
Pure and Applied Mathematics Quarterly
Volume 17, Number 5, 1669–1710, 2021

A density theorem for asymptotically hyperbolic initial
data satisfying the dominant energy condition

Mattias Dahl and Anna Sakovich

Abstract: When working with asymptotically hyperbolic initial
data sets for general relativity it is convenient to assume certain
simplifying properties. We prove that the subset of initial data sets
with such properties is dense in the set of physically reasonable
asymptotically hyperbolic initial data sets. More specifically, we
show that an asymptotically hyperbolic initial data set with non-
negative local energy density can be approximated by an initial
data set with strictly positive local energy density and a simple
structure at infinity, while changing the mass arbitrarily little. This
is achieved by suitably modifying the argument used by Eichmair,
Huang, Lee and Schoen in the asymptotically Euclidean case.

1. Introduction

In general relativity Einstein’s equations read

(1) Ricγ − 1
2Scalγγ = T.

Here Ricγ and Scalγ denote respectively the Ricci tensor and the scalar cur-
vature of a spacetime (M, γ), and the symmetric divergence-free 2-tensor T is
the stress-energy tensor of the spacetime. A spacetime (M, γ) satisfying (1) is
said to obey the dominant energy condition if for any future directed timelike
vector ν the vector −T(ν, ·)� is either future directed timelike or null. This
condition means that the energy density of (M, γ) is non-negative and that
the energy cannot travel faster than the speed of light.

Let (M, g) be a Riemannian submanifold of the spacetime (M, γ) sat-
isfying the Einstein equations with unit normal denoted by η and second
fundamental form denoted by K. In this case (M, g) can be viewed as a “con-
stant time slice” of (M, γ). The dominant energy condition for (M, γ) at
points of M is equivalent to the inequality μ ≥ |J |g everywhere on M . Here
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the energy density μ := T(η, η) and the momentum density J := T(η, ·) can
be computed from g and K using the constraint equations

−2μ = −Scalg − (trg K)2 + |K|2g,(2)
J = divg K − d(trg K).(3)

By an initial data set for the Einstein equations we will mean a triple
(M, g,K) consisting of a Riemannian n-manifold (M, g) and a symmetric 2-
tensor field K defined on M . We will say that (M, g,K) satisfies the dominant
energy condition if μ ≥ |J |g holds everywhere on M , where μ and J are defined
through (2)–(3). By the above discussion, this means that (M, g,K) arises as
a constant time slice of a spacetime satisfying the dominant energy condition.

An initial data set (M, g,K) is said to be asymptotically Euclidean if
outside some compact set M is diffeomorphic to the complement of a ball
in Euclidean space Rn, and if under this diffeomorphism g approaches the
Euclidean metric δ and K approaches zero sufficiently fast at infinity. For
asymptotically Euclidean initial data sets asymptotic charge integrals at in-
finity can be defined. They are integrals which arise as boundary terms when
integrating the constraint operator

Φ : (g,K) �→
(
−Scalg − (trg K)2 + |K|2g, divg K − d(trg K)

)
against elements in the kernel of DΦ∗

(δ,0), which correspond to Killing vectors
of the Minkowski spacetime. In particular, this gives rise to the Arnowitt–
Deser–Misner energy E and linear momentum P . The positive mass conjecture
asserts that E ≥ |P |g provided that the dominant energy condition holds. In
particular, E ≥ 0 is expected to hold under the same assumption, which is
the statement of the positive energy conjecture. An excellent overview of both
conjectures can be found in the recent book by D. Lee [27].

For many applications in mathematical general relativity it is an advan-
tage to work with initial data sets which have simple asymptotics at infinity.
For example, an asymptotically Euclidean initial data set (M, g,K) is said
to have harmonic asymptotics if in asymptotically Euclidean coordinates at
infinity we have

g = u
4

n−2 δ, π := K − (trg K)g = u
2

n−2 (LY δ − divδ Y ),

where L denotes the Lie derivative, and the positive function u and the vector
field Y are such that

u(x) = 1 + A|x|2−n + O(|x|1−n), Yj(x) = Bj |x|2−n + O(|x|1−n),
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for A ∈ R and B ∈ Rn. In this case the Arnowitt–Deser–Misner energy and
linear momentum can be easily read off from the asymptotic expansions of u
and Y at infinity, namely,

E = 2A, Pj = −n−2
n−1Bj .

Further, many arguments can be simplified by working with initial data
sets with strictly positive local energy density, that is such that the strict
dominant energy condition μ > |J |g is satisfied. This condition is preserved
under “small” perturbations of the initial data set, whereas the standard
dominant energy condition μ ≥ |J |g might get violated by a perturbation. In
[22, Theorem 18], Eichmair, Huang, Lee, and Schoen prove that an asymp-
totically Euclidean initial data set satisfying dominant energy condition can
be slightly perturbed to an initial data set with harmonic asymptotics which
obeys strict dominant energy condition while changing the energy E and the
linear momentum P arbitrarily little. That is, the set of asymptotically Eu-
clidean initial data sets with these preferred properties is dense in the set
of asymptotically Euclidean initial data sets satisfying the dominant energy
condition. This result is used in the proof of the positive mass theorem by
the above authors [22, Theorem 1], and it is also required for the proof of
the positive energy conjecture in dimension n = 3 by Schoen and Yau [38],
and for its extension to dimensions 3 ≤ n ≤ 7 by Eichmair [21]. Another
application is the analysis of the geometry and topology of initial data sets
with horizons, see [4].

The goal of the current paper is to prove the analogue of this density result
for asymptotically hyperbolic initial data sets. Roughly speaking, an initial
data set (M, g,K) is asymptotically hyperbolic if the Riemannian metric g
approaches the hyperbolic metric b on hyperbolic space Hn in a chart cover-
ing everything outside a compact set. For K, there are two natural choices:
either K → 0 at infinity (as for spacelike totally geodesic hypersurfaces in
asymptotically anti-de Sitter spacetimes) or K → g at infinity (as for “hy-
perboloidal” hypersurfaces in asymptotically Minkowski spacetimes)1. In this
paper we adopt the second approach and consider “hyperboloidal” initial
data, see Definition 2.2. Then similar considerations as in the asymptotically
Euclidean case give rise to the notion of mass for asymptotically hyperbolic
initial data, which is a linear functional on a certain finite dimensional vector
space.

1We note that asymptotically hyperbolic initial data sets can also be modeled
on totally umbilic hyperbolic slices of de Sitter spacetime, see for example [31].
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The main result of this paper is that a given asymptotically hyperbolic
initial data set satisfying the dominant energy condition can be approximated
by an initial data set with conformally hyperbolic asymptotics in the sense
of Definition 2.3 which obeys the strict dominant energy condition, while
changing the value of the mass functional by an arbitrarily small amount. In
fact, assuming sufficient regularity, one can construct coordinates at infinity
in which the approximating initial data set has Wang’s asymptotics in the
sense of Definition 5.1. In particular, we prove the following

Theorem 1.1. Let (M, g,K) be an asymptotically hyperbolic initial data set
of type (k + 1, α, τ, τ0) for 0 < α < 1, n

2 < τ < n and τ0 > 0 satisfying
the dominant energy condition μ ≥ |J |g. Then for every ε > 0 there exists
an asymptotically hyperbolic initial data set (M, ḡ, K̄) of type (k, α, n, τ ′0) for
some τ ′0 > 0 with Wang’s asymptotics satisfying the strict dominant energy
condition

μ̄ > |J̄ |ḡ
and such that the mass functionals M of (M, g,K) and M of (M, ḡ, K̄) satisfy

|M(V ) −M(V )| < ε

for any V ∈ N , where N is the linear space spanned by restrictions of coor-
dinate functions of Minkowski spacetime to the upper unit hyperboloid.

The applications of our results are similar to those of [22, Theorem 18].
In particular, the results are used in the proofs of the positive mass theorem
for asymptotically hyperbolic manifolds by Chruściel and Delay [11] and for
asymptotically hyperbolic initial data sets by the second author [37]. They
can also prove useful for establishing other geometric inequalities for asymp-
totically hyperbolic initial data, such as those discussed in [10].

The paper is organized as follows. The definition of mass and its continu-
ity with respect to the initial data set is discussed in Section 2. In Section 3
we show that a given asymptotically hyperbolic initial data set satisfying
the dominant energy condition can be perturbed slightly to satisfy the strict
dominant energy condition, while changing the mass arbitrarily little. Then in
Section 4 we make a further perturbation to conformally hyperbolic asymp-
totics, while preserving the strict dominant energy condition. In Section 5 we
prove a density result concerning asymptotically hyperbolic initial data sets
that have Wang’s asymptotics. We also discuss how one can switch to Wang’s
asymptotics given the approximating initial data set constructed in Section 4.
Finally, in Section 6 we give comments on possible extensions of the results
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of this paper. Some supplementary results concerning differential operators
on asymptotically hyperbolic manifolds are contained in Appendices A, B,
and C.

2. Preliminaries

2.1. Asymptotically hyperbolic initial data

We denote the hyperbolic space of dimension n by Hn and the hyperbolic
metric by b. We choose a point in Hn as the origin. In polar coordinates
around this point we have b = dr2 + sinh2 r σ on (0,∞) × Sn−1, where σ is
the round metric on the unit sphere Sn−1 and r is the distance to the origin.
The open ball of radius R centered at the origin is denoted by BR, and its
closure is denoted by BR.

We first give the definition of an asymptotically hyperbolic Riemannian
manifold.

Definition 2.1. We say that (M, g) is a C l,β
τ -asymptotically hyperbolic man-

ifold for a non-negative integer l, 0 ≤ β < 1 and τ > 0, if there exists a
compact set K0 ⊂ M , R0 > 0 and a diffeomorphism

Ψ : M \K0 → Hn \BR0 ,

such that Ψ∗g − b ∈ C l,β
loc(Hn;S2Hn) and

‖Ψ∗g − b‖Cl,β
τ (Hn\BR0 ;S2Hn) := sup

x∈Hn\BR0+1

eτr(x) ‖Ψ∗g − b‖Cl,β(B1(x);S2Hn) < ∞.

The diffeomorphism Ψ introduced in this definition is called a chart at
infinity for the asymptotically hyperbolic manifold.

Let (M, g) be a C l,β
τ -asymptotically hyperbolic manifold for l, β, τ as in

Definition 2.1. Suppose that u is a locally integrable section of a geometric
tensor bundle E (see [30, Chapter 3] for the definition of geometric tensor
bundles) over M \K0. In this case we say that u ∈ W k,p

δ (M \K0) for 0 ≤ k ≤ l,
and 1 < p < ∞ if

‖u‖W k,p
δ

(M\K0) :=
∥∥∥eδrΨ∗u

∥∥∥
W k,p(Hn\BR0 )

< ∞.

Note also the following equivalent definition of the W k,p
δ (M \K0) norm,

‖u‖W k,p
δ

(M\K0) =
∑

0≤j≤k

‖eδr∇j(Ψ∗u)‖Lp(Hn\BR0 ).
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Building on these definitions, it is straightforward to define weighted Sobolev
spaces W k,p

δ (M) for any δ, 0 ≤ k ≤ l, and 1 < p < ∞. The weighted Hölder
spaces Ck,α

δ (M) are defined in a similar fashion. We say that u ∈ Ck,α
δ (M \K0)

for 0 ≤ k + α ≤ l + β, and 0 ≤ α < 1 if

‖u‖Ck,α
δ

(M\K0) := sup
x∈Hn\BR0+1

eτr(x) ‖Ψ∗u‖Ck,α(B1(x)) < ∞.

The following equivalent definition of the Ck,α
δ (M \K0) norm is often useful,

‖u‖Ck,α
δ

(M\K0) =
∑

0≤j≤k

sup
Hn\BR0

|eδr∇j(Ψ∗u)| + ‖eδr∇k(Ψ∗u)‖C0,α(Hn\BR0 ).

Again, these definitions can be extended to define weighted Hölder spaces
Ck,α

δ (M).
The weighted Sobolev and Hölder spaces that we have just defined are

analogues of the respective spaces defined by J. Lee in [30] on conformally
compact manifolds. It is easy to check that standard facts such as embedding
theorems, the Rellich lemma, and density theorems hold for these spaces and
that the statements of these results repeat verbatim the respective statements
in [30]. In particular Lemma 3.6 and Lemma 3.9 of [30] hold for W k,p

δ (M) and
Ck,α

δ (M) as defined above and we will refer to [30] for these results throughout
the text.

It is straightforward to check that classical interior elliptic regularity as
formulated in [30, Lemma 4.8] holds for asymptotically hyperbolic manifolds
and weighted function spaces as defined in Section 2.1. In Appendix A we
show that improved elliptic regularity [30, Proposition 6.5] holds in the current
setting. As a consequence, Fredholm theory for geometric elliptic operators
on asymptotically hyperbolic manifolds in the sense of Definition 2.1 can be
established, since the proof of [30, Theorem C] can be adapted. The reader
is referred to Appendix A for details.

We can now give the definition of an asymptotically hyperbolic initial
data set. Recall that the energy density μ and the momentum density J are
defined via the constraint equations (2)–(3).

Definition 2.2. A triple (M, g,K) is an asymptotically hyperbolic initial data
set of class (k, α, τ) for k ≥ 2, 0 ≤ α < 1 and τ > 0 if

• (M, g) is a Ck,α
τ -asymptotically hyperbolic manifold in the sense of Def-

inition 2.1,
• a symmetric 2-tensor K is such that K − g ∈ Ck−1,α

τ (M ;S2M).
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If, in addition, (μ, J) ∈ Ck−2,α
n+τ0 for some τ0 > 0 then (M, g,K) is an asymp-

totically hyperbolic initial data set of class (k, α, τ, τ0).

Abusing notation slightly we may summarize the content of this definition
as follows: (M, g,K) is an asymptotically hyperbolic initial data set of class
(k, α, τ) for 0 ≤ α < 1 and τ > 0 if (g − b,K − g) ∈ Ck,α

τ × Ck−1,α
τ . In this

case (μ, J) ∈ Ck−2,α
τ . The necessity for the faster decay (μ, J) ∈ Ck−2,α

n+τ0 will
become clear in Section 2.2.

Given an asymptotically hyperbolic initial data set (M, g,K) of class
(α, τ) it is convenient to set

π := (K − g) − trg(K − g)g.

Note that π ∈ Ck−1,α
τ and that π contains the same information as K, since

K = π + g − 1
n−1(trg π)g. It is therefore equivalent to work with (M, g, π) as

an initial data set, and in this paper we will only work with initial data sets
given in this form.

In terms of (g, π) the constraint equations (2)–(3) are written as

−2μ = −(Scalg + n(n− 1)) + 2 trg π − (trg π)2

n− 1 + |π|2g,

J = divg π.

By the constraint map we mean the map

(4) Φ : (g, π) �→
(
−(Scalg + n(n− 1)) + 2 trg π − (trg π)2

n− 1 + |π|2g, divg π

)
.

Finally, we define initial data sets with conformally hyperbolic asymp-
totics. Recall that the conformal Killing operator L̊ is defined by

(L̊Y g)ij = ∇iYj + ∇jYi − 2
n(divg Y )gij ,

that is, (L̊Y g)ij is the trace-free part of the Lie derivative (LY g)ij = ∇iYj +
∇jYi.

Definition 2.3. We say that an initial data set (M, g, π) has conformally
hyperbolic asymptotics if there exists a compact set K0, a radius R0 > 0, and
a diffeomorphism

Ψ : M \K0 → Hn \BR0 ,
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such that
Ψ∗g = (1 + v)

4
n−2 b, Ψ∗π = (1 + v)

2
n−2 L̊Y b,

where the function v and the components of the 1-form Y can be written in
the form

v = v0e
−nr + v1,

Yr = (Y0)re−nr + (Y1)r,
Yϕ = (Y0)ϕe−(n−1)r + (Y1)ϕ,

(5)

where ϕ refers to a coordinate on Sn−1, (v0, Y0) ∈ Ck,α
loc is independent of r

and (v1, Y1) ∈ Ck,α
n+1 for k ≥ 2 and 0 ≤ α < 1.

2.2. The mass functional for asymptotically hyperbolic initial data

In this section we review the concept of mass in the asymptotically hyperbolic
setting and discuss the continuity of mass with respect to the initial data. We
first recall how the asymptotic charge integrals are defined, following Michel
[33].

Let (M, g, π) be an asymptotically hyperbolic initial data set of type
(k, α, τ) for k ≥ 2, 0 ≤ α < 1 and τ > 0, and let Ψ be the chart at infinity
as in Definition 2.1. Clearly, in this case we have e := Ψ∗g − b → 0 and
η := Ψ∗π → 0 at infinity. Let the constraint map Φ be defined by (4). Since
Φ(b, 0) = 0, linearization gives us

(6) Φ(Ψ∗(g, π)) = DΦ|(b,0)(e, η) + Q(e, η),

where Q(e, η) is a remainder term of second order. For any function V and
1-form 
 there is a 1-form U(V,	)(e, η) such that

〈DΦ|(b,0)(e, η), (V,
)〉 = divbU(V,	)(e, η) + 〈(e, η), DΦ∗
(b,0)(V,
)〉,

where DΦ∗
(b,0) is the formal adjoint of DΦ|(b,0). Here 〈·, ·〉 denotes the inner

product induced by b on geometric tensor bundles over Hn. Contracting (6)
with (V,
) ∈ kerDΦ∗

(b,0) we obtain

(7) 〈Φ(Ψ∗(g, π)), (V,
)〉 = divbU(V,	)(e, η) + 〈Q(e, η), (V,
)〉.

In this way we assign to every (V,
) ∈ kerDΦ∗
(b,0) the charge integral

Q(V,	)(g, π) := lim
R→∞

∫
SR

U(V,	)(e, η)(ν) dμb,

where ν is the outer unit normal of the (n− 1)-dimensional sphere SR in Hn.
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The structure of the kernel of DΦ∗
(b,0) is well understood, see Moncrief

[34]. Namely, (V,
�) corresponds to the normal-tangential (or lapse-shift)
decomposition of the restriction along the unit hyperboloid of a Killing vector
field of Minkowski spacetime. In other words, (V,
�) is a Killing initial data
(or KID) for Minkowski spacetime given on the unit hyperboloid.

In particular, we have (V,−dV ) ∈ kerDΦ∗
(b,0) for V ∈ N , where the vector

space N is spanned by the functions

V(0) = cosh r, V(1) = x1 sinh r, . . . , V(n) = xn sinh r

expressed in polar coordinates on Hn = (0,∞) × Sn−1. Here x1, . . . , xn are
the coordinate functions on Rn restricted to Sn−1.

For these KIDs we have the following result.

Proposition 2.4. Let (M, g, π) be an asymptotically hyperbolic initial data
set of type (k, α, τ, τ0) for k ≥ 2, 0 ≤ α < 1, τ > n

2 , and τ0 > 0. Then for
every V ∈ N the charge integral Q(V,−dV )(g, π) is well-defined and can be
computed by the formula

Q(V,−dV )(g, π)

= lim
R→∞

∫
SR

(
V (divb e− d trb e) + (trb e)dV − (e + 2η)(∇bV, ·)

)
(ν) dμb.

(8)

Proof. Integrating (7) over Hn \ BR0 and using the divergence theorem we
obtain

Q(V,−dV )(g, π)

=
∫
Hn\BR0

〈Φ(Ψ∗(g, π)) −Q(e, η), (V,−dV )〉 dμb +
∫
SR0

U(V,−dV )(e, η)(ν) dμb.

Estimating Q(e, η) as in [33, Equation (12)] and using our assumptions on
the decay of the initial data, we see that the integral over Hn \BR0 converges,
hence Q(V,−dV )(g, π) is well-defined.

We refer to [33, Section IV.2.B] and references therein for the derivation
of the formula (8).

Definition 2.5. Let (M, g, π) be an asymptotically hyperbolic initial data
set. Then the mass of (M, g, π) is the linear functional M(g,π) : N → R given
by

M(g,π)(V ) = 1
2(n−1)ωn−1

Q(V,−dV )(g, π),

where ωn−1 denotes the volume of the unit sphere (Sn−1, σ).
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This is the same as the expression for the Bondi mass obtained by Chruś-
ciel, Jesierski, and Łȩski in [14], under asymptotic decay conditions that how-
ever do not allow for gravitational radiation. See [15], [13], and [33] for dis-
cussions on coordinate covariance.

As Proposition 2.4 shows, the mass functional is well defined for asymp-
totically hyperbolic initial data sets of type (k, α, τ, τ0) for k ≥ 2, 0 ≤ α < 1,
τ > n

2 , and τ0 > 0. It is also straightforward to check that the mass func-
tional is trivial for asymptotically hyperbolic initial data sets of type (α, τ)
with τ > n. The following are two examples of the “critical” case τ = n.

Example 2.6. The Anti-de Sitter Schwarzschild Riemannian metric is given
by

gAdSS = dρ2

1 + ρ2 − 2m
ρn−2

+ ρ2σ

on [a,∞)×Sn−1, where the inner radius a depends on m, see for example [18,
Appendix A]. It can be realized as an umbilic (that is, g = K) asymptotically
hyperbolic initial data set for Schwarzschild spacetime, see Brendle and Wang
[8]. In this case

M(V(0)) = m, and M(V(i)) = 0,

for i = 1, . . . , n, where m coincides with the mass parameter of the
Schwarzschild metric.

Example 2.7. For initial data sets with conformally hyperbolic asymptotics
as in Definition 2.3 it is not complicated to compute that

M(V(0)) = 2(n+1)
(n−2)ωn−1

∫
Sn−1

v0 dμ
σ + 2(n+1)

nωn−1

∫
Sn−1

(Y0)r dμσ,

and

M(V(i)) = 2(n+1)
(n−2)ωn−1

∫
Sn−1

xiv0 dμ
σ + 2(n+1)

nωn−1

∫
Sn−1

xi(Y0)r dμσ

for i = 1, . . . , n.

Concluding this section, we confirm that the mass is continuous as a
function of asymptotically hyperbolic initial data sets of type (k, α, τ, τ0),
where k ≥ 2, 0 ≤ α < 1, τ > n

2 , and τ0 > 0. For simplicity, the charts at
infinity are suppressed in the statement of the result and in the proof.



A density theorem for asymptotically hyperbolic initial data 1679

Proposition 2.8. Let (g, π) and (ḡ, π̄) be asymptotically hyperbolic initial
data sets of type (k, α, τ, τ0) for k ≥ 2, 0 ≤ α < 1, τ > n

2 , and τ0 > 0.
Let (μ, J) and (μ̄, J̄) denote the respective energy and momentum densities
defined via the constraint equations (2)–(3). Given ε > 0 there exists δ > 0
depending only on (g, π) and ε, such that if

(9) ‖g − ḡ‖C2
τ
≤ δ, ‖π − π̄‖C1

τ
≤ δ,

and

(10) ‖(μ, J) − (μ̄, J̄)‖C0
n+τ0

≤ δ,

then for any V ∈ {V(0), V(1), . . . , V(n)} we have∣∣∣M(g,π)(V ) −M(ḡ,π̄)(V )
∣∣∣ ≤ ε.

Proof. Fix R ≥ R0. Arguing as in the proof of Proposition 2.4 we find that

2(n− 1)ωn−1
(
M(g,π)(V ) −M(ḡ,π̄)(V )

)
=

∫
Hn\BR

〈Φ(g, π) − Φ(ḡ, π̄), (V,−dV )〉 dμb

−
∫
Hn\BR

〈Q(e, η) −Q(ē, η̄), (V,−dV )〉 dμb

+
∫
SR

(
U(V,−dV )(e, η) − U(V,−dV )(ē, η̄)

)
(ν) dμb.

Now suppose that (g, π) is fixed and that δ and (ḡ, π̄) are such that (9)
and (10) hold. Then by assumption (10) the absolute value of the first integral
over Hn \BR is bounded by Cδ for some C > 0 depending only on (g, π). The
same is true for the second integral over Hn \BR by assumption (9) combined
with the fact that the remainder term Q(e, η) in (6) is at least quadratic in e
and η and their derivatives of order up to 2 and 1 respectively. As for the inner
boundary integral, we see that its absolute value is bounded by Cδe(n−τ)R for
C > 0 depending only on (g, π). From this it is clear that δ can be chosen so
that the sum of the absolute values of these three integrals is less than ε.

3. Perturbation to strict inequality in the dominant energy
condition

This section is devoted to the following result.
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Theorem 3.1. Let (M, g, π) be an asymptotically hyperbolic initial data set
of type (k, α, τ, τ0) for k ≥ 2, 0 < α < 1, n

2 < τ < n, and τ0 > 0. Assume that
(M, g, π) satisfies the dominant energy condition, μ ≥ |J |g. Then for every
ε > 0 there exists an asymptotically hyperbolic initial data set (ḡ, π̄), with the
energy and momentum density denoted by (μ̄, J̄), of type (k, α, τ, τ ′0) for some
τ ′0 > 0 such that

‖g − ḡ‖Ck,α
τ

< ε, ‖π − π̄‖Ck−1,α
τ

< ε,

and the strict dominant energy condition

μ̄ > (1 + γ)|J̄ |ḡ

holds for a constant γ > 0, and∣∣∣M(g,π)(V ) −M(ḡ,π̄)(V )
∣∣∣ < ε

for V ∈ {V(0), V(1), . . . , V(n)}.

The argument follows [22, Proof of Theorem 22]. In simple terms it can
be described as follows. We would like to choose symmetric 2-tensors h and w

so that the perturbed initial data ḡ = g+ th and π̄ = π+ tw satisfies μ̄ > |J̄ |ḡ
for sufficiently small t > 0. From the Taylor expansion Φ(ḡ, π̄) = Φ(g, π) +
tDΦ|(g,π)(h,w)+O(t2), we see that μ̄ = μ+ t

2f+O(t2) and J̄ = J+tX+O(t2),
where (−f,X) = DΦ|(g,π)(h,w). Further,

|J̄ |2ḡ = ḡij J̄iJ̄j

= (gij − thij + O(t2))(Ji + tXi + O(t2))(Jj + tXj + O(t2))
= |J |2g + t(2Xj − hijJi)Jj + O(t2),

(11)

where indices are raised using the metric g. Hence if we set Xj = 1
2h

ijJi
then |J̄ |ḡ = |J |g + O(t2), as long as the decay of |J |2g at infinity is not faster
than that of the O(t2) term in the last line of (11). This leads to the expec-
tation that μ̄ > |J̄ |ḡ will be achieved if we can find a pair (h,w) such that
DΦ|(g,π)(h,w) = (−f,X), where Xj = 1

2h
ijJi and f > 0. Indeed, in this case

we have
μ̄− |J̄ |ḡ = μ− |J |g + tf + O(t2) ≥ tf + O(t2) > 0

provided that the O(t2) term above decays at least as fast as f at infinity.
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However, DΦ|(g,π) is not a determined elliptic operator (see for exam-
ple Delay [19]), and this makes it difficult to ensure that the solutions of
the equation DΦ|(g,π)(h,w) = (−f,X) will have good asymptotic behaviour.
This problem can be overcome by combining the above considerations with
a certain construction introduced by Corvino and Schoen in their proof of
the density result in [17, Theorem 1]. The idea is similar in spirit to the
conformal method of solving the constraint equations (see for example [7,
Section 4.1]) and is based on the observation that by suitably choosing a first
order differential operator D one can ensure that the linearization at (1, 0) of
the operator

(12) (u, Y ) �→ Φ
(
u

4
n−2 g, u

2
n−2 (π + DY )

)
,

is a second order elliptic operator with nice properties.
We begin the proof of Theorem 3.1 with some preliminaries. Set κ := 4

n−2 .
For (u− 1, Y ) ∈ C2,α

τ we let

(13) g̃ = uκg, and π̃ = uκ/2(π + L̊Y g),

where L̊ is the conformal Killing operator described in Section 2.1. Our choice
of the operator D = L̊ in (12) is motivated by the fact that the vector Lapla-
cian ΔL = div L̊ is a well-known elliptic operator on asymptotically hyper-
bolic manifolds whose Fredholm properties (see Appendix A) fit nicely into
the context of the current argument. Let μ̃ and J̃ be the energy and mo-
mentum densities of (g̃, π̃) computed via the constraint equations (2)–(3) and
consider the operator

T (u, Y ) = (−2uκμ̃, uκ/2J̃).

This conformal rescaling of the constraint equations is needed to ensure that
the dominant energy condition scales correctly when we pass to the deformed
initial data set (13), see (23) and (24) below.

It is straightforward to check that

−2uκμ̃ = 4(n−1)
n−2 u−1Δgu− Scalg − n(n− 1)uκ + 2uκ/2 trg π − 1

n−1(trg π)2

+
(
|π|2g + 2〈π, L̊Y g〉 + |L̊Y g|2g

)
,

uκ/2J̃j = (ΔLY + divg π)j + 2(n−1)
n−2 u−1(π + L̊Y g)kj∇ku− 2

n−2u
−1∇ju trg π,

(14)
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for j = 1, 2, . . . , n. Consequently, the linearization of T at (1, 0) is

DT |(1,0)(v, Z) =
(

4(n−1)
n−2 (Δgv − nv) + 4

n−2(trg π)v + 2〈π, L̊Zg〉,

(ΔLZ)j + 2(n−1)
n−2 πk

j∇kv − 2
n−2(trg π)∇jv

)
,

(15)

for j = 1, 2, . . . , n. The following lemma concerns Fredholm properties of the
operator DT |(1,0).

Lemma 3.2. If (M, g, π) is an asymptotically hyperbolic initial data set of
type (k, α, τ) for k ≥ 2, 0 < α < 1 and τ > 0 then DT |(1,0) is a Fredholm
operator with index zero in the following cases:

• as a map C l,β
δ → C l−2,β

δ for 2 ≤ l ≤ k, 0 < β ≤ α, −1 < δ < n,
• as a map W l,p

δ → W l−2,p
δ for 2 ≤ l ≤ k, 1 < p < ∞, −1 < δ+ n−1

p < n.

Proof. We give the proof in the case of weighted Hölder spaces, the case of
weighted Sobolev spaces is treated similarly. Write DT |(1,0) = P0 +P1, where

P0 : (v, Z) �→
(

4(n−1)
n−2 (Δgv − nv),ΔLZ

)
,

and

P1 : (v, Z) �→
(

4
n−2(trg π)v + 2〈π, L̊Zg〉, 2(n−1)

n−2 πk
j∇kv − 2

n−2(trg π)∇jv
)
.

Here P0 : C l,α
δ → C l−2,α

δ is a Fredholm operator of index zero for δ ∈ (−1, n),
see Proposition A.2. By [30, Lemma 3.6 (a)] the map P1 : C l,α

δ → C l−1,α
δ+τ is

continuous, whereas by the Rellich Lemma, [30, Lemma 3.6 (d)], the inclusion
C l−1,α

δ+τ ↪→ C l−2,α
δ is compact. We conclude that P1 : C l,α

δ → C l−2,α
δ is compact

for −1 < δ < n, and the claim follows.

Recall that the constraint map Φ is defined by the formula (4). A direct
computation shows that the linearization of Φ is

DΦ|(g,π)(h,w)

=
(

Δg(trg h) − divg divg h + 〈h,Ricg〉

+ 2
(

1 − trg π
n− 1

)
(trg w − 〈h, π〉) − 2〈h, π ◦ π〉 + 2〈π,w〉,

(divg w)k − hij∇iπjk − (div h)jπj
k + 1

2∇j(trg h)πj
k − 1

2π
ij∇khij

)
,
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where (π ◦ π)ij = gklπikπjl. The formal adjoint of DΦ is given by

DΦ∗
(g,π)(V,X) =

(
(ΔV )gij −∇i∇jV + V Ricij − 2V

(
1 − trg π

n− 1

)
πij

− 2V πikπ
k
j + 1

2(πjk∇iX
k + πik∇jX

k) − 1
2(div π)kXkgij

− 1
4〈π,LXg〉gij + 1

2X
k∇kπij + 1

2(divX)πij ,

− 1
2(LXg)ij + 2V

(
1 − trg π

n− 1

)
gij + 2V πij

)
.

(16)

The following lemma is the analogue of [22, Lemma 20] in the asymptotically
hyperbolic setting. The proof of the cited lemma is similar to [17, Proposi-
tion 3.1].

Lemma 3.3. If (M, g, π) is an asymptotically hyperbolic initial data set of
type (k, α, τ) for k ≥ 2, 0 < α < 1 and τ > 0 then the linear map A :
W 2,p

δ ×W 1,p
δ → W 0,p

δ defined by

A(h,w) = DΦ|(g,π)(h,w) − (0, 1
2h

l
jJl)

is surjective for 1 < p < ∞ and −1 < δ + n−1
p < n. In particular, DΦ|(g,π) :

W 2,p
δ ×W 1,p

δ → W 0,p
δ is surjective for 1 < p < ∞ and −1 < δ + n−1

p < n.

Proof. The first step is to show that A has closed range. For this we compute

A(vg, L̊Zg) =
(
(n− 1)(Δgv − nv) + (Scalg + n(n− 1))v

− 2v(trg π − 1
n−1(trg π)2 + |π|2g) + 2〈π, L̊Zg〉,

(ΔLZ)i − v(divg π)i + (n2 − 1)πj
i∇jv − 1

2 trg π∇iv − 1
2vJj

)
.

Reasoning as in the proof of Lemma 3.2 we conclude that the operator

(v, Z) �→ A(vg, L̊Zg)

is a Fredholm operator W 2,p
δ → W 0,p

δ for 1 < p < ∞ and −1 < δ + n−1
p < n.

Its range is contained in the range of the operator A. Consequently, the range
of the operator A has finite codimension in W 0,p

δ , and hence it is closed.
Next we need to show that kerA∗ is trivial. Let p∗ be such that 1

p + 1
p∗ = 1.

Then W 0,p∗
−δ is dual to W 0,p

δ under the standard L2 pairing, see [30, Chapter 3].



1684 Mattias Dahl and Anna Sakovich

Note that we have −1 < −δ+ n−1
p∗ < n as a consequence of −1 < δ+ n−1

p < n.
It follows from (16) that kerA∗ consists of (V,X) ∈ W 0,p∗

−δ such that

(ΔV )gij −∇i∇jV + V Ricij = 2V
(

1 − trg π
n− 1

)
πij + 2V πikπ

k
j

− 1
2(πjk∇iX

k + πik∇jX
k)

+ 1
2(div π)kXkgij + 1

4〈π,LXg〉gij
− 1

2X
k∇kπij − 1

2(divX)πij
+ 1

4(XiJj + XjJi),

LXg = 4V
(

1 − trg π
n− 1

)
g + 4V π.

(17)

As a consequence of the second equation we have LXg ∈ W 0,p∗
−δ . Taking the

trace of the first equation we have

(18) ΔV − nV = V � Oα(e−τr) + X � Oα(e−τr) + LXg � Oα(e−τr),

where Oα(e−τr) denotes a section T of some geometric tensor bundle of appro-
priate type such that T ∈ C0,α

τ , and A�B denotes a tensor which is obtained
from A⊗B by raising and lowering indices, taking a number of contractions,
and switching a number of components in the product. By standard elliptic
regularity [30, Lemma 4.8 (a)] we conclude that V ∈ W 2,p∗

−δ . As a consequence
of the second equation in (17) we have

L̊Xg = 4V
(
π − trg π

n
g

)
.

Taking the divergence, we obtain

(19) ΔLX = V � Oα(e−τr) + ∇V � Oα(e−τr).

Thus X ∈ W 2,p∗
−δ , again by standard elliptic regularity. Since (V,X) ∈ W 2,p∗

−δ

the right hand sides of equations (18) and (19) are both in W 0,p∗
−δ+τ . Using

Proposition A.2, improved elliptic regularity [30, Proposition 6.5], and the
continuity of the embedding W k,p∗

ε ↪→ W k,p∗

ε′ for ε > ε′, we conclude that
(V,X) ∈ W 2,p∗

γ for any γ such that −1 < γ + n−1
p∗ < n. Therefore we may

without loss of generality assume that 1 < γ < n− n−1
p∗ = 1 + n−1

p .
In fact, we can show that (V,X) ∈ C2,β

γ for some 0 < β < 1. Indeed,

if p∗ < n then (V,X) ∈ W
2, np∗

n−p∗
γ by the Sobolev embedding theorem [30,
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Lemma 3.6 (c)] and standard elliptic regularity applied to equations (18)
and (19). Repeating this argument we obtain that (V,X) ∈ W 2,q

γ for some
q > n and thus (V,X) ∈ C1,β

γ for some 0 < β < 1 by Sobolev embedding [30,
Lemma 3.6 (c)]. Applying standard elliptic regularity to the equations (18)
and (19) we conclude that (V,X) ∈ C2,β

γ .
Next we show that (V,X) vanishes to infinite order at infinity. That is,

(V,X) = O(e−Nr) for any N > 0. As a consequence of (17) and Definition 2.2
we see that (V,X) is a solution to the system

HessbV −V b = V � O(e−τr) +∇V � O(e−τr) + X � O(e−τr) + ∇X � O(e−τr),
LXb = 4V b + X � O1(e−τr) + V � O1(e−τr),

where O1(e−τr) denotes a section T of the appropriate geometric tensor bun-
dle such that T ∈ C1

τ . From the first equation and the fact that (V,X) ∈ C2,β
γ

we conclude that V satisfies the ordinary differential equation

∂2
rrV − V = f̃

along radial geodesic rays, where f̃ = O(e−(τ+γ)r). Since τ + γ > 1, it follows
that V = O(e−(τ+γ)r), see formula (46) for the explicit form of the solution.
Then V ∈ C2,β

τ+γ by standard elliptic regularity applied to (18). Combining this
with the second equation, we see that (LXb)rr = O(e−(τ+γ)r), which yields
∂rXr = O(e−(τ+γ)r). Integrating this relation from r to ∞, we obtain that
Xr = O(e−(τ+γ)r). Note that as a consequence of this relation we also have
∂μXr = O(e−(τ+γ)r), which can be seen by first differentiating with respect
to μ and then integrating from r to ∞. Here we work in polar coordinates
for hyperbolic space, (Hn, b) = ((0,∞)× Sn−1, dr2 + sinh2 r σ), the subscript
r denotes the radial component and μ denotes components in a coordinate
system on the sphere. It follows that

∂rXμ − 2 coth rXμ = f̄ ,

where f̄ = O(e−(τ+γ−1)r), and hence Xμ = sinh2 r
∫∞
r

f̄
sinh2 s

ds =
O(e−(τ+γ−1)r). Thus |X|b = O(e−(τ+γ)r), and hence X ∈ C2,β

τ+γ by standard
elliptic regularity applied to (19). We proceed by induction and deduce that
(V,X) = O(e−Nr) for any N > 0.

To conclude the proof, note that, as a consequence of (17), (V,X) ∈ C2

satisfies a differential inequality

|Δ(V,X)| ≤ C (|(V,X)| + |∇(V,X)|) ,
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where Δ = ∇∗∇ is the rough Laplacian. Since (V,X) vanishes to infinite
order at infinity, a standard unique continuation argument, see Appendix C,
implies that (V,X) vanishes identically.

We use the subscript c on the notation for a function space to denote the
subspace of sections with compact support.

Lemma 3.4. Let (M, g, π) be an asymptotically hyperbolic initial data set
of type (k, α, τ), where k ≥ 2, 0 < α < 1 and n

2 < τ < n. Then for any
f ∈ Ck−2,α

τ there exist (v, Z) ∈ Ck,α
τ and symmetric 2-tensors (h,w) ∈ Ck+1,α

c

so that

(20) DT |(1,0)(v, Z) + DΦ|(g,π)(h,w) = (f, 1
2h

l
jJl).

If in addition f ∈ Ck−2,α
n+τ0 for some τ0 > 0 then (v, Z) ∈ Ck,α

n .

Proof. For some p > n we choose γ > 0 so that −1 < γ + n−1
p < τ . In

this case C l,α
τ ↪→ W l,p

γ for l = 0, 1, . . . , k, see [30, Lemma 3.6 (c)]. Further,
by Lemma 3.2 the operator DT |(1,0) : W 2,p

γ → W 0,p
γ is Fredholm with index

zero. Since the linear map A : W 2,p
γ × W 1,p

γ → W 0,p
γ defined in Lemma 3.3

is surjective, we can find symmetric 2-tensors (hi, wi) ∈ W 2,p
γ × W 1,p

γ , i =
1, . . . , N , such that their images A(hi, wi) span a subspace that complements
DT |(1,0)(W 2,p

γ ) in W 0,p
γ . Note that by the density of compactly supported sec-

tions, [30, Lemma 3.9], together with the continuity of A we may assume that
(hi, wi) ∈ Ck+1,α

c . Consequently, since f ∈ W 0,p
γ we can find (v, Z) ∈ W 2,p

γ and
(h,w) ∈ Ck+1,α

c such that (20) holds. By Sobolev embedding (v, Z) ∈ C1,α
γ .

Since γ > 0 and f ∈ C0,α
τ it follows from (15) that (Δv − nv,ΔLZ) ∈ C0,α

τ .
From [30, Proposition 6.5] we conclude that (v, Z) ∈ C2,α

τ and (v, Z) ∈ Ck,α
τ

follows by a standard bootstrap argument.
To prove the second claim note that outside a sufficiently large compact

set (v, Z) ∈ Ck,α
τ satisfies (Δv − nv,ΔLZ) ∈ Ck−2,α

n+ε for some ε > 0. This is
an immediate consequence of (15) and the fact that τ > n

2 . The claim follows
from Proposition B.2.

Proof of Theorem 3.1. With the above lemmas at hand, the proof differs very
little from that of [22, Theorem 22]. We choose a positive Ck+1,α function f
such that

f = e−(n+min{1,τ0})r

near infinity, and let (v, Z) ∈ Ck,α
n and (h,w) ∈ Ck+1,α

c be a solution of the
system

DT |(1,0)(v, Z) + DΦ|(g,π)(h,w) = (−f, 1
2h

l
jJl),
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which exists by Lemma 3.4. We will show that for a sufficiently small t > 0,

ḡ = (1 + tv)κ(g + th) and π̄ = (1 + tv)κ/2(π + tL̊Zg + tw)

is an initial data set whose existence is asserted in the theorem. Note that
‖g − ḡ‖Ck,α

τ
≤ ε, ‖π − π̄‖Ck−1,α

τ
≤ ε provided that t is sufficiently small.

We will verify that μ̄ > (1 + γ)|J̄ |ḡ for some γ > 0 depending on t. Set
u = 1 + tv and define

Φ1(1 + tv, tZ, th, tw) = (−2uκμ̄, uκ/2J̄).

Linearizing we have

Φ1(1 + tv, tZ, th, tw) = Φ1(1, 0, 0, 0) + tDΦ1|(1,0,0,0)(v, Z, h, w) + R
= (−2μ, J) + tDT |(1,0)(v, Z) + tDΦ|(g,π)(h,w) + R
= (−2μ, J) + t(−f, 1

2h
k
i Jk) + R,

(21)

where the remainder term R = R(t, v, Z, h, w) can be written as

R(t, v, Z, h, w)
= Φ1(1 + tv, tZ, th, tw) − Φ1(1, 0, 0, 0) − tDΦ1|(1,0,0,0)(v, Z, h, w)

= t

∫ 1

0

[
DΦ1|(1+θtv,θtZ,θth,θtw) −DΦ1|(1,0,0,0)

]
(v, Z, h, w) dθ,

by the mean value theorem.
We first prove that

(22) |R| ≤ Ct2e−2nr = O(t2f),

where the constant C > 0 does not depend on t and is uniform for all points.
For this it suffices to estimate R outside the support of (h,w) where it takes
the form

R(t, v, Z) = t

∫ 1

0

[
DT |(1+θtv,θtZ) −DT |(1,0)

]
(v, Z) dθ.

Using (14) we compute

DT |(u,Y )(v, Z) =
(

4(n−1)
n−2 (−u−2vΔgu + u−1Δgv) − n(n− 1)κuκ−1v

+ κu
κ
2−1v trg π + 2〈π, L̊Zg〉 + 2〈L̊Zg, L̊Y g〉,
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(ΔLZ)j + 2(n−1)
n−2 ∇k(vu−1)(π + L̊Y g)kj

+ 2(n−1)
n−2 u−1∇ku(L̊Zg)kj − 2

n−2∇j(vu−1) trg π
)
.

Then it is not complicated to check that∣∣∣DT |(1+θtv,θtZ)(v, Z) −DT |(1,0)(v, Z)
∣∣∣ ≤ θtQ(v, Z)

where Q is a quadratic function of v, its first and second order covariant
derivatives, and L̊Zg, which is uniformly bounded in θ ∈ [0, 1]. Hence (22)
holds.

By (21) we have

uκμ̄ = μ + t

2f + O(t2f) and uκ/2J̄i = Ji + t

2h
k
i Jk + O(t2f).

In particular, for sufficiently small t > 0, we have

(23) uκμ̄ > μ + t

3f.

Recall that h is compactly supported, hence we may write

ḡij = u−κ(gij − tgikhj
k + O(t2f)).

Since f is positive, we obtain

(uκ|J̄ |ḡ)2

= u2κḡij J̄iJ̄j

= (gij − tgikhj
k + O(t2f))(Ji + t

2h
l
iJl + O(t2f))(Jj + t

2h
m
j Jm + O(t2f))

= |J |2g + O(t2|J |gf + t3f2)

=
(
|J |g + tf

4

)2
− tf

2 |J |g −
t2f2

16 + O

(
t

(
tf

2 |J |g + t2f2

16

))

<

(
|J |g + tf

4

)2

for t > 0 small enough, so we find that

(24) uκ|J̄ |ḡ < |J |g + t

4f

for such t.
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Fix t > 0 such that (23) and (24) hold. Note that our choice of f implies
that supM (|J |g/f) < ∞. Therefore for any x ∈ M such that |J̄ |ḡ(x) �= 0 we
have

μ̄

|J̄ |ḡ
= uκμ̄

uκ|J̄ |ḡ
>

μ + tf/3
|J |g + tf/4 ≥ |J |g + tf/3

|J |g + tf/4 = 1 + t

12(|J |g/f) + 3t ≥ 1 + γ,

for
γ := t

12 supM (|J |g/f) + 3t .

At points where |J̄ |ḡ(x) = 0 we have μ̄ > 0 by (23). Consequently, we have
μ̄ > (1 + γ)|J̄ |ḡ everywhere on M as desired.

Note also that (μ̄, J̄) ∈ Ck−2,α
n+τ ′

0
for τ ′0 = min{1, τ0} by (21), the asymp-

totics of u, and the properties of R. In particular ‖(μ, J) − (μ̄, J̄)‖C0
n+τ ′0

can
be made arbitrarily small for a sufficiently small t. Thus Proposition 2.8 guar-
antees that

∣∣∣M(g,π)(V ) −M(ḡ,π̄)(V )
∣∣∣ < ε holds.

4. Perturbation to conformally hyperbolic asymptotics

In this section we prove the following result.

Theorem 4.1. Let (M, g, π) be an asymptotically hyperbolic initial data set
of type (k, α, τ, τ0) for 0 < α < 1, n

2 < τ < n and τ0 > 0. Assume that the
dominant energy condition μ ≥ |J |g holds. Then for every τ ′ < τ and ε > 0
there exists an asymptotically hyperbolic initial data set (ḡ, π̄), with the energy
and momentum density denoted by (μ̄, J̄), which has conformally hyperbolic
asymptotics with respect to the same chart, and is such that

‖g − ḡ‖Ck,α

τ ′
< ε, ‖π − π̄‖Ck−1,α

τ ′
< ε,

the strict dominant energy condition

μ̄ > |J̄ |ḡ

holds, and
|M(g,π)(V ) −M(ḡ,π̄)(V )| < ε

for any V ∈ {V(0), V(1), . . . , V(n)}.
In [18, Appendix B] a similar result was proven in the simpler case when

π = 0. The proof of Theorem 4.1 is very similar to [22, Proof of Theorem 18].
Its main ingredients are Theorem 3.1 and the following lemma.
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Lemma 4.2. Let (g, π) be an asymptotically hyperbolic initial data set of type
(k, α, τ) for k ≥ 2, 0 < α < 1 and n

2 < τ < n and suppose that n
2 < τ ′ < τ .

Then there are positive constants C0 and δ0 such that for any (μ̄, J̄) ∈ Ck−2,α
τ

with ‖(μ− μ̄, J − J̄)‖Ck−2,α
τ

≤ δ ≤ δ0, there exists an initial data set (ḡ, π̄) of
type (k, α, τ) with the following properties:

• The energy and momentum densities of (ḡ, π̄) are μ̄ and J̄ .
• Outside of a compact set (ḡ, π̄) is of the form

ḡ = uκb, π̄ = uκ/2L̊Y b

for (u− 1, Y ) ∈ Ck,α
τ .

• The initial data set (ḡ, π̄) is close to (g, π) in the sense that

‖g − ḡ‖Ck,α

τ ′
≤ C0δ, ‖π − π̄‖Ck−1,α

τ ′
≤ C0δ.

Proof. The proof uses the construction introduced by Corvino and Schoen in
[17, Proof of Theorem 1], which is similar to the one that was used in the
proof of Theorem 3.1. Given (g, π) as in the statement of the theorem and
(u− 1, Y ) ∈ Ck,α

τ , we define the map

T(g,π)(u, Y ) = Φ(uκg, uκ/2(π + L̊Y g)).

It follows from (14) that the components of T(g,π) are given by

−2μ̃ = 4(n−1)
n−2 u−κ−1Δgu− u−κScalg − n(n− 1) + 2u−

κ
2 trg π

− 1
n−1u

−κ(trg π)2 + u−κ
(
|π|2g + 2〈π, L̊Y g〉 + |L̊Y g|2g

)
,

J̃j = u−
κ
2 (ΔLY + divg π)j + 2(n−1)

n−2 u−
κ
2−1(π + L̊Y g)kj∇ku

− 2
n−2u

−κ
2−1 trg π∇ju,

(25)

for j = 1, 2, . . . , n. From this formula it is straightforward to compute the
linearization

DT(g,π)|(1,0)(v, Z)

=
(

4(n−1)
n−2 Δgv + 4

n−2Scalgv − 4
n−2(trg π)v

+ κ
n−1(trg π)2v − 4

n−2 |π|
2
gv + 2〈π, L̊Zg〉,

(ΔLZ)j − 2
n−2(divg π)jv + 2(n−1)

n−2 πk
j∇kv − 2

n−2(trg π)∇jv
)
.
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Since Scalg+n(n−1) ∈ Ck−2,α
τ , we may argue as in the proof of Lemma 3.2 and

show that for 2 ≤ l ≤ k the operator DT(g,π)|(1,0) is Fredholm of index zero as
an operator C l,α

δ → C l−2,α
δ for −1 < δ < n and as an operator W l,p

γ → W l−2,p
γ

for −1 < γ + n−1
p < n. We can now choose a sufficiently large p > n and γ

such that τ ′ < γ < τ − n−1
p in which case both C l,α

τ ↪→ W l,p
γ for l = 0, 1, . . . , k

and the operator DT(g,π)|(1,0) : W 2,p
γ → W 0,p

γ is Fredholm of index zero. Let
U be the subspace complementing the kernel of DT(g,π)|(1,0) in W 2,p

γ . Arguing
as in the proof of Lemma 3.4 we conclude that there exist finitely many pairs
of compactly supported symmetric 2-tensors (hi, wi) ∈ Ck+1,α

c , i = 1, . . . , N ,
such that their images DΦ|(g,π)(hi, wi) form a basis for a subspace which
complements DT(g,π)|(1,0)(W 2,p

γ ) in W 0,p
γ . Set V := span{(hi, wi)}i=1,...,N . We

define the map Ξ(g,π) : U × V → W 0,p
γ by

(26) Ξ(g,π) : (u, Y, h, w) �→ Φ(uκg + h, uκ/2(π + L̊Y g) + w).

Then the linearization DΞ(g,π)|(1,0,0,0) : U × V → W 0,p
γ is given by

DΞ(g,π)|(1,0,0,0) : (v, Z, η, ω) �→ DT(g,π)|(1,0)(v, Z) + DΦ|(g,π)(η, ω)

and is an isomorphism by construction.
Using the chart at infinity Ψ : M \K0 → Hn \BR0 , we define the cut-off

function χλ(x) = χ(r(x)/λ), where χ : R → R is a smooth function satisfying
χ(r) = 1 for r ≤ 1 and χ(r) = 0 for r ≥ 2. For a sufficiently large λ > 0, the
cut-off initial data (gλ, πλ) is given by

gλ = χλg + (1 − χλ)Ψ∗b, πλ = χλπ.

Now for any τ1 < τ we have

(27) ‖g − gλ‖Ck,α
τ1

→ 0 and ‖π − πλ‖Ck−1,α
τ1

→ 0

as λ → ∞. Hence we also have

(28) ‖Φ(g, π) − Φ(gλ, πλ)‖Ck−2,α
τ1

→ 0

as λ → ∞.
Similarly to (26), we define the map Ξ(gλ,πλ) : U × V → W 0,p

γ by

Ξ(gλ,πλ) : (u, Y, h, w) �→ Φ(uκgλ + h, uκ/2(πλ + L̊Y gλ) + w).
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The linearization DΞ(gλ,πλ)|(1,0,0,0) : U × V → W 0,p
γ is given by

DΞ(gλ,πλ)|(1,0,0,0) : (v, Z, η, ω) �→ DT(gλ,πλ)|(1,0)(v, Z) + DΦ|(gλ,πλ)(η, ω).

As a consequence of (27), the operators DΞ(gλ,πλ)|(1,0,0,0) converge to the iso-
morphism DΞ(g,π)|(1,0,0,0) as λ → ∞ in the uniform operator topology. It
follows that there exists a positive λ0 such that for any λ ≥ λ0 the lin-
earization DΞ(gλ,πλ)|(1,0,0,0) is an isomorphism. Note that Ξ(gλ,πλ)(1, 0, 0, 0) =
Φ(gλ, πλ) = (−2μλ, Jλ). Applying the Inverse Function Theorem, see for ex-
ample [24, Theorem 4.2 and Remark 4.3]), it is not complicated to check that
there exists ρ0 > 0 depending only on (g, π) such that Ξ(gλ,πλ) : Bρ0(1, 0, 0, 0)→
Ξ(gλ,πλ) (Bρ0(1, 0, 0, 0)) is a diffeomorphism for any λ ≥ λ0. Furthermore, there
exists a constant C > 0 depending only on (g, π) such that

(29) C‖(u, Y, h, w)−(1, 0, 0, 0)‖W 2,p
γ

≤ ‖Ξ(gλ,πλ)(u, Y, h, w)−(−2μλ, Jλ)‖W 0,p
γ

holds for any (u, Y, h, w) ∈ Bρ0(1, 0, 0, 0), and such that

BCρ0(−2μλ, Jλ) ⊂ Ξ(gλ,πλ) (Bρ0(1, 0, 0, 0)) .

Now suppose that (μ̄, J̄) is such that ‖(2(μ− μ̄), J − J̄)‖C0,α
τ

≤ δ. By (28)
we may assume that λ ≥ λ0 is such that ‖(2(μ− μλ), J − Jλ)‖C0,α

τ1
≤ δ where

τ1 < τ . If we further assume that τ1 > γ + n−1
p so that C0,α

τ1 ↪→ W 0,p
γ it

follows that there exists δ0 > 0 depending on C and ρ0 such that (−2μ̄, J̄) ∈
BCρ0(−2μλ, Jλ) as long as δ ≤ δ0. Then it follows from the above discussion
that there exists (u, Y, h, w) ∈ Bρ0(1, 0, 0, 0) such that Ξ(gλ,πλ)(u, Y, h, w) =
(−2μ̄, J̄). As a consequence of (29)

‖(u− 1, Y, h, w)‖W 2,p
γ

≤ C0δ

for a uniform constant C0. By the Sobolev embedding we have (u − 1, Y ) ∈
C1,α

γ and it follows from (25) that outside of a compact set (u, Y ) satisfies

−2uκ+1μ̄ = 4(n−1)
n−2 Δbu + n(n− 1)(u− uκ+1) + u|L̊Y b|2b ,

uκ/2J̄j = (ΔLY )j + 2(n−1)
n−2 u−1(L̊Y b)kj∇ku.

(30)

Consequently, v = u− 1 and Y are such that (v, Y ) ∈ C1,α
γ and recalling that

γ > n/2 it follows from (30) that

(Δbv − nv,ΔLY ) ∈ C0,α
τ .
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Hence (v, Y ) ∈ C2,α
τ by the improved elliptic regularity [30, Proposition 6.5].

Further regularity follows by a standard bootstrap argument.
It is now straightforward to check that there exists a constant C0 > 0

such that the initial data

ḡ = uκgλ + h, π̄ = uκ/2(πλ + L̊Y gλ) + w

has all the required properties. In particular, the last claim of the theorem
follows using the fact that ‖(u− 1, Y )‖C1,α

τ ′
≤ C0δ (up to increasing C0 if nec-

essary) as a consequence of γ > τ ′ and the Sobolev embedding, and applying
Schauder estimates [30, Lemma 4.8(b)] throughout.

The following result is not complicated to prove.

Proposition 4.3. Suppose that (M, g, π) is an asymptotically hyperbolic ini-
tial data set of type (k, α, τ, τ0) for k ≥ 2, 0 < α < 1 and τ0 ≥ 1 such
that

g = uκb, π = uκ/2L̊Y b

outside of a compact set for some (u− 1, Y ) ∈ Ck,α
τ . Then (g, π) has confor-

mally hyperbolic asymptotics in the sense of Definition 2.3.

Proof. Let v = u− 1. It follows from (30) that outside of a compact set

(Δbv − nv,ΔLY ) ∈ Ck−2,α
n+ε

for some ε > 0. Then (v, Y ) ∈ Ck,α
n by Proposition B.2. More specifically,

from the proof of Proposition B.2 we see that (v, Y ) is of the form (5), where
(v0, Y0) does not depend on r, and (v1, Y1) ∈ C2,α

k+ε.
Inserting u = v+1 and Y in (30) we conclude that (v1, Y1) ∈ Ck,α

n+ε satisfies

(Δbv1 − nv1,ΔLY1) ∈ Ck−2,α
n+1 .

Thus (v1, Y1) ∈ Ck,α
n+1 by Proposition B.2.

Proof of Theorem 4.1. By Theorem 3.1 we may without loss of generality
assume that μ > (1 + γ)|J |g for some γ > 0. Let ξ be a smooth function such
that ξ(x) = e−r(x) outside a compact set. For χλ as in the proof of Lemma 4.2
set ξλ := χλ + (1 − χλ)ξ. Then (ξλμ, ξλJ) ∈ Ck−2,α

n+1+τ0 and

(31) ‖(μ, J) − (ξλμ, ξλJ)‖Ck−2,α
n+τ ′0

→ 0
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as λ → ∞ for any τ ′0 < τ0. By Lemma 4.2 and Proposition 4.3 we may
construct initial data sets (gλ, πλ) with conformally hyperbolic asymptotics,
whose energy and momentum densities are (ξλμ, ξλJ), and such that

(32) ‖g − gλ‖Ck,α

τ ′
→ 0, ‖π − πλ‖Ck−1,α

τ ′
→ 0

for any τ ′ < τ as λ → ∞. In particular, ‖g − gλ‖C0 → 0 as λ → ∞ thus
|J |2gλ = |J |2g(1 + o(1)) as λ → ∞. It follows that

ξλμ > ξλ(1 + γ)|J |g ≥
(

1 + γ

2

)
|ξλJ |gλ

for λ sufficiently large, hence (gλ, πλ) satisfies the strict dominant energy
condition. Further, since (31) and (32) hold for any 0 < τ ′0 < τ0 and n

2 <
τ ′ < τ , it follows by Proposition 2.8 that

M(gλ,πλ)(V ) → M(g,π)(V )

for all V ∈ {V(0), V(1), . . . , V(n)} as λ → ∞.

5. Initial data sets with Wang’s asymptotics

In this section we refine the results of Section 3 for another important class
of asymptotically hyperbolic initial data.

Definition 5.1. Let (M, g, π) be an asymptotically hyperbolic initial data
set of type (k, α, n, τ0) for k ≥ 2, 0 ≤ α < 1 and τ0 > 0. We say that (M, g, π)
has Wang’s asymptotics with respect to the chart at infinity

Ψ : M \K0 → Hn \BR0

if the following holds:

1. The pushforward of the metric g under Ψ satisfies

(33) Ψ∗g = dr2 + sinh2 rgr,

where
gr = σ + me−nr + Ok,α(e−(n+1)r)

is an r-dependent family of symmetric 2-tensors on Sn−1, m ∈ Ck,α is a
symmetric 2-tensor on Sn−1, and the expression Ok,α(e−(n+1)r) stands
for a tensor in the weighted Hölder space Ck,α

n+1(Hn).
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2. The pushforward of the 2-tensor π under Ψ satisfies

(Ψ∗π)rr = prre
−nr + qrr,

(Ψ∗π)rμ = prμe
−(n−1)r + qrμ,

(Ψ∗π)μν = pμνe
−(n−2)r + qμν ,

(34)

where p ∈ Ck−1,α
loc does not depend on r, q ∈ Ck−1,α

n+1 , and μ, ν denote
components in a coordinate system on the sphere.

Asymptotically hyperbolic metrics g with asymptotics (33) were consid-
ered by Wang in [39] and have been studied in various contexts, see for ex-
ample [1], [5], [35], and [36].

Note that any sufficiently regular conformally compactifiable metric with
the round sphere as the boundary at infinity and deviating from the hyper-
bolic metric at the “critical” order |g − b|b = O(e−nr) can be written in the
form (33) in appropriate coordinates. See, for example, [5, Section IV], [1,
Section 3], or [16]. We will make use of this fact in the proofs of Theorem 5.2
and Theorem 5.3 below.

In the case when (M, g, π) is an initial data set with Wang’s asymptotics
a direct computation shows that the mass functional is given by

M(V(0)) = 1
2(n−1)ωn−1

∫
Sn−1

(n trσ m− 2prr) dμσ,

and
M(V(i)) = 1

2(n−1)ωn−1

∫
Sn−1

xi(n trσ m− 2prr) dμσ,

for i = 1, . . . , n, where m and prr are as in Definition 5.1. Furthermore, we
have the following result.

Theorem 5.2. Let (M, g, π) be an asymptotically hyperbolic initial data set
of type (k+1, α, n, τ0) for k ≥ 2, 0 < α < 1 and τ0 > 0 such that it has Wang’s
asymptotics with respect to the chart at infinity Ψ : M \K0 → Hn \BR0 and
satisfies the dominant energy condition μ ≥ |J |g. Then, for any ε > 0 there
exists an asymptotically hyperbolic initial data set (ḡ, π̄), with the energy and
momentum density denoted by (μ̄, J̄), of type (k + 1, α, n, τ ′0) for some τ ′0 > 0
such that

(35) ‖g − ḡ‖Ck+1,α
n

< ε, and ‖π − π̄‖Ck,α
n

< ε,

the strict dominant energy condition

(36) μ̄ > |J̄ |ḡ
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holds, and

(37) |M(g,π)(V ) −M(ḡ,π̄)(V )| < ε

for any V ∈ {V(0), V(1), . . . , V(n)}. Furthermore, there is a coordinate chart
at infinity Φ : M \K0 → Hn \ BR0 such that (M, ḡ, π̄) is an asymptotically
hyperbolic initial data set of type (k, α, n, τ ′0) with Wang’s asymptotics with
respect to this chart.

Proof. Let ε > 0 be fixed. Since Ck,α
n ↪→ Ck,α

τ for n > τ and k = 0, 1, . . . , we
may view (M, g, π) as initial data of type (k+1, α, τ, τ0) for k ≥ 2, 0 < α < 1,
n
2 < τ < n and τ0 > 0. Arguing as in the proof of Theorem 3.1 one shows that
there exist (v, Z) ∈ Ck,α

n , and (h,w) ∈ Ck+1,α
c such that for some sufficiently

small t > 0 the perturbed initial data set

ḡ = (1 + tv)κ(g + th) and π̄ = (1 + tv)κ/2(π + tL̊Zg + tw)

satisfies (35) and (36). Moreover, if the positive function f used in this con-
struction is chosen so f = O(e−(n+1)r) then we have (v, Z) = (v0, Z0)e−nr +
(v1, Z1) for (v0, Z0) ∈ Ck,α

loc independent of r and (v1, Z1) ∈ Ck,α
n+1 as a conse-

quence of (15) and the fact that (M, g, π) is initial data of type (k+1, α, n, τ0)
(compare the proof of Proposition 4.3). Since in this case f might decay
faster than J = O(e−(n+τ0)r), it is not clear that there is a γ > 0 such that
μ̄ > (1 + γ)|J̄ |ḡ. However, this is not important in the current setting since
we do not intend to make a further perturbation of (ḡ, π̄).

Next we estimate the difference between the masses of the initial data
sets (g, π) and (ḡ, π̄). Outside a compact set we have

(38) ḡ = (1 + tv)κg and π̄ = (1 + tv)κ/2(π + tL̊Zg).

Set U = (1 + tv)κ − 1, then ḡ − g = Ug, where U = O1(tv) = O1(e−nr). We
also have

π̄ − π =
(
(1 + tv)κ/2 − 1

)
π + t(1 + tv)κ/2L̊Zg = tL̊Zb + O(e−2nr).

Then a straightforward computation shows that for any V ∈ {V(0), V(1), . . . ,
V(n)} we have

M(ḡ,π̄)(V ) −M(g,π)(V )

= 1
2(n−1)ωn−1

lim
R→∞

∫
SR

(
(n− 1)(UdV − V dU)(ν) − 2tL̊Zb(∇bV, ν)

)
dμb.
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Consequently, we have

|M(ḡ,π̄)(V ) −M(g,π)(V )| ≤ Ct(|v|C1
n

+ |Z|C1
n
)

for any V ∈ {V(0), V(1), . . . , V(n)} and (37) follows, after decreasing t if neces-
sary.

Now recall that g has asymptotic expansion (33) with respect to the chart
Ψ at infinity. With respect to this chart, ḡ has the expansion

ḡ = (1 + tv)κdr2 + sinh2 r
(
σ + (m + tκv0σ)e−nr + Ok+1,α(e−(n+1)r)

)
,

where the term Ok+1,α(e−(n+1)r) is an r-dependent tensor on Sn−1 as de-
scribed in Definition 5.1. While this expansion is not of the form (33), there
are standard techniques to find coordinates near infinity in which ḡ has the
desired form (see for example [1, Section 3.2.1], [5, Section IV], [12], or [16,
Section 2.2]). For completeness, we provide the details here.

First, using the substitution

r = arcsinh
(
sinh−1 ρ

)
we bring ḡ to the conformally compact form

ḡ = sinh−2 ρ
(
(1 + tv)κdρ2 + σ + 2−n(m + tκv0σ)ρn + η

)
.

The expression in the brackets is a Ck+1,α-metric on {0 ≤ ρ ≤ ρ0} for some
ρ0 > 0, and η = ημνdy

μdyν is a ρ-dependent tensor on Sn−1 with components
ημν = Ok+1,α(ρn+1) which is to be understood in the following sense:

f = OK,α(ρN ) ⇔
ρl−N∂l

ρ∂
(m)
yi f ∈ CK−l−|m|,α({0 ≤ τ ≤ τ0}) for 0 ≤ l + |m| ≤ K.

(39)

Note that ρ is a smooth defining function in the sense of [28] and the manifold
has the round sphere (Sn−1, σ) as conformal infinity.

Next, we eliminate the term 2−ntκv0ρ
n in the coefficient

(1 + tv)κ = 1 + 2−ntκv0ρ
n + Ok+1,α(ρn+1)

by changing the defining function according to

ρ = τ − tκ

n2n+1 v0 τ
n+1.



1698 Mattias Dahl and Anna Sakovich

This gives us

ḡ = sinh−2 τ

{(
1 + Ok+1,α(τn+1)

)
dτ 2 − tκ

n2n τ
n+1∂μv0 dτdy

μ

+
[
σμν + 2−n

(
mμν + tκ(n+1)

n v0σμν
)
τn

+ t2κ2

n24n+1∂μv0∂νv0τ
2n+2 + Ok+1,α(τn+1)

]
dyμdyν

}(40)

where the notation OK,α(τN ) is understood as in (39) with ρ replaced by τ .
We will now perform the change of conformal gauge as described in [1,

Section 3.2.1]. The idea is to write

ḡ := (sinh τ)−2g̃ = (θ sinh τ)−2(θ2g̃)

and then choose the function θ so that θ sinh τ = sinhχ, where χ is the
geodesic distance to the boundary {τ = 0} with respect to the metric θ2g̃.
For this θ is required to satisfy the equation

(41) φg̃(dθ, dθ) + 2θg̃(dθ, dφ) = θ4φ + θ2φ−1(1 − g̃(dφ, dφ)),

where φ = sinh τ , see [1, Section 3.2.1]. This is a first order PDE with charac-
teristics transversal to the boundary {τ = 0} so the solution θ satisfying the
boundary condition θ = 1 exists in {0 ≤ τ ≤ τ0} for some τ0 > 0. Due to the
regularity of the coefficients of (41) we conclude that θ ∈ Ck,α({0 ≤ τ ≤ τ0})2,
that is at this step there is a loss of regularity by one derivative. Similar to [1,
Section 3.2.1] we conclude that θ = 1+Ok,α(τn+1) and χ = τ(1+Ok,α(τn+1)).
All in all, we obtain

ḡ = sinh−2 χ
(
dχ2 + σ + 2−n

(
m + tκ(n+1)

n v0σ
)
χn + η̄

)
,

where η̄ = η̄μνdy
μdyν is a χ-dependent tensor on Sn−1 with components

ημν = Ok,α(χn+1) in the sense of (39) with ρ replaced by χ.
We conclude by performing the coordinate change r̄ = arcsinh(sinh−1 χ)

and obtain

ḡ = dr̄2 + sinh2 r̄
(
σ + (m + tκ(n+1)

n v0σ)e−nr̄ + Ok,α(e−(n+1)r̄)
)
,

2In particular, we only have φ−1(1 − g̃(dφ, dφ)) ∈ Ck,α({0 ≤ τ ≤ τ0}), see
also (40). To establish the regularity of the solution, one may argue as in the proof
of [29, Theorem 22.39] while keeping track of regularity as it is done in the proof
of [28, Lemma 5.1]. The details are left to the reader.



A density theorem for asymptotically hyperbolic initial data 1699

with the Ok,α(e−(n+1)r̄) as in Definition 5.1, which is in the form (33). Finally,
we note that the coordinate change r → r̄ = r − tκ

2nv0e
−nr + Ok,α(e−(n+1)r)

does not change the mass of the initial data set (ḡ, π̄) which is readily checked
by a direct computation. In fact, the effect of this change can be described in
rough terms as moving the mass content of the metric ḡ from the radial part
ḡrr to the tangential part ḡμν , while preserving the mass.

The change of the radial coordinate performed in the proof of Theo-
rem 5.2 gives us a mean to modify conformally hyperbolic asymptotics to
Wang’s asymptotics. In particular, it is straightforward to obtain the follow-
ing consequence of Theorem 4.1.

Theorem 5.3. Let (M, g, π) be an asymptotically hyperbolic initial data set
of type (k + 1, α, τ, τ0) for 0 < α < 1, n

2 < τ < n and τ0 > 0. Assume that
the dominant energy condition μ ≥ |J |g holds. Then for every ε > 0 there
exists an asymptotically hyperbolic initial data set (ḡ, π̄) of type (k, α, n, τ ′0)
for some τ ′0 > 0 with Wang’s asymptotics (possibly with respect to a different
chart at infinity) satisfying the strict dominant energy condition

μ̄ > |J̄ |ḡ

and such that
|M(g,π)(V ) −M(ḡ,π̄)(V )| < ε

for any V ∈ {V(0), V(1), . . . , V(n)}.

Proof. By Theorem 4.1, we can approximate (g, π) by an initial data set (ḡ, π̄)
of the same regularity and with conformally hyperbolic asymptotics. Noting
that outside a compact set (ḡ, π̄) is of the form (38) with (g, π) = (b, 0) the
result follows by performing the coordinate change r → r̄ as in the proof of
Theorem 5.2.

6. Concluding remarks

Remark 6.1. In this paper we have focused on the charge integrals Q(V,−dV ),
where V ∈ {V(0), V(1), . . . , V(n)}. These charge integrals are associated (as de-
scribed in Section 2.2) to the Killing vectors ∂t, ∂x1 , . . . , ∂xn of Minkowski
spacetime which generate infinitesimal translations in time and space. One
may ask if the analogue of Theorem 4.1 can be proven for the remaining
charges associated with the Killing vectors xi∂t + t∂xi , 1 ≤ i ≤ n, and
xi∂xj − xj∂xi , 1 ≤ i < j ≤ n, which generate respectively infinitesimal boosts
and rotations. In fact, using the general theory by Michel [33, Section IV.B]
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it is straightforward to check that these charges are well-defined and con-
tinuous under the assumptions of Proposition 2.4 and Proposition 2.8. As a
consequence, we expect that the perturbation results of this paper can be
extended to apply to these charges as well. Note that this is quite different
from the situation in the asymptotically Euclidean setting, where the charges
associated with boosts and rotations are determined by terms of lower order
in the asymptotic expansion of the initial data set than the charges associated
with translations in time and space. For this reason a given asymptotically
Euclidean initial data set can be perturbed slightly to achieve any value of
angular momentum and center of mass in such a way that the mass and linear
momentum do not change, see Huang, Schoen, and Wang [25]. (In particular,
this shows that the mass and angular momentum inequality will in general
not hold for asymptotically Euclidean initial data sets without the assump-
tion of axial symmetry.) One does not expect such a result to hold in the
asymptotically hyperbolic setting.

Remark 6.2. Using the appropriate notion of mass (see for example [33, Sec-
tion 4.2] or [9, Section 4]) it is straightforward to extend our results to the case
of asymptotically hyperbolic initial data representing slices of asymptotically
anti-de Sitter spacetimes.

Remark 6.3. Regarding the extension of the results to the case of weighted
Sobolev spaces, note that in this case it is not possible to rely on the beautiful
work of J. Lee [30]. Instead, methods for operators asymptotic to geometric
operators on hyperbolic space (compare Bartnik [6, Definition 1.5]) can be
used, see for example the proof of Lemma 3.2. Some results in this direction
have been obtained in [20].

Appendix A. Fredholm operators on asymptotically
hyperbolic manifolds: chart-dependent

approach

Theorem C in J. Lee’s monograph [30] proves the Fredholm property of ge-
ometric elliptic operators acting on weighted Sobolev and Hölder spaces on
conformally compact manifolds. In this appendix we will show that the same
result holds for asymptotically hyperbolic manifolds in the sense of Defini-
tion 2.1. We use the same definition of geometric tensor bundles and geometric
elliptic partial differential operators as in the cited monograph.

Let (M, g) be a C l,β
τ -asymptotically hyperbolic n-manifold in the sense of

Definition 2.1 for n ≥ 2, l ≥ 2, 0 ≤ β < 1, and τ > 0. Let Ψ : M \ K0 →
Hn\BR0 be the chart at infinity. Given a geometric elliptic partial differential
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operator P : C∞(M ;E) → C∞(M ;E) of order m ≤ l we define the indicial
map Is(P ) : E|Sn−1 → E|Sn−1 by setting

Is(P )u := lim
r→∞

esrP (e−sru).

Following [30, Section 4], we call s ∈ C a characteristic exponent at p ∈ Sn−1

if Is(P ) is singular at p. Using the fact that |Ψ∗g − b|b = O(e−τr) it is not
complicated to check that the characteristic exponents of P are constant on
Sn−1. Further, if P is formally self-adjoint one may verify that the set of
characteristic exponents is symmetric about the line Re s = n−1

2 − k, where
k = k1 − k2 is the rank of the geometric tensor bundle E ⊂ T k1

k2
M , see [30,

Proposition 4.4]. Similarly to the conformally compact case, we define the
indicial radius of P as the smallest non-negative number R such that P has
a characteristic exponent whose real part is n−1

2 − k + R.

Theorem A.1. Let (M, g) be a connected asymptotically hyperbolic
n-manifold of class C l,β

τ , with n ≥ 2, l ≥ 2, 0 ≤ β < 1, and τ > 0 and let
E → M be a geometric tensor bundle over M . Suppose that P : C∞(M ;E) →
C∞(M ;E) is an elliptic, formally self-adjoint, geometric partial differential
operator of order m, 0 < m ≤ l, and assume that there exists a compact set
K ⊂ M and a positive constant C such that

(42) ‖u‖L2 ≤ C‖Pu‖L2

for all u ∈ C∞
c (M \K;E). Let R be the indicial radius of P .

• If 1 < p < ∞ and m ≤ k ≤ l then the natural extension

P : W k,p
δ (M ;E) → W k−m,p

δ (M ;E)

is Fredholm for |δ+ n−1
p − n−1

2 | < R. In that case, its index is zero, and
its kernel is equal to the L2 kernel of P .

• If 0 < α < 1 and m < k + α ≤ l + β then the natural extension

P : Ck,α
δ (M ;E) → Ck−m,α

δ (M ;E)

is Fredholm for |δ − n−1
2 | < R. In that case, its index is zero, and its

kernel is equal to the L2 kernel of P .

Proof. The proof goes as in [30, Chapter 6], except for the steps which explic-
itly use coordinates at infinity. We verify that these steps can be carried out
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in our setting, that is for asymptotically hyperbolic manifolds as in Defini-
tion 2.1. Specifically, we need to adapt the construction of a parametrix given
in Proposition 6.2 and Corollary 6.3 of [30]. In fact, the adaptation turns out
to be rather straightforward since we have a single chart at infinity naturally
replacing (finitely many) boundary Möbius charts of [30, Chapter 6].

Let Ψ : M \K0 → Hn \BR0 be a chart at infinity as in Definition 2.1. As
in [23, Appendix A] we use this chart to construct a bundle Ĕ → Hn which is
defined using the same O(n)-representation as the one which defines E, and
an isomorphism Υ : Ĕ|Hn\BR0

→ E|M\K0 . The isomorphism Υ, its inverse
and their first l derivatives all have uniformly bounded norms on Hn \ BR0 ,
respectively M \ K0. Let P̆ : C∞(Hn; Ĕ) → C∞(Hn; Ĕ) be the operator on
hyperbolic space with the same local coordinate expression as P . We define
P ′ : C∞(Hn \BR0 ; Ĕ) → C∞(Hn \BR0 ; Ĕ) by

P ′u = Υ−1PΥu.

Let R1 ≥ R0. Since P is a geometric operator and g is C l,β
τ -asymptotically

hyperbolic, we conclude that for each δ ∈ R, 0 < α < 1, 1 < p < ∞, and k

such that m ≤ k ≤ l and m < k + α ≤ l + β there exists a positive constant
C independent of R1 such that

(43) ‖P ′u− P̆ u‖Ck−m,α
δ

(Hn\BR1 ;Ĕ) < Ce−τR1‖u‖Ck,α
δ

(Hn\BR1 ;Ĕ)

holds for all u ∈ Ck,α
δ (Hn \BR0 ; Ĕ), and

(44) ‖P ′u− P̆ u‖W k−m,p
δ

(Hn\BR1 ;Ĕ) < Ce−τR1‖u‖W k,p
δ

(Hn\BR1 ;Ĕ)

holds for all u ∈ W k,p
δ (Hn \BR0 ; Ĕ).

Now suppose that P satisfies (42). Then, by the properties of Υ, the
operator P ′ also satisfies (42) (perhaps with a larger constant). Consequently,
if R1 is sufficiently large, it follows by (44) and standard elliptic regularity
that P̆ satisfies ‖u‖L2 ≤ C‖P̆ u‖L2 for all u ∈ C∞

c (Hn \ BR1 ; Ĕ), possibly
with a larger value of C than in (42). By [30, Theorems 5.7 and 5.9] we
conclude that P̆ is invertible as an operator W k,p

δ (Hn; Ĕ) → W k−m
δ (Hn; Ĕ)

for |δ + n−1
p − n−1

2 | < R and as an operator Ck,α
δ (Hn; Ĕ) → Ck−m,α

δ (Hn; Ĕ)
for |δ − n−1

2 | < R.
Now assume that R1 ≥ R0 is sufficiently large and let KN be such that

M \ KN = Ψ−1(Hn \ BNR1) for N = 1, 2, . . .. We define two smooth bump
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functions: ψ0 equal to 1 on K2 and supported on K4 and ψ1 equal to 1 on
M \K2 and supported on M \K1. Let

φ = ψ1√
ψ2

0 + ψ2
1

,

so that {1− φ2, φ2} is a partition of unity subordinate to the cover {K4,M \
K1}. Clearly, φ ∈ C l,β(M).

We proceed by defining the operators Q,S : C∞
c (M,E) → C∞

c (M,E) by

Qu = φΥP̆−1Υ−1(φu),
Su = φΥP̆−1(P ′ − P̆ )Υ−1(φu),
Tu = φΥP̆−1Υ−1([φ, P ]u).

A straightforward computation as in [30, Proof of Proposition 6.2] shows that

QPu = u + Su + Tu.

Furthermore, it follows from the above discussion that Q, S, and T extend
to bounded maps

Q : W 0,p
δ (M \K1;E) → Wm,p

δ (M \K1;E),
S : Wm,p

δ (M \K1;E) → Wm,p
δ (M \K1;E),

T : Wm−1,p
δ (M \K1;E) → Wm,p

δ (M \K1;E)

for |δ + n−1
p − n−1

2 | < R, and to bounded maps

Q : C0,α
δ (M \K1;E) → Cm,α

δ (M \K1;E),
S : Cm,α

δ (M \K1;E) → Cm,α
δ (M \K1;E),

T : Cm−1,α
δ (M \K1;E) → Cm,α

δ (M \K1;E)

for |δ − n−1
2 | < R. In particular, as a consequence of (43) and (44), we see

that if u is supported in M \K1, then

‖Su‖Wm,p
δ

≤ Ce−τR1‖u‖Wm,p
δ

, ‖Su‖Cm,α
δ

≤ Ce−τR1‖u‖Cm,α
δ

holds for some constant C independent of R1 and u. Without loss of generality
we may assume that Ce−τR1 < 1

2 , and it follows that the operators

Id +S : Wm,p
δ (M \K1;E) → Wm,p

δ (M \K1;E),
Id +S : Cm,α

δ (M \K1;E) → Cm,α
δ (M \K1;E)
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have bounded inverses. This implies that, whenever u has support in M \K1,
we have

Q̃Pu = u + T̃ u,

where Q̃ = (Id +S)−1 ◦Q is bounded as an operator

Q̃ : W 0,p
δ (M \K1;E) → Wm,p

δ (M \K1;E),
Q̃ : C0,α

δ (M \K1;E) → Cm,α
δ (M \K1;E)

and T̃ = (Id +S)−1 ◦ T is bounded as an operator

T̃ : Wm−1,p
δ (M \K1;E) → Wm,p

δ (M \K1;E),
T̃ : Cm−1,α

δ (M \K1;E) → Cm,α
δ (M \K1;E)

where δ is in the same range as above. As a consequence of this parametrix
construction, improved elliptic regularity results [30, Proposition 6.5] hold for
asymptotically hyperbolic manifolds as in Definition 2.1.

The rest of the proof does not use coordinates at infinity, and the reader
is referred to [30] for details.

Proposition A.2. The operator Δ − n and the vector Laplacian ΔL satisfy
the conditions of Theorem A.1 with R = n+1

2 .

Proof. It is not complicated to check that the L2-estimate at infinity (42)
holds for Δ−n. For ΔL the L2-estimate at infinity can be proven by standard
methods, see for example [30, Section 7] or Appendix B in [23]. The critical
exponents of both operators can be computed using the explicit expressions
for their components, see the proof of Proposition B.2 below.

Appendix B. Solutions of critical order

Suppose that P : C∞(M ;E) → C∞(M ;E) is a formally self-adjoint geometric
elliptic operator of order m satisfying the conditions of Theorem A.1 and let
δ− < δ+ be its critical exponents. Roughly speaking, if u = O(e−δr) for
some δ ∈ (δ−, δ+) then Pu = O(e−κr) for some κ ∈ (δ−, δ+) implies that
u = O(e−κr), see [30, Proposition 6.5]. At the same time, Pu = O(e−δ+r) does
not necessarily imply u = O(e−δ+r). An extensive study of the asymptotic
behaviour of solutions outside of the Fredholm interval can be found in [3] and
[2, Chapter 4] in the case of conformally compact metrics. Analogous results
can be proven for asymptotically hyperbolic manifolds as in Definition 2.1
using the following simple lemma.
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Lemma B.1. Consider the ordinary differential equation

(45) u′′ + Au′ + Bu = f.

Assume that A2−4B > 0 so that the characteristic equation λ2−Aλ+B = 0
has two distinct real roots δ− < δ+. Suppose that (45) holds for u = u(r) =
O(e−δr) and f = f(r) = O(e−κr) for some κ > δ+. Then

• δ > δ− implies that u = O(e−δ+r), and
• δ > δ+ implies that u = O(e−κr).

Note that we use a possibly non-standard characteristic equation which
results from substituting u = e−λr rather than u = eλr into (45).

Proof. This is a consequence of the explicit formula

u = Λ−e
−δ−r + Λ+e

−δ+r

− 1
δ+ − δ−

(
e−δ−r

∫ ∞

r
eδ−sf(s) ds− e−δ+r

∫ ∞

r
eδ+sf(s) ds

)(46)

for the solutions of (45). Note that Λ− and Λ+ do not depend on r.

In this paper we use the following result.

Proposition B.2. Let (M, g) be a connected asymptotically hyperbolic n-
manifold of class C l,β

τ , with n ≥ 2, l ≥ 2, 0 ≤ β < 1, and τ > 0.

• Assume that v ∈ C0,0
δ is such that Δv − nv ∈ Ck−2,α

n+ε for ε > 0, 0 <

α < 1, and k + α ≤ l + β. If δ > −1 then v ∈ Ck,α
n . If δ > n, then

v ∈ Ck,α
n+ε.

• Assume that Z ∈ C0,0
δ is such that ΔLZ ∈ Ck−2,α

n+ε for ε > 0, 0 < α < 1,
and k + α ≤ l + β. If δ > −1 then Z ∈ Ck,α

n . If δ > n, then Z ∈ Ck,α
n+ε.

Proof. We first prove the second claim. A straightforward computation shows
that if Z ∈ C2,α

δ′ then

(ΔLZ)r = 2(n−1)
n (∂2

rrZr + (n− 1)∂rZr − nZr) + O(e−(δ′+γ)r),
(ΔLZ)ψ = ∂2

rrZψ + (n− 3)∂rZψ − 2(n− 1)Zψ + O(e−(δ′+γ−1)r)

for γ = min{1, τ}. Note that in our case Z ∈ Ck,α
δ′ for any δ′ ∈ (−1, n) as

a consequence of improved elliptic regularity [30, Proposition 6.5] so we may
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assume that δ′ + γ > n. Hence the components of Z satisfy

∂2
rrZr + (n− 1)∂rZr − nZr = O(e−κr),

∂2
rrZψ + (n− 3)∂rZψ − 2(n− 1)Zψ = O(e−(κ−1)r)

for κ = min{δ′ + γ, n + ε}. From Lemma B.1 it follows that Zr = O(e−nr),
and Zψ = O(e−(n−1)r), hence Z ∈ Ck,α

n by standard elliptic regularity [30,
Lemma 4.8]. Similarly, if δ > n it follows that Z ∈ Ck,α

n+ε, possibly after
repeating this argument finitely many times in order to ensure that κ = n+ε.

The first claim is proven similarly using Lemma B.1 and the fact that

Δv − nv = ∂2
rrv + (n− 1)∂rv − nv + O(e−(δ′+γ)r)

for γ = min{1, τ} when v ∈ C2,α
δ′ .

Appendix C. On the unique continuation property

The following result is a straightforward consequence of the unique continu-
ation results by Mazzeo [32, Theorem 7] and Kazdan [26, Theorem 1.8].

Proposition C.1. Let (M, g) be a C2,β
τ -asymptotically hyperbolic manifold

for τ > 0 and 0 ≤ β < 1, and let E be a geometric tensor bundle over M .
Suppose that u ∈ C2(M ;E) satisfies the differential inequality

(47) |Δu| ≤ C(|u| + |∇u|),

where Δ = −∇∗∇ is the rough Laplacian. If u vanishes to infinite order at
infinity, that is |u| = O(e−Nr) for any N > 0, then u = 0 on M .

Proof. The hyperbolic metric b = dr2+sinh2 r σ clearly satisfies the conditions
(4)–(6) in [32]. We may therefore combine Theorem 7 in this reference with
the fact that g − b ∈ C2,β

τ to conclude that for any z ∈ C2(M ;E) vanishing
on {r ≤ r0} and to infinite order at infinity we have

(48) t3
∫
M

e2tr|z|2 dμg + t

∫
M

e2tr|∇z|2 dμg ≤ C0

∫
M

e2tr|Δz|2 dμg.

Here it is assumed that t and r0 are sufficiently large, and that C0 does not
depend on t. We now argue as in [32, Corollary 11] and set z = φu where φ
vanishes on {r ≤ r0}, and is equal to 1 on {r ≥ r0 + 1}. As a consequence
of (48) combined with (47) we obtain

(t3 − 2C0C
2)

∫ ∞

r0+1
e2tr|u|2 dμg ≤ C0

∫ r0+1

r0

e2tr|Δz|2 dμg.
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When t → ∞ the left hand side is at least of order O(t3e2(r0+1)t), whereas
the right hand side has order O(e2(r0+1)t). Hence u = 0 on {r ≥ r0 + 1}. To
conclude the proof, it suffices to note that u satisfies the conditions of the
strong unique continuation theorem [26, Theorem 1.8], thus u = 0 on M .
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