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The geometry of generalized Lamé equation, III:
one-to-one of the Riemann–Hilbert correspondence

Zhijie Chen, Ting-Jung Kuo, and Chang-Shou Lin

Abstract: In this paper, the third in a series, we continue to
study the generalized Lamé equation H(n0, n1, n2, n3;B) with the
Darboux–Treibich–Verdier potential

y′′(z) =
[ 3∑
k=0

nk(nk + 1)℘(z + ωk

2 |τ) + B

]
y(z), nk ∈ Z≥0

and a related linear ODE with additional singularities ±p from
the monodromy aspect. We establish the uniqueness of these ODEs
with respect to the global monodromy data. Surprisingly, our result
shows that the Riemann–Hilbert correspondence from the set

{H(n0, n1, n2, n3;B)|B ∈ C} ∪ {H(n0 + 2, n1, n2, n3;B)|B ∈ C}

to the set of group representations ρ : π1(Eτ ) → SL(2,C) is one-
to-one. We emphasize that this result is not trivial at all. There is
an example that for τ = 1

2 + i
√

3
2 , there are B1, B2 such that the

monodromy representations of H(1, 0, 0, 0;B1) and H(4, 0, 0, 0;B2)
are the same, namely the Riemann–Hilbert correspondence from
the set

{H(n0, n1, n2, n3;B)|B ∈ C} ∪ {H(n0 + 3, n1, n2, n3;B)|B ∈ C}

to the set of group representations is not necessarily one-to-one.
This example shows that our result is completely different from the
classical one concerning linear ODEs defined on CP1 with finite
singularities.

1. Introduction

Throughout the paper, we use the notations ω0 = 0, ω1 = 1, ω2 = τ , ω3 = 1+τ
and Λτ = Z + Zτ , where τ ∈ H = {τ | Im τ > 0}. Define Eτ := C/Λτ to be
a flat torus and Eτ [2] := {ωk

2 |k = 0, 1, 2, 3} + Λτ to be the set consisting of
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the lattice points and 2-torsion points in Eτ . For z ∈ C we denote [z] :=
z (mod Λτ ) ∈ Eτ . For a point [z] in Eτ we often write z instead of [z] to
simplify notations when no confusion arises.

Let ℘(z) = ℘(z|τ) be the Weierstrass elliptic function with periods Λτ

and define ek(τ) := ℘(ωk

2 |τ), k = 1, 2, 3. Let ζ(z) = ζ(z|τ) := −
∫ z ℘(ξ|τ)dξ

be the Weierstrass zeta function with two quasi-periods ηk(τ), k = 1, 2:

(1.1) ηk(τ) := 2ζ(ωk

2 |τ) = ζ(z + ωk|τ) − ζ(z|τ), k = 1, 2,

and σ(z) = σ(z|τ) := exp
∫ z ζ(ξ)dξ be the Weierstrass sigma function. Notice

that ζ(z) is an odd meromorphic function with simple poles at Λτ and σ(z)
is an odd entire function with simple zeros at Λτ .

This is the third in a series of papers, initiated in Part I [6], to study the
generalized Lamé equation (denoted by GLE(n, p, A, τ)):

(1.2) y′′(z) = In(z; p,A, τ)y(z), z ∈ C,

where the potential In(z; p,A, τ) is given by

(1.3) In(z; p,A, τ) =
[ ∑3

k=0 nk(nk + 1)℘(z + ωk

2 |τ) + 3
4(℘(z + p|τ)+

℘(z − p|τ)) + A(ζ(z + p|τ) − ζ(z − p|τ)) + B

]

with n = (n0, n1, n2, n3), nk ∈ Z≥0 for all k, ±[p] �∈ Eτ [2] and

(1.4) B = A2 − ζ(2p|τ)A− 3
4℘(2p|τ) −

3∑
k=0

nk(nk + 1)℘(p + ωk

2 |τ).

The (1.4) is equivalent to that ±[p] are apparent singularities (i.e. non-
logarithmic); see [4] for a proof and also [5, 8, 28] for recent studies on (1.2).
Remark that all singularities of GLE(n, p, A, τ) are apparent and

GLE(n, p, A, τ) is independent of any representative p̃ ∈ p + Λτ(1.5)
and GLE(n, p, A, τ) = GLE(n,−p,−A, τ).

For convenience, we often omit some of {n, p, A, τ} in the notations when no
confusion should arise.

Our motivation of studying GLE (1.2) is inspired by the so-called elliptic
form of Painlevé VI equation (denoted by EPVI(α0, α1, α2, α3)):

(1.6) d2p(τ)
dτ 2 = −1

4π2

3∑
k=0

αk℘
′
(
p(τ) + ωk

2

∣∣∣∣ τ
)
,
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where

(1.7) αk = (2nk+1)2
8 , nk ∈ Z≥0, k = 0, 1, 2, 3.

In [4] we proved that GLE (1.2) with (p,A) = (p(τ), A(τ)) preserves the
monodromy as τ deforms if and only if (p(τ), A(τ)) satisfies the following
Hamiltonian system

(1.8)

⎧⎪⎨
⎪⎩

dp(τ)
dτ = ∂H

∂A = −i
4π (2A− ζ(2p|τ) + 2pη1(τ))

dA(τ)
dτ = −∂H

∂p = i
4π

(
(2℘(2p|τ) + 2η1(τ))A− 3

2℘
′(2p|τ)

−∑3
k=0 nk(nk + 1)℘′(p + ωk

2 |τ)

)
,

with

H = −i

4π

[
A2 + (2pη1(τ) − ζ(2p|τ))A− 3

4℘(2p|τ)
−∑3

k=0 nk(nk + 1)℘(p + ωk

2 |τ)

]

= −i

4π (B + 2pη1(τ)A),

or equivalently p(τ) is a solution of EPVI(α0, α1, α2, α3).
Since the local exponents of GLE (1.2) at ωk

2 (resp. at ±p) are −nk,
nk + 1 (resp. −1

2 , 3
2), the local monodromy matrix at ωk

2 (resp. at ±p) is the
identity matrix I2 (resp. is −I2). Denote by L the straight segment connecting
±p. Then any solution y(z) of GLE (1.2) can be viewed as a single-valued
meromorphic function in C\(L + Λτ ), and in this region y(−z) and y(z +
ωj) are well-defined. See [4, 28] or Section 2. Let (y1, y2) be any linearly
independent solutions of GLE (1.2). Then there are monodromy matrices
N1, N2 ∈ SL(2,C) such that(

y1(z + ωj)
y2(z + ωj)

)
= Nj

(
y1(z)
y2(z)

)
, j = 1, 2, and(1.9)

N1N2 = N2N1.(1.10)

Furthermore, the monodromy group of GLE (1.2) is generated by −I2, N1, N2.
By (1.10), clearly there are two cases (see Part I [6]):

(a) Completely reducible (i.e. all the monodromy matrices have two linearly
independent common eigenfunctions). Up to a common conjugation, N1
and N2 can be expressed as

(1.11) N1 =
(
e−2πis 0

0 e2πis

)
, N2 =

(
e2πir 0

0 e−2πir

)
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for some (r, s) ∈ C2\1
2Z

2. In particular,

(1.12) (trN1, trN2) = (2 cos 2πs, 2 cos 2πr) �∈ {±(2, 2),±(2,−2)}.

(b) Not completely reducible (i.e. the space of common eigenfunctions is of
dimension 1). Up to a common conjugation, N1 and N2 can be expressed
as

(1.13) N1 = ε1

(
1 0
1 1

)
, N2 = ε2

(
1 0
C 1

)
,

where ε1, ε2 ∈ {±1} and C ∈ C ∪ {∞}. In particular,

(1.14) (trN1, trN2) = (2ε1, 2ε2) ∈ {±(2, 2),±(2,−2)}.

Remark that if C = ∞, then (1.13) should be understood as

(1.15) N1 = ε1

(
1 0
0 1

)
, N2 = ε2

(
1 0
1 1

)
.

For later usage we will briefly review it in Section 2. In this paper, GLE
(1.2) (and also the H(n, B, τ) below) is called completely reducible if Case (a)
occurs; not completely reducible if Case (b) occurs.

In [4] we proved that if p(τ) is a solution of EPVI(α0, α1, α2, α3) and

p(τ) → ωk

2 = ωk(τ0)
2 , as τ → τ0,

then the potential In(z; p(τ), A(τ), τ) converges to the well-known Darboux–
Treibich–Verdier potential In±

k
(z;B, τ0) for some B ∈ C, where the Darboux–

Treibich–Verdier potential is defined as ([10, 36, 37])

(1.16) In(z;B, τ) :=
3∑

k=0
nk(nk + 1)℘(z + ωk

2 |τ) + B,

and n±
k is defined by replacing nk in n with nk±1. That is, by considering the

corresponding generalized Lamé equation (denoted by H(n, B, τ) or simply
H(n, B))

(1.17) y′′(z) = In(z;B, τ)y(z), z ∈ C,

we have that GLE(n, p(τ), A(τ), τ) converges to H(nk, B, τ0).
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For H(n, B, τ) we always assume maxk nk ≥ 1. H(n, B, τ) is the elliptic
form of the well-known Heun’s equation and the Darboux–Treibich–Verdier
potential is known as an elliptic algebro-geometric solution of the KdV hier-
archy [13, 36, 37]. See also a series of papers [29, 30, 31, 32, 33] by Takemura,
where H(n, B, τ) was studied as the eigenvalue problem for the Hamiltonian
of the BC1 (one particle) Inozemtsev model. When n = (n, 0, 0, 0), the po-
tential n(n + 1)℘(z|τ) is the well-known Lamé potential and (1.17) becomes
the Lamé equation

(1.18) y′′(z) = [n(n + 1)℘(z|τ) + B]y(z), z ∈ C.

Ince [17] first discovered that the Lamé potential is a finite-gap potential.
See also the classic texts [14, 26, 38] and recent works [3, 9, 21, 22] for more
details about (1.18).

Like GLE(n, p, A, τ), the local monodromy matrix of H(n, B, τ) at ωk

2
is also I2. Thus the monodromy representation ρ : π1(Eτ ) → SL(2,C) is
abelian, i.e. the same Cases (a) or (b) occurs.

The main purpose of this paper is to study the natural problem: Whether
H(n, B) or GLE(n, p, A, τ) is unique with respect to the monodromy repre-
sentation, or equivalently, whether the Riemann–Hilbert correspondence from
the set {H(n, B)|B ∈ C} or {GLE(n, p, A, τ)|p /∈ Eτ [2], A ∈ C} to the set of
group representations ρ : π1(Eτ ) → SL(2,C) is one-to-one (i.e. injective)?

Remark 1.1. By letting x = ℘(z), H(n, B) can be projected to the Heun’s
equation on CP1, for which the monodromy representation is irreducible if
and only if Case (a) occurs, and reducible if and only if Case (b) occurs. In
other words, the monodromy of H(n, B) is easier to compute than that of the
Heun’s equation on CP1. This is an advantage of studying H(n, B). Most of
the references in the literature are devoted to irreducible representation on
CP1, but very few are devoted to reducible representation. In this paper we
deal with the both two cases for H(n, B).

For the completely reducible case (a), the one-to-one of the Riemann–
Hilbert correspondence was proved in [21, Theorem 3.3] for the Lamé case
and later in Part II [7, Lemma 2.3] for the Darboux–Treibich–Verdier case
(See also [7, 21] for important applications of such results). However, the
proofs in [7, 21] can not work for the not completely reducible case (b). In
this paper, we develop a new approach, which applies the deep relation with
Painlevé VI equation and seems more sophisticated but works for the not
completely reducible case and also GLE(n, p, A, τ).
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Remark that although the monodromy matrices Nj ’s depend on the choice
of linearly independent solutions, they are unique up to a common conjuga-
tion. In particular, trNj is independent of the choice of solutions, i.e. trNj is
uniquely determined by GLE(n, p, A) or H(n, B). We say

(1.19) (r1, s1) ∼ (r2, s2) if (r1, s1) ≡ ±(r2, s2) modZ2.

Then in Case (a), (r, s) is uniquely determined in (C2\1
2Z

2)/ ∼.

Definition 1.2. Given GLE(n, p, A, τ) (resp. H(n, B, τ)), we call
{

(r, s) ∈ (C2\1
2Z

2)/ ∼ if the monodromy is completely reducible
(trN1, trN2, C) if the monodromy is not completely reducible

to be its global monodromy data.

The main purpose of this paper is to establish the uniqueness of such
ODEs with respect to the global monodromy data. For k ∈ {0, 1, 2, 3} and
n = (n0, n1, n2, n3), we define nk by replacing nk in n with nk + 2, i.e.

(1.20) n0 = (n0 + 2, n1, n2, n3), n1 = (n0, n1 + 2, n2, n3)

and so on. The main result of this paper is the following uniqueness theorem.

Theorem 1.3. Fix any n and τ . Then the following hold.

(1) If GLE(n, p1, A1) and GLE(n, p2, A2) have the same global monodromy
data, then GLE(n, p1, A1) = GLE(n, p2, A2).

(2) If H(n, B1) and H(n, B2) have the same global monodromy data, then
H(n, B1) = H(n, B2).

(3) Fix any k ∈ {0, 1, 2, 3}. Then the global monodromy datas of H(n, B1, τ)
and H(nk, B2, τ) can not be the same for any B1, B2 ∈ C.

Remark 1.4. H(n, B1, τ) and H(nk, B2, τ) have different local exponents at
the singularity ωk

2 . Therefore, it is quite surprising to us that for fixed n,
τ and k, the Riemann–Hilbert correspondence from the set {H(n, B, τ)|B ∈
C} ∪ {H(nk, B, τ)|B ∈ C} to the set of group representations ρ : π1(Eτ ) →
SL(2,C) is one-to-one. We emphasize that this result is not trivial at all. For
example, we can not expect the one-to-one correspondence from {H(n, B, τ) |
B ∈ C} ∪ {H((n0 + 3, n1, n2, n3), B, τ) | B ∈ C} to the set of group rep-
resentations. Indeed, Wang and the third author [21, Theorem 4.5] proved
the existence of a pre-modular form Z

(n)
r,s (τ) such that the global monodromy
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data of H((n, 0, 0, 0), B, τ) for some B is given by (r, s) /∈ 1
2Z

2 if and only if
Z

(n)
r,s (τ) = 0. Now for τ0 = 1

2 + i
√

3
2 , it was proved in [20, Example 2.6] that

Z
(1)
1
3 ,

1
3
(τ0) = 0, ℘(1+τ0

3 |τ0) = 0.

Inserting these and g2(τ0) = 0 into the expression of Z(4)
r,s (τ) (see [21, (5.8)]),

we obtain Z
(4)
1
3 ,

1
3
(τ0) = Z

(1)
1
3 ,

1
3
(τ0) = 0, so there are B1, B2 such that the global

monodromy datas of H((1, 0, 0, 0), B1, τ0) and H((4, 0, 0, 0), B2, τ0) are both
(1
3 ,

1
3).

Remark 1.5. For a class of linear ODEs defined on CP1 with finite singu-
larities, classically there is a one-to-one correspondence of such ODEs and
their monodromy datas; see e.g. [11, Proposition 2.2]. However, the set of
monodromy datas for such classical result contains connection matrices at
each singularities. Our Theorem 1.3 is different from the classical one be-
cause no apriori information about the connection matrices are assumed in
Theorem 1.3. To the best of our knowledge, Theorem 1.3 is new.

Remark 1.6. The uniqueness with respect to the same monodromy group
does not necessarily hold. For example, our later argument shows that given
n and m ∈ N≥3, there exist (pj , Aj), j = 1, 2 and the same τ such that for
GLE(n, p1, A1),

N1 =
(
e−2πi/m 0

0 e2πi/m

)
, N2 =

(
e2πi/m 0

0 e−2πi/m

)
,

i.e. (trN1, trN2) = (2 cos 2π
m , 2 cos 2π

m ), and for GLE(n, p2, A2),

Ñ1 =
(
e−2πi/m 0

0 e2πi/m

)
, Ñ2 =

(
e4πi/m 0

0 e−4πi/m

)
,

i.e. (trÑ1, trÑ2) = (2 cos 2π
m , 2 cos 4π

m ). Thus, these two GLEs have different
global monodromy datas (or equivalently, different monodromy representa-
tions). However, they have the same monodromy group (i.e. the images of
the monodromy representations are the same)

〈−I2, N1, N2〉 =
〈
−I2, Ñ1, Ñ2

〉
= 〈−I2, N1〉 .

Remark 1.7. Our proof of Theorem 1.3 is purely analytic. Recently Prof.
Treibich communicated with us and he conjectured that there should be a dif-
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ferent proof of Theorem 1.3 via algebraic geometry. This is a very interesting
question and deserves further study elsewhere.

The rest of the paper is organized as follows. In Section 2, we briefly review
the monodromy theory of GLE(n, A, p). Our proof of Theorem 1.3 relies on
the connection between GLE(n, A, p) and Painlevé VI equation established
in [4], which is briefly reviewed in Section 3. In Sections 4–5, we establish
the uniqueness of solutions of certain Painlevé VI equations with respect to
the global monodromy datas of GLE(n, A, p). This theory will be applied to
prove Theorem 1.3 in Section 6. An application of Theorem 1.3 will be given
in Section 7.

2. Preliminaries

In this section, we briefly review the basic theory about the monodromy
representation of GLE(n, A, p) and H(n, B) from [6, 28], which will be applied
in the proof of Theorem 1.3.

2.1. The unique even elliptic solution

Let y1, y2 be any two solutions of GLE(n, A, p) and set Φ(z) = y1(z)y2(z).
Then Φ(z) satisfies the second symmetric product equation for GLE(n, A, p):

(2.1) Φ′′′(z) − 4I(z)Φ′(z) − 2I ′(z)Φ(z) = 0,

where I(z) = In(z; p,A, τ). The following lemma follows from [28, Proposi-
tions 2.1 and 2.9]. For later usage, we sketch the proof of the existence here,
and refer the proof of the uniqueness to [28, Proposition 2.9] or Part I [6,
Proposition 2.3].

Lemma 2.1 ([28]). Equation (2.1) has a unique (up to multiplying a nonzero
constant) even elliptic solution Φe(z).

Proof. Fix any base point q0 ∈ Eτ\(Eτ [2] ∪ {±[p]}). Since the local mon-
odromy matrice at ωk

2 is I2, the monodromy representation of GLE (1.2) is
reduced to ρ : π1(Eτ\{±[p]}, q0) → SL(2,C). Let γ± ∈ π1(Eτ\{±[p]}, q0)
be a simple loop encircling ±p counterclockwise, and �j ∈ π1(Eτ\{±[p]}, q0),
j = 1, 2, be two fundamental cycles of Eτ connecting q0 with q0+ωj such that
�j does not intersect with L + Λτ (here L is the straight segment connecting
±p) and satisfies

(2.2) γ−γ+ = �1�2�
−1
1 �−1

2 in π1 (Eτ\ {±[p]} , q0) .
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Since

(2.3) ρ(γ±) = −I2,

we have Nj = ρ(�j), N1N2 = N2N1 and the monodromy group of (1.2) is
generated by {−I2, N1, N2}, namely is abelian. So there is a common eigen-
function (or called eigen-solution) y1(z) of all monodromy matrices. Let εi
be the eigenvalue: �∗i y1(z) = εiy1(z), where �∗y(z) denotes the analytic con-
tinuation of y(z) along the loop �. Note that y1(z) have branch points only
at ±p + Λτ . By (2.3), y1(z) can be viewed as a single-valued meromorphic
function in C\(L + Λτ ), and in this region, y1(−z) is well-defined and

(2.4) y1(z + ωi) = �∗i y1(z) = εiy1(z), i = 1, 2,

since the fundamental circles are chosen not to intersect with L + Λτ .
Let y2(z) = y1(−z) in C\(L+Λτ ). Clearly y2(z) is also a solution of (1.2)

and (2.4) implies

(2.5) y2(z + ωi) = �∗i y2(z) = ε−1
i y2(z), i = 1, 2,

i.e. y2(z) is also an eigenfunction with eigenvalue ε−1
i . Define

Φe(z) := y1(z)y2(z) = y1(z)y1(−z).

Obviously, ±[p] are no longer branch points of Φe(z), which implies that Φe(z)
is single-valued meromorphic in C. By (2.4)–(2.5), Φe(z) is an even elliptic
function. This proves the existence part.

Since Φe(z) have poles at most at ωk

2 with order 2nk and at ±p with order
2, we have

Φe(z) = C0 +
3∑

k=0

nk−1∑
j=0

b
(k)
j ℘(z + ωk

2 )nk−j + d

℘(z) − ℘(p) ,

where C0, b
(k)
j and d are constants depending on n, A, p, τ . By a careful com-

putation, it was proved in [28, 29] that

Theorem 2.A ([28, 29]). After a normalization of multiplying a nonzero
constant depending on n, A, p, τ ,

(2.6) Φe(z) = C0(A) +
3∑

k=0

nk−1∑
j=0

b
(k)
j (A)℘(z + ωk

2 )nk−j + d(A)
℘(z) − ℘(p) ,
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where C0(A) = C0(A; p, τ), b(k)
j (A) = b

(k)
j (A; p, τ) and d(A) = d(A; p, τ) are

all polynomials of A with cofficients being rational functions of ℘(p), ℘′(p),
ek(τ)′s, and they do not have common zeros, and the leading coefficient of
C0(A) can be chosen to be 1

2 . Moreover,

g := degA C0(A) > max
{
degA b

(k)
j (A), degA d(A)

}
.

Theorem 2.A will be applied in the proof of Theorems 5.3–5.4 below.

2.2. The Hermite–Halphen ansatz

Let N =
∑3

k=0 nk + 1 in this section. For any a = (a1, · · ·, aN ) ∈ CN , we
consider the Hermite–Halphen ansatz

(2.7) ya(z) := ecz
∏N

i=1 σ(z − ai)√
σ(z − p)σ(z + p)

∏3
k=0 σ(z − ωk

2 )nk
, c ∈ C.

In Part I [6] we proved that the common eigen-solution of GLE(n, A, p) must
be of the form ya(z).

Theorem 2.B ([6]). Let y1(z) be the common eigen-solution in Lemma 2.1.
Then up to a nonzero constant,

y1(z) = ya(z)

for some a = (a1, · · ·, aN ) ∈ CN and c = c(a) ∈ C.

Remark 2.2. Generically {[a1], · · ·, [aN ]} is precisely the zero set of y1(z) =
ya(z). For some special A’s, the local exponent of y1(z) at p might be 3

2 , so
there are two points in {[a1], · · ·, [aN ]} being [p], say [aN−1] = [aN ] = [p] for
example, and in this case the zero set of y1(z) is contained in {[a1], ···, [aN−2]}.
Similarly, {[a1], · · ·, [aN ]} might contain ωk

2 ’s for special A’s.

Although ya(z) is a multi-valued function in C, ya(−z) can be well-defined
as shown in the proof of Lemma 2.1, and ya(−z) is also a common eigen-
solution. By using the transformation law (let η3 = η1 + η2)

(2.8) σ(z + ωk) = −eηk(z+ωk
2 )σ(z), k = 1, 2, 3,

it is easy to see that in C\(L + Λτ ),

(2.9) y2(z) = ya(−z) = y−a(z) up to a nonzero constant,



Geometry of generalized Lamé equation, III 1629

which infers

(2.10) Φe(z) = ya(z)y−a(z) up to a nonzero constant.

By the uniqueness of Φe(z), we easily see that ±amod Λτ is unique, i.e.

(2.11) ± {[a1], · · ·, [aN ]} is unique for given GLE(n, p, A, τ),

and for different representatives a, ã ∈ CN of the same {[a1], · · · , [aN ]},

(2.12) ya(z) = yã(z) up to a nonzero constant.

If ya(z) and y−a(z) are linearly independent, then the monodromy is
completely reducible by definition. The following result shows that the con-
verse assertion also holds, and in this case the monodromy data can be easily
computed.

Theorem 2.3 ([6]). If the monodromy of GLE(n, p, A, τ) is completely re-
ducible, then ya(z) and y−a(z) are linearly independent and there exists (r, s)∈
C2\1

2Z
2 such that with respect to ya(z) and y−a(z),

(2.13) N1 = ρ(�1) =
(
e−2πis 0

0 e2πis

)
, N2 = ρ(�2) =

(
e2πir 0

0 e−2πir

)
,

and

(2.14)
N∑
i=1

ai −
3∑

k=1

nkωk

2 = r + sτ, c(a) = rη1 + sη2.

Furthermore, if [aj ] �= ±[p] for all j, then (recall η3 = η1 + η2)

(2.15) c(a) = 1
2

N∑
i=1

(ζ(ai + p) + ζ(ai − p)) −
3∑

k=1

nkηk
2 .

Proof. This result was proved in Part I [6]. Here we sketch the proof for
later usage. Let y3(z) be another common eigen-solution which is linearly
independent to ya(z). Clearly y3(z)y3(−z) is also an even elliptic solution of
(2.1), so up to nonzero constants,

(2.16) y3(z)y3(−z) = Φe(z) = ya(z)y−a(z).
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Then a zero of y3(z) must be a zero of y−a(z) and vice versa, so y3(z) = y−a(z)
up to a nonzero constant, namely ya(z) and y−a(z) are linearly independent.
Rewrite

(2.17) ya(z) =
ec(a)z∏N

j=1 σ(z − aj)
σ(z)

∏3
k=0 σ(z − ωk

2 )nk
· Ψp(z),

where Ψp(z) is defined by

(2.18) Ψp(z) := σ(z)√
σ(z + p)σ(z − p)

.

Since Ψp(z)2 is even elliptic and �j is chosen to have no intersection with
L + Λτ , we proved in Part I [6, Lemma 2.2] that Ψp(z) is invariant under
analytic continuation along �j , i.e.

(2.19) �∗jΨp(z) = Ψp(z), j = 1, 2.

By applying (2.19) and the transformation law (2.8) to ya(z)/Ψp(z), we have

(2.20) �∗jya(z) = exp
(
c(a)ωj − ηj

( N∑
i=1

ai −
3∑

k=1

nkωk

2

))
ya(z), j = 1, 2.

Define (r, s) ∈ C2 by

c(a) − η1

( N∑
i=1

ai −
3∑

k=1

nkωk

2

)
= −2πis,

c(a)τ − η2

( N∑
i=1

ai −
3∑

k=1

nkωk

2

)
= 2πir.(2.21)

Then (2.14) follows by using τη1 − η2 = 2πi. Recalling the eigenvalues ε1, ε2
in Lemma 2.1, we see from Theorem 2.B and (2.20)–(2.9) that (ε1, ε2) =
(e−2πis, e2πir) and hence (2.13) holds. If both e2πis and e2πir ∈ {±1}, then
ya(z) + y−a(z) is also a common eigen-solution, and the same argument as
(2.16) gives ya(z)+y−a(z) = c±y±a(z) for some constant c±, a contradiction.
So either e2πir �∈ {±1} or e2πis �∈ {±1}, i.e. (r, s) �∈ 1

2Z
2. Finally, (2.15)

follows by inserting (2.7) into GLE(n, p, A) and computing the leading terms
at singularities ±p. This completes the proof.

Now we consider the not completely reducible case.
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Theorem 2.4. Suppose the monodromy of GLE(n, p, A, τ) is not completely
reducible. Then

(2.22) {[a1], · · ·, [aN ]} = {−[a1], · · ·,−[aN ]},

and there exists (r, s) ∈ 1
2Z

2 such that

(2.23)
N∑
i=1

ai −
3∑

k=1

nkωk

2 = r + sτ, c(a) = rη1 + sη2.

Furthermore, there exist linearly independent solutions such that ρ(�1) and
ρ(�2) can be expressed as

(2.24) ρ(�1) = ε1

(
1 0
1 1

)
, ρ(�2) = ε2

(
1 0
C 1

)
,

with C ∈ C ∪ {∞} and

(2.25) (ε1, ε2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1, 1), if (r, s) ≡ (0, 0) mod Z2,
(1,−1), if (r, s) ≡ (1

2 , 0) mod Z2,
(−1, 1), if (r, s) ≡ (0, 1

2) mod Z2,
(−1,−1), if (r, s) ≡ (1

2 ,
1
2) mod Z2.

Remark that if C = ∞, then (2.24) should be understood as

(2.26) ρ(�1) = ε1

(
1 0
0 1

)
, ρ(�2) = ε2

(
1 0
1 1

)
.

Proof. Since the monodromy is not completely reducible and y±a(z) are both
common eigen-solutions, we have ya(z) = y−a(z) up to a nonzero constant,
which implies: (1) εj = ε−1

j , i.e. εj = ±1 for j = 1, 2; (2) (2.22) holds by
using (2.7); (3) Φe(z) = ya(z)2 up to a nonzero constant. Again by the same
argument as (2.17)–(2.21), we easily obtain (2.23) and (2.25).

To prove (2.24), we let y2(z) be a linearly independent solution of GLE
(1.2) to ya(z) and define χ(z) := y2(z)/ya(z). Then χ(z) �≡const has no
branch points, namely χ(z) is single-valued meromorphic. Furthermore, in-
serting y2(z) = χ(z)ya(z) into GLE (1.2) leads to

χ′′(z)
χ′(z) + 2y

′
a(z)
ya(z) = 0, i.e. χ′(z) = const · Φe(z)−1 is even elliptic.
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Thus χ(z) is quasi-periodic, namely there exist two constants χ1 and χ2 such
that

χ(z + ωj) = χ(z) + χj , j = 1, 2.

Since y2(z) is not a common eigen-solution, χ1 and χ2 can not vanish simul-
taneously. Define

(2.27) C := χ2/χ1.

If χ1 = 0, then χ2 �= 0, C = ∞ and a direct computation gives

�∗1

(
χ2ya(z)
y2(z)

)
= ε1

(
χ2ya(z)
y2(z)

)
,

�∗2

(
χ2ya(z)
y2(z)

)
= ε2

(
1 0
1 1

)(
χ2ya(z)
y2(z)

)
,

which is precisely (2.26). If χ1 �= 0, then C �= ∞ and we easily obtain

�∗1

(
χ1ya(z)
y2(z)

)
= ε1

(
1 0
1 1

)(
χ1ya(z)
y2(z)

)
,(2.28)

�∗2

(
χ1ya(z)
y2(z)

)
= ε2

(
1 0
C 1

)(
χ1ya(z)
y2(z)

)
,(2.29)

which is precisely (2.24). This completes the proof.

Corollary 2.5. The monodromy of GLE(n, p, A, τ) is completely reducible if
and only if

(2.30) (trρ(�1), trρ(�2)) �∈ {±(2, 2),±(2,−2)}.

2.3. The monodromy theory for H(n, B)

Now we recall the counterpart of the above monodromy theory for H(n, B)
from Part I [6], the proof of which is simpler due to the absence of singularities
±[p]. In this section we denote Ñ =

∑
k nk ≥ 1. By changing variable z →

z + ωk

2 if necessary, we always assume n0 ≥ 1.
(i) Any solution of H(n, B, τ) is meromorphic in C. The corresponding

second symmetric product equation

Φ′′′(z;B) − 4In(z;B, τ)Φ′(z;B) − 2I ′n(z;B, τ)Φ(z;B) = 0
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has a unique even elliptic solution Φe(z;B) expressed by

(2.31) Φe(z;B) = C0(B) +
3∑

k=0

nk−1∑
j=0

b
(k)
j (B)℘(z + ωk

2 )nk−j

where C0(B), b(k)
j (B) are all polynomials in B with degC0 > maxj,k deg b(k)

j

and the leading coefficient of C0(B) being 1
2 . Moreover, Φe(z;B) = y1(z;B)

y1(−z;B), where y1(z;B) is a common eigenfunction of the monodromy ma-
trices of H(n, B, τ) and up to a constant, can be written as

(2.32) y1(z;B) = ỹa(z) := ec(a)z∏Ñ
i=1 σ(z − ai)∏3

k=0 σ(z − ωk

2 )nk

with some a = (a1, · · · , aÑ ) and c(a) ∈ C. See (2.34) for the expression of
c(a) in the completely reducible case. By (2.32) and the transformation law
(2.8), it is easy to see that y1(−z;B) = ỹ−a(z) up to a sign (−1)n1+n2+n3 .

(ii) Let W be the Wroskian of y1(z;B) and y1(−z;B), then W 2 =
Qn(B; τ), where

Qn(B; τ) := Φ′
e(z;B)2 − 2Φe(z;B)Φ′′

e(z;B) + 4In(z;B, τ)Φe(z;B)2

is a monic polynomial in B with odd degree and independent of z.
(iii) The monodromy of H(n, B, τ) is completely reducible if and only if

y1(z;B) = ỹa(z) and y1(−z;B) = ỹ−a(z) are linearly independent, which is
also equivalent to

(2.33) {[a1], · · · , [aÑ ]} ∩ {−[a1], · · · ,−[aÑ ]} = ∅.

In this case, since aj �= 0 in Eτ for all j and n0 �= 0, we have

(2.34) c(a) =
Ñ∑
i=1

ζ(ai) −
3∑

k=1

nkηk
2 ,

which follows by inserting (2.32) into H(n, B, τ) and computing the leading
terms at the singularity 0. Besides, the (r, s) defined by

(2.35)
{ ∑Ñ

i=1 ai −
∑3

k=1
nkωk

2 = r + sτ∑Ñ
i=1 ζ(ai) −

∑3
k=1

nkηk
2 = rη1 + sη2



1634 Zhijie Chen et al.

satisfies (r, s) /∈ 1
2Z

2. Furthermore, with respect to ỹa(z) and ỹ−a(z),

(2.36) N1 = ρ(�1) =
(
e−2πis 0

0 e2πis

)
, N2 = ρ(�2) =

(
e2πir 0

0 e−2πir

)
.

(iv) For the not completely reducible case, Theorem 2.4 and so Corol-
lary 2.5 also hold for H(n, B, τ).

3. GLE and Painlevé VI equation

In order to prove Theorem 1.3, we need to apply the deep connection [4]
between GLE and Painlevé VI equation. The well-known Painlevé VI equation
with four free parameters (α, β, γ, δ) (denoted by PVI(α, β, γ, δ)) is written
as

d2λ

dt2
=1

2

( 1
λ

+ 1
λ− 1 + 1

λ− t

)(
dλ

dt

)2
−
(1
t

+ 1
t− 1 + 1

λ− t

)
dλ

dt

+ λ(λ− 1)(λ− t)
t2(t− 1)2

[
α + β

t

λ2 + γ
t− 1

(λ− 1)2 + δ
t(t− 1)
(λ− t)2

]
.(3.1)

Due to its connection with many different disciplines in mathematics and
physics, PVI has been extensively studied in the past several decades. We
refer the readers to the text [18] for a detailed introduction of PVI.

One of the fundamental properties for PVI is the so-called Painlevé prop-
erty, which says that any solution λ(t) of PVI has neither movable branch
points nor movable essential singularities; in other words, for any t0 ∈
C\{0, 1}, either λ(t) is holomorphic at t0 or λ(t) has a pole at t0. Therefore,
it is reasonable to lift PVI to the universal covering space H = {τ | Im τ > 0}
of C\{0, 1} by the following transformation:

(3.2) t = e3(τ) − e1(τ)
e2(τ) − e1(τ) , λ(t) = ℘(p(τ)|τ) − e1(τ)

e2(τ) − e1(τ) .

Then it is known (cf. [1, 23]) that λ(t) solves PVI if and only if p(τ) satisfies
the elliptic form (1.6) with parameters given by

(3.3) (α0, α1, α2, α3) =
(
α,−β, γ, 1

2 − δ
)
.

The Painlevé property implies that function ℘(p(τ)|τ) is a single-valued mero-
morphic function in H. This is an advantage of making the transformation
(3.2).
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Remark 3.1. Clearly for any m1,m2 ∈ Z, ±p(τ)+m1+m2τ is also a solution
of the elliptic form (1.6). Since they all give the same λ(t) via (3.2), we always
identify all these ±p(τ) + m1 + m2τ with the same one p(τ).

Another important feature of PVI is that it is closely related to the
isomonodromy theory of a second order Fuchsian ODE on CP1, which has
five regular singular points {0, 1, t, λ(t),∞}. Among them, λ(t) (as a solution
of PVI) is an apparent singularity. In fact, PVI (3.1) is equivalent to the
following Hamiltonian system

(3.4) dλ(t)
dt

= ∂K

∂μ
,

dμ(t)
dt

= −∂K

∂λ
,

where K = K(λ, μ, t) is given by

(3.5) K = 1
t(t− 1)

⎧⎪⎨
⎪⎩

λ(λ− 1)(λ− t)μ2 + θ0(θ0 + θ4)(λ− t)

−
[
θ1(λ− 1)(λ− t) + θ2λ(λ− t)
+(θ3 − 1)λ(λ− 1)

]
μ

⎫⎪⎬
⎪⎭ ,

and the relation of parameters is given by

(α, β, γ, δ) =
(

1
2θ

2
4, −1

2θ
2
1,

1
2θ

2
2,

1
2

(
1 − θ2

3

))
,(3.6)

2θ0 + θ1 + θ2 + θ3 + θ4 = 1.(3.7)

For the Hamiltonian system (3.4), we consider a second order Fuchsian dif-
ferential equation on CP1 as follows:

(3.8) d2f

dx2 + p1(x) df
dx

+ p2(x)f = 0,

which has five regular singular points at {0, 1, t, λ,∞} with the Riemann
scheme

(3.9)

⎛
⎜⎝ 0 1 t λ ∞

0 0 0 0 θ0
θ1 θ2 θ3 2 θ0 + θ4

⎞
⎟⎠ ,

and λ is an apparent singularity. Under these conditions, we have

p1(x) = 1 − θ3

x− t
+ 1 − θ1

x
+ 1 − θ2

x− 1 − 1
x− λ

,(3.10)

p2(x) = θ0 (θ0 + θ4)
x(x− 1) − t(t− 1)K

x(x− 1)(x− t) + λ(λ− 1)μ
x(x− 1)(x− λ) ,(3.11)
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where K = K(λ, μ, t) is given by (3.5); see e.g. [18]. The following result
was proved in [12, 24]: Suppose that θ1, θ2, θ3, θ4 /∈ Z and λ is an apparent
singularity of (3.8). Then (3.8) is monodromy preserving as t deforms if and
only if (λ(t), μ(t)) satisfies the Hamiltonian system (3.4). In particular, λ(t)
is a solution of PVI (3.1).

On the other hand, there are works studying the isomonodromic defor-
mation on elliptic curves and its Hamiltonian structure; see e.g. [19] and
references therein. Recently, we [4] developed an analogous isomonodromy
theory for the elliptic form (1.6). First we proved that the elliptic form (1.6)
is equivalent to the new Hamiltonian system (1.8). Then we proved that this
Hamiltonian system governs the isomonodromic deformation of GLE(n, p(τ),
A(τ), τ).

Theorem 3.A ([4]). GLE(n, p(τ), A(τ), τ) with p(τ) being an apparent sin-
gularity is monodromy preserving as τ deforms if and only if (p(τ), A(τ))
satisfies the Hamiltonian system (1.8). In particular, p(τ) is a solution of the
elliptic form (1.6) with parameter (1.7).

Remark that Theorem 3.A holds for any nk ∈ C\(1
2 +Z) (i.e. non-resonant

condition), but we only consider nk ∈ Z≥0 in this paper.
Given any solution p(τ) of the elliptic form (1.6) with parameter (1.7),

we define A(τ) by the first equation of (1.8). Then for any τ such that p(τ) �∈
Eτ [2], A(τ) is finite and so GLE(n, p(τ), A(τ), τ) is well-defined, which is
called the associated GLE of p(τ) in this paper.

In view of Theorem 3.A and the monodromy theory of GLE discussed in
Section 2, we give the following definition for convenience.

Definition 3.2. A solution p(τ) of the elliptic form (1.6) with parameter (1.7)
is called a completely reducible solution if the monodromy of the associated
GLE(n, p(τ), A(τ), τ) is completely reducible; otherwise, p(τ) is called a not
completely reducible solution.

A natural problem is how to classify (not) completely reducible solutions
p(τ) in terms of the global monodromy data of the associated GLE(n, p(τ),
A(τ), τ). This is crucial for us to prove Theorem 1.3. In Sections 4–5, we
answer this question for the special case n = 0, i.e. nk = 0 for all k and the
general case n �= 0, respectively.
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4. The special case n = 0

Note from (1.7) that αk = 1
8 for all k if n = 0. This section is devoted to the

classification of all solutions of EPVI(1
8 ,

1
8 ,

1
8 ,

1
8)

(4.1) d2p(τ)
dτ 2 = −1

32π2

3∑
k=0

℘′
(
p(τ) + ωk

2

∣∣∣∣ τ
)
,

or equivalently PVI(1
8 ,

−1
8 , 1

8 ,
3
8), in terms of the global monodromy data of the

associated GLE(0, p(τ), A(τ), τ). PVI(1
8 ,

−1
8 , 1

8 ,
3
8) was first studied by Hitchin

[15] and later by Takemura [28]. Therefore, part of the results in this section
do overlap with the existing literature. However, there are a number of issues
which we were unable to locate satisfactory in the literature. Here we attempt
to provide a self-contained account of solutions of PVI(1

8 ,
−1
8 , 1

8 ,
3
8) for later

usage in Section 5.
First we recall Hitchin’s famous formula. For any (r, s) ∈ C2\1

2Z
2, let

p0
r,s(τ) be defined by

(4.2) ℘(p0
r,s(τ)|τ) := ℘(r + sτ |τ) + ℘′(r + sτ |τ)

2(ζ(r + sτ |τ) − rη1(τ) − sη2(τ)) .

In [15] Hitchin proved the following remarkable result for PVI(1
8 ,

−1
8 , 1

8 ,
3
8).

Theorem 4.A ([15]). For any (r, s) ∈ C2\1
2Z

2, p0
r,s(τ) given by (4.2) is

a solution to EPVI(1
8 ,

1
8 ,

1
8 ,

1
8); or equivalently, λ0

r,s(t) := ℘(p0r,s(τ)|τ)−e1(τ)
e2(τ)−e1(τ) via

(4.2) is a solution to PVI(1
8 ,

−1
8 , 1

8 ,
3
8).

The following result shows that p0
r,s(τ) represents the completely reducible

solutions in the sense of Definition 3.2.

Theorem 4.1. Suppose p0(τ) is a solution of (4.1). Then

(i) p0(τ) is completely reducible if and only if there is a complex pair
(r, s) ∈ C2\1

2Z
2 such that p0(τ) = p0

r,s(τ) given by (4.2). In this case,
the monodromy of the associated GLE(0, p0(τ), A(τ), τ) satisfies (2.13).

(ii) ℘(p0
r1,s1(τ)|τ) ≡ ℘(p0

r2,s2(τ)|τ) ⇐⇒ (r1, s1) ≡ ±(r2, s2) modZ2.

Proof. (i) Take τ0 ∈ H such that p0(τ) �∈ Eτ [2] in a neighborhood U of τ0. We
only need to prove p0(τ) = p0

r,s(τ) in a neighborhood U for some (r, s) /∈ 1
2Z

2

and then the result follows by analytic continuation.
First we prove the necessary part. Since p0(τ) is completely reducible,

the associated GLE(0, p0(τ), A(τ), τ) is well-defined in U and preserves its
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completely reducible monodromy for τ ∈ U . Then by Theorem 2.3 and (2.11)–
(2.12), there exists (r, s) ∈ C2\1

2Z
2 independent of τ such that

(4.3) ya1(τ)(z) = ec(τ)zσ(z − a1(τ))√
σ(z − p0(τ))σ(z + p0(τ))

is a solution to GLE(0, p0(τ), A(τ), τ), where

a1(τ) = r + sτ,(4.4)
c(τ) = rη1(τ) + sη2(τ)

= 1
2

[
ζ(a1(τ) + p0(τ)) + ζ(a1(τ) − p0(τ))

]
.(4.5)

Here [a1(τ)] �= ±[p0(τ)] because the local exponents are −1
2 , 3

2 at ±p0(τ).
Applying the addition formula

(4.6) ζ(u + v) + ζ(u− v) − 2ζ(u) = ℘′(u)
℘(u) − ℘(v) ,

it is easy to see that the second equality in (4.5) is equivalent to

(4.7) ℘
(
p0(τ)|τ

)
= ℘(r + sτ |τ) + ℘′(r + sτ |τ)

2(ζ (r + sτ |τ) − rη1(τ) − sη2(τ)) ,

i.e. ℘(p0(τ)|τ) = ℘(p0
r,s(τ)|τ) for τ ∈ U . This proves p0(τ) = p0

r,s(τ) by
Remark 3.1.

Next we prove the sufficient part. Since p0(τ) = p0
r,s(τ), the above argu-

ment shows the validity of the second equality of (4.5) by defining a1(τ) =
r + sτ . Since (r, s) �∈ 1

2Z
2, we may assume a1(τ) �∈ Eτ [2] and hence a1(τ) �≡

±p0(τ) mod Λτ for τ ∈ U . Then we define c(τ) by (4.5) and ya1(τ)(z) by (4.3)
in U . Consequently, a direct computation shows that ya1(τ)(z) is a solution to
GLE(0, p0(τ), Ã(τ), τ) with

(4.8) Ã(τ) := 1
2

[
ζ(a1(τ) + p0(τ)) − ζ(a1(τ) − p0(τ)) − ζ(2p0(τ))

]
.

Indeed, since

y′a1(z)
ya1(z)

= c(τ) + ζ(z − a1) − 1
2 [ζ(z + p0) + ζ(z − p0)],(

y′a1(z)
ya1(z)

)′

= −℘(z − a1) + 1
2 [℘(z + p0) + ℘(z − p0)],
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are all elliptic functions, we have

y′′a1(z)
ya1(z)

=
(
y′a1(z)
ya1(z)

)′

+
(
y′a1(z)
ya1(z)

)2

= 3
4 [℘(z + p0) + ℘(z − p0)] + Ã[ζ(z + p0) − ζ(z − p0)] + B̃,

with some B̃ ∈ C and Ã = −c(τ) + ζ(p0 + a1) − 1
2ζ(2p

0), i.e. (4.8) holds by
using the second equality of (4.5).

By (4.5) and a1(τ) = r + sτ , the same argument as Theorem 2.3 implies
that (2.13) holds with respect to ya1(τ)(z) and y−a1(τ)(z), i.e. the monodromy
of GLE(0, p0(τ), Ã(τ), τ) is completely reducible and preserves for τ ∈ U .
Then Theorem 3.A implies that (p0(τ), Ã(τ)) satisfies the Hamiltonian system
(1.8), namely Ã(τ) = A(τ) and so the monodromy of the associated GLE(0,
p0(τ), A(τ), τ) of p0(τ) is completely reducible. This proves that p0(τ) is a
completely reducible solution.

(ii) The sufficient part is trivial so we prove the necessary part. Suppose
℘(p0

r1,s1(τ)|τ) ≡ ℘(p0
r2,s2(τ)|τ). Take τ0 ∈ H such that p0

ri,si(τ) �∈ Eτ [2], i =
1, 2, in a neighborhood U of τ0. Then p0

r1,s1(τ) = ±p0
r2,s2(τ) + m + nτ for

τ ∈ U . Let Ai(τ) be defned by the first equation of the Hamiltonian system
(1.8), then A1(τ) = ±A2(τ). Together with (1.5), we conclude that these
two associated GLE(0, p0

ri,si(τ), Ai(τ), τ) must be the same. Consequently, it
follows from the assertion (i) that

e2πis1 = e±2πis2 and e2πir1 = e±2πir2 ,

which is precisely (r1, s1) ≡ ± (r2, s2) modZ2. The proof is complete.

Next we study the not completely reducible solutions of EPVI(1
8 ,

1
8 ,

1
8 ,

1
8).

Recall (3.5) that the corresponding Hamiltonian K = K(λ, μ, t) is given by

(4.9) K = 1
t(t− 1)

{
λ(λ− 1)(λ− t)μ2 − 1

2(λ2 − 2tλ + t)μ
}
.

In general, solutions of PVI(1
8 ,

−1
8 , 1

8 ,
3
8) might also come from Riccati equa-

tions. It is easy to see from (4.9) that the Hamiltonian system (3.4) has four
families of solutions (λ(t), μ(t)), where λ(t) satisfies four different Riccati
equations as follows:

dλ

dt
= − 1

2t(t− 1)(λ2 − 2tλ + t), μ ≡ 0;(4.10)
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dλ

dt
= 1

2t(t− 1)(λ
2 − 2λ + t), μ ≡ 1

2λ ;(4.11)

dλ

dt
= 1

2t(t− 1)(λ
2 − t), μ ≡ 1

2(λ− 1) ;(4.12)

dλ

dt
= 1

2t(t− 1)(λ2 + 2(t− 1)λ− t), μ ≡ 1
2(λ− t) .(4.13)

Theorem 4.2. Suppose p(τ) is a solution of EPVI(1
8 ,

1
8 ,

1
8 ,

1
8). Then p(τ) is

not completely reducible if and only if the corresponding solution λ(t) (via
(3.2)) of PVI(1

8 ,
−1
8 , 1

8 ,
3
8) solves one of the four Riccati equations (4.10)–

(4.13).

Proof. Let p(τ) be a solution of the elliptic form (4.1). We can take τ0 ∈ H

such that

(4.14) [p(τ)] �∈ Eτ [2] and A(τ) is finite in a neighborhood U of τ0,

namely the associated GLE(0, p(τ), A(τ), τ) is well-defined and preserves the
monodromy for τ ∈ U . Recalling (4.8), we let ±a1(τ) be defined by

(4.15) A(τ) = 1
2[ζ(a1(τ) + p(τ)) − ζ(a1(τ) − p(τ)) − ζ(2p(τ))], τ ∈ U.

Then (4.14) gives

(4.16) [a1(τ)] �= ±[p(τ)], τ ∈ U.

Consequently, the same argument as that in the proof of Theorem 4.1-(i)
shows that

y±a1(τ)(z) = e±c(τ)zσ(z ∓ a1(τ))√
σ(z − p(τ))σ(z + p(τ))

with

c(τ) = 1
2 [ζ(a1(τ) + p(τ)) + ζ(a1(τ) − p(τ))]

are both solutions of GLE(0, p(τ), A(τ), τ). By Theorem 2.3, the monodromy
is not completely reducible if and only if ya1(τ)(z) and y−a1(τ)(z) are linearly
dependent, which is equivalent to a1(τ) ≡ −a1(τ) mod Λτ , i.e.

(4.17) [a1(τ)] = [ωk

2 ] for τ ∈ U and some k ∈ {0, 1, 2, 3}.
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On the other hand, by the addition formula (4.6) and ℘′′(p)
2℘′(p) = ζ(2p) −

2ζ(p), we can rewrite (4.15) as

(4.18) A(τ) = ℘′(p(τ))
2 [℘(p(τ)) − ℘(a1(τ))] −

℘′′(p(τ))
4℘′(p(τ)) .

Recall that λ(t) defined via (3.2) is a solution of PVI(1
8 ,

−1
8 , 1

8 ,
3
8). Then by

defining μ(t) via the first equation of the Hamiltonian system (3.4), (λ(t), μ(t))
satisfies the Hamiltonian system (3.4). It follows from (5.20) below that the
relation of μ(t) and A(τ) is given by

(4.19) μ(t(τ)) = 1
8
p′(λ)
p(λ) + A℘′(p)

(e2(τ) − e1(τ))2 p(λ)
,

where

(4.20) p(x) = 4x(x− 1)(x− t).

Notice from (4.20), (3.2) and ℘′(z)2 = 4
∏3

k=1(℘(z) − ek) that

p(λ(t)) = ℘′(p(τ))2

(e2(τ) − e1(τ))3 , p′(λ(t)) = 2℘′′(p(τ))
(e2(τ) − e1(τ))2 .

Inserting these and (4.18) into (4.19), we easily obtain

μ(t) = (e2(τ) − e1(τ)) (4A(τ)℘′(p(τ)) + ℘′′(p(τ)))
4℘′(p(τ))2

= e2(τ) − e1(τ)
2 [℘(p(τ)) − ℘(a1(τ))] .(4.21)

Remark that (4.21) always holds no matter with whether p(τ) is a completely
reducible solution or not.

Recall that the monodromy is not completely reducible if and only if
(4.17) holds. By (3.2) and (4.21), this is equivalent to

(4.22) μ(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if k = 0,
1

2λ(t) , if k = 1,
1

2(λ(t)−1) , if k = 2,
1

2(λ(t)−t) , if k = 3,

in a neighborhood of t(τ0),

namely one of (4.10)–(4.13) holds after the analytic continuation. The proof
is complete.
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Now we want to find the expression of a not completely reducible solution
p(τ). Assume [a1] = [ωk

2 ] ∈ Eτ [2] by (4.17), and recall (4.15) that

(4.23) A(τ) = 1
2[ζ(ωk

2 + p(τ)) − ζ(ωk

2 − p(τ)) − ζ(2p(τ))].

By using 2ζ(z) − ζ(2z) = −1
2
℘′′(z)
℘′(z) , (4.23) is equivalent to

(4.24) A(τ) = −1
4
℘′′(p(τ) − ωk

2 )
℘′(p(τ) − ωk

2 ) .

As in Theorem 2.4, we let

(4.25) y1(z) = ya1(z) = e
1
2 [ζ(a1+p)+ζ(a1−p)]zσ(z − a1)√

σ(z − p)σ(z + p)
, a1 = ωk

2 ,

and y2(z) = χ(z)y1(z) be linearly independent solutions of the associated
GLE(0, p(τ), A(τ), τ), where

(4.26) χ′(z) = const · y1(z)−2.

Define

(4.27) (εk,1, εk,2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1, 1), if k = 0,
(1,−1), if k = 1,
(−1, 1), if k = 2,
(−1,−1), if k = 3.

First we consider the case [a1] = [0]. Then y1(z) = σ(z)√
σ(z−p)σ(z+p)

= Ψp(z)
(see Theorem 2.3 for Ψp(z)) and

y1(z)−2 = σ(z + p)σ(z − p)
σ(z)2 = c(℘(z) − ℘(p)), c �= 0.

So (4.26) yields that we can take χ(z) = ζ(z)+℘(p)z, namely for any c(τ) �= 0,
(c(τ)y1, y2) with y2(z) = (ζ(z) + ℘(p)z)y1(z) is a fundamental system of
solutions to GLE(0, p(τ), A(τ), τ). In particular, (2.19) implies

(4.28) �∗j

(
c(τ)y1
y2

)
=
(

1 0
ηj+℘(p)ωj

c(τ) 1

)(
c(τ)y1
y2

)
, j = 1, 2.
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Proposition 4.3. The solutions of the Riccati equation (4.10) can be param-
eterized by C ∈ CP1:

(4.29) λ0
0,C(t) =

℘(p0
0,C(τ)|τ) − e1(τ)
e2(τ) − e1(τ) , ℘(p0

0,C(τ)|τ) = η2(τ) − Cη1(τ)
C − τ

.

Moreover, the monodromy of the associated GLE satifies

(4.30) ρ(�1) =
(

1 0
1 1

)
, ρ(�2) =

(
1 0
C 1

)
.

Here when C = ∞, it should be understand as

(4.31) ρ(�1) = I2, ρ(�2) =
(

1 0
1 1

)
.

Proof. In this proof, we omit 0, 0 in the notations.
Step 1. We prove that for any constant C ∈ CP1, λC(t) given by (4.29)

solves the Riccati equation (4.10).
Fix any C ∈ CP1 and let p(τ) = pC(τ), A(τ) = −1

4
℘′′(p(τ))
℘′(p(τ)) in GLE(0, p(τ),

A(τ), τ). If C = ∞, then ℘(p(τ)) = −η1(τ). Choose c(τ) = η2(τ) + ℘(p(τ))τ .
By the Legendre relation τη1(τ) − η2(τ) = 2πi we have c(τ) = −2πi. Thus
by (4.28), we obtain (4.31). That is, GLE(0, p(τ), A(τ), τ) is monodromy
preserving as τ deforms, so p(τ) = p∞(τ) is a solution of EPVI(1

8 ,
1
8 ,

1
8 ,

1
8).

If C �= ∞, then (4.29) gives η1(τ) + ℘(p(τ)) �≡ 0 and C = η2(τ)+℘(p(τ))τ
η1(τ)+℘(p(τ)) .

Choose c(τ) = η1(τ) + ℘(p(τ)). Clearly except a set of discrete points in H,
c(τ) �= 0 and so (4.28) gives (4.30). Again we conclude that p(τ) = pC(τ) is
a solution of EPVI(1

8 ,
1
8 ,

1
8 ,

1
8). Formula (4.29) can be found in [15, 28]. Here

together with a1 = 0 and (4.22), we note that λC(t) actually solves the Ricatti
equation (4.10).

Step 2. Let λ(t) be any solution of the Riccati equation (4.10). We prove
the existence of C ∈ CP1 such that λ(t) = λC(t).

Define ±[p(τ)] by λ(t) via (3.2) and A(τ) = −1
4
℘′′(p(τ))
℘′(p(τ)) . Then p(τ) is a

solution of EPVI(1
8 ,

1
8 ,

1
8 ,

1
8) and the associated GLE(0, p(τ), A(τ), τ) is mon-

odromy preserving as τ deforms. So there exists a fundamental system of so-
lutions (ỹ1(z; τ), ỹ2(z; τ)) such that the monodromy matrices M1, M2, which
are defined by

�∗j

(
ỹ1
ỹ2

)
= Mj

(
ỹ1
ỹ2

)
, j = 1, 2,
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are independent of τ . We may assume ℘(p(τ)|τ) �≡ ℘(p∞(τ)|τ), otherwise we
are done. Then c(τ) := η1(τ) + ℘(p(τ)) �≡ 0. For any τ such that c(τ) �= 0,
(c(τ)y1, y2) given by (4.25)–(4.28) is also a fundamental system of solutions,

so there is an invertible matrix γ =
(
a b
c d

)
such that

(
ỹ1
ỹ2

)
= γ

(
c(τ)y1
y2

)
.

Clearly the monodromy matrices of (c(τ)y1, y2) is given by (4.30), where

(4.32) C = η2(τ) + ℘(p(τ)|τ)τ
η1(τ) + ℘(p(τ)|τ)

might depend on τ at the moment. Then

M1 = γ

(
1 0
1 1

)
γ−1 =

(
1 + bd

ad−bc
−b2

ad−bc
d2

ad−bc 1 − bd
ad−bc

)
,

M2 = γ

(
1 0
C 1

)
γ−1 =

(
1 + bd

ad−bcC
−b2

ad−bcC
d2

ad−bcC 1 − bd
ad−bcC

)
.

Since M1, M2 are independent of τ and |b|2 + |d|2 �= 0, we conclude that
C is a constant independent of τ . Consequently, (4.32) implies ℘(p(τ)|τ) =
℘(pC(τ)|τ) and so λ(t) = λC(t).

Similarly, we can prove that all solutions of the other three Riccati equa-
tions can be parameterized by CP1. The calculation is as follows. Fix k ∈
{1, 2, 3}. By (4.25) it is easy to see that

χ(z) := − ℘(p) − ek
(ek − ei)(ek − ej)

ζ(z − ωk

2 ) −
(

1 + ek
℘(p) − ek

(ek − ei)(ek − ej)

)
z

satisfies (4.26), where {i, j} = {1, 2, 3}\{k}. As before, for any c(τ) �= 0,
(c(τ)y1(z), y2(z)) with y2(z) = χ(z)y1(z) is a fundamental system of solutions
to GLE(0, p(τ), A(τ), τ). In particular, as in Theorem 2.4 we easily obtain

�∗1

(
c(τ)y1
y2

)
= εk,1

(
1 0

−Dη1+(1+Dek)
c(τ) 1

)(
c(τ)y1
y2

)
,(4.33)

�∗2

(
c(τ)y1
y2

)
= εk,2

(
1 0

−Dη2+τ(1+Dek)
c(τ) 1

)(
c(τ)y1
y2

)
,

where (εk,1, εk,2) is given by (4.27) and

(4.34) D := ℘(p) − ek
(ek − ei)(ek − ej)

.
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Proposition 4.4. For k ∈ {1, 2, 3} and C ∈ CP1, we let

λ0
k,C(t) =

℘(p0
k,C(τ)|τ) − e1(τ)
e2(τ) − e1(τ) ,

where

(4.35) ℘(p0
k,C(τ)|τ) :=

ek(Cη1(τ) − η2(τ)) + ( g2
4 − 2e2

k)(C − τ)
Cη1(τ) − η2(τ) + ek(C − τ) .

Then λ0
k,C(t) satisfies the Ricatti equation (4.11) if k = 1, (4.12) if k = 2,

(4.13) if k = 3. Conversely, such λ0
k,C(t) give all the solutions of these three

Riccati equations respectively. Furthermore, the monodromy of its associated
GLE satisfies

(4.36) ρ(�1) = εk,1

(
1 0
1 1

)
, ρ(�2) = εk,2

(
1 0
C 1

)
,

where as before, when C = ∞, it should be understand as

(4.37) ρ(�1) = εk,1I2, ρ(�2) = εk,2

(
1 0
1 1

)
.

Proof. We sketch the proof for fixed k ∈ {1, 2, 3} and omit 0,k in the no-
tations. For any C ∈ CP1, we let p(τ) = pC(τ), A(τ) = −1

4
℘′′(p(τ)−ωk

2 )
℘′(p(τ)−ωk

2 ) in
GLE(0, p(τ), A(τ), τ). If C = ∞, i.e. Dη1 + (1 + Dek) ≡ 0, then we choose
c(τ) = −[Dη2 + τ(1 + Dek)] = −2πi

η1(τ)+ek(τ) �≡ 0. By (4.33) we obtain (4.37). If
C �= ∞, then (4.35) gives Dη1 +(1+Dek) �≡ 0 and C = Dη2+τ(1+Dek)

Dη1+(1+Dek) . Choose
c(τ) = −[Dη1 +(1+Dek)], then we immediately obtain (4.36). In both cases,
GLE(0, p(τ), A(τ), τ) is monodromy preserving, so p(τ) = pC(τ) is a solution
of EPVI(1

8 ,
1
8 ,

1
8 ,

1
8). Formula (4.35) was first obtained in [28]. Here by a1 = ωk

2
and (4.22), we note that λC(t) actually satisfies the Ricatti equation (4.11) if
k = 1, (4.12) if k = 2, (4.13) if k = 3. The rest of the proof is similar to that
of Proposition 4.3.

Remark that the explict expression of ℘(p0
k,C(τ)|τ) immediately implies

(4.38) ℘(p0
k,C1(τ)|τ) ≡ ℘(p0

k,C2(τ)|τ) ⇐⇒ C1 = C2.

The above results completely classify all the solutions of EPVI(1
8 ,

1
8 ,

1
8 ,

1
8)

in terms of the global monodromy data of the associated GLE. For a com-
pletely reducible solution p0

r,s(τ), we denote the corresponding μ(t) by μ0
r,s(t)
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and (4.21) gives

(4.39) μ0
r,s(t) = e2(τ) − e1(τ)

2
[
℘(p0

r,s(τ)|τ) − ℘(r + sτ |τ)
] .

For a not completely reducible solution p0
k,C(τ), we denote the corresponding

μ(t) by μ0
k,C(t), and by (4.10)–(4.13) or (4.21),

μ0
0,C(t) ≡ 0, μ0

k,C(t) = e2(τ) − e1(τ)
2[℘(p0

k,C(τ)|τ) − ek(τ)] , k = 1, 2, 3.

We conclude this section by studying the precise relation between these two
kinds of solutions.

Theorem 4.5. For C �= ∞, there holds

℘(p0
k,C(τ)|τ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lims→0 ℘(p0
−Cs,s(τ)|τ) if k = 0,

lims→0 ℘(p0
1
2−Cs,s(τ)|τ) if k = 1,

lims→0 ℘(p0
Cs, 12−s

(τ)|τ) if k = 2,
lims→0 ℘(p0

1
2+Cs, 12−s

(τ)|τ) if k = 3,

and the same holds for μ0
k,C(t) as the limit of μ0

r,s(t) for (r, s) = (−Cs, s) if
k = 0, and so on.

For C = ∞, there holds

℘(p0
k,∞(τ)|τ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

limr→0 ℘(p0
r,0(τ)|τ) if k = 0,

limr→0 ℘(p0
1
2+r,0(τ)|τ) if k = 1,

limr→0 ℘(p0
r, 12

(τ)|τ) if k = 2,
limr→0 ℘(p0

1
2+r, 12

(τ)|τ) if k = 3,

and the same holds for μ0
k,∞(t) as the limit of μ0

r,s(t) for (r, s) = (r, 0) if
k = 0, and so on.

Proof. The proof is just by computations. For example, for C �= ∞, we denote
u = −Cs+sτ = s(τ−C) for convenience. Then u → 0 as s → 0, and it follows
from the Laurent series of ζ(·|τ) and ℘(·|τ) that

ζ(−Cs + sτ |τ) = 1
u
− g2

60u
3 + O(|u|5),

℘(−Cs + sτ |τ) = 1
u2 + g2

20u
2 + O(|u|4),
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℘′(−Cs + sτ |τ) = −2
u3 + g2

10u + O(|u|3),

hold uniformly for τ in any compact subset K ⊂ H as s → 0. Inserting these
into Hicthin’s formula (4.2), we easily obtain that

lim
s→0

℘(p0
−Cs,s(τ)|τ) = η2(τ) − Cη1(τ)

C − τ
= ℘(p0

0,C(τ)|τ)

holds uniformly for τ in any compact subset K. Therefore, as solutions of
EPVI(1

8 ,
1
8 ,

1
8 ,

1
8), ℘(p0

0,C(τ)|τ) → ℘(p0
−Cs,s(τ)|τ) as s → 0. Furthermore, it

follows from (4.39) that lims→0 μ
0
−Cs,s(t) = 0 = μ0

0,C(t). The other formulas
can be proved similarly and we omit the details here.

In the next section, we will generalize the above results to the general
case n �= 0 via the well known Bäcklund transformation.

5. General case via the Bäcklund transformation

The purpose of this section is to classify all the solutions of the elliptic form
(1.6) with parameters

(5.1) αk = (2nk+1)2
8 , nk ∈ Z≥0 for all k and n �= 0,

or equivalently PVI with parameters

(α, β, γ, δ) =
(

(2n0+1)2
8 , − (2n1+1)2

8 , (2n2+1)2
8 ,

1
2 − (2n3+1)2

8

)
, nk ∈ Z≥0 for all k and n �= 0,(5.2)

in terms of the global monodromy data of the associated GLE. The idea is
to apply the Bäcklund transformations.

It is known that solutions of PVI with parameter (5.2) could be obtained
from solutions of PVI(1

8 ,
−1
8 , 1

8 ,
3
8) (i.e. nk = 0 for all k) via the Bäcklund

transformations ([25]). By (3.6)–(3.7), it is convenient to consider the param-
eter space of PVI (equivalently the Hamiltonian system (3.4)–(3.5)) as an
affine space

K =
{
θ = (θ0, θ1, θ2, θ3, θ4) ∈ C5 : 2θ0 + θ1 + θ2 + θ3 + θ4 = 1

}
.

Definition 5.1 ([25]). An Bäcklund transformation κ is an invertible map-
ping which maps solutions (λ(t), μ(t), t) of the Hamiltonian system (3.4) with
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parameter θ to solutions (κ(λ)(t), κ(μ)(t), t) of (3.4) with new parameter
κ(θ) ∈ K where both κ(λ)(t) and κ(μ)(t) are rational functions of λ, μ, t. In
particular, κ(λ)(t) is a solution to PVI (3.1) with new parameter κ(θ) ∈ K.

The list of the Bäcklund transformations κj(0 ≤ j ≤ 4) is given in the
Table 1 (cf. [35]).

Table 1: Bäcklund transformations
θ0 θ1 θ2 θ3 θ4 t λ μ

κ0 −θ0 θ1 + θ0 θ2 + θ0 θ3 + θ0 θ4 + θ0 t λ + θ0
μ μ

κ1 θ0 + θ1 −θ1 θ2 θ3 θ4 t λ μ− θ1
λ

κ2 θ0 + θ2 θ1 −θ2 θ3 θ4 t λ μ− θ2
λ−1

κ3 θ0 + θ3 θ1 θ2 −θ3 θ4 t λ μ− θ3
λ−t

κ4 θ0 + θ4 θ1 θ2 θ3 −θ4 t λ μ

Among them κ0 is due to Okamoto [25] while the others are classically
known. These transformations κj (0 ≤ j ≤ 4), which satisfy κj ◦ κj = Id (i.e.
κ−1
j = κj), generate the affine Weyl group of type D

(1)
4 :

(5.3) W (D(1)
4 ) = 〈κ0, κ1, κ2, κ3, κ4〉 .

Denote θ0 := (−1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2) which corresponds to PVI(1

8 ,
−1
8 , 1

8 ,
3
8). By

Table 1 there exists κn ∈ W (D(1)
4 ) such that

(5.4) θn :=
(
−1 +

∑
nk

2 , n1 + 1
2 , n2 + 1

2 , n3 + 1
2 , n0 + 1

2

)
= κn(θ0).

Note that

(5.5) (κn)−1 ∈ W (D(1)
4 ) and θ0 = (κn)−1(θn).

Consequently, there exist two rational functions Rn(·, ·, ·) and R̃n(·, ·, ·) of
three independent variables with coefficients in Q such that for any solution
(λ0(t), μ0(t)) of the Hamiltonian system (3.4) with parameter θ0, (λn(t), μn(t))
given by

λn(t) := κ(λ0)(t) = Rn(λ0(t), μ0(t), t),(5.6)
μn(t) := κ(μ0)(t) = R̃n(λ0(t), μ0(t), t),(5.7)

is a solution of the Hamiltonian system (3.4) with parameter θn, or equiva-
lently, λn(t) is a solution of PVI with parameter (5.2).
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Remark that by (5.5), there are also two rational functions Rn(·, ·, ·) and
R̃n(·, ·, ·) of three independent variables with coefficients in Q such that the
rational map (5.6)–(5.7) is invertible in the following sense

(5.8) λ0(t) = Rn(λn(t), μn(t), t), μ0(t) = R̃n(λn(t), μn(t), t).

In the literature, there are also references treating the Bäcklund transfor-
mations as biholomorphic transformations on the space of initial conditions
for solutions of Painlevé equations; see e.g. [27, 34]. In this paper, (5.6)–(5.8)
are enough for our following arguments and so we do not need to discuss the
space of initial conditions.

Notation: Let pn(τ) be a solution of the elliptic form (1.6) with parameter
(5.1). We denote it by pn

r,s(τ) (resp. pn
k,C(τ)) if it comes from the solution

p0
r,s(τ) (resp. p0

k,C(τ)) of EPVI(1
8 ,

1
8 ,

1
8 ,

1
8) via (5.6), i.e.

℘(pn
r,s(τ)|τ) − e1(τ)
e2(τ) − e1(τ) = Rn

(
℘(p0

r,s(τ)|τ) − e1(τ)
e2(τ) − e1(τ) , μ0

r,s(t), t
)
,(5.9)

℘(pn
k,C(τ)|τ) − e1(τ)
e2(τ) − e1(τ) = Rn

(
℘(p0

k,C(τ)|τ) − e1(τ)
e2(τ) − e1(τ) , μ0

k,C(t), t
)
.(5.10)

We use similar notations μn
r,s(t) and μn

k,C(t) via (5.7). Consequently, it follows
from (5.8) that

℘(p0
r,s(τ)|τ) − e1(τ)
e2(τ) − e1(τ) = Rn

(
℘(pn

r,s(τ)|τ) − e1(τ)
e2(τ) − e1(τ) , μn

r,s(t), t
)
,(5.11)

℘(p0
k,C(τ)|τ) − e1(τ)
e2(τ) − e1(τ) = Rn

(
℘(pn

k,C(τ)|τ) − e1(τ)
e2(τ) − e1(τ) , μn

k,C(t), t
)
.(5.12)

Remark 5.2. Given (r, s) ∈ C2 \ 1
2Z

2, we write Z = Zr,s(τ), ℘ = ℘(r+ sτ |τ)
and ℘′ = ℘′(r + sτ |τ) for convenience. Then Hitchin’s formula (4.2) gives

℘(p0
r,s(τ)|τ) = ℘ + ℘′

2Z .

Consequently, we see from (4.21) that

μ0
r,s(t) = e2(τ) − e1(τ)

2[℘(p0
r,s(τ)|τ) − ℘] = (e2(τ) − e1(τ))Z

℘′ .
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Inserting these and t = e3(τ)−e1(τ)
e2(τ)−e1(τ) into (5.9), we conclude that

℘(pn
r,s(τ)|τ) = Ξn(Z, ℘, ℘′, e1(τ), e2(τ), e3(τ)),

where Ξn is a rational function of six independent variables with coefficients
in Q.

Our main results of this section are as follows, which indicate that the
Bäcklund transformation preserves the global monodromy data (or equiva-
lently the monodromy representation) in both completely reducible and not
completely reducible cases.

Theorem 5.3 (Completely reducible solutions).

(1) pn(τ) is a completely reducible solution if and only if there exists (r, s) ∈
C2\1

2Z
2 such that pn(τ) = pn

r,s(τ). In this case, for any τ satisfying
pn(τ) �∈ Eτ [2], the monodromy of the associated GLE(n, pn(τ), An(τ), τ)
satisfies (2.13), i.e. the global monodromy data is precisely this (r, s).

(2) ℘(pn
r1,s1(τ)|τ) ≡ ℘(pn

r2,s2(τ)|τ) ⇐⇒ (r1, s1) ≡ ±(r2, s2) mod Z2.

Theorem 5.4 (Not completely reducible solutions).

(1) pn(τ) is a not completely reducible solution if and only if there exist
k ∈ {0, 1, 2, 3} and C ∈ C ∪ {∞} such that pn(τ) = pn

k,C(τ). In this
case, for any τ satisfying pn(τ) �∈ Eτ [2], the monodromy of the as-
sociated GLE(n, pn(τ), An(τ), τ) satisfies (4.36)–(4.37), i.e. the global
monodromy data is precisely (2εk,1, 2εk,2, C).

(2) ℘(pn
k,C1

(τ)|τ) ≡ ℘(pn
k,C2

(τ)|τ) if and only if C1 = C2.

The rest of this section is devoted to the proofs of these theorems. First
we note that by applying the gauge transformation

(5.13) f(x) = φ(x)F (x) with φ(x) = (x− λ)x
θ1
2 (x− 1)

θ2
2 (x− t)

θ3
2 ,

equation (3.8) is normalized into a new Fuchsian ODE

(5.14) d2F

dx2 + P1(x)dF
dx

+ P2(x)F = 0,

where

P1 = p1 + 2φ
′

φ
, P2 = p2 + φ′

φ
p1 + φ′′

φ
.
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Clearly the Riemann scheme of (5.14) is

(5.15)

⎛
⎜⎝ 0 1 t λ ∞

− θ1
2 − θ2

2 − θ3
2 −1 3−θ4

2
θ1
2

θ2
2

θ3
2 1 3+θ4

2

⎞
⎟⎠ ,

and λ is still an apparent singularity of (5.14). As in [16], equation (5.14) is
called the normal form of (3.8). By (5.15) it is easy to see that the normal
form (5.14) has its monodromy group contained in SL(2,C), which is an
important advantage comparing to (3.8).

We proceed to the monodromy representation. Take the base point x0 =
℘(q0)−e1
e2−e1

�∈ {0, 1, t,∞} and let γj ∈ π1(C\{0, 1, t}, x0) be a simple loop encir-
cling the singular point 0 for j = 1, 1 for j = 2, t for j = 3 respectively in
the counterclockwise direction, and γ4 be a simple loop around ∞ clockwise
such that

γ1γ2γ3 = γ−1
4 in π1(C\{0, 1, t}, x0).

Of course we require that all these loops do not intersect except at the base
point x0. Let Mj be the monodromy matrix along the loop γj with respect
to any fixed fundamental system of solutions (F1(x), F2(x)) of (5.14). Then
detMj = 1, namely Mj ∈ SL(2,C) for all j. Define

(5.16) κ1 := tr(M2M3), κ2 := tr(M1M3), κ3 := tr(M1M2).

Then κ = (κ1,κ2,κ3) ∈ C3 is independent of the choice of solutions, and
is referred to as global monodromy data of (3.8) (or (5.14)) in [16]. Clearly
κj = κj(θ, λ, μ, t) is uniquely determined by equation (3.8) itself and so is
a function of (θ, λ, μ, t) for all j. Then each Bäcklund transformation κ ∈
W (D(1)

4 ) induces a transformation (still denoted by κ) from C3 to C3:

(5.17) κ(κj) := κj(κ(θ), κ(λ), κ(μ), t), j = 1, 2, 3.

We recall an important result from [16]; see also [2] for a different proof.

Theorem 5.A ([16, 2]). The global monodromy data κ = (κ1,κ2,κ3) is in-
variant under the Bäcklund transformations W (D(1)

4 ). Namely for any Bäck-
lund transformation κ ∈ W (D(1)

4 ), κ(κj) = κj for j = 1, 2, 3.

Theorem 5.A can be also applied to GLE(n, p, A, τ). Consider transfor-
mations as in [4]

(5.18) x = ℘(z) − e1

e2 − e1
, t = e3 − e1

e2 − e1
, λ = ℘(p) − e1

e2 − e1
,
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and

(5.19) (x− λ)−
1
2x−

n1
2 (x− 1)−

n2
2 (x− t)−

n3
2 f(x) = y(z).

Then y(z) solves GLE(n, p, A, τ) if and only if f(x) satisfies the Fuchsian
ODE (3.8) on CP1 with parameter θ = θn, where μ in (3.11) is given by

μ = 1
8
p′(λ)
p(λ) + A℘′(p)

(e2 − e1)2p(λ) + n1

2λ + n2

2(λ− 1) + n3

2(λ− t) ,(5.20)

where p(λ) = 4λ(λ− 1)(λ− t),(5.21)

and K = K(λ, μ, t) is given by (3.5). Note that ±p �∈ Eτ [2] are apparent
singularities of GLE(n, p, A, τ) is equivalent to that λ �∈ {0, 1, t,∞} is an
apparent singularity of (3.8). See [4, Theorem 4.1] for the proof.

By (5.4), (5.13) and (5.19), we let

(5.22) y(z) = ψ(x)F (x) with ψ(x) = (x− λ)
1
2x

1
4 (x− 1)

1
4 (x− t)

1
4 .

Then the above argument shows that y(z) is a solution to GLE(n, p, A, τ) if
and only if F (x) satisfies the normal form (5.14).

Remark 5.5. Recall the definition of γj ∈ π1(C\{0, 1, t}, x0). Under the
transformation (5.18), it is easy to see that the fundamental cycle �1 (resp.
�2) of Eτ is mapped to a simple loop in π1(C\{0, 1, t}, x0) which separates
{1, t} from {0,∞} (resp. separates {0, t} from {1,∞}), so (�1, �2) must be
mapped to one of

(γ−1
2 γ−1

3 , γ1γ3), (γ3γ2, γ
−1
3 γ−1

1 ), (γ2γ3, γ3γ1), (γ−1
3 γ−1

2 , γ−1
1 γ−1

3 ).

In this paper, by letting the base point q0 lie inside the parallelogram with
vertices {0, −ω1

2 , −ω2
2 , −ω3

2 }, we can always assume that (�1, �2) is mapped to
(γ−1

2 γ−1
3 , γ1γ3).

Recalling the global monodromy data κ = (κ1,κ2,κ3) of the normal form
(5.14), we have the following important result.

Lemma 5.6.

trρ(�1) = −tr(M2M3) = −κ1,

trρ(�2) = −tr(M1M3) = −κ2,

tr(ρ(�1)−1ρ(�2)) = −tr(M1M2) = −κ3.
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Proof. Let (y1(z), y2(z)) be any fundamental system of solutions to GLE(n,
p,A, τ). Define a fundamental system of solutions (F1(x), F2(x)) of (5.14)
via (y1(z), y2(z)) and (5.22). Recall the notation Nj = ρ(�j). Under the
transformation (5.18), it follows from Remark 5.5 that (�1, �2) is mapped
to (γ−1

2 γ−1
3 , γ1γ3). Then

N1

(
y1(z)
y2(z)

)
= �∗1

(
y1(z)
y2(z)

)
=
(
γ−1

2 γ−1
3

)∗
ψ(x)

(
F1(x)
F2(x)

)

= −ψ(x)M−1
2 M−1

3

(
F1(x)
F2(x)

)
= −M−1

2 M−1
3

(
y1(z)
y2(z)

)
,

and similarly,

N2

(
y1(z)
y2(z)

)
= �∗2

(
y1(z)
y2(z)

)
= −M1M3

(
y1(z)
y2(z)

)
,

where the minus sign comes from the analytic continuation of ψ(x). Therefore,
N1 = −M−1

2 M−1
3 and N2 = −M1M3. Since Mj ∈ SL(2,C), we have

tr(M−1
2 M−1

3 ) = tr((M2M3)−1) = tr(M2M3) = κ1,

which proves trN1 = −κ1 and similarly trN2 = −tr(M1M3) = −κ2.
On the other hand, recall (5.4) that θj = nj + 1

2 with nj ∈ Z≥0 for
j = 1, 2, 3, so (5.15) implies the existence of inverse matrices Pj such that

Mj = P−1
j

(
e−πiθj 0

0 eπiθj

)
Pj = (−1)njP−1

j

(
−i 0
0 i

)
Pj ,

which infers M2
j = −I2. Therefore,

tr(N−1
1 N2) = tr(M3M2M1M3) = tr(M2

3M2M1)
= −tr(M2M1) = −tr(M1M2) = −κ3.

The proof is complete.

We are in the position to prove Theorems 5.3–5.4.

Proof of Theorems 5.3–5.4. First, the assertions (2) of these two theorems
follow directly from Theorem 4.1-(ii), (4.38) and (5.9)–(5.12) (i.e. the invert-
ibility of the Bäcklund transformation implies the invertibility of the associ-
ated rational map).
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Suppose pn(τ) is a solution of the elliptic form (1.6) with parameter (5.1),
and p0(τ) is the corresponding solution of the elliptic form (4.1) such that
under the Bäcklund transformation κn, p0(τ) is transformed to pn(τ). By
Theorem 5.A and Lemma 5.6, the associated GLE(n, pn(τ), An(τ), τ) and
GLE(0, p0(τ), A0(τ), τ) have the same (trρ(�1), trρ(�2)). Together with Corol-
lary 2.5, we conclude that pn(τ) is a completely reducible solution (resp. not
completely reducible) if and only if p0(τ) is a completely reducible solution
(resp. not completely reducible).

Now we prove Theorem 5.3-(1). Let pn(τ) be a completely reducible solu-
tion, then so does p0(τ). Applying Theorem 4.1, there exists (r, s) ∈ C2\1

2Z
2

such that p0(τ) = p0
r,s(τ) and the monodromy of GLE(0, p0(τ), A0(τ), τ)

satisfies (2.13), which implies

(trρ(�1), trρ(�2), tr(ρ(�1)−1ρ(�2)))(5.23)
= (2 cos 2πs, 2 cos 2πr, 2 cos 2π(r + s)).

Thus, pn(τ) = pn
r,s(τ) and Lemma 5.6 implies that (5.23) holds for GLE(n,

pn(τ), An(τ), τ). Consequently, it follows from Theorem 2.3 and (2.11)–(2.12)
that the monodromy of GLE(n, pn(τ), An(τ), τ) satisfies (2.13). This proves
Theorem 5.3-(1).

Finally, we prove Theorem 5.4-(1). Let pn(τ) be a not completely reducible
solution, then so does p0(τ). By Theorem 4.2 and Propositions 4.3–4.4, there
exist k ∈ {0, 1, 2, 3} and C ∈ C ∪ {∞} such that p0(τ) = p0

k,C(τ) and

(5.24) (trρ(�1), trρ(�2)) = (2εk,1, 2εk,2),

for GLE(0, p0(τ), A0(τ), τ). Thus pn(τ) = pn
k,C(τ) and (5.24) holds for GLE(n,

pn(τ), An(τ), τ).
It remains to prove that the monodromy of GLE(n, pn(τ), An(τ), τ) satis-

fies (4.36)–(4.37), i.e. the global monodromy data is precisely (2εk,1, 2εk,2, C).
Note that we only need to prove this assertion for some τ because of the
isomonodromic deformation. We take k = 1 and C �= ∞ for example, and
all the other cases can be proved in the same way. By Theorem 4.5 and
(5.6)–(5.10), we easily obtain

℘(pn
1,C(τ)|τ) = lim

s→0
℘(pn

1
2−Cs,s(τ)|τ),

μn
1,C(t) = lim

s→0
μn

1
2−Cs,s(t).

Fix any τ such that pn
1,C(τ) �∈ Eτ [2]. By Remark 3.1 we may assume

pn
1,C(τ) = lim

s→0
pn

1
2−Cs,s(τ)
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and then it follows from (5.20) that the corresponding

An
1,C(τ) = lim

s→0
An

1
2−Cs,s(τ).

In the rest of the proof, we omit n, τ in the notations for convenience. Thus the
associated GLE(n, p1,C , A1,C) is a limit of GLE(n, p 1

2−Cs,s, A 1
2−Cs,s). Denote by

Φe(z) and Φe,s(z) respectively, to be their corresponding unique even elliptic
solution stated in Theorem 2.A. Then

(5.25) Φe(z) = lim
s→0

Φe,s(z).

Recall Theorem 2.4 that

(5.26) χj :=
∫ z+ωj

z

1
Φe(ξ)

dξ �= ∞, j = 1, 2

are well-defined and independent of z. We claim that

(5.27) χ2/χ1 = C.

Once (5.27) is proved, then Theorem 2.4 and (5.24) imply that the mon-
odromy of GLE(n, p1,C, A1,C) satisfies (4.36)–(4.37) with k = 1, hence com-
pletes the proof of Theorem 5.4-(1).

To prove (5.27), we apply Theorem 2.3 and Theorem 4.1-(i) to GLE(n,
p 1

2−Cs,s, A 1
2−Cs,s) and denote the corresponding y±a(z) by y±a(s)(z), which

gives

�∗1

(
ya(s)(z)
y−a(s)(z)

)
=
(
e−2πis 0

0 e2πis

)(
ya(s)(z)
y−a(s)(z)

)
,

�∗2

(
ya(s)(z)
y−a(s)(z)

)
=
(
e2πi( 1

2−Cs) 0
0 e−2πi( 1

2−Cs)

)(
ya(s)(z)
y−a(s)(z)

)
.

By (2.10) there exists a nonzero constant c(s) such that

Φe,s(z) = c(s)ya(s)(z)y−a(s)(z).

It follows from (5.25) that up to a subsequence, lims→0 c(s) = c0 �∈ {0,∞}.
Let

W (s) := y′a(s)(z)y−a(s)(z) − ya(s)(z)y′−a(s)(z)
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be the Wronskian, which is a nonzero constant independent of z. Since GLE(n,
p 1

2−Cs,s, A 1
2−Cs,s) converges to GLE(n, p1,C , A1,C) whose monodromy is not

completely reducible, we have

(5.28) lim
s→0

W (s) = 0.

Define

fs(z) :=
ya(s)(z)
y−a(s)(z)

.

Then fs(z) has no branch points and hence single-valued in C, which satisfies

fs(z + 1) = e−4πisfs(z), fs(z + τ) = e4πi( 1
2−Cs)fs(z).

Furthermore, a direct computation gives

d

dz
ln fs(z) = c(s)W (s)

Φe,s(z)
,

and so

e−4πis = fs(z + 1)
fs(z)

= exp
(
c(s)W (s)

∫ z+1

z

1
Φe,s(ξ)

dξ

)
,

e4πi( 1
2−Cs) = fs(z + τ)

fs(z)
= exp

(
c(s)W (s)

∫ z+τ

z

1
Φe,s(ξ)

dξ

)
.

Therefore, there exist m1,m2 ∈ Z such that∫ z+1

z

1
Φe,s(ξ)

dξ = −4πis + 2πim1

c(s)W (s) ,

∫ z+τ

z

1
Φe,s(ξ)

dξ =
4πi(1

2 − Cs) + 2πim2

c(s)W (s) .

Together with (5.25)–(5.26), we have

lim
s→0

−4πis + 2πim1

c(s)W (s) = χ1, lim
s→0

4πi(1
2 − Cs) + 2πim2

c(s)W (s) = χ2.

This, together with lims→0 c(s) = c0 �∈ {0,∞} and (5.28), yields (m1,m2) =
(0,−1) and so

χ2

χ1
= lim

s→0

4πi(1
2 − Cs) − 2πi
−4πis = C.

This proves (5.27). The proof is complete.
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6. Proofs of Theorem 1.3

This section is devoted to proving Theorem 1.3. In this section, we denote
N =

∑
k nk +1. First we prove the uniqueness of GLE(n, p, A, τ) with respect

to the monodromy data.

Proof of Theorem 1.3-(1). Fix n and τ0. Suppose GLE(n, pj , Aj , τ0), j = 1, 2,
have the same global monodromy data. Let (pn

j (τ), An
j (τ)) be the solution of

the Hamiltonian system (1.8) with initial data (pn
j (τ0), An

j (τ0)) = (pj , Aj),
j = 1, 2. Then pn

j (τ) are solutions of the elliptic form (1.6) with parameter
(5.1). There are two cases.

Case 1. The monodromies of GLE(n, pj , Aj , τ0) are completely reducible
with the same global monodromy data (rj , sj) ∈ C2\1

2Z
2 with (r1, s1) ∼

(r2, s2). Then Theorem 5.3 implies pn
j (τ) = pn

rj ,sj (τ) and hence ℘(pn
1 (τ)|τ) ≡

℘(pn
2 (τ)|τ). In a small neighborhood U of τ0 we may assume pn

1 (τ) = ±pn
2 (τ)+

m1 + m2τ for some mj ∈ Z. Then it follows from the first equation of
the Hamiltonian system (1.8) that An

1 (τ) = ±An
2 (τ) for τ ∈ U . In partic-

ular, these hold for τ0 and we conclude from (1.5) that GLE(n, p1, A1, τ0) =
GLE(n, p2, A2, τ0).

Case 2. The monodromies of GLE(n, pj , Aj , τ0) are not completely re-
ducible with the same global monodromy data (2εk,1, 2εk,2, C). Thanks to
Theorem 5.4, the same argument as Case 1 implies GLE(n, p1, A1, τ0) =
GLE(n, p2, A2, τ0).

To prove Theorem 1.3 for H(n, B, τ), we need to apply the relation be-
tween H(n, B, τ) and GLE(n, p, A, τ) studied in [4].

Fix any τ0 ∈ H and c20 ∈ {±i2n0+1
2π }. Then for any h ∈ C, it was proved in

[4] that there exists a solution pn
h(τ) of the elliptic form (1.6) with parameters

(5.1) satisfying the following asymptotic behavior

(6.1) pn
h(τ) = c0(τ − τ0)

1
2 (1 + h(τ − τ0) + O(τ − τ0)2) as τ → τ0.

Recall Remark 3.1 that we identify the solutions pn
h(τ) and −pn

h(τ), so (6.1)
gives two 1-parameter families (one family is given by c20 = i2n0+1

2π and the
other by c20 = −i2n0+1

2π ) of solutions of the elliptic form (1.6) satisfying
pn
h(τ) → 0 as τ → τ0. Moreover, these two 1-parameter families of solu-

tions give all solutions pn(τ) of the elliptic form (1.6) such that pn(τ0) = 0.
See [4, Section 3] for the proof.

By using (6.1), we proved that the associated GLE(n, pn
h(τ), A(τ), τ) con-

verges to either H(n+, B0, τ0) or H(n−, B0, τ0) for some B0 ∈ C as τ → τ0
where n± = (n0 ± 1, n1, n2, n3). More precisely, we have
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Theorem 6.1 ([4]). Let τ0 ∈ H and pn(τ) be a solution of the elliptic form
(1.6) with parameters (5.1) such that pn(τ0) = 0. Then pn(τ) = ±pn

h(τ) for
some h ∈ C. Furthermore, the associated GLE(n, pn(τ), A(τ), τ) converges to
either H(n+, B0, τ0) if c20 = −i2n0+1

2π or H(n−, B0, τ0) if c20 = i2n0+1
2π . Here

(6.2) B0 = 2πic20 (4πih− η1(τ0)) −
3∑

k=1
nk(nk + 1)ek(τ0).

Proof of Theorem 1.3-(2). Fix n and τ0. Suppose H(n, Bj , τ0), j = 1, 2, have
the same global monodromy data. Our goal is to prove B1 = B2.

Let n+ = (n0 + 1, n1, n2, n3) and c20 = i2(n0+1)+1
2π . Define hj , j = 1, 2, by

(6.2) by replacing B0 with Bj and consider the solutions pn+

hj
(τ). By Theo-

rem 6.1, the associated GLE(n+, pn+

hj
(τ), An+

hj
(τ), τ) converges to H(n, Bj , τ0)

as τ → τ0. The key step is to show that

the global monodromy data of GLE(n+, pn+

hj
(τ), An+

hj
(τ), τ)(6.3)

and H(n, Bj , τ0) are the same.

Once (6.3) is proved, then GLE(n+, pn+

hj
(τ), An+

hj
(τ), τ), j = 1, 2, have the

same global monodromy data and so Theorem 1.3-(1) yields that these two
GLEs coincide, i.e. ℘(pn+

h1
(τ)|τ) ≡ ℘(pn+

h2
(τ)|τ). From here and pn+

hj
(τ0) = 0

for j = 1, 2, we obtain pn+

h1
(τ) = ±pn+

h2
(τ) near τ0. This implies h1 = h2 and

so B1 = B2.
We only need to prove (6.3) for j = 1 and in the following proof we write

(pn+

h1
(τ), An+

h1
(τ)) = (p(τ), A(τ)) for convenience.

Case 1. p(τ) = pn+
r,s (τ) for some (r, s) ∈ C2\ 1

2Z
2 is a completely reducible

solution, i.e. the global monodromy data of GLE(n+, p(τ), A(τ), τ) is (r, s).
Denote N̂ =

∑
nk + 2. Then by Theorem 2.3 and (2.11)–(2.12), there

exists a(τ) = (a1(τ), · · ·, aN̂ (τ)) satisfying

(6.4)
N̂∑
i=1

ai(τ) −
3∑

k=1

nkωk

2 = r + sτ

such that

ya(τ)(z) =e(rη1(τ)+sη2(τ))z∏N̂
i=1 σ(z − ai(τ)|τ)

σ(z|τ)n0+2∏3
k=1 σ(z − ωk

2 |τ)nk
(6.5)

× σ(z|τ)√
σ(z − p(τ)|τ)σ(z + p(τ)|τ)
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is a solution of GLE(n+, p(τ), A(τ), τ). By passing a subsequence, we may
assume

(6.6) lim
τ→τ0

a(τ) = a = (a1, · · ·, aN̂ ) ∈ EN̂
τ .

Then

(6.7)
N̂∑
i=1

ai −
3∑

k=1

nkωk(τ0)
2 = r + sτ0,

and p(τ) → p(τ0) = 0 implies that

ya(z) := e(rη1(τ0)+sη2(τ0))z∏N̂
i=1 σ(z − ai|τ0)

σ(z|τ0)n0+2∏3
k=1 σ(z − ωk

2 |τ0)nk
(6.8)

is a solution of H(n, B1, τ). Note that two of a1, · · ·, aN̂ must be 0 since the
local exponents of H(n, B1, τ) at 0 are −n0, n0 + 1. By (6.7)–(6.8) and the
transformation law (2.8), we immediately obtain that with respect to ya(z)
and y−a(z), the monodromy matrices ρ(�j), j = 1, 2, are exactly (2.13). This
proves that the global monodromy data of H(n, B1, τ) is also the same (r, s)
as that of GLE(n+, p(τ), A(τ), τ).

Case 2. p(τ) = pn+

k,C(τ) for some k ∈ {0, 1, 2, 3} and C ∈ C ∪ {∞}
is a not completely reducible solution, i.e. the global monodromy data of
GLE(n+, p(τ), A(τ), τ) is (2εk,1, 2εk,2, C).

Recalling Theorem 2.4 and (4.27), there exists a(τ) = (a1(τ), · · ·, aN̂ (τ))
satisfying (6.4) and

(6.9) (r, s) ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(0, 0) mod Z2 if k = 0,
(1
2 , 0) mod Z2 if k = 1,

(0, 1
2) mod Z2 if k = 2,

(1
2 ,

1
2) mod Z2 if k = 3,

such that ya(τ)(z) given by (6.5) is a solution of GLE(n+, p(τ), A(τ), τ). As
in Case 1, we may assume (6.6), then ya(z) given by (6.8) is a solution of
H(n, B1, τ). By (6.7), (6.9) and (2.8), we easily obtain

ya(z + ωj) = εk,jya(z), j = 1, 2.
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Since the proof of Theorem 2.4 gives C =
∫ z+ω2
z

ya(τ)(ξ)−2dξ∫ z+ω1
z

ya(τ)(ξ)−2dξ
, it follows from

ya(τ)(z)−2 → ya(z)−2 that
∫ z+ω2
z ya(ξ)−2dξ∫ z+ω1
z ya(ξ)−2dξ

= C.

Therefore, the global monodromy data of H(n, B1, τ0) is (2εk,1, 2εk,2, C), again
the same as that of GLE(n+, p(τ), A(τ), τ).

The proof is complete.

Proof of Theorem 1.3-(3). Fix any n, τ0 and k ∈ {0, 1, 2, 3}. Suppose that
the global monodromy datas of H(n, B1, τ0) and H(nk, B2, τ0) are the same
for some B1, B2 ∈ C. By changing variable z → z + ωk

2 , we only need to
consider the case k = 0. Then (1.20) implies

(6.10) n−
0 = (n0 + 1, n1, n2, n3) = n+, i.e. (n+)+ = n0.

Define h1 by (let c20 = i2n0+3
2π and B0 = B1 in (6.2))

B1 = −(2n0 + 3) (4πih1 − η1(τ0)) −
3∑

k=1
nk(nk + 1)ek(τ0),

and h2 by (let c20 = −i2n0+3
2π and B0 = B2 in (6.2))

B2 = (2n0 + 3) (4πih2 − η1(τ0)) −
3∑

k=1
nk(nk + 1)ek(τ0).

Then it follows from (6.1) that there exist solutions pn+

hj
, j = 1, 2, satisfying

pn+

h1 (τ) = c1(τ − τ0)
1
2 (1 + h1(τ − τ0) + O(τ − τ0)2) as τ → τ0,(6.11)

pn+

h2 (τ) = c2(τ − τ0)
1
2 (1 + h2(τ − τ0) + O(τ − τ0)2) as τ → τ0,(6.12)

with c21 = i2n0+3
2π = −c22. In particular,

(6.13) ℘(pn+

h1 (τ)|τ) �= ℘(pn+

h2 (τ)|τ) for τ → τ0.

On the other hand, it follows from (6.10)–(6.12) and Theorem 6.1 that the
associated GLE(n+, pn+

h1
(τ), An+

h1
(τ), τ) converges to H(n, B1, τ0) and GLE(n+,

pn+

h2
(τ), An+

h2
(τ), τ) converges to H(n0, B2, τ0) as τ → τ0. Then the same
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proof as Theorem 1.3-(2) shows that GLE(n+, pn+

h1
(τ), An+

h1
(τ), τ) has the

same global monodromy data as H(n, B1, τ0) and so do for GLE(n+, pn+

h2
(τ),

An+

h2
(τ), τ), H(n0, B2, τ0). Together with our assumption, we conclude that

GLE(n+, pn+

hj
(τ), An+

hj
(τ), τ) has the same global monodromy data for j = 1, 2.

Then it follows from Theorem 1.3-(1) that these two GLEs coincide, i.e.
℘(pn+

h1
(τ)|τ) ≡ ℘(pn+

h2
(τ)|τ), a contradiction with (6.13).

The proof is complete.

We want to emphasize that the same proof as (6.3) improves Theorem 6.1
as follows.

Theorem 6.2. Under the same notations and assumptions as Theorem 6.1,
GLE(n, pn(τ), A(τ), τ) has the same global monodromy data with its limiting
equation H(n+, B0, τ0) for c20 = −i2n0+1

2π (resp. H(n−, B0, τ0) for c20 = i2n0+1
2π ).

7. Applications

In this section, we give an application of Theorem 1.3 to GLE(n, p, A, τ). First
we recall the basic theory of GLE(n, p, A, τ) from its hyperelliptic aspect in
Part I [6].

Recall Φe(z) in Theorem 2.A. It follows from (2.1) that

Qn,p(A) := Φ′
e(z)2 − 2Φ′′

e(z)Φ2(z) + 4In(z; p,A, τ)Φe(z)2

is a monic polynomial in A of degree 2g + 2 and independent of z. Since
Φe(z) = y1(z)y2(z) (recall y2(z) = y1(−z)), it is known (cf. Part I [6, Theo-
rem 2.7]) that the Wronskian W of y1(z) and y2(z) satisfies W 2 = Qn,p(A).
Define the hyperelliptic curve Γn,p = Γn,p(τ) by

(7.1) Γn,p(τ) := {(A,W )|W 2 = Qn,p(A; τ)}.

Since degAQn,p(A; τ) is even, the curve Γn,p(τ) has two points at infinity
denoted by ∞±, i.e. Γn,p(τ) = Γn,p(τ)∪{∞±}. Clearly y1(z) can be uniquely
determined by the pair (A,W ) ∈ Γn,p(τ) by considering the correspondence
(note that −W is the Wronskian of y2(z) and y1(z) = y2(−z))

(y1(z), y2(z)) ↔ (A,W ), (y2(z), y1(z)) ↔ (A,−W ).

Denote N =
∑3

k=0 nk + 1 in the sequel. Recall Section 2.2 that there is
a = {a1, · · · , aN} (unique mod Λτ ) such that y1(z) = ya(z). Then we can
define a map in,p : Γn,p → SymNEτ by

(7.2) in,p(A,W ) := {[a1], · · ·, [aN ]} ∈ SymNEτ ,
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where [ai] := ai (mod Λτ ) ∈ Eτ . Clearly this in,p is well-defined. Furthermore,
if W �= 0, then we see from y2(z) = y−a(z) that

(7.3) in,p(A,−W ) = {−[a1], · · ·,−[aN ]}.

We proved in Part I [6] that in,p is an embedding from Γn,p into SymNEτ .
Let Yn,p(τ) be the image of Γn,p(τ) in SymNEτ under in,p, i.e.

(7.4) Yn,p(τ) =
{

[a] = {[a1], · · ·, [aN ]} ∈SymNEτ | ya(z) defined in
(2.7) is a solution of GLE(n, p, A, τ) for some A

}
,

and define the addition map σn,p : Yn,p(τ) → Eτ by

(7.5) σn,p([a]) :=
N∑
i=1

[ai] −
3∑

k=1
[nkωk

2 ].

Clearly

σn,p([−a]) = −
N∑
i=1

[ai] −
3∑

k=1
[nkωk

2 ] = −σn,p([a]).

Furthermore, the degree deg σn,p = #σ−1
n,p(z), z ∈ Eτ , is well-defined and

deg σn,p =
3∑

k=0
nk(nk + 1) + 1.

Besides,
Yn,p(τ) = Yn,p(τ) ∪ {∞+(p),∞−(p)},

where

∞±(p) :=
( n0︷ ︸︸ ︷

0, · · ·, 0,
n1︷ ︸︸ ︷

ω1
2 , · · ·, ω1

2 ,

n2︷ ︸︸ ︷
ω2
2 , · · ·, ω2

2 ,

n3︷ ︸︸ ︷
ω3
2 , · · ·, ω3

2 ,±p

)
.

The above theories can be found in Part I [6].
Let K(Eτ ) and K(Yn,p(τ)) be the field of rational functions of Eτ and

Yn,p(τ), respectively. Then K(Yn,p(τ)) is a finite extension over K(Eτ ) and

(7.6)
[
K(Yn,p(τ)) : K(Eτ )

]
= deg σn,p =

3∑
k=0

nk(nk + 1) + 1.
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In this section, we consider the basic question what a primitive generator of
this field extension is. Motivated by (2.14)–(2.15), we define

zn,p(a1, · · · , aN ) :=ζ

(
N∑
i=1

ai −
3∑

k=1

nkωk

2

)
(7.7)

− 1
2

N∑
i=1

(ζ(ai + p) + ζ(ai − p)) +
3∑

k=1

nkηk
2 ,

which is meromorphic and periodic in each ai and hence defines a rational
function on EN

τ . By symmetry, it descends to a rational function on SymNEτ .
We denote the restriction zn,p|Yn,p(τ) also by zn,p, which is a rational function
on Yn,p(τ). Here as an application of Theorem 1.3, we can prove that zn,p(a) is
a primitive generator. The same statement as the following result was proved
in [21] for the Lamé equation and later generalized to H(n, B, τ) in Part II
[7].

Theorem 7.1. zn,p is a primitive generator of the finite extension of rational
function field K(Yn,p(τ)) over K(Eτ ), i.e. the minimal polynomial Wn,p(z) ∈
K(Eτ )[z] of zn,p satisfies degWn,p = deg σn,p.

Proof. Since zn,p ∈ K(Yn,p(τ)), its minimal polynomial Wn,p(z) ∈ K(Eτ )[z] =
C(℘(σ), ℘′(σ))[z] exists with degree dn,p := degWn,p| deg σn,p by (7.6).

Note that if a = −a, then σn,p(a) ∈ Eτ [2]. To prove dn,p = deg σn,p, i.e.
zn,p(a) is a primitive generator, we take σ0 ∈ Eτ \Eτ [2] outside the branch loci
of σn,p : Yn,p(τ) → Eτ such that there are precisely deg σn,p different points
ak ∈ Yn,p(τ) satisfying σn,p(ak) = σ0 and ±[p] /∈ ak for 1 ≤ k ≤ deg σn,p. We
claim that

(7.8) zn,p(ak1) �= zn,p(ak2), ∀k1 �= k2.

Suppose for some k1 �= k2 we have zn,p(ak1) = zn,p(ak2). Then we can take
(a1, · · · , aN ), (b1, · · · , bN ) ∈ CN to be representatives of ak1 ,ak2 such that

N∑
i=1

ai =
N∑
i=1

bi,
N∑
i=1

(ζ(ai + p) + ζ(ai − p)) =
N∑
i=1

(ζ(bi + p) + ζ(bi − p)).

By (7.4), there exist A1, A2 such that yak1 (z) (resp. yak2 (z)) is a solution
of GLE(n, p, A1, τ) (resp. GLE(n, p, A2, τ)). Then (2.13)–(2.15) imply that
GLE(n, p, A1, τ) and GLE(n, p, A1, τ) have the same global monodromy data
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(r, s) /∈ 1
2Z

2, namely yak1 (z) and yak2 (z) satisfy the same transformation law:

(7.9) �∗1y(z) = e−2πisy(z), �∗2y(z) = e2πiry(z).

Consequently, Theorem 1.3 implies GLE(n, p, A1, τ) = GLE(n, p, A2, τ), i.e.
yak1 (z) and yak2 (z) are solutions of the same GLE(n, p, A1, τ) and satisfies
the same transformation law (7.9). It follows from (r, s) /∈ 1

2Z
2 and (2.13)

that yak1 (z) = yak2 (z), so ak1 = ak2 , a contradiction.
This proves (7.8), which infers that these deg σn,p different points ak’s

give deg σn,p different values zn,p(ak)’s. That is for σ = σ0, the polynomial
Wn,p(z) ∈ C(℘(σ), ℘′(σ))[z] of degree dn,p| deg σn,p has deg σn,p distinct zeros
zn,p(ak)’s, which implies dn,p = deg σn,p. The proof is complete.

Remark 7.2. For (r, s) ∈ C2 \ 1
2Z

2, as in [7, 21] we define

Zr,s(τ) := ζ(r + sτ |τ) − rη1(τ) − sη2(τ).

Then it follows from (7.7) and (2.13)–(2.15) that zn,p(a) = Zr,s(τ) with
σn,p(a) = r+sτ . Therefore, like the Lamé case proved in [21] and the general
Darboux–Treibich–Verdier case proved in Part II [7], the monodromy data
(r, s) of GLE(n, p, A, τ) in (2.13)–(2.15) can be characterized by

(7.10) Wn,p(Zr,s(τ)) = 0 with σ = r + sτ.

Let us consider the special case n = 0 for example. Then

z0,p(a) = ζ(a) − 1
2(ζ(a + p) + ζ(a− p)) = ℘′(a)

2(℘(p) − ℘(a)) ∈ K(Eτ ),

i.e. its minimal polynomial W0,p(z) = z − z0,p(a). So (7.10) is just

Zr,s(τ) − ℘′(r + sτ)
2(℘(p) − ℘(r + sτ)) = 0,

which recovers Hitchin’s formula

℘(p|τ) = ℘(r + sτ |τ) + ℘′(r + sτ |τ)
2Zr,s(τ) .

Therefore, (7.10) should be closely related to the formula of solutions of
Painlevé VI equation with parameter (5.1)–(5.2) for general n, which will
be studied elsewhere.
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