ~ y. Let a € [0,1]. Let A and f be an optimal transport
plan and an optimal Kantorovich potential transporting ug to py respectively
where pg, piy, K are defined in equation (1) and Def. 2.3. Let u,v € V with
A(u,v) # 0. Then

fu) = f(v) = d(u, v).
In the following we assume the distance function d is integer-valued.

Corollary 2.6. Let G = (V,E,d) be a locally finite weighted graph with
integer valued function d. Let f € Lip(1), then | f],[f] € Lip(1).

Proof. For each v € V, set §, = f(v) — [f](v), then ¢, € [0,1) and for any
w eV, 0y — 0y € (—1,1). We have

L)) = LF ()] = | (v) = 60 = f(w) +0w| < d(v, w) +]6y = bu| < d(v, w)+1.

Since d is a integer-valued function, then || f|(v) — | f](w)| < d(v,w). Thus
| f] € Lip(1). The proof that [f] € Lip(1) follows similarly. O

Lemma 2.7 (Integer-valuedness [3]). Let G = (V, E,d,w) be a locally finite
weighted graph with integer valued function d. Let x,y € V with x ~ y. Let
a € (0,1]. Then there exists f €Lip(1) such that

W (g, py) = sup > F@) [ (w) — e (w)],

ueV

and f(u) is an integer-valued function for all uw € V.
Proof. The proof is omit, please refer to Lemma 3.2 of [3]. O

Corollary 2.8. Let G = (V, E,d,w) be a locally finite weighted graph with
integer valued function d. Let x,y € V with x ~ y. Let o € [0,1], ko(z,y) is
defined in Def. 2.3, then o — ko (x,y) is piece-wise linear over [0, 1] with at
most 2d(z,y) + 1 linear parts.

Proof. Let f be an optimal Kantorovich potential with f(y) = 0, then f(x)
could take at most 2d(z, y)+1 integer values to satisty |f(z)— f(y)| < d(z,y).
The proof is omit, refer to Theorem 3.3 in [3]. O

Remark 2.9. Note if we assume d is a set of positive rational numbers, we
can re-scale the distance function d, for example by a multiple of 10, such
that the d is integer-valued, the curvature x(x,y) will not change by such a
scaling. Thus a — k4 (x,y) is still a piece-wise linear function over [0, 1].
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Theorem 2.10. Let G = (V, E,d,w) be a locally finite weighted graph asso-
ciated by a weight distribution function w. Assume d satisfies “Treelike” ex-
plained in Section 3. For any x ~ y with Dy > Dy, let o € (wzijI ,1]. Let f
be an optimal Kantorovich potential transporting g to pg. Then f(z)—f(y) =

d(z,y). And o — ko (z,y) is linear in [w;:inw 1]

Proof of Theorem 2.10. Let A be an optimal transport plan and f be an
optimal Kantorovich potential transporting g to ;. We only need to prove
f(x) — f(y) = d(z,y) and the rest is just similar as shown in [3]. Since o >
w;:wa and D, > D, p2(y) = % < a = pg(y), thus there exist vertex
z such that A(z,y) > 0. If z = x then f(z) — f(y) = d(z,y) by Lemma 2.5.
Since d satisfies “Treelike”, then there is no case z ~ z and z ~ y, the only
case left is consider z ~ x and z # z. Then we have f(z) — f(y) = d(z,y).
Again by “Treelike” d(z,y) = d(z,x) + d(x,y). On the other hand, we have
() = fy) = f(=) = f(@) + f(&) — f(y) < d(z,2) + f(z) — f(y) which
implies f(z) — f(y) = d(z,y). The prove for the rest of theorem is similar as
in Theorem 4.4 in [3]. O

If all distances are rational numbers in a weighted graph, with Remark 2.9
and Theorem 2.10, it is possible to compute the edge curvature by choosing
a to be a value closer to 1 in our settings.

Miinch and Wojciechowski [11] proposed a different generalized version of
Lin-Lu-Yau Ricci curvature on weighted graph and also expressed the curva-
ture without a limit using graph Laplacian operator. What is different from
our definition is all distances involved in their definition is the combinatorial
distance, i.e. the distance between any two vertices z and y is the minimum
number of edges connecting x and y. Now we briefly rephrase their proba-
bility distribution function and the result using our notations, note we use
d'(z,y) to indicate the combinatorial distance, use w(zx,y) to represent the
edge weight distribution.

Definition 2.11 ([11]). Let G = (V, E,w) be a weighted graph with edge
weight function w. The probability distribution p$ be defined as:

«Q, if z =ux,
w(x,z) .
(4) () = IOt e

0, otherwise.
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For any function f:V — R, the graph Laplacian A is defined by:

1
Af(z) = mgw(%y)(ﬂy) — f(7)).

zZ~x

And any two vertices x,y, let

fx) — fly

v 10— 16)
d'(z,y)

Theorem 2.12 ([11] (Curvature via the Laplacian)). Let G = (V, E,w) be a

weighted graph with edge weight function w, let u$ be the weight distribution

function defined in equation (4), then for x #y € V(QG),

— inf A
k(z,y) jomf VayAf
Vyzle

Although the distance in [11] is different, the proof still works in our
setting when d(z,y) is the weighted distance.

Corollary 2.13. Let G = (V, E,d,w) be a weighted graph with edge weight
function d,w. For any vertex x € V, let n$ be defined in expression 4. Define
Vauf = %, where d(x,y) is the weighted distance. Let r be defined in
Def. 2.3, then forany x #y € V(QG),

= inf V,,Af.
K(z,y) st Vay f
Vo f=1

Motivated by Theorem 2.12, here we prove a dual theorem for a limit-
free definition for our generalized version and thus for the Lin—Lu—Yau Ricci
curvature. Let p1, := p2 be the probability distribution of random walk at x
with idleness equal to zero. For any two vertices v and v, a *-coupling between
1y and i, is a mapping B : 'V x V' — R with finite support such that

1. 0 < B(u,v), but all other values B(x,y) < 0.
2. Y B(z,y)=0.
z,yeV
3. > B(x,y) = —pu(x) for all x except u.
yev
4. 3 B(z,y) = —py(y) for all y except v.

zeV
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Because of items (2), (3), and (4), we get

B(u,v) = > —B(w,y) <Y pulr) + D poly) < 2.

(z,y)€V XV \{(u,v)}

It is not hard to verify that the solutions exist for the maximization of

> B(z,y)d(x,y), considering the x-coupling B(x,y) as variables in this
z,yeV
linear programming problem, as it is equivalent to the existence of solutions

for the minimization of W (uS, n%), see [13].

Theorem 2.14 (Curvature via coupling function). Let G = (V, E,d,w) be a
weighted graph with edge weight function d,w. k is defined in Def. 2.3. For
any two vertex u,v € V, we have

K(u,v) = d(ul,v) sup Z B(x,y)d(z,y),

where the superemum is taken over all weak *-coupling B between fi,, and .

Proof. First we show

(5) k(u,v) < sup > B(x,y)d(z,y).

B z,yeV

d(u,v)

By Corollary 2.8, for large enough « € (0, 1), we have

Wy mg)
_ Ralu,v) L= =i
rilu, v) = l—a 11—«

Let A be the optimal coupling function transporting s to iy Let 1) V x
V' — 0,1 be the function taking value 1 at (u,v), and zero otherwise. Let

1
It is straight forward to verify that B is a x-coupling between p,, and p,,.
Thus, we have

1 1 1
d(u, v) ge:vB(x’ i Y) = ) T=a :ge:v(l("’v) (z,y) — A(z,9))d(z,y)
1 1

_ mﬁ(d(u,v) — Wiy, 1y))
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— L (1 - e, v)

1l—«a

= k(u,v).

Thus (5) holds.
Now we prove the other direction

(6) K(u,v) 2 ) sup Z Y)-

z,ycV

Let B’ be the optimum x-coupling between i, and p,. Choose a large
enough « such that x(u,v) = % and (1—a)B'(u,v) < 1. Let A= 1(,,) —
(1 —a)B'. 1t is straightforward to verify that A is a coupling transporting u$

to . Thus, we have
W (g, ) < ZA ,y)d(w, y)
= Z (u,v) — 1 - a)B’)d(x, y)

—d(uv 1—QZB (x,y)d

Therefore, we have

K(u,v) = %

1 — Wldng)
d(u,v)

11—«

1 /

1
~ d(u,v) i ;; Pl o)

The proof is complete. O
3. Sum of Ricci curvatures

In this section, we study the sum of all edge curvatures when the distance
function d satisfies the following property:
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Property 3.1 (“Treelike”). Let G = (V, E,d) be a weighted graph, we say
d satisfies “Treelike” if for any edge (z,y) € E and for any pair of vertices
ke N(x),l € N(y), d(k,1) = d(k,z) + d(z,y) + d(y,]).

A necessary condition for the existence of “Treelike” is girth of G is at
least 6. Note when G is a tree graph (finite or infinite), “Treelike” clearly
works for any distance function d. For non-tree graphs, one can easily verify
that the girth of G must be at least 6 (even if d is not uniform). Clearly,
there is no 3-cycle supporting on each edge. Suppose there is a 4-cycle, we
use a, b, ¢, d to represent the edge length following one direction of the cycle,
then we have d = a + b+ ¢ and b = a + d + ¢ which imply that 0 = 2a + 2c,
a contradiction. Suppose there is a 5-cycle with a, b, ¢, d, e as the edge length
following one direction of the cycle, then we have d + e > a + b + ¢ and
b+ c¢ > a+ d+ e which give us 0 > 2a, a contradiction. Suppose there is
a 6-cycle with a,b,c,d, e, f as the edge length following one direction of the
cycle, then we have d+e+ f >a+b+cand a+b+c > d+ e+ f which
give us ¢ = f, similarly, a = d,b = e. There is no contradiction caused by
the existence of cycles of length greater than 5. Thus any weighted graph G
satisfying “Treelike” has girth(G) > 6.

Given a weight distribution function w, let H(w) be the following quan-
tity:

1 Wyzd(u, T 1 Wyyd(v,
(1) H(w)= Z (_ Z d(u(, v) ) + D. Z d(u(, U)y>>

weE(G) Dy zel(u) Y yer(v)

For any weighted graph, we first prove

Lemma 3.2. Let G = (V, E,d,w) be a weighted graph associated by a weight
distribution function w, then K(G) > 2|V |— H(w), with equality holds if and
only if d satisfies “Treelike’.

Proof. We fix an edge uv € F(G), recall I'(u) represents the set of neighbors
of vertex u. Now we define a function B : V xV — R. For any z € I'(u) \ {v},
let B(z,y) = —*f= if y = v and 0 otherwise. For any y € I'(v) \ {u}, let

7

B(z,y) = —5* if 2 = u and 0 otherwise. Let B(v,v) = —'5*, B(u,u) =
—e and B(u,v) = 2. The rest of entries are set to 0. It is straightforward
to verify the following results:

Z B(z,y) = 0; Z B(z,y) = —py(z) for all z except u;

z,ycV yeVv

Z B(z,y) = —uy(y) for all y except v.
zeV
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Thus B is *-coupling between p,, and pu,. By Theorem 2.14, we have

—9_ Z Wy d(]}, U) Z wvy d(u, y)

vty Do dwo) s Dy d(u,v)
> 92— Z qg“‘ (1‘, Q;) + d( ) B Woy d(y7 U) + d(u, U)
2€T (u)\{v} (u,v)

yeronduy v d(u, v)
u)

—9_ Z Wyg Z Woy Z Wy d(xa

zel(w\{v} 7~  yel(v)\{u} Dy zel(u)\{v}

Wy d(y, v
. Z (y,v)

ver@ngu Pv 4w v)
wU'U qu w’uflf d(x7 u) wvy d(y7 /U)
“D. D Z D, d(u,v) Z D, d(u,v)
v Y zel(w)\{v} ’ yel(v)\{u} " ’
-, "D > D d(uv)_Z D, d(u,v)
u v zEF(u) u b yEF(v) v 9
Therefore, we have
(9)
> w(u,v)
weE(G)
QWyy — 2Wye Wy d(z, 1) Wy d(y,v)
> Y [P 2wy W Al 0) g ey A, )
uveE(G){ Dy D, xeN( ) Dy d(u, v) eN( ) Dy d(u, U)}
wa wux u m wvy v y
ueV(G) v~u u~v IGF(U) yeF(v)
1 wuzd( wv U y
—9lV| — Wyg@{U, T) = L y
VI Z (Du Z d(u, v) Z )
U~ z€l'(u) Y yer(v)

The proof for K(G) > 2|V|— H(w) is complete. Next, we characterize the
equality condition of this inequality. For equation in (9) holds, both equations
in (8) must hold. For the second equation in (8), we must have for any edge
w € E(G), d(z,v) = d(x,u) + d(u,v) for all z € I'(u) \ {v} and d(u,y) =
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d(u,v) + d(v,y) for all y € T'(v) \ {u}. We further verify that G satisfies
“Treelike”.

Suppose there exists an edge uv € E(G) such that “Treelike” fails, and
let z € T'(u) \ {v},y € I'(v) \ {u} be the two vertices so that d(z,y) <
d(z,u) + d(u,v) + d(v,y). We will show the first inequality in (8) would be
strict by defining a new x-coupling function B’, which violates the equation
K(G) = 2|V| — H(w).

WLOG assume that 3 > 3. Let B'(z,y) = —'5=, B'(u,y) = —5* +
B, B'(u,v) =2 — = and B’ (x v) = 0, for other entrles B' = B. 1t is easy
to verlfy that B’ is a x-coupling. We have

ZB’xy ZBxy ,Y)

z,yeV z,yeV
= (B,(.I, y) - B(l’, y))d(%, y) + (B/(u7 y) - B(“? y))d(uv y)
+ (B'(u,v) — B(u,v))d(u,v) + (B'(x,v) — B(z,v))d(z,v)

— (_%‘j —0)d(z,y) + (—“l’)”j + ul};‘: - —%’j)d(u, Y)
r(2- Z";u — 2)d(u,v) + (0 — —%‘Z)d(x,v)
= () + prd(u,y) = FEd(w,0) + Fd(r,v)
_ %" (= dz,y) + d(u,y) — d(u,v) + d(x,v))
> 5 (= e w) = dw,0) = d(o,y) + dwy) — d(w,v) + d(z,v))
_ Yur (= de,u) = 2d(u,v) = d(v,y) + d(u,v) + d(v,y) + d(z,w) + d(u,v))
=0. '
Then
k(u,v) > d(u,v xgeijl z,y)d(z,y)
L2 Mo wdm) g~y dy)

D, d(u,v) D, d(u,v)’

z€l(u) yel(v)

a contradiction to the assumption that equation in (9) holds.

Thus “Treelike” is a necessary condition for K(G) = 2|V| — H(w). Next,
we prove the lower bound in (8) is tight under “Treelike”. Define function f :
V' — Rsuch that f(u) =0, f(z) = —d(z,u) for z € T'(u) \ {v}, f(v) = d(u,v)
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and f(y) = d(u,v) + d(v,y) for y € T'(v) \ {u}. It is straightforward to verify
that f is a Lip(1) function. In addition, V,, f = 1, by Corollary 2.13, we have

— Yz g, 7)) + 2 (d(u, v
d<uvv><xg%\{v} B (s, 2) + F ()

w,

- Z . (d(ua U) + d(1)7 y) - d(”a U))
yel(v)\{u} "
Wyy

— po(=d(wv))

Wy Wy Wyx d(”a JT) wvy d(”a y)
St 5 > Ladey)

Du = Do iy Do dwv) Gy Do dlw:)
. 2wuv 2wuv Z Wy d([L‘, U) Z wvy d(ya U)

D, + D, D, d(u,v) D, d(u,v)’

zel(u) yel'(v)

Therefore, “Treelike” is a sufficient condition for K(G) = 2|V| — H(w). The
proof is complete. U

3.1. The minimum of K(G) under a certain weight distribution

In this section, we study a case of the weight distribution function w where
the total curvature achieves the minimum at the uniform distance function.

Theorem 3.3. Let G = (V,E,d,w) be a weighted graph associated by the
weight distribution function w, where w, = % for each edge e € E, and
F(zx) is a non-increasing function on RT. Then the total curvature K(G) >
2|V| = 2| E| with equality holds if and only one of the following two conditions

18 true:

1. the weight distance function d is uniform and girth(G) > 6.
2. d satisfies “Treelike” and F is a constant function.

To prove Theorem 3.3, we need the following lemma.

Lemma 3.4. Let G = (V, E,d) be a weighted graph associated by a weight

distribution function w with w, = FS(ZS)) for each edge e € E. If F(x) is an

non-increasing function on R™, then the following is true.

wed<e) 'Ude(f)
i " de)

(10) < we + wy.
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Proof. Taking the subtraction of two sides, it is sufficient to show the following
inequality

£
A
LY
[\
+
g

pd(f)? = wed(f)d(e) — wyd(f)d(e)
= (F(d(e)) — F(d(f)))d(e) + (F(d(f)) — F(d(e)))d(f)
= (F(d(e)) = F(d(f)))(d(e) = d(f))

<0
which is true as F'(x) is an non-increasing function. O
Proof of Theorem 3.3. By Lemma 3.4, we have
1 Weyrpd(U, T Wopd (W, V
weE(G) Y z0el (u) ’ ’

1 Wyyd(v,y)  Wyud(u,v)
D, Z d(u,v) + d(v,y) )}

Y u,y€el(v)

© T o T () T ()

vEE(Q) Du z,0€el(u) Y u,yel(v)
= > (2+2)
weE(G)
= 4/B.

Following the Lemma 3.2, we have

(11)

2y QwW Weyed u,x) Wy d(v, )
K@= ¥ > 5 )
uveE(G){ D. " Dy wer(w) D Dud(u,v) yer(n Pdlu, v)}

1 1 wuzd(u $) wuvd(u, U)
2 UUEXE:(G) { u ‘Tﬂ);(u) ( d(uv U) d(u, .’,U) )
1 Wyyd(v,y)  Wyud(u,v)
" D, u y;(v) ( d(u,v) * d(v,y) )}

> 2|V| - 2|E].

Recall the first equation in inequality (11) holds if and only if G satisfies
“Treelike” by Lemma 3.2; for the second equation holds, there are two cases:
the distance function d is uniform over E(G) (then F is a constant function
automatically); if d is not uniform, let z be the vertex such that there exist
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two edges e, f incident to x with d(e) > d(f), then we must have F'(d(e)) =
F(d(f)). WLOG, let d(f) = min{d(f’) : f' € E(G)}, then F is a constant
function over E(G) with F' = F(d(f)). O

3.2. The maximum of K (G) under a certain weight distribution

The inequality of K (G) in Theorem 3.3 can be reversed if F'(e) is an increasing
function and d satisfies “Treelike”. Similar to Lemma 3.4, we have

Lemma 3.5. Let G = (V, E,d) be a weighted graph associated by a weight

distribution function w with w, = Fgffj)) for each edge e € E. If F(x) is an

increasing function on RT, then the following is true. The equality holds if
and only if d(e) = d(f).

wed(e) | wyd(f)

12) i) T de)

> We + wy.

Theorem 3.6. Let G = (V, E,d, w) be a weighted graph such that the distance
function d satisfies “Treelike” and F(e) is an increasing function, then the
total curvature K(Q) is at most 2|V | — 2|E| with equality holds if and only if
d is a constant function.

Proof. By Lemma 3.5, we have

1 Weyrd(u, T

weE(G) Uz v~u
Uvd v Uud
+%) _Uu;v(w o y * wd(v(y) ))}
> Z {D_ (wu:c + wuv) + DL Z (wvu + wvy)}
weE(G) U zu~u Vo, y~v
= > (2+2)
weE(G)

= 4B,

Clearly, the equality holds if and only if d is a constant function.
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As G is “Treelike”, following the Lemma 3.2, we have

(13)
K(G) =2|V| - H(w)
Wyy 1 1 Wyzd(U, ) Wypd(u,v)
—9 _: L n
uevz(g) U;L D, 2 UUEZE(G) {Du x;u ( d(u,v) d(u, ) )
1 wvyd(v, y) wvud(U,U)
5, 2 Gl ey
<2|V| —2|E|.

O

Corollary 3.7. Let G be a finite graph with girth at least 6 with uniform
edge weights. Then Gauss—Bonnet theorem holds for G. i.e. K(G) = x(G),
where xX(G) = 2 — 2¢(G) is the Euler characteristic of G, and where g(G) =
|E| — |V| + 1 is the graph genus of G.

Proof. x(G) =2-2¢(G) =2—-2(|E|—|V|+1) =2|V|-2|E| = K(G), where
the last equality follows from Theorem 3.6. O

Remark 3.8. Note that the graph curvature here is defined geometrically,
via optimal transport, in contrast to previous combinatorial definitions of
graph curvature used in versions of the graph Gauss—Bonnet theorem [4].
Intuitively, speaking of the Ricci curvature, the above corollary says that an
unweighted graph with girth at least 6 behaves like a closed surface.
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