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Abstract: In this paper, we give a necessary and sufficient condi-
tion that discrete Morse functions on a digraph can be extended
to be Morse functions on its transitive closure, from this we can
extend the Morse theory to digraphs by using quasi-isomorphism
between path complex and discrete Morse complex, we also prove
a general sufficient condition for digraphs that the Morse functions
satisfying this necessary and sufficient condition.
Keywords: Discrete Morse theory, quasi-isomorphism, path ho-
mology.

1. Introduction

Digraphs are generalizations of graphs by assigning a direction or two direc-
tions to each edge. A graph is a digraph where each edge is assigned with
two directions. In 2009, J. Bang-Jensen and G.Z. Gutin [5] studied digraphs
and gave applications of digraphs in quantum mechanics, finite automata,
deadlocks of computer processes, etc. In 2012, A. Grigor’yan, Y. Lin, Y. Mu-
ranov and S.T. Yau [11] initiated the study of path complex on digraphs
and defined the path homology of digraphs. In 2015, A. Grigor’yan, Y. Lin,
Y. Muranov and S.T. Yau [13, 14] studied the cohomology of digraphs and
graphs by using the path homology theory. In 2018, A. Grigor’yan, Y. Mu-
ranov, V. Vershinin and S.T. Yau [16] generalized the path homology theory
of digraphs and constructed the path homology theory of multigraphs and
quivers.
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A digraph G is a pair (V,E) where V is a set and E is a subset of V × V .
The elements of V are called vertices and V is called the vertex set. For any
vertices u, v ∈ V , if (u, v) ∈ E, then (u, v) is called a directed edge, and is
denoted as u → v. For any vertex v ∈ V (G), the number of directed edges
starting from v is called the out-degree of v, and the number of directed edges
ending at v is called the in-degree of v. The sum of in-degree and out-degree is
called the degree of v, denoted as D(v). The transitive closure G of a digraph
G is the smallest digraph containing G such that for any two directed edges
u → v and v → w of G, there is a directed edge u → w of G.

Let G be a digraph and V be the vertex set of G. For each n ≥ 0,
an elementary n-path (or n-path for short) on V is a sequence v0v1 · · · vn of
vertices in V where v0, v1, . . ., vn ∈ V . Here the vertices v0, v1, . . ., vn are
not required to be distinct. An allowed elementary n-path on G is a n-path
v0v1 . . . vn on V such that for each i ≥ 1, vi−1 → vi is a directed edge of G and
vi−1 �= vi for each 1 ≤ i ≤ n. Let Λn(V ) be the free R-module consisting of
all the formal linear combinations (with coefficients in a commutative ring R
with unit) of the n-paths on V . Let Pn(G) be the free R-module consisting of
all the formal linear combinations of allowed elementary n-paths on G. Then
Pn(G) is a sub-R-module of Λn(V ).

The boundary map ∂n : Λn(V ) −→ Λn−1(V ) is defined as by letting

∂n(v0v1 . . . vn) =
n∑

i=0
(−1)idi(v0v1 . . . vn)

where di is the face map given by

di(v0v1 . . . vn) = v0v1 . . . v̂i . . . vn.

Note that ∂n is an R-linear map from Λn(V ) to Λn−1(V ) satisfying ∂n∂n+1 = 0
for each n ≥ 0 (cf. [11, 12, 13, 14, 15, 16, 17]). Hence {Λn(V ), ∂n}n≥0 is a
chain complex. We define

Ωn(G) = Pn(G) ∩ (∂n)−1Pn−1(G),
Γn(G) = Pn(G) + ∂n+1Pn+1(G).

Then as graded R-modules,

Ω∗(G) ⊆ P∗(G) ⊆ Γ∗(G) ⊆ Λ∗(V ).

And as chain complexes,

{Ωn(G), ∂n |Ωn(G)}n≥0 ⊆ {Γn(G), ∂n |Γn(G)}n≥0 ⊆ {Λn(V ), ∂n}n≥0.
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By [6, Proposition 2.4], the canonical inclusion

ι : Ωn(G) −→ Γn(G), n ≥ 0

of chain complexes induces an isomorphism between the homology groups

ι∗ : Hm({Ωn(G), ∂n |Ωn(G)}n≥0)
∼=−→ Hm({Γn(G), ∂n |Γn(G)}n≥0), m ≥ 0.

This isomorphism gives the path homology of G. We denote the path homology
defined in this way as Hn(G;R) (n ≥ 0), or simply Hn(G) if there is no danger
of confusion.

Morse theory originated from the study of homology groups and cell struc-
ture of smooth manifolds. In the 1990s, the discrete Morse theory for cell
complexes and simplicial complexes was given (cf. [7, 8, 9, 10]). In recent
years, the discrete Morse theory of cell complexes and simplicial complexes
has been applied to graphs, and the discrete Morse theory of graphs has been
studied (cf. [1, 2, 3, 4]). Discrete Morse theory can greatly reduce the number
of cells and simplices, simplify the calculation of homology groups, and can
be applied to topological data analysis (cf. [18, 19, 20], etc). In these study,
people use clique as flag complexes on graph which is a similarity of simplicial
complexes.

In this paper, we further study the discrete Morse theory for digraphs,
try to make use of the discrete Morse theory to greatly reduce the initial
information which does not affect the path homology groups of digraphs, so
as to simplify the calculation. Not analogue to the flag complex, the sub
complex of a path complex is not necessary a path complex. So we need
to extend the path complex to its transitive closure and prove that path
homology is invariant under this extension.

Let G be a digraph and f : V (G) −→ [0,+∞) a discrete Morse function on
G as defined in [21] and Definition 2.1 in next section. Consider the following
condition

(∗). For each vertex v ∈ V (G), there exists at most one zero point of f in all
allowed elementary paths starting or ending at v.

Then f can be extended to be a Morse function f on the transitive closure G
of G such that f(v) = f(v) for each vertex v ∈ E(G) if and only if f satisfies
Condition (∗). This is proved in Theorem 2.12.

For n ≥ 0, define an R-linear map gradf : Pn(G) → Pn+1(G) such that
for an allowed elementary n-path α on G, if there exists an allowed elementary
(n + 1)-path γ satisfying γ > α and f(γ) = f(α), set

(gradf)(α) = −〈∂γ, α〉γ
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and otherwise (gradf)(α) = 0. We call gradf the (algebraic) discrete gradient
vector field of f , denoted as Vf . Here 〈, 〉 is the inner product in Λn(V ) (with
respect to which the n-paths are orthonormal).

Let V = gradf be the discrete gradient vector field on G. By [7, Defini-
tion 6.2]), define the discrete gradient flow of G as

Φ = Id + ∂V + V ∂,

which is an R-linear map

Φ : Pn(G) −→ Pn(G), n ≥ 0.

Denote the stabilization map of Φ as Φ∞. Let Critn(G) be the vector space
consisting of all the formal linear combinations of critical n-paths (see Defi-
nition 2.1) on G. Suppose Ω∗(G) is V -invariant, that is, V (Ω∗(G)) ⊆ Ω∗(G).
Then in Theorem 2.17, we prove that

Hm(G) ∼= Hm({Ωn(G) ∩ Φ∞(Critn(G)), ∂n}n≥0), m ≥ 0.

Finally, in Theorem 3.1, it is proved that Condition (∗) is not very harsh.
In fact, we can define Morse functions satisfying Condition (∗) on quite general
digraphs, so Theorem 2.17 can be used to simplify the calculation of their path
homology groups. We give some examples to illustrate.

2. Discrete Morse theory for digraphs

In this section, in Theorem 2.12, we study the extendability of a Morse func-
tion f on digraph G to its transitive closure G. We prove a quasi-isomorphism
of chain complexes in Theorem 2.15 and give the discrete Morse theory for
digraphs in Theorem 2.17.

2.1. Definitions and some properties

Let G be a digraph. For any allowed elementary paths γ and γ′, if γ′ can be
obtained from γ by removing some vertices, then we write γ′ < γ or γ > γ′.

Definition 2.1 (Cf. [21]). A map f : V (G) −→ [0,+∞) is called a discrete
Morse function on G, if for any allowed elementary path α = v0v1 · · · vn on G,
both of the followings hold:

(i) #
{
γ(n+1) > α(n) | f(γ) = f(α)

}
≤ 1;

(ii) #
{
β(n−1) < α(n) | f(β) = f(α)

}
≤ 1,
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where

f(α) = f(v0v1 · · · vn) =
n∑

i=0
f(vi).(1)

For an allowed elementary path α, if in both (i) and (ii), the inequalities hold
strictly, then α is called critical.

Definition 2.2 (Cf. [10, Definition 0.6]). A function f : V (G) −→ [0,+∞) is
called a discrete Witten–Morse function on G if, for any allowed elementary
path α,

(i) f(α) < average{f(γ1), f(γ2)} where γ1 > α and γ2 > α;
(ii) f(α) > average{f(β1), f(β2)} where β1 < α and β2 < α.

Note that each Witten–Morse function is, in fact, a Morse function.

Definition 2.3 (Cf. [10, Definition 0.7]). A discrete Witten–Morse funtion
is flat if, for any allowed elementary path α

(i) f(α) ≤ min{f(γ1), f(γ2)} where γ1 > α and γ2 > α;
(ii) f(α) ≥ max{f(β1), f(β2)} where β1 < α and β2 < α.

By (1) and Definitions 2.3, it follows that each discrete Morse function
on a digraph is a discrete flat Witten–Morse function.

A directed loop on G is an allowed elementary path v0v1 · · · vnv0, n ≥ 1.

Lemma 2.4. Let G be a digraph and f a discrete Morse function on G. Let
α = v0v1 · · · vnv0 be a directed loop. Then for each 0 ≤ i ≤ n, f(vi) > 0.

Proof. Suppose to the contrary, f(vi) = 0 for some i. Let α′ = vivi+1 · · ·
vnv0 · · · vi−1vi, β1 = vivi+1 · · · vnv0 · · · vi−1 and β2 = vi+1 · · · vnv0 · · · vi−1vi
where vi−1 = vn for i = 0 and vn+1 = v0 for i = n. Then f(α′) = f(β1) =
f(β2). This contradicts Definition 2.1 (ii). The lemma follows.

Lemma 2.5. Let G be a digraph and f a discrete Morse function on G. Then
for any allowed elementary path α = v0 · · · vn in G, there exists at most one
index i such that f(vi) = 0.

Proof. Suppose to the contrary, there are two indices i and j such that f(vi) =
f(vj) = 0 (i �= j). Without loss of generality, i < j. Since α is allowed,
vi �= vi+1. Let α′ = vi · · · vj , β1 = vi · · · vj−1 and β2 = vi+1 · · · vj . Then
β1 �= β2 and f(α′) = f(β1) = f(β2). This contradicts Definition 2.1 (ii).
Hence the lemma follows.
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2.2. Extension of Morse functions on digraphs

Definition 2.6 ([5, Section 2.3]). A digraph G is called transitive, if for any
two directed edges u → v and v → w of G, there is a directed edge u → w
of G.

Remark 2.7. The digraph G is transitive if and only if P (G) is perfect ([11,
Definition 3.4]).

The next lemma is straight-forward to verify.

Lemma 2.8 ([5, Section 2.3]). For any digraph G, there exists a digraph G
such that

(i) each directed edge of G is a directed edge of G;
(ii) G is transitive;
(iii) any digraph G′ satisfying (i) and (ii), G is contained in G′.

We call G the transitive closure of G. A digraph G is transitive if and only if
G = G.

Remark 2.9. For any directed edge u → v in E(G) \ E(G), there exists a
sequence of vertices w1w2 · · ·wk (k ≥ 1) in V (G) such that uw1 · · ·wkv is an
allowed elementary path on G. For example,

v0

v1 v2

v3

v4v5

G: v0

v1 v2

v3

v4v5

G:

Figure 1: Remark 2.9.

E(G) \ E(G) = {v0 → v2, v0 → v3, v0 → v4, v1 → v3, v1 → v4, v2 → v4},

in which there exists an allowed elementary path on G for each edge in E(G)\
E(G). Specifically,

v0 → v2 ∈ E(G) \ E(G) corresponds to v0v1v2 ∈ P (G);
v0 → v3 ∈ E(G) \ E(G) corresponds to v0v1v2v3 ∈ P (G);
v0 → v4 ∈ E(G) \ E(G) corresponds to v0v1v2v3v4 ∈ P (G);
v1 → v3 ∈ E(G) \ E(G) corresponds to v1v2v3 ∈ P (G);



Discrete Morse theory on digraphs 1717

v1 → v4 ∈ E(G) \ E(G) corresponds to v1v2v3v4 ∈ P (G);
v2 → v4 ∈ E(G) \ E(G) corresponds to v2v3v4 ∈ P (G).

Moreover, let α = v0 · · · v4 ∈ P (G), vi → vj (0 ≤ i < j ≤ 4) are directed
edges in E(G).

Let G be a digraph and f a discrete Morse function on G. Then f may
not be extendable to be a discrete Morse function on G.

Example 2.10. Let G be a digraph with the set of vertices V (G) = {v0, v1,
v2, v3} and the set of directed edges E(G) = {v0 → v3, v1 → v2, v2 → v3}.
Then

P (G) = R{v0, v1, v2, v3, v0v3, v1v2, v2v3, v1v2v3}

and the transitive closure of G is a digraph G with V (G) = V (G) and

E(G) = E(G) ∪ {v1 → v3}.

v1v2

v3 v0

G:

v1v2

v3 v0

G:

Figure 2: Example 2.10.

Let f be a function on V (G) with f(v1) = f(v0) = 0 and f(v2) > 0,
f(v3) > 0. Then by Definition 2.1, f is a discrete Morse function on G.
However, since f(v3) = f(v0v3) = f(v1v3), f is not a discrete Morse function
on G. Hence, there does not exist any discrete Morse function f on G such
that the restriction of f to G equals f .

To give a condition for extendability of a Morse function f on G to its
transitive closure, we study the property of the discrete Morse function on
transitive digraph in the following lemma first.

Lemma 2.11. Let G be a transitive digraph and f : V (G) −→ [0,+∞) a
discrete Morse function on G. Then for any vertex v with D(v) ≥ 2, there
exists at most one vertex w �= v such that f(w) = 0 and v → w or w → v is
a directed edge in E(G).
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Proof. Suppose to the contrary, there are three cases to be considered.
Case 1. There are two vertices w1, w2 ∈ V (G) such that f(w1) =

f(w2) = 0 and v → w1, w2 → v ∈ E(G).
Case 2. There are two vertices w1, w2 ∈ V (G) such that f(w1) =

f(w2) = 0 and w1 → v, w2 → v ∈ E(G).
Case 3. There are two vertices w1, w2 ∈ V (G) such that f(w1) =

f(w2) = 0 and v → w1, v → w2 ∈ E(G).
Without loss of generality, we only give the proof of Case 1. Let α = v,

γ1 = vw1 and γ2 = w2v. Then f(α) = f(γ1) = f(γ2) and γ1 > α, γ2 > α. This
contradicts that f is a discrete Morse function on G. The lemma follows.

Next, we give a necessary and sufficient condition for a discrete Morse
function on a digraph to be extended to its transitive closure in the following
theorem.

Theorem 2.12. Let G be a digraph and f : V (G) −→ [0,+∞) a discrete
Morse function on G. Then f can be extended to be a Morse function f on
G such that f(v) = f(v) for each vertex v ∈ E(G) if and only if Condition
(∗) is satisfied.

Proof. Suppose the discrete Morse function f on G can be extended to be
a discrete Morse function on G. Let α = v0 · · · vn be an allowed elementary
path on G with v0 = v or vn = v. By Lemma 2.8, for each vk (0 ≤ k ≤ n)
such that vk �= v, v → vk or vk → v is a directed edge in E(G). Then by
Lemma 2.5 and Lemma 2.11, f satisfies Condition (∗) obviously.

On the other hand, suppose f satisfies Condition (∗). Let α = v0v1 · · · vn
be an allowed elementary path on G. Firstly, we assert that there exists at
most one index i (0 ≤ i ≤ n) such that f(vi) = 0 and di(α) is an allowed
elementary (n− 1)-path on G.

Case 1. α ∈ P (G). Then by Lemma 2.5, the assertion follows.
Case 2. α �∈ P (G). Then there exists a directed edge vivi+1 ∈ E(G) \

E(G) for some 0 ≤ i ≤ n− 1. Hence, by Remark 2.9, there exists an al-
lowed elementary path α′ = v0 · · · viw1 · · ·wkvi+1 · · · vn on G with k ≥ 1 and
w1, · · · , wk ∈ V (G). Hence, by Lemma 2.5, the assertion follows.

Secondly, we assert that there exists at most one allowed elementary
(n+1)-path α′ = v0 · · · vjuvj+1 · · · vn on G with f(u) = 0, u ∈ V (G). Suppose
to the contrary, we consider the following two cases.

Case 3. α′′ = v0 · · · viwvi+1 · · · vn is another allowed elementary (n+ 1)-
path on G with f(w) = 0 and i �= j. Without loss of generality, j > i. Then
by Remark 2.9, there is an allowed elementary path with w as the starting
point and u the ending point on G. This contradicts Lemma 2.5.
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Case 4. α′′ = v0 · · · viwvi+1 · · · vn is another allowed elementary (n+ 1)-
path on G with f(w) = 0 and i = j. Then u �= w. Hence, by Remark 2.9,
there are two allowed elementary paths on G with vi as the starting point
and u,w as the ending point respectively, or with u,w as the starting point
respectively and vi+1 as the ending point. This contradicts Condition (∗).

Summarizing above cases, f can be extended to be a Morse function f

on G.
Therefore, the theorem is proved.

2.3. Quasi-isomorphism, discrete Morse theory for digraphs

Let f be a discrete Morse function on digraph G and f the extension of f
on the transitive closure G of G. Let Vf = gradf and V = gradf be discrete
gradient vector fields on G and G respectively. Generally, V |P (G) �= Vf .

Example 2.13. Let G be a digraph with V (G) = {v0, v1, v2, v3} and E(G) =
{v0 → v1, v1 → v2, v2 → v3, v0 → v3}. Then the transitive closure of G is a
digraph G with V (G) = V (G) and

E(G) = E(G) ∪ {v0 → v2, v1 → v3}.

v0

v1 v2

v3

G:

v0

v1 v2

v3

G:

Figure 3: Example 2.13.

Let f be a function on V (G) with f(v2) = 0, f(v0) > 0, f(v1) > 0, and
f(3) > 0. Then f is a discrete Morse function on G satisfying Condition (∗).
By Theorem 2.12, f can be extended to be a Morse function f on G such
that f(v) = f(v) for each vertex v ∈ V (G).

Let α = v0v3 ∈ P (G) ⊆ P (G). Since there exists no allowed elementary
path γ ∈ P (G) such that γ > α and f(γ) = f(α). Then Vf (α) = 0. Since
f(v0v2v3) = f(α) and ∂(v0v2v3) = v2v3 − v0v3 + v0v2, then V (α) = v0v2v3 ∈
P (G). Hence the restriction of V on P(G) may not be Vf .
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Denote

Φ = Id + ∂V + V ∂,

as the discrete gradient flow of G. Similar with the proof of [7, Theorem 6.3,
Theorem 6.4], the main properties of V and Φ are contained in the following
theorem.

Theorem 2.14 (Cf. [7, Theorem 6.3, Theorem 6.4]).

(i) V ◦ V = 0;
(ii) �{β(n−1) | V (β) = ±α} ≤ 1 for any α ∈ P (G);
(iii) α is critical ⇐⇒ {α �∈ Image(V ) and V (α) = 0} for any α ∈ P (G);
(iv) Φ∂ = ∂Φ.

Proof. The simple proof of the theorem is as follows.

(i). For any allowed elementary path β on G, if V (β) = ±α, then β < α
and f(β) = f(α). By Lemma 2.5, there is no allowed elementary path
γ on G such that γ > α and f(γ) = f(α). Hence V ◦ V (β) = 0. (i) is
proved.

(ii). If V (β) = ±α, then β < α and f(β) = f(α). Hence by Definition 2.1(ii),
(ii) is proved.

(iii). By Definition 2.1,

α is critical
⇐⇒ for any allowed elementary path γ > α, f(γ) > f(α) and

for any allowed elementary path β < α, f(β) < f(α).

That is equivalent to there is no allowed elementary path γ on G such
that γ > α and f(γ) = f(α), and no allowed elementary path β on G
such that β < α and f(β) = f(α), which implies (iii).

(iv).

∂Φ = ∂(Id + ∂V + V ∂) = ∂ + ∂V ∂,

Φ∂ = (Id + ∂V + V ∂)∂ = ∂ + ∂V ∂.

Let

PΦ
∗ (G) = {

∑
i

aiαi ∈ P∗(G) | Φ(
∑
i

aiαi) =
∑
i

aiαi, ai ∈ R}.
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By Theorem 2.14 (iv), the boundary operator ∂ maps PΦ
n (G) to PΦ

n−1(G).
Thus {PΦ

∗ (G), ∂∗} is a sub-chain complex of {P∗(G), ∂∗} consisting of all Φ-
invariant chains, called the Morse complex. Moreover, by Theorem 2.14 and
[7, Theorem 7.2], we have that

ΦN = ΦN+1 = · · · = Φ∞

for some sufficiently large positive integer N , where Φ∞ = lim
N→∞

ΦN .
To give the discrete Morse theory for digraphs, we first prove a quasi-

isomorphism of chain complexes.

Theorem 2.15. Suppose Ω∗(G) is V -invariant (that is, V (Ωn(G)) ⊆
Ωn+1(G) for each n ≥ 0). There is a quasi-isomorphism

Ω∗(G) −→ Ω∗(G) ∩ PΦ
∗ (G).

Proof. By the proof of [7, Theorem 7.3], we have the following chain homotopy

Φ∞ : P∗(G) −→ PΦ
∗ (G);(2)

ι : PΦ
∗ (G) −→ P∗(G).

Here ι is the canonical inclusion. It is proved in [7, Theorem 7.3] that

Φ∞ ◦ ι = Id(3)

and

ι ◦ Φ∞ � Id.(4)

Firstly, we will prove that

Φ∞ |Ω∗(G): Ω∗(G) −→ Ω∗(G) ∩ PΦ
∗ (G)(5)

is well-defined.
For any x =

∑
aiαi ∈ Ωn(G) ⊆ Pn(G) where ai ∈ R and αi are allowed

elementary n-paths on G. Since Ω∗(G) is V -invariant, then Φ(x) ∈ Ωn(G).
Hence

Φ∞(x) ∈ Ωn(G).
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On the other hand, by (2),

Φ∞(x) ∈ PΦ
∗ (G).

Hence (5) is well-defined.
Secondly, by (3) and (4), we have

(Φ∞ |Ω∗(G)) ◦ (ι |Ω∗(G)∩PΦ
∗ (G)) = Id.

It follows that

(Φ∞ |Ω∗(G))∗ ◦ (ι |Ω∗(G)∩PΦ
∗ (G))∗ = Id

and (Φ∞ |Ω∗(G))∗ is surjective. Here (Φ∞ |Ω∗(G))∗ and (ι |Ω∗(G)∩PΦ
∗ (G))∗ are ho-

momorphisms between homology groups H∗(Ω∗(G)) and H∗(Ω∗(G)∩PΦ
∗ (G))

induced by morphisms between chain complexes Ω∗(G) and Ω∗(G) ∩ PΦ
∗ (G).

It leaves us to show (Φ∞ |Ω∗(G))∗ is injective. That is, for any element x ∈
Ker∂ |Ωn(G), if

(Φ∞ |Ω∗(G))∗(x)

is a boundary in Ωn+1(G) ∩ PΦ
n+1(G), then x is a boundary in Ωn+1(G).

Suppose there exists an element y ∈ Ωn+1(G) ∩ PΦ
n+1(G) such that ∂y =

Φ∞(x). Since

Φ∞(x)

= ΦN (x)
= (Id + ∂V )N (x)

=
(
C0

N (Id)N + C1
N Id(N−1)∂V + C2

N Id(N−2)(∂V )2 + · · · + CN
N (∂V )N

)
(x)

= x +
(
C1

N∂V + C2
N (∂V )2 + · · · + CN

N (∂V )N
)

(x)

= x + ∂
(
C1

NV + C2
N (V ∂V ) + · · · + CN

N (V ∂V · · · ∂V )
)

(x)

and Ω∗(G) is V -invariant, then L(x) ∈ Ωn+1(G) where

L = C1
NV + C2

N (V ∂V ) + · · · + CN
N (V ∂V · · · ∂V ).
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Hence

∂y − ∂L(x) = x

which implies x = ∂(y − L(x)) and x is a boundary in Ωn+1(G).
The theorem is proved.

Denote

Ω∗(G) ∩ PΦ
∗ (G) = ΩΦ

∗ (G).

By Theorem 2.15, we have the discrete Morse theory for digraphs as follows.

Corollary 2.16. Let G be a digraph and f a discrete Morse function on G
satisfying Condition (*). Let f be the extension of f on G and V = gradf
the discrete gradient vector field on G. Suppose Ω∗(G) is V -invariant. Then

Hm(G) ∼= Hm(ΩΦ
∗ (G)),m ≥ 0.

Furthermore, for each n ≥ 0, let Critn(G) be the free R-module consisting
of all the formal linear combinations of critical n-paths on G. Then Critn(G)
is a sub-R-module of Pn(G). By [7, Theorem 8.2], there is an isomorphism of
graded R-modules

Φ∞ |Crit∗(G): Crit∗(G) −→ PΦ
∗ (G).

Hence, by Corollary 2.16, we have that

Theorem 2.17. Let G be a digraph and f a discrete Morse function on G
satisfying Condition (*). Let f be the extension of f on G and V = gradf
the discrete gradient vector field on G. Suppose Ω∗(G) is V -invariant. Then

Hm(G) ∼= Hm({Ωn(G) ∩ Φ∞(Critn(G)), ∂n}n≥0).(6)

Example 2.18. Consider the following digraph G and its transitive clo-
sure G. Then

Ω∗(G) = R(v0, v1, v2, v3, v0v1, v1v2, v2v3, v0v3)

Let f : V (G) −→ [0,+∞) be a function on G with f(v0) = 0 and
f(vi) > 0, 0 < i ≤ 3. Then f is a discrete Morse function on G satisfying
Condition (∗). By Theorem 2.12, f can be extended to be a Morse function
f on G such that f(v) = f(v) for all vertices v ∈ V (G).
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v0

v1 v2

v3

G:

v0

v1 v2

v3

G:

Figure 4: Example 2.18.

Since f(v0) = 0 and v0 → vi (i �= 0) are directed edges on G, all allowed
elementary paths on G except for the 0-path {v0} are not critical. Hence,

Crit∗(G) = R(v0).

Let V = gradf be the discrete gradient vector field on G. Then

V (v1) = −v0v1, V (v2) = −v0v2, V (v3) = −v0v3,

V (v1v3) = −v0v1v3, V (v2v3) = −v0v2v3, V (v1v2) = −v0v1v2(7)
V (α) = 0 for any other allowed elementary path α on G,

in which (7) implies that Ω∗(G) is not V − invariant.
Let Φ = Id + ∂V + V ∂ be the discrete gradient flow of G. Then

Φ(v0) = v0, Φ(v1) = v0,

Φ(v2) = v0, Φ(v3) = v0,

Φ(α) = 0 for any other allowed elementary path α on G.

By calculate directly, we have that Φ∞ = Φ. Then

Φ∞(Crit∗(G)) = R(v0),
Ω∗(G) ∩ Φ∞(Crit∗(G)) = R(v0).

Hence,

H0(Ω∗(G) ∩ Φ∞(Crit∗(G))) ∼= R,

Hm(Ω∗(G) ∩ Φ∞(Crit∗(G))) = 0 for m > 0.

By [11, Proposition 4.7], H1(G) ∼= R and by [11, Theorem 4.6], H1(G) = 0.

H1(G) �= H1(Ω∗(G) ∩ Φ∞(Crit∗(G))),
H1(G) �= H1(G).
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Remark 2.19. If the condition that Ω∗(G) is V − invariant in Theorem 2.17
does not hold for some digraphs, there may be no isomorphism of homology
groups given in (6).

Remark 2.20. In general, the homology groups of a digraph G and its tran-
sitive closure G are different (in the sense of isomorphism).

3. Digraphs satisfying condition (∗)

In this section, we will show that there are quite general digraphs on which
Morse functions satisfying Condition (∗) can be defined, and give some ex-
amples to illustrate Theorem 2.17.

Inspired by Lemma 2.4, we give the following theorem.

Theorem 3.1. Let G be a digraph and f : V (G) −→ [0,+∞) a function on
G given by

f(v) =
{

0, if v = v′,
�= 0, if v �= v′.

Here v′ ∈ V (G) does not belong to any directed loop on G. Then f is a discrete
Morse function on G satisfying Condition (∗).

Proof. Let α = v0 · · · vn be an arbitrary allowed elementary path on G. There
are two cases.

Case 1. vi �= v′ for any 0 ≤ i ≤ n. We assert that there exists only one
index k with −1 ≤ k ≤ n such that γ′ = v0 · · · vkv′vk+1 · · · vn (for k = −1,
γ′ = v′v0 · · · vn) is an allowed elementary path on G. Suppose to the contrary,
γ′′ = v0 · · · vjv′vj+1 · · · vn is another allowed elementary path on G, j �= k.
Without loss of generality, k < j. Then γ̃ = v′vk+1 · · · vjv′ is a directed loop
on G which contradicts that v′ does not belong to any directed loop. Hence
for any allowed elementary path γ > α,

#
{
γ > α | f(γ) = f(α)

}
≤ 1

and for any allowed elementary path β < α, f(β) < f(α).
Case 2. vi = v′ for some 0 ≤ i ≤ n. We assert that there is no any other

vertex vj = v′ for 0 ≤ j �= i ≤ n. Suppose to the contrary, vi = vj = v′, i �= j.
Without loss of generality, i < j. Since α is an allowed elementary path on G,
vk−1 �= vk for each 1 ≤ k ≤ n. Then j �= i+ 1. Let α′ = vi · · · vj . Then α′ is a
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directed loop on G which contradicts that v′ does not belong to any directed
loop. Hence, for any allowed elementary path β < α,

#
{
β < α | f(β) = f(α)

}
≤ 1

and for any allowed elementary path γ > α, f(γ) > f(α).
Combining Case 1 and Case 2, by Definition 2.1, f is a discrete Morse

function on G. Moreover, since there is only one vertex v′ ∈ V (G) such that
f(v′) = 0, f satisfies Condition (∗). The theorem follows.

Finally, for illustrating the application of discrete Morse theory in the
calculation of simplified homology groups of digraphs, we give the following
examples.

Example 3.2. Let G be a square. Then the transitive closure of G is a
digraph G with V (G) = V (G) and

E(G) = E(G) ∪ {v0 → v3}.

Let f be a function on G such that

f(v0) = 1, f(v1) = 0, f(v2) = 2, f(v3) = 3.

v0

v1

v2

v3G: v0

v1

v2

v3G:

Figure 5: Example 3.2.

By Theorem 3.1, f is a discrete Morse function on G satisfying Condition
(∗) and by Theorem 2.12, f can be extended to be a Morse function f on G
such that f(v) = f(v) for all vertices v ∈ V (G). Then

Crit∗(G) = R(v1, v2, v0v2, v2v3, v0v1v3, v0v2v3),
Crit∗(G) = R(v1, v2, v0v2, v2v3, v0v2v3),

Ω∗(G) = R(v0, v1, v2, v3, v0v1, v0v2, v1v3, v2v3, v0v1v3 − v0v2v3).

Note that Crit∗(G) ∩ P (G) �= Crit∗(G).
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Let V = gradf be the discrete gradient vector field on G. Then

V (v0) = v0v1, V (v3) = −v1v3,

V (v0v3) = v0v1v3,

V (α) = 0 for any other allowed elementary path α on G,

V (Ωn(G)) ⊆ Ωn+1(G) for any n ≥ 0. That is,Ω∗(G) is V − invariant.

Let Φ = Id + ∂V + V ∂ be the discrete gradient flow of G. Then

Φ(v0) = v1, Φ(v1) = v1,

Φ(v2) = v2, Φ(v3) = v1,

Φ(v0v1) = 0, Φ(v0v2) = v0v2 − v0v1,

Φ(v1v3) = 0, Φ(v2v3) = v2v3 − v1v3,

Φ(v0v3) = 0, Φ(v0v1v3) = 0,
Φ(v0v2v3) = v0v2v3 − v0v1v3.

By calculate directly, we have that Φ∞ = Φ. Then

Φ∞(Crit∗(G)) = R(v1, v2, v0v2 − v0v1, v2v3 − v1v3, v0v2v3 − v0v1v3),
Ω∗(G) ∩ Φ∞(Crit∗(G)) = R(v1, v2, v0v2 − v0v1, v2v3 − v1v3, v0v2v3 − v0v1v3).

Therefore,

∂1(v0v2 − v0v1) = v2 − v1, ∂1(v2v3 − v1v3) = v1 − v2

∂2(v0v2v3 − v0v1v3) = (v0v2 − v0v1) + (v2v3 − v1v3)

and

H0(Ω∗(G) ∩ Φ∞(Crit∗(Ḡ))) = R,

H1(Ω∗(G) ∩ Φ∞(Crit∗(Ḡ))) = 0,
Hm(Ω∗(G) ∩ Φ∞(Crit∗(Ḡ))) = 0 for m ≥ 2,

which are consistent with the path homology groups of G given in [11, Propo-
sition 4.7].

Example 3.3. Consider the digraph G given in Example 3.2. Let f : V (G)−→
[0,+∞) be a function on G with f(v0) = 0 and f(vi) > 0, 0 < i ≤ 3, which
is different from the function given in Example 3.2. By Theorem 3.1, f is a
discrete Morse function on G satisfying Condition (∗) and by Theorem 2.12,
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f can be extended to be a Morse function f on G such that f(v) = f(v) for
all vertices v ∈ V (G). Obviously,

Ω∗(G) = R(v0, v1, v2, v3, v0v1, v0v2, v1v3, v2v3, v0v1v3 − v0v2v3)

Since f(v0) = 0 and v0 → vi (i �= 0) are directed edges on G, it follows
that all allowed elementary paths on G except for the 0-path {v0} are not
critical. Hence Crit∗(G) = R(v0).

Let V = gradf be the discrete gradient vector field on G. Then

V (v1) = −v0v1, V (v2) = −v0v2, V (v3) = −v0v3,

V (v1v3) = −v0v1v3, V (v2v3) = −v0v2v3,(8)
V (α) = 0 for any other allowed elementary path α on G,

in which (8) implies that Ω∗(G) is not V − invariant.
Let Φ = Id + ∂V + V ∂ be the discrete gradient flow of G. Then

Φ(v0) = v0, Φ(v1) = v0,

Φ(v2) = v0, Φ(v3) = v0,

Φ(α) = 0 for any other allowed elementary path α on G.

By calculate directly, we have that Φ∞ = Φ. Then

Φ∞(Crit∗(G)) = R(v0),
Ω∗(G) ∩ Φ∞(Crit∗(G)) = R(v0).

Therefore,

H0(G) = H0(Ω∗(G) ∩ Φ∞(Crit∗(G))) ∼= R,

Hm(G) = Hm(Ω∗(G) ∩ Φ∞(Crit∗(G))) = 0 for all m ≥ 1.

Remark 3.4. By Example 3.2 and Example 3.3, we know that in the dis-
crete Morse theory for digraphs, the selection of zero points of discrete Morse
functions is very important to simplify the calculation of homology groups.
Generally speaking, we can choose the vertex with larger degree in the tran-
sitive closure of a digraph as the zero point.

Example 3.5. Consider the following digraph G and its transitive closure G.
Let f : V (G) −→ [0,+∞) be a function on G with f(v0) = 0 and f(vi) > 0,
0 < i ≤ 5.
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v0

v1 v2

v3 v4

v5

G:

v0

v1 v2

v3 v4

v5

G:

Figure 6: Example 3.5.

By Theorem 3.1, f is a discrete Morse function on G satisfying Condition
(∗). By Theorem 2.12, f can be extended to be a Morse function f on G such
that f(v) = f(v) for all vertices v ∈ V (G). Then

Crit∗(G) = R(v0, v5, v5v3, v5v4),
Ω∗(G) = R(v0, v1, v2, v3, v4, v5, v0v1, v0v2, v1v3, v1v4, v2v3, v2v4, v5v3, v5v4,

v0v1v3 − v0v2v3, v0v1v4 − v0v2v4).

Let V = gradf be the discrete gradient vector field on G. Then

V (v1) = −v0v1, V (v2) = −v0v2,

V (v3) = −v0v3, V (v4) = −v0v4,

V (v1v3) = −v0v1v3, V (v1v4) = −v0v1v4,(9)
V (v2v3) = −v0v2v3, V (v2v4) = −v0v2v4,(10)
V (α) = 0 for any other allowed elementary path α on G.

By (9) and (10), V (Ω1(G)) � Ω2(G). This implies that Ω∗(G) is not V −
invariant.

Let Φ = Id + ∂V + V ∂ be the discrete gradient flow of G. Then

Φ(v0) = v0, Φ(v1) = v0,

Φ(v2) = v0, Φ(v3) = v0,

Φ(v4) = v0, Φ(v5) = v5,

Φ(v0v1) = 0, Φ(v0v2) = 0,
Φ(v0v3) = 0, Φ(v0v4) = 0,
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Φ(v1v3) = 0, Φ(v1v4) = 0,
Φ(v2v3) = 0, Φ(v2v4) = 0,

Φ(v5v3) = v5v3 − v0v3, Φ(v5v4) = v5v4 − v0v4,

Φ(v0v1v4) = 0, Φ(v0v1v3) = 0,
Φ(v0v2v4) = 0, Φ(v0v2v3) = 0.

By calculate directly, we have that Φ∞ = Φ. Then

Φ∞(Crit∗(Ḡ)) = R(v0, v5, v5v3 − v0v3, v5v4 − v0v4),
Ω∗(G) ∩ Φ∞(Crit∗(Ḡ)) = R(v0, v5, v5v3 − v0v3, v5v4 − v0v4).

Hence,

∂1(v5v3 − v0v3) = v0 − v5

∂1(v5v4 − v0v4) = v0 − v5

and

H0(Ω∗(G) ∩ Φ∞(Crit∗(Ḡ))) = R

H1(Ω∗(G) ∩ Φ∞(Crit∗(Ḡ))) = R

Hm(Ω∗(G) ∩ Φ∞(Crit∗(Ḡ))) = 0 for m ≥ 2,

which are consistent with the path homology groups of G.

Remark 3.6. By Example 3.3 and Example 3.5, the condition that Ω∗(G)
is V − invariant in Theorem 2.17 is sufficient but not necessary. That is, even
if the digraph does not satisfy this condition, we may have an isomorphism
of homology groups given in (6).

4. Further discussion

In this section, we will study the matrix representation of Theorem 2.17, which
will be helpful for us to find efficient algorithms computing the homology
(persistent homology) groups of digraphs applying our discrete Morse theory
for digraphs in the future.

Let G be a digraph and G the transitive closure of G. Choose all allowed
elementary n-paths as a basis of P (G), denoted as Bn. Let M(•) be the matrix
corresponding to the operator • and En the identity matrix of order n. Let

V n : Pn(Ḡ) −→ Pn+1(Ḡ),
∂n : Pn(Ḡ) −→ Pn−1(Ḡ),
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Φn : Pn(Ḡ) −→ Pn(Ḡ),
Φ∞

n |Critn(Ḡ) : Critn(Ḡ) −→ PΦ
n (Ḡ),

for each n ≥ 0.
We illustrate the calculation process of homology groups in Example 3.2

with the matrix representation of operators. Since

P0(Ḡ) = R(v0, v1, v2, v3);
P1(Ḡ) = R(v0v1, v0v2, v0v3, v1v3, v2v3);
P2(Ḡ) = R(v0v1v3, v0v2v3);
P3(Ḡ) = 0.

Then

V 1

⎡
⎢⎢⎢⎢⎢⎣

v0v1
v0v2
v0v3
v1v3
v2v3

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

0 0
0 0
1 0
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎦
[
v0v1v3
v0v2v3

]
,(11)

V 0

⎡
⎢⎢⎢⎣

v0
v1
v2
v3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −1 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

v0v1
v0v2
v0v3
v1v3
v2v3

⎤
⎥⎥⎥⎥⎥⎦ ,(12)

∂2

[
v0v1v3
v0v2v3

]
=

[
1 0 −1 1 0
0 1 −1 0 1

]
⎡
⎢⎢⎢⎢⎢⎣

v0v1
v0v2
v0v3
v1v3
v2v3

⎤
⎥⎥⎥⎥⎥⎦ ,(13)

and

(14) ∂1

⎡
⎢⎢⎢⎢⎢⎣

v0v1
v0v2
v0v3
v1v3
v2v3

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

−1 1 0 0
−1 0 1 0
−1 0 0 1
0 −1 0 1
0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

v0
v1
v2
v3

⎤
⎥⎥⎥⎦ .
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By (11)–(14), we have that

M(V 1) =

⎡
⎢⎢⎢⎢⎢⎣

0 0
0 0
1 0
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎦ ,

M(V 0) =

⎡
⎢⎢⎢⎣

1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −1 0

⎤
⎥⎥⎥⎦ ,

M(∂2) =
[

1 0 −1 1 0
0 1 −1 0 1

]
,

and

M(∂1) =

⎡
⎢⎢⎢⎢⎢⎣

−1 1 0 0
−1 0 1 0
−1 0 0 1
0 −1 0 1
0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎦ .

Hence,

M(Φ1) = E1 + M(∂1)M(V 0) + M(V 1)M(∂2) =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0
−1 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎦ .

By calculate directly, we have that (M(Φ1))∞ = M(Φ1) · M(Φ1) · · · · =
M(Φ1) = M(Φ∞

1 ). Since Crit1(Ḡ) = R(v0v2, v2v3). Then M(Φ∞
1 |Crit1(Ḡ)) is

the matrix composed of the second and the fifth rows of M(Φ1). That is,

M(Φ∞
1 |Crit1(Ḡ)) =

[
−1 1 0 0 0
0 0 0 −1 1

]
.

Since Ω1(G) = R(v0v1, v0v2, v1v3, v2v3), it follows that

Ω1(G) ∩ Φ∞(Crit1(Ḡ)) = R(v0v2 − v0v1, v2v3 − v1v3).
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By (14), we have that

(15) M(∂1 |Ω1(G)∩Φ∞(Crit1(Ḡ))) =
[

0 −1 1 0
0 1 −1 0

]
.

Hence, we can obtain that

Ker(∂1 |Ω1(G)∩Φ∞(Crit1(Ḡ))) = R(v0v2 − v0v1 + v2v3 − v1v3)

and

Im(∂1 |Ω1(G)∩Φ∞(Crit1(Ḡ))) = R(v1 − v2)

from (15).
Similarly, the matrix of Φ0 : P0(Ḡ) −→ P0(Ḡ) is

M(Φ0) =

⎡
⎢⎢⎢⎣

0 1 0 0
0 1 0 0
0 0 1 0
0 1 0 0

⎤
⎥⎥⎥⎦

and the matrix of Φ2 : P2(Ḡ) −→ P2(Ḡ) is

M(Φ2) =
[

0 0
−1 1

]
.

By calculate directly,

(M(Φ0))∞ = M(Φ0) = M(Φ∞
0 )

and

(M(Φ2))∞ = M(Φ2) = M(Φ∞
2 ).

Then

Φ∞
0 (Crit0(Ḡ)) = Φ0(Crit0(Ḡ))

= Crit0(Ḡ).

Hence,

Ω0(G) ∩ Φ∞(Crit0(Ḡ)) = Crit0(Ḡ)
= R(v1, v2)
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and

Ker(∂0 |Ω0(G)∩Φ∞(Crit0(Ḡ))) = R(v1, v2).

Furthermore, since Ω2(G) = R(v0v1v3−v0v2v3) and Crit2(Ḡ) = R(v0v2v3),
it follows that

Ω2(G) ∩ Φ∞(Crit2(Ḡ)) = R(v0v1v3 − v0v2v3).

By (13), we have that

(16) M(∂2 |Ω2(G)∩Φ∞(Crit2(Ḡ))) =
[

1 −1 0 1 −1
]
.

Hence, we can obtain that

Ker(∂2 |Ω2(G)∩Φ∞(Crit2(Ḡ))) = 0

and

Im(∂2 |Ω2(G)∩Φ∞(Crit2(Ḡ))) = R(v0v1 − v0v2 + v1v3 − v2v3)

from (16).
Therefore,

H0(Ω∗(G) ∩ Φ∞(Crit∗(Ḡ))) = R,

H1(Ω∗(G) ∩ Φ∞(Crit∗(Ḡ))) = 0,
Hm(Ω∗(G) ∩ Φ∞(Crit∗(Ḡ))) = 0 for m ≥ 2,
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