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Geometry of Prym varieties for certain bielliptic curves
of genus three and five

Adrian Clingher, Andreas Malmendier, and Tony Shaska

Abstract: We construct two pencils of bielliptic curves of genus
three and genus five. The first pencil is associated with a general
abelian surface with a polarization of type (1, 2). The second pencil
is related to the first by an unramified double cover, the Prym
variety of which is canonically isomorphic to the Jacobian of a very
general curve of genus two. Our results are obtained by analyzing
suitable elliptic fibrations on the associated Kummer surfaces and
rational double covers among them.
Keywords: Kummer surfaces, Prym varieties, isogenies of abelian
surfaces.

1. Introduction and statement of results

Computing isogenies between Jacobian and Prym varieties for curves of genus
two and three is considered one of the fundamental problems in the context
of computer algebra and encryption as it is closely related to the arithmetic
and the discrete logarithm problem in class groups of such curves and Re-
cillas’ trigonal construction [11, 23, 19, 37]. If the curve of genus three is
non-hyperelliptic, there has been no general formula relating its moduli to
the moduli of a curve of genus two. In this article, we will derive explicit nor-
mal forms for the pencil of plane, bielliptic curves of genus three (and their
unramified double coverings by canonical curves of genus five) such that the
Prym variety of its general member is 2-isogenous to the Jacobian of a very
general curve of genus two. We emphasize that our results are valid for any
curve in the moduli space of curves of genus two, not only for special elements
or subfamilies.

Let C be a smooth curve of genus two defined over the field of complex
numbers. Consider a Göpel subgroup G′ � Jac(C)[2], i.e., a subgroup max-
imally isotropic under the Weil pairing. It is then well known that the quo-
tient Jac(C)/G′ is canonically isomorphic to the Jacobian of a second curve
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of genus two C′, said to be (2, 2)-isogenous with C. Moreover, the image of
Jac(C)[2] under the projection map Ψ′ : Jac(C) → Jac(C)/G′ is a Göpel sub-
group of Jac(C′)[2] and, as Jac(C)/ Jac(C)[2] � Jac(C), one obtains a pair of
dual (2, 2)-isogenies:

(1.1) Jac(C)
Ψ′

Jac(C′)
Ψ

The relation between the curves C and C′ can be made explicit via the Richelot
construction [43, 44].

Consider G′ � 〈L 〉⊕ 〈L ′〉 a marking of the Göpel subgroup above, with
L , L ′ line bundles of order two on the curve C. The line bundle L determines
a canonical étale double cover p : H → C, with the total space H being a
smooth curve of genus three carrying a base-point free involution ı : H → H.
The hyperelliptic involution of C lifts to a second involution j : H → H that
has a fixed locus given by four points. In turn, the involution j defines a
canonical bielliptic structure on H, with double cover π : H → E mapping to
an elliptic curve. The two involutions ı and j commute, with their composition
ı ◦ j defining a hyperelliptic structure on H. Also, Prym(H, π : H → E) is an
abelian surface with the curve of genus three H canonically embedded as a
(1, 2)-polarization [38, 7, 5].

Moving up one level, the pull-back p∗L ′ is a line-bundle of order-two
on the curve H. As such, it defines an étale double cover p′ : F → H, with
the total space F given by a smooth curve of genus five, carrying a base-
point free involution ı′ : F → F . The bielliptic involution j on H lifts to an
involution j′ : F → F with eight fixed points, defining a second bielliptic
structure π′ : F → E ′, with E ′ an elliptic curve that is 2-isogenous to E .

(1.2)
F H C

E ′ E

p′

π′

j′

p

π

j

2−isogeny

One has, in this context, a canonical isomorphism Prym(F , p′ : F → H) ∼=
Jac(C′).

Next, we note that the left half of diagram (1.2) is actually a fiber in a one-
dimensional family. In order to see this, consider the embedding C ↪→ Jac(C),
given by a choice of Abel–Jacobi map. The theta divisor Θ = [C] gives a
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principal polarization U = OA(Θ) on A = Jac(C), which, in turn, establishes
a canonical isomorphism Jac(C) ∼= Jac(C)∨. Hence, points of order two in
Jac(C) may be viewed as line bundles of order two on Jac(C). One can then
repeat the construction from above, in the context of the Jacobian variety
Jac(C).

First, L determines a 2-isogeny of abelian surfaces Φ: B → Jac(C). The
abelian surface B carries a canonical (1, 2)-polarization V = Φ∗(L ) with
V 2 = 4 and h0(V ) = 2. The effective divisors for V form a pencil with four
fixed points. Following the work in [5, 6], a general member of this pencil
is, in the generic case, a smooth curve of genus three Dt ⊂ B. The antipodal
involution of B restricts as a bielliptic involution on Dt, the quotient by which
gives a double cover πt : Dt → Et mapping on an elliptic curve Et. One has a
canonical isomorphism of abelian surfaces Prym(Dt, πt : Dt → Et) ∼= B.

Second, the pull-back Φ∗(L ′) is a line bundle of order two on B and,
hence, it determines a 2-isogeny Φ′ : Jac(C′) → B. The preimage, under Φ′,
of each smooth curve Dt is a smooth curve of genus five Ft ⊂ Jac(C′). As
before, the antipodal involution on Jac(C′) restricts to a bielliptic involution
on Ft, leading to a bielliptic structure π′

t : Ft → E ′
t.

(1.3)

Jac(C′) B Jac(C)

Ft Dt

E ′
t Et

Φ′

−id

Φ

−id

π′
t

ρ′t=Φ′|Ft

πt

2−isogeny

The Prym variety Prym(Ft, ρ
′
t : Ft → Dt) arises naturally in the above pic-

ture, as isomorphic to the Jacobian Jac(C′).
We note that the curve family Ft belongs to the linear system associated

with the line bundle Φ′∗V , which is of type (2, 2) and twice a principal po-
larization on Jac(C′). One has h0(Φ′∗V ) = 4. The family Ft is parametrized
by a conic curve, within the three-dimensional projective space |Φ′∗V |.

The goal of this paper is to give an explicit description for the pencils
of curves Dt and Ft. The building block for the entire construction above is
simply a choice of a smooth curve of genus two C, as well as a choice of a
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Göpel subgroup of G′ � Jac(C)[2]. We shall start with such a curve given
explicitly in Rosenhain normal form as

(1.4) C : η2 = ξ
(
ξ − 1)

(
ξ − λ1

) (
ξ − λ2

) (
ξ − λ3

)
,

such that the ordered tuple (λ1, λ2, λ3) – with λi pairwise distinct and dif-
ferent from (λ4, λ5, λ6) = (0, 1,∞) – determines a point in the moduli space
M of curves of genus two with marked level-two structure. A choice of Göpel
subgroup is then equivalent to a choice of 2+2+2 partition of the six canon-
ical branch points {λ1, λ2, λ3, λ4, λ5, λ6}. The three Rosenhain λ-parameters
can be expressed as explicit ratios of even Siegel theta constants by Picard’s
lemma. There are 720 choices for such expressions: for example, one might
use the choice from [28, 42, 32] to obtain

(1.5) λ1 = θ2
1θ

2
3

θ2
2θ

2
4
, λ2 = θ2

3θ
2
8

θ2
4θ

2
10

, λ3 = θ2
1θ

2
8

θ2
2θ

2
10

.

We consider the double cover M′ of M given as the set of tuples (κ1,5, λ2, λ3)
such that (λ1 = κ2

1,5, λ2, λ3) ∈ M. There is a good reason for the notation
κ1,5, and the reason for it will become apparent later. For the moment, we
only mention that κ1,5 can be considered a section of a suitable line bundle
over M. We introduce the homogeneous polynomials

Δ(t)(X, Y ) =
(
X − t Y

)2
,

r(t)(X, Y ) = 6λ1λ2λ3 t
2X2 −

(
λ1 + λ2λ3

)(
X2 + 4tXY + t2Y 2) + 6Y 2 ,

r
(t)
1 (X, Y ) = 24λ1λ2λ3

(
λ1 + λ2λ3

)
t2X2 + 2

(
λ1 − 5λ2λ3

)(
5λ1 − λ2λ3

)
tXY

+
(
λ2

1 + λ2
2λ

2
3 − 34λ1λ2λ3

)(
X2 + t2Y 2) + 24

(
λ1 + λ2λ3

)
Y 2 ,

p(X, Y ) =
(
λ1X

2 − Y 2)(λ2λ3 X
2 − Y 2) ,

(1.6)

and the parameters p
(t)
0 = p(t, 1) and

c0 = 2
(
λ1 − 5λ2λ3

)(
5λ1 − λ2λ3

)
κ1,5 + λ3

1 + λ2
2λ

2
3

− λ2
1
(
34λ2λ3 − 24(λ2 + λ3) − 1

)
+ λ1λ2λ3

(
λ2λ3 + 24(λ2 + λ3) − 34

)
,

c1 = 8
(
λ1 + λ2λ3

)
κ1,5 − 2

(
6(λ2 + λ3) − λ2λ3 − 1

)
λ1 + 2

(
λ2

1 + λ2λ3
)
,

c2 = λ1 + 1 − 2κ1,5 .

(1.7)

We note that c2 = 0 implies λ1 = 1 and C is singular.



Prym varieties for special bielliptic curves 1743

Let Dt be the pencil of plane quartic curves in P2 = P(X, Y, Z) given by

(1.8) Dt : p
(t)
0 Z4 +

(
c2 r

(t)
1 + c1 r

(t) + c0 Δ(t)
)
Z2 + 9

(
c21 − 4 c0c2

)
p = 0 ,

with the involution

(1.9) j : [X : Y : Z] �→ [X : Y : −Z] ,

and the degree-two quotient map πt : Dt → Qt = Dt/〈j〉. We have the
following:

Theorem 1.1. The pencil in Equation (1.8) satisfies the following:

1. for generic t, the curve Dt is a smooth, bielliptic curve of genus three
such that the Prym variety Prym(Dt, πt) with its natural polarization
of type (1, 2) is 2-isogenous to the principally polarized Jacobian variety
Jac(C), i.e.,

Prym(Dt, πt) � Jac(C) ,

and Dt embeds into Prym(Dt, πt) as a curve of self-intersection four,
2. for t2 = λ1, λ2λ3, the curve Dt is a reducible nodal curve isomorphic to

P1 ∪ C′ where C′ is a (2, 2)-isogenous, smooth curve of genus two such
that

Jac(C′) = Jac(C)/G′ ,

where G′ ⊂ Jac(C)[2] is the Göpel group associated with the pairing of
the Weierstrass points of C given by {λ1, λ5 = 1}, {λ2, λ3}, {λ4 = 0,
λ6 = ∞},

3. for t2 = λ2, λ1λ3, and t2 = λ3, λ1λ2, the curve Dt is a singular, irre-
ducible curve of geometric genus two with one node,

4. for t2 = 0,±λ1λ2λ3,∞, the curve Dt is smooth and hyperelliptic.

Let Ft be the family of non-hyperelliptic curves of genus five given as the
intersection of three quadrics in P4 = P(V,W,X, Y, Z) with

(1.10) Ft :

⎧⎪⎪⎨⎪⎪⎩
V 2 = c2e

2 Δ(t) + 2c2e r(t) + c2 r
(t)
1 ,

W 2 = c2f
2 Δ(t) + 2c2f r(t) + c2 r

(t)
1 ,

V W = 2 p(t)
0 Z2 + c0 Δ(t) + c1 r

(t) + c2 r
(t)
1 ,

and the involution

(1.11) ı′ : P4 → P4 , [V : W : X : Y : Z] �→ [−V : −W : X : Y : Z] .
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Here, the parameters e and f are determined by e + f = c1/c2, ef = c0/c2;
interchanging e and f amounts to the changing the sign ±κ1,5 or, equivalently,
swapping the two sheets of the double cover M′ → M. We have the following:

Theorem 1.2. Each smooth curve Dt admits an unramified double cover
ρ′t : Ft → Dt with Ft smooth and bielliptic. The Prym variety Prym(Ft, ρ

′
t)

is canonically isomorphic to the Jacobian of a curve of genus two given by

(1.12) η2 =
(
ξ−2

(
λ1+λ2λ3

))((
ξ+λ1+λ2λ3)2−36λ1λ2λ3

)(
c2ξ

2+c1ξ+c0
)
,

which is isomorphic to C′ in Theorem 1.1(2), and Ft embeds into Prym(Ft, ρ
′
t)

as a curve of self-intersection eight.

Given the marking of a Göpel group, Equation (1.12) can be brought into
the form

(1.13) η2 =
(
ξ2 − D2

4
)(

16ξ3 + 4Aξ2 + 4ξ + A−B2
)
,

commonly referred to as Kovalevaskaya curve, where A,B,D2 are interpreted
as physical quantities, namely the constants of motions of the Kovalevskaya
top.

We also have the following:

Corollary 1.3. The Jacobian variety Jac(Dt) for t = 0,∞ is isogenous to
the Jacobian Jac(H) where H is the bielliptic, hyperelliptic curve of genus
three

(1.14) H : υ2 =
(
ζ2 − 1)

(
ζ2 − λ1

) (
ζ2 − λ2

) (
ζ2 − λ3

)
.

Remark 1.4. There is a second choice for M′ given by an extension of the
function field of M with κ2

2,3 = λ2λ3 that yields analogous results in Theo-
rem 1.1 and Corollary 1.2. In this case, c0, c1, c2 are given by Equation (2.7).

1.1. Discussion and overview

Barth studied abelian surfaces with a polarization of type (1, 2) and proved
their close connection with Prym varieties of smooth, bielliptic curves of genus
three [5]. An excellent summary of Barth’s construction was given in [25, 26].
Moreover, the fibers of the Prym map were considered in [22, 34, 49, 11, 45].
Abelian surfaces with (1, 2)-polarization were also discussed in [35, 36, 6] and
by the authors in [14, 16, 17]. An algebraic-geometric approach for studying
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2-isogenous abelian surfaces was introduced in [20]. Bielliptic curves of genus
three and abelian surfaces with (1, 2)-polarization have also appeared as spec-
tral curves of Lax representations of certain algebraic integrable systems and
the Kovalevskaya top [1, 2, 27, 24]. Solving the equations of motion for the
Kovalevskaya top is equivalent to a linear flow on an abelian surface with
(1, 2)-polarization. On the other hand, Kovalevskaya presented in her cele-
brated paper [30] a separation of variables of the corresponding integrable
system using the (hyperelliptic) curve of genus two in Equation (1.13) whose
Jacobian is associated with the integrals of motion of the Kovalevskaya top. In
this article, we will derive explicit normal forms for the pencil of plane, biellip-
tic curves of genus three (and their unramified double coverings by canonical
curves of genus five) such that the Prym variety of its general member is
2-isogenous to the Jacobian of a very general curve of genus two in M (or the
Richelot isogenous curve).

The main difficulty in describing explicitly the items of diagram (1.3), in
terms of the Rosenhain λ-parameters, stems from the inherent laboriousness
of computing or describing curves within abelian surfaces. Our approach,
which fixes most of this problem, is to push and understand (1.3) to level of
the Kummer surfaces.
(1.15)

Jac(C′) B Jac(C)

Ft Dt

E ′
t Et

Kum (Jac C′) Kum (B) Kum (Jac C)

Φ′

−id

Φ

−id

π′
t

ρ′t=Φ′|Ft

πt

2−isogeny

φ′ φ

Using this point of view, as outlined in diagram (1.15), the pencils Et and
E ′
t correspond to two Jacobian elliptic fibrations on the Kummer surfaces

Kum (Jac C′) and Kum (B). The rich geometry of these objects is quite well
understood, in particular the sequence of rational maps

(1.16) Kum (Jac C′) ��� Kum (B) ��� Kum (Jac C)
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can be described in terms of even-eight curve configurations introduced in
[36, 41].

This article is structured as follows: in Section 2 we establish convenient
normal forms for certain abelian surfaces with polarizations of type (1, 1),
(1, 2), (2, 2), and their associated Kummer surfaces. In Section 3 we construct
a pencil of plane, bielliptic curves of genus three and an induced genus-one
fibration from the Abel–Jacobi map of a single smooth quartic curve. This
quartic curve is determined by the point of order two p ∈ Jac(C)[2] and a
Göpel group G′ � p. We then show that the obtained genus-one fibration is
isomorphic to a Jacobian elliptic fibration on Kum(B). We also prove certain
properties for the special members of the pencil of curves of genus three,
and we construct their unramified coverings by curves of genus five which
we also prove to be bielliptic. In Section 4 we combine these results to prove
Theorem 1.1, Theorem 1.2, and Corollary 1.3.

2. Plane curves and associated K3 surfaces

Polarizations on an abelian surface A ∼= C2/Λ are known to correspond to
positive definite hermitian forms H on C2, satisfying E = ImH(Λ,Λ) ⊂ Z. In
turn, such a hermitian form determines the first Chern class of a line bundle in
the Néron–Severi group NS(A). The bundle itself is then determined only up
to a degree zero line bundle. We will assume that the Picard number ρ(A) = 1,
so that the Néron–Severi group of A is generated by this line bundle [9]. One
may always choose a basis of Λ such that E is given by a matrix

( 0 D
−D 0

)
with

D =
( d1 0

0 d2

)
where d1, d2 ∈ N, d1, d2 > 0, and d1 divides d2. The pair (d1, d2)

gives the type of the polarization.
Let C be a smooth curve of genus two. On its Jacobian A = Jac(C) the

divisor class Θ = [C] is an effective divisor such that the hermitian form
associated with the line bundle U = OA(Θ) is a polarization of type (1, 1),
also called a principal polarization. We will also consider an abelian surface
B with a (1, 2)-polarization given by an ample symmetric line bundle V such
that V 2 = 4. In this case, the linear system |V | is a pencil on B of generically
smooth, bielliptic curves of genus three; see [5].

2.1. Abelian and Kummer surfaces with principal polarization

Let a smooth curve of genus two C be given in affine coordinates (ξ, η) by the
Rosenhain normal form

(2.1) C : η2 = ξ
(
ξ − 1)

(
ξ − λ1

) (
ξ − λ2

) (
ξ − λ3

)
.
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We denote the hyperelliptic involution on C by ıC . An ordered tuple (λ1, λ2, λ3)
– where the λi are pairwise distinct and different from (λ4, λ5, λ6) = (0, 1,∞)
– determines a point in the moduli space M of curves of genus two with
marked level-two structure. The Weierstrass points of C are the six points
pi : (ξ, η) = (λi, 0) for i = 1, . . . , 5, and the point p6 at infinity. Unless stated
otherwise, we assume that C is a very general curve of genus two.

Translations of the Jacobian A = Jac(C) by a point of order two of A are
isomorphisms of the Jacobian and map the set of 2-torsion points to itself.
In fact, for any isotropic two-dimensional subspace G′ ∼= (Z/2Z)2 of A[2],
also called Göpel group, it is well known that A′ = A/G′ is again a principally
polarized abelian surface [39, Sec. 23]. The corresponding isogeny Ψ′ : A → A′

between principally polarized abelian surfaces has as its kernel G′ � A[2] and
is called a (2, 2)-isogeny.

In the case of the Jacobian of a curve of genus two, every nontrivial 2-
torsion point is the difference of Weierstrass points on C. In fact, the sixteen
points of order two of A = Jac(C) are obtained using the embedding of the
curve into the connected component of the identity in the Picard group, i.e.,
C ↪→ Jac(C) ∼= Pic0(C) with p �→ [p − p6]. We obtain 15 elements pij ∈ A[2]
with 1 ≤ i < j ≤ 5 as

(2.2) pi6 = [pi−p6] for 1 ≤ i ≤ 5 , pij = [pi+pj−2 p6] for 1 ≤ i < j ≤ 5 ,

and set p0 = p66 = [0]. For {i, j, k, l,m, n} = {1, . . . , 6}, the group law on
A[2] is given by the relations

(2.3) p0 + pij = pij , pij + pij = p0 , pij + pkl = pmn, pij + pjk = pik .

The space A[2] of 2-torsion points admits a symplectic bilinear form, called
the Weil pairing. The Weil pairing is induced by the pairing

(2.4) 〈[pi − pj ], [pk − pl]〉 = #{pi, pj} ∩ {pk, pl} mod 2 ,

such that the two-dimensional, maximal isotropic subspaces of A[2] with re-
spect to the Weil pairing are the Göpel groups. Then, it is easy to check that
there are exactly 15 inequivalent Göpel groups. We will fix a point of order
two, say p = p46 ∈ A[2], and a Göpel group G′ = {0, p15, p23, p46} � p. Us-
ing the embedding of the curve into the Picard group, we associate G′ with
the pairing of the Weierstrass points of C given by (λ1, λ5 = 1), (λ2, λ3),
(λ4 = 0, λ6 = ∞). Using G′ we can construct two natural covering spaces
of the moduli space M, namely the set M′

p23 of tuples (λ1, κ2,3, λ3) with
λ2λ3 = κ2

2,3 and the set M′
p15 of tuples (κ1,5, λ2, λ3) with λ1 = κ2

1,5 such
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that (λ1, λ2, λ3) ∈ M. In turn, both M′
p23 and M′

p15 are covered by the
set of tuples (κ1,5, κ2,3, λ3). Moreover, we introduce the convenient moduli
Λ1 = (λ1 +λ2λ3)/l, Λ2 = (λ2 +λ1λ3)/l, Λ3 = (λ2 +λ1λ3)/l with l = κ1,5κ2,3.
The work of the authors in [16] proved that κ1,5, κ2,3, l are rational functions
of the Siegel theta functions.

In the case A = Jac(C) one knows that the (2, 2)-isogenous abelian surface
A′ = A/G′ satisfies A′ = Jac(C′) for some smooth curve of genus two C′. The
question is how to describe the curve C′ explicitly. The relationship between
the geometric moduli of the two curves was found by Richelot [44]; see also
[10]: if we choose for C a sextic equation η2 = f6(ξ), then any factorization
f6 = A ·B ·C into three degree-two polynomials A,B,C defines a new curve
of genus two C′ given by

(2.5) C′ : ΔABC · η2 = [A,B] [A,C] [B,C]

where we have set [A,B] = B ∂ξA − A∂ξB with ∂ξ denoting the derivative
with respect to ξ and ΔABC is the determinant of (A,B,C) with respect to
the basis ξ2, ξ, 1. We have the following:

Proposition 2.1. Let C be the smooth curve of genus two in Equation (2.1)
and G′ be the Göpel group G′ = {0, p15, p23, p46} � Jac(C)[2]. Over M′

p with
p ∈ {p15, p23} the curve C′ with Jac(C′) = Jac(C)/G′ is given by
(2.6)
C′ : η2 =

(
ξ−2

(
λ1 +λ2λ3

))((
ξ+λ1 +λ2λ3)2−36λ1λ2λ3

)(
c2ξ

2 +c1ξ+c0
)
,

where for M′
p23 we have κ2

2,3 = λ2λ3 and

c0 = 2
(
λ1 − 5λ2λ3

)(
5λ1 − λ2λ3

)
κ2,3 +

(
24λ2λ3 + λ2 + λ3

)
λ2

1

+ 2λ1λ2λ3
(
12λ2λ3 − 17(λ2 + λ3) + 12

)
+ λ2

2λ
2
3
(
λ2 + λ3 + 24

)
,

c1 = 8
(
λ1 + λ2λ3

)
κ2,3 − 2

(
6λ2λ3 − λ2 − λ3

)
λ1 + 2

(
λ2 + λ3 − 6

)
λ2λ3 ,

c2 = λ2 + λ3 − 2κ2,3 ,

(2.7)

and for M′
p15 we have κ2

1,5 = λ1 and

c0 = 2
(
λ1 − 5λ2λ3

)(
5λ1 − λ2λ3

)
κ1,5 + λ3

1 + λ2
2λ

2
3

− λ2
1
(
34λ2λ3 − 24(λ2 + λ3) − 1

)
+ λ1λ2λ3

(
λ2λ3 + 24(λ2 + λ3) − 34

)
,

c1 = 8
(
λ1 + λ2λ3

)
κ1,5 − 2

(
6(λ2 + λ3) − λ2λ3 − 1

)
λ1 + 2

(
λ2

1 + λ2λ3
)
,

c2 = λ1 + 1 − 2κ1,5 ,

(2.8)

with c21 − 4c0c2 = 144κ2
p(λ2 − 1)(λ3 − 1)(λ2 − λ1)(λ3 − λ1).
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Remark 2.2. In Proposition 2.1 it is assumed that the curve C is smooth and
very general. This is necessary to guarantee that the quintic in ξ has distinct
roots. For example, c2 = 0 implies λ2 = λ3 and C not smooth. Moreover,
λ1 = λ2λ3 implies ΔABC = 0 in Equation (2.5) since C then admits an
elliptic involution.

Proof. One checks that

[A,C] = x2 − λ1 , [B,C] = x2 − λ2λ3 ,

[A,B] = (1 + λ1 − λ2 − λ3)x2 − 2(λ1 − λ2λ3)x
+λ1λ2 + λ1λ3 − λ2λ3 − λ1λ2λ3 ,

and ΔABC = λ1 − λ2λ3. We compute its Igusa–Clebsch invariants, using the
same normalization as in [32, 33]. Denoting the Igusa–Clebsch invariants of
the curve of genus two in Equation (2.5) and Equation (2.6) by [I2 : I4 : I6 :
I10] ∈ P(2, 4, 6, 10) and [I ′2 : I ′4 : I ′6 : I ′10], respectively, one checks that

(2.9) [I2 : I4 : I6 : I10] = [r2I ′2 : r4I ′4 : r6I ′6 : r10I ′10] = [I ′2 : I ′4 : I ′6 : I ′10] ,

with r = 18(λ1 − λ2λ3)ε with ε = κ2,3 for Equation (2.7) and ε = κ1,5 for
Equation (2.8). Since the Igusa–Clebsch invariants for the two curves give the
same point in weighted projective space, the claims follows.

Remark 2.3. There are exactly three Göpel groups that contain the fixed
element p46 ∈ Jac(C)[2], namely the groups
(2.10)
G′ = {0, p15, p23, p46} , G′′ = {0, p13, p25, p46} , G′′′ = {0, p12, p35, p46} ,

with Richelot isogenous curves of genus two C′, C′′, C′′′. Convenient normal
forms for C′′, C′′′ are obtained from Equations (2.6) by interchanging indices
1 ↔ 2 or 1 ↔ 3, respectively. By construction, the abelian surfaces Jac(C′),
Jac(C′′), Jac(C′′′) are all principally polarized and (2, 2)-isogenous to Jac(C).

Remark 2.4. The Richelot isogeny in Equation (2.5) constructs a model
for C′ such that the symmetric polynomials of the coordinates of pairs of
Weierstrass points are rational over M. Our model for C′ in Proposition 2.1
over M′

p with p ∈ {p15, p23} has in addition two rational Weierstrass points. It
was shown in [16] that this guarantees that a dual Göpel group G � Jac(C′)[2]
can be constructed from points of order two with rational coefficients over M′

p

that induces the dual (2, 2)-isogeny Ψ : A′ → A = A′/G.
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The element p46 ∈ Jac(C)[2] determines a partition of the six Weierstrass
points of C in Equation (2.1) into sets of two, four, and all six points. We
obtain three double covers of the projective line Pξ with affine coordinate ξ,
branched respectively at the marked sets of two, four, and all six points of
genus zero, one, and two, respectively. The three double covers have a common
double cover H, which is the fiber product over P1 of any two of the curves.
Equivalently, the point of order two p46 determines a divisor D of degree
zero with the associated line bundle L = OC(D) satisfying L ⊗2 = OC . The
zero section of the line bundle then determines the unramified double cover
p : H → C. Moreover, every unramified double cover of a hyperelliptic curve
of genus two is obtained in this way [27, p. 387] and [3]. The following lemma
was proved in [8, Thm. 1]:

Lemma 2.5. The curve H, given by

υ2 =
(
ζ2 − 1)

(
ζ2 − λ1

) (
ζ2 − λ2

) (
ζ2 − λ3

)
,(2.11)

is a hyperelliptic, bielliptic curve of genus three such that its Jacobian is
isogenous to the product of a Jacobian of a smooth curve of genus two C and
an elliptic curve E, i.e.,

(2.12) Jac (H) � Jac (C) × E ,

where E is the elliptic curve with the j-invariant

(2.13) j =
256

(
σ2

1 − σ1σ2 − 3σ1σ3 + σ2
2 − 3σ2 + 9σ3

)3

(λ1 − 1)2(λ2 − 1)2(λ3 − 1)2(λ1 − λ2)2(λ1 − λ3)2(λ2 − λ3)2
,

for σ1 = λ1 + λ2 + λ3, σ2 = λ1λ2 + λ1λ3 + λ2λ3, σ3 = λ1λ2λ3.

We have the following:

Remark 2.6. Within the coarse moduli space M3 of curves of genus three,
the hyperelliptic locus Mh

3 is an irreducible five-dimensional sub-variety. We
recall that the set of bielliptic curves of genus three Mbe

3 form an irreducible
four-dimensional sub-variety of M3 [18]. Moreover, it was proven in [4] that
Mbe

3 is rational and Mbe
3 ∩Mh

3 is an irreducible, rational sub-variety of Mbe
3 of

codimension one. Each isomorphism class [H] of Mbe
3 ∩Mh

3 can be represented
as an unramified double covering of a curve of genus two C. Equation (2.11)
then provides a normal form for H.
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Remark 2.7. The curve in Equation (2.11) admits the base-point free invo-
lution ı : H → H with (ζ, υ) �→ (−ζ,−υ) covering p : H → C with (ξ, η) =
(ζ2, ζυ). It also admits the involution j : H → H with (ζ, υ) �→ (−ζ, υ) cov-
ering the double cover π : H → E with Prym(H, p : H → C) ∼= E . The invo-
lutions ı and j commute, and their composition ı ◦ j defines a hyperelliptic
structure on H.

The quotient A/〈−id〉 (where −id is the antipodal involution on an abelian
surface A with ρ(A) = 1) has sixteen ordinary double points, called the nodes.
The double points are the images of the points of order two pij ∈ A[2] for
1 ≤ i < j ≤ 6. The minimum resolution of A/〈−id〉, denoted by Kum(A), is
a K3 surface known as the Kummer surface associated with A. It contains an
even set of 16 disjoint rational curves Eij which are the exceptional divisors
introduced in the blow-up process. A second set of 16 disjoint rational curves
Tij are the images of the translates pij + Θ of the theta divisor Θ = [C] in
Kum(A); they are called tropes. The two sets of rational curves, {Eij} and
{Tij}, have a rich symmetry, called the 166-symmetry of a Kummer surface.
We call the Kummer surface Kum(A) generic if A has no extra endomor-
phisms.

For the symmetric product C(2), the quotient C(2)/〈ıC × ıC〉 is realized as
a variety in terms of U = x(1)x(2), X = x(1) + x(2), and Y = y(1)y(2) and the
affine equation

(2.14) Y 2 = U
(
U −X + 1

) 3∏
i=1

(
λ2
i U − λiX + 1

)
.

The affine variety in Equation (2.14) completes to a hypersurface in weighted
projective space P(1, 1, 1, 3) called the Shioda sextic [46] and is birational
to the Jacobian Kummer surface Kum(Jac C). In fact, Equation (2.14) cor-
responds to the double cover of the projective plane branched on six lines
tangent to a common conic; see [16]. Moreover, the corresponding Kummer
surface has sixteen rational tropes.

It was shown in [14, 12] that the Shioda sextic in Equation (2.14) equips
the Kummer surface X = Kum(Jac C) with a Jacobian elliptic fibration, i.e.,
an elliptic fibration πX : X → P1 with section σX such that πX ◦ σX = id.
This becomes obvious when bringing Equation (2.14) into the equivalent form

X : y2 = x

(
x− u

(
u2 − uΛ3 + 1

)
(Λ1 − Λ2)

(Λ2 − Λ3)

)
(2.15)

×
(
x− u

(
u2 − uΛ2 + 1

)
(Λ1 − Λ3)

(Λ2 − Λ3)

)
.
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Here, the section σX is given by the point at infinity in each fiber, and a
2-torsion section is τX : (x, y) = (0, 0), and U = lu = κ1,5κ2,3u. Using the
Kodaira classification for singular fibers of Jacobian elliptic fibrations [29], we
have the following:

Lemma 2.8. Equation (2.15) determines a Jacobian elliptic fibration on the
Kummer surface X = Kum(Jac C). Generically, the Weierstrass model has
two singular fibers of Kodaira type I∗0 at u = 0,∞, six singular fibers of type I2,
and the Mordell–Weil group of sections MW(X , πX ) = (Z/2Z)2 ⊕ 〈1〉.

In the statement above the symbol 〈m〉 stands for a rank 1 lattice Zx
satisfying 〈x, x〉 = m with respect to the height pairing.

Proof. One easily identifies the collection of singular fibers and the torsion
part of the Mordell–Weil group. From a comparison with the results in [31]
one then determines the full Mordell–Weil group.

We make the following:

Remark 2.9. The established normal form for the Jacobian elliptic fibration
in Equation (2.15) involves an additional choice: with (λ4, λ6) = (0,∞) the
grouping of the remaining Weierstrass points as {λ1, λ5 = 1} and {λ2, λ3}
marks a 2-torsion section, namely τX . This choice is equivalent to selecting G′,
i.e., one out of three Göpel groups containing the point p46 ∈ Jac(C)[2]; see
Remark 2.3.

2.2. Abelian and Kummer surfaces with (1, 2)-polarization

Let us also consider abelian surfaces B with a polarization of type (d1, d2) =
(1, 2) given by an ample symmetric line bundle V with V 2 = 4.

As for principally polarized abelian surfaces, the quotient B/〈−id〉 has six-
teen ordinary double points and a minimal resolution, denoted by Kum(B).
The double points are again the images of the points of order two {q0, . . . , q15}
on B, and the disjoint rational curves {K0, . . . ,K15} are the exceptional di-
visors introduced in the blow-up process such that Ki ◦ Kj = −2δij for 0 ≤
i ≤ 15. They are contained in a minimal primitive sub-lattice of the Néron–
Severi lattice of Kum(B), known as Kummer lattice. In particular, they form
an even set in the Néron–Severi lattice, and the class K̂ = 1

2(K0 + · · · + K15)
is an element of this lattice with K̂2 = −8. In fact, the Néron–Severi lattice
NS(Kum B) is generated over Q by the classes Ki, K̂, and one additional class
H with H2 = 8 and H ◦ Ki = 0 for 0 ≤ i ≤ 15.

The polarization line bundle V defines a canonical map ϕV : B →
Pd1d2−1 = P1, such that the linear system |V | is a pencil on B, and each
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curve in |V | has self-intersection equal to 4. Since we assume ρ(B) = 1, the
abelian surface B cannot be a product of two elliptic curves or isogenous to a
product of two elliptic curves. It was proven in [9, Prop. 4.1.6, Lemma 10.1.2]
that the linear system |V | has exactly four base points. To characterize these
four base points, Barth proved in [5] that the base points form the group
Tr(V ) = {p ∈ B | tr∗p V = V } ∼= (Z/2Z)2 where elements of B act by trans-
lation trp(x) = x + p. Thus, the base points have order two on the abelian
surface B; we will choose them to be {q0, q1, q2, q3}. A curve in the pencil |V |
is never singular at any of the base points {q0, q1, q2, q3}; see [6, Lemma 3.2].
Barth’s seminal duality theorem in [5] can then be stated as follows:

Theorem 2.10 (Barth). In the situation above, let D ∈ |V | be a smooth
curve of genus three in the pencil |V |. There exists a bielliptic involution j on
D with degree-two quotient map π : D → Q = D/〈j〉 onto an elliptic curve Q
such that B is naturally isomorphic to the Prym variety Prym(D, π) and the
involution −id restrict to j.

Conversely, if D is a smooth bielliptic curve of genus three with degree-
two quotient map π : D → Q = D/〈j〉 then D is embedded in Prym(D, π) as
a curve of self-intersection four. The Prym variety Prym(D, π) is an abelian
surface with a polarization of type (1, 2).

We will denote the exceptional curves associated with the base points on
the Kummer surface Kum(B) by {K0,K1,K2,K3}. The map ϕV : B → P1

induces a Jacobian elliptic fibration on πY : Y = Kum(B) → P1 with section
σY as follows: first, a fibration is obtained by blowing up the base points
of the pencil |V |. The fibers of this fibration are the strict transform of the
curves D ∈ |V | and so the general fiber is a smooth curve of genus three.
The involution ı lifts to an involution on this fibration whose fixed points
are the exceptional curves over {q0, q1, q2, q3}. We then take as the general
fiber of πY the quotient of the general fiber of φV by the bielliptic involution.
Since a curve in the pencil |V | is never singular at any of the base points
{q0, q1, q2, q3}, we can take as zero-section σY the exceptional curve over q0
such that the divisor class of the section is [σY ] = K0. Garbagnati [25, 26]
proved:

Proposition 2.11 (Garbagnati). The fibration πY : Y = Kum(B) → P1 has
twelve singular fibers of type I2 and no other singular fibers. The Mordell–
Weil group satisfies MW(Y , πY)tor = (Z/2Z)2 and rank MW(Y , πY) = 3. The
smooth fiber class F with F2 = 0 and F ◦ K0 = 1 is given by

(2.16) F = H − K0 − K1 − K2 − K3

2 .
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The twelve non-neutral components of the reducible fibers of Kodaira
type A1 represent the classes K4, . . . ,K15 of the Kummer lattice and are not
intersected by the class of the zero section given by K0. In fact, the remaining
four classes Ki with 0 ≤ i ≤ 3 satisfy F ◦ Ki = 1 and Ki ◦ Kj = 0 with
4 ≤ j ≤ 15. Thus, they represent sections of the Jacobian elliptic fibration
which intersect only neutral components of the reducible fibers, given by the
divisor classes F − Kj with 0 ≤ i ≤ 3 and 4 ≤ j ≤ 15.

We now construct a Weierstrass model for the fibration in Proposition 2.11
as follows: Mehran proved in [36] that there are fifteen distinct isomorphism
classes of rational double covers φ : Y ��� X of the Kummer surface X =
Kum(A) associated with the principal polarized abelian surface A = Jac(C),
such that the preimage is a Kummer surface Y = Kum(B) associated with
an abelian surface B with the polarization of type (1, 2). Mehran computed
that the branching loci giving rise to these 15 distinct isomorphism classes of
double covers are even eights of exceptional curves on the Kummer surface
Kum(A) [36, Prop. 4.2]: each even eight is itself enumerated by a point of order
two pij ∈ A[2] with 1 ≤ i < j ≤ 6, and given as a sum in the Néron–Severi
lattice of the form

(2.17) Δpij = Ei1 + · · · + Êij + · · · + Ei6 + Ej1 + · · · + Êij + · · · + Ej6 ,

where Eii = 0, and Eij are the exceptional divisors obtained by resolving
the nodes pij ; the hat indicates divisors that are not part of the even eight.
Moreover, Mehran proved that each rational map φΔ : Kum(B) ��� Kum(A)
branched on such an even eight Δ is induced by an isogeny ΦΔ : B → A of
abelian surfaces of degree two and vice versa [36]. We call such an isogeny Φ
a (1, 2)-isogeny. We have the following:

Remark 2.12. In terms of the 166-configuration, the zero section σX of the
elliptic fibration in Lemma 2.8 and the 2-torsion section τX : (x, y) = (0, 0)
are identified with the tropes T5 = T56 and T1 = T16, respectively. The
eight non-central components of the two reducible fibers of type D4 in the
elliptic fibration in Equation (2.15) form the even eight Δ46 on Kum(Jac C),
consisting of the exceptional divisors for the nodes {pi4} and {pi6} with i =
1, 2, 3, 5. Their central components are the tropes T4 = T46 and T6 = T66
since the fibers are located over u = 0 and u = ∞, respectively. There are
exactly six more exceptional divisors from nodes that occur as components
of reducible fibers; see [36, 35]. The situation is depicted in Figure 1.

Let Y = Kum(Bp46) be the Kummer surface associated with the abelian
surface Bp46 with the polarization of type (1, 2) induced by the even eight
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Figure 1: Reducible fibers in Lemma 2.8.

Δp46 . That is, let Y be the preimage of the rational double cover φΔp46
:

Y ��� X = Kum(Jac C) branched on the even eight Δp46 ⊂ NS(X ). Because
of Remark 2.12 the degree-two rational map φΔp46

is induced by the double
cover of P1 branched over u = 0 and u = ∞. We then have

(2.18) φΔp46
: Y ��� X , (v,X, Y ) �→ (u, x, y) = (v2, v2X, v3Y ) .

Accordingly, a Weierstrass equation for Y is immediately found to be

Y : Y 2 = X

(
X −

(
v4 − v2Λ3 + 1

)
(Λ1 − Λ2)

(Λ2 − Λ3)

)
(2.19)

×
(
X −

(
v4 − v2Λ2 + 1

)
(Λ1 − Λ3)

(Λ2 − Λ3)

)
,

with zero section σY and a 2-torsion section τY : (X, Y ) = (0, 0). According
to Mehran’s result, there is a corresponding isogeny ΦΔp46

: Bp46 → A which
induces φΔp46

. We have the following:

Proposition 2.13. Equation (2.19) determines the Jacobian elliptic fibra-
tion on the Kummer surface Y = Kum(Bp46) from Proposition 2.11. Generi-
cally, the Weierstrass model has 12 singular fibers of Kodaira type I2, and the
Mordell–Weil group MW(Y , πY) = (Z/2Z)2 ⊕ 〈1〉⊕2 ⊕ 〈2〉.

Proof. One easily identifies the collection of singular fibers and the torsion
part of the Mordell–Weil group. A complete set of generators for the Mordell–
Weil group was provided in [15, 17]. In [15] three pairwise orthogonal, non-
torsion sections of the elliptic fibration (πY , σY) of minimal height were con-
structed that generate a rank-three sub-lattice of the Mordell–Weil group of
sections. It was proved in [25, Prop. 2.2.4] that the transcendental lattice
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of the Kummer surface Kum(B) with polarization of type (1, 2) is isometric
to U(2) ⊕ U(2) ⊕ 〈−8〉 and the determinant of the discriminant form equals
27 where U is the standard rank-two hyperbolic lattice. This is in agreement
with the determinant of the discriminant form for the Néron–Severi lattice ob-
tained from an elliptic fibration with section, twelve singular fibers of Kodaira
type I2, and a Mordell–Weil group of sections (Z/2Z)2 ⊕ 〈1〉⊕2 ⊕ 〈2〉.

2.3. Kummer surfaces with (2, 2)-polarization

On Y = Kum(Bp46) we can construct another even eight of exceptional curves
Δ′ as follows: the fibration in Equation (2.19) has eight reducible fibers of type
A1 where the 2-torsion section τY : (X, Y ) = (0, 0) intersects the non-neutral
component, i.e., the component of the fiber not met by the zero-section σY .
These divisors from an even eight which is precisely the even eight Δ′ = ΔG′

determined by the Göpel group G′ = {0, p15, p23, p46} ⊂ Jac(C)[2], namely the
union of the non-neutral components of the preimages of the four reducible
A1-fibers in the fibration (2.15) on Kum(Jac C) not containing p15, p23 under
the double cover φΔp46

: Y ��� X = Kum(Jac C); see Figure 1. We then
obtain a new K3 surface X ′ as the preimage of the rational double cover
φΔG′ : X ′ ��� Y branched on ΔG′ ⊂ NS(Y). Since the even eight consists
only of non-neutral components of reducible fibers, the new K3 surface X ′

carries an induced elliptic fibration with section and 2-torsion section. In fact,
using the results in [15] a Weierstrass model for X ′ is found to be

X ′ : y2 = x3 + (v2 + v−2 − Λ1)2 v4x

+ (2Λ1 − Λ2 − Λ3)(v2 + v−2) + 2Λ2Λ3 − Λ1Λ2 − Λ1Λ3

Λ2 − Λ3
v2x2 ,

(2.20)

with zero section σX ′ and 2-torsion section τX ′ : (x, y) = (0, 0). Thus, we are
in the situation where both K3 surfaces X ′ and Y are endowed with Jacobian
elliptic fibrations which, in addition to trivial sections, each carry a section
that makes an element of order two in the Mordell–Weil group. Fiberwise
translations by these 2-torsion sections are then known to define involutions
ıX ′ on X ′ and ıY on Y , respectively, called van Geemen–Sarti involutions
[48, 13]. The involutions are special Nikulin involutions, and from the Nikulin
construction we obtain a pair of dual geometric 2-isogenies between X ′ and
Y :

(2.21) YıY

φ′′
X ′ ıX′

φ′
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We have the following:

Proposition 2.14. Equation (2.20) determines a Jacobian elliptic fibration
on the Kummer surface X ′ = Kum(Jac C′) for C′ given in Proposition 2.1.
Generically, the Weierstrass model has 4 singular fibers of Kodaira type I4, 8
singular fibers of type I1, and the Mordell–Weil group MW(X ′, πX ′) = Z/2Z⊕
〈1〉⊕3.

Proof. Rosenhain moduli Λ′
1,Λ′

2,Λ′
3 for the curve of genus two C′ in Propo-

sition 2.1 were computed as rational functions of the moduli Λ1,Λ2,Λ3 of C
and vice versa in [16]. Substituting these relations into Equation (2.20), one
recovers the Weierstrass model of the elliptic fibration (7) in the list of all
elliptic fibrations on Kum(Jac C′) in [31, Thm. 2].

We have the following:

Remark 2.15. In the situation above, it follows φ′ = φΔG′ , i.e., the rational
double cover branched on ΔG′ ⊂ NS(Y) is precisely the 2-isogeny covered by
the van Geemen–Sarti involution ıX ′ . On the one hand, the even eight Δ′ =
ΔG′ determined by the Göpel group G′ = {0, p15, p23, p46} � Jac(C)[2] as the
union of the non-neutral components in the preimages of the four reducible
A1-fibers in the fibration (2.15) on X = Kum(Jac C) not containing p15, p23
under φΔp46

: Y ��� X . On the other hand, the van Geemen–Sarti involution
ıX ′ was the fiberwise translation by the 2-torsion section τY : (X, Y ) = (0, 0)
in the fibration (2.19) on Y = Kum(B) which in turn was determined by the
Göpel group G′ as well; see Remark 2.9.

We also make the following:

Remark 2.16. It was shown in [14] that the dual isogeny φ′′ in Equa-
tion (2.21) is branched on the even eight of exceptional curves

(2.22) Δp′46
⊂ NS(Kum(Jac C′)).

Accordingly, Y is the Kummer surface associated with two different abelian
surfaces with a polarization of type (1, 2). One is obtained from the double
cover of Kum(Jac C) branched on Δp46 , the other from the double cover of
Kum(Jac C′) branched on Δp′46

. Thus, we have Y ∼= Kum(Bp46) ∼= Kum(Bp′46
).

3. Abel–Jacobi map, canonical curves, and associated K3
surfaces

In this section we will construct a pencil of plane, bielliptic curves of genus
three and its induced genus-one fibration from the Abel–Jacobi map of a single
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smooth quartic curve. We then show that the obtained genus-one fibration
always admits four rational sections and is isomorphic to a Jacobian elliptic
fibration on a K3 surface of Picard-rank 17. We also prove certain properties
for special members of the pencil and the close relation to a linear system of
quadrics in P4.

3.1. The Abel–Jacobi map

Let Q be a smooth curve of genus one given by the quartic equation w2 =
P (x) =

∑4
i=0 aix

4−i, using the affine coordinates (x,w) ∈ C2. Given a point
(x0,−w0) ∈ Q we consider the Abel–Jacobi map J(x0,−w0) : Q → Jac(Q)
which relates the algebraic curve Q to its Jacobian variety Jac(Q), i.e., an
elliptic curve. A classical result due to Hermite states that Jac(Q) ∼= E where
E is the elliptic curve given by

(3.1) E : η2 = S(ξ) = ξ3 + f ξ + g .

Here, we are using the affine coordinates (ξ, η) ∈ C2 and
(3.2)
f = −4a0a4+a1a3−

1
3a

2
2 , g = −8

3a0a2a4+a0a
2
3+a2

1a4−
1
3a1a2a3+ 2

27a
3
2 ;

the construction was reviewed in [47, 15]. We introduce the polynomial
(3.3)
R(x, x0) = a4 x

2x2
0 + a3

2 xx0
(
x+x0

)
+ a2

6
(
x2 +x2

0
)
+ 2a2

3 xx0 + a1

2
(
x+x0

)
+a0 ,

such that R(x, x) = P (x). It turns out that the polynomial P (x)P (x0) −
R(x, x0)2 factors. There is a polynomial R1(x, x0) of bi-degree (2, 2) such
that

(3.4) ∀x, x0 : R(x, x0)2 + R1(x, x0)
(
x− x0

)2 − P (x)P (x0) = 0 ,

and we set Q(x) = R1(x, x). In particular, we have

(3.5) Q(x) = 1
3P (x)P ′′(x) − 1

4P
′(x)2 .

We denote the discriminants of Q and E by ΔQ = Discrx(P ) and ΔE =
Discrξ(S), respectively, such that ΔQ = ΔE by construction. One also checks
Discrx(Q) = S(0)2 Discrx(P ). From now on, we will assume that

(3.6) Discrx(Q) = S(0)2 Discrx(P ) �= 0 .
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As before, we also set [P,Q] = ∂xP ·Q−P ·∂xQ. A tedious but straightforward
computation yields the following:

Lemma 3.1. For a smooth curve of genus one Q given by w2 =
∑4

i=0 aix
4−i,

the Abel–Jacobi map J(x0,−w0) : Q → E ∼= Jac(Q) maps (x, y) �→ (ξ, η) with

ξ = 2R(x, x0) − ww0

(x− x0)2
, η = 4ww0(w − w0)

(x− x0)3
− P ′(x)w0 + P ′(x0)w

(x− x0)2
(3.7)

for x �= x0 ,

the point (x0,−w0) ∈ Q to the point at infinity on E, and (x0, w0) to the point
with ξ = −Q(x0)/P (x0), η = [P,Q]x0/(2w3

0) if w0 �= 0.

Remark 3.2. Equation (3.1) is independent of the chosen point (x0,−w0).
Thus, the Jacobian elliptic curve of a quartic curve exists independently of
whether the quartic itself admits a rational point.

It follows easily from Equation (3.7) that the coordinates x and ξ in
the Abel–Jacobi map (ξ, η) = J(x0,−y0)(x, y) are related by the bi-quadratic
polynomial

(3.8) ξ2(x− x0)2 − 4 ξR(x, x0) − 4R1(x, x0) = 0 .

This equation defines an algebraic correspondence between points of the two
projective lines with affine coordinates ξ and x, respectively, where – given a
point x – there are two solutions for ξ in Equation (3.8) and vice versa.

3.2. Associated K3 surfaces

We now construct a family of curves of genus one Qx0 over the projective line
Px0 (with affine coordinate x0) from two copies of Equation (3.8). Let the
curves of genus one Qx0 be given by

(3.9) Qx0 : w2 = q1(x, x0) q2(x, x0) ,

where q1, q2 are the two conics Ci = V(qi) for i = 1, 2 with

q1 = γ2(x− x0)2 − 4γR(x, x0) − 4R1(x, x0) ,
q2 = δ2(x− x0)2 − 4δR(x, x0) − 4R1(x, x0) .

(3.10)

Thus, the general element Qx0 is the double cover χ : Qx0 → P1 of the
projective line P1 (with affine coordinate x) branched on points x′n with n =
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1, . . . , 4 satisfying

(3.11) ξ2(x′n − x0)2 − 4 ξR(x′n, x0) − 4R1(x′n, x0) = 0 ,

where n = 1, 2 and n = 3, 4 correspond to the solutions of Equation (3.11)
for ξ = γ and ξ = δ, respectively. We denote the four ramification points of
χ by p′n : (x,w) = (x′n, 0) ∈ Qx0 with 1 ≤ n ≤ 4.

We also introduce Z =
∐

x0 Qx0 , i.e., the total space of the genus-one
fibration obtained by varying the parameter x0 in Equation (3.9). The dis-
criminant of the fiber is easily checked to be a polynomial of degree 24, namely

(3.12) ΔZ = 220ν2(μ2−νκ)P (x0)2
(
κP (x0)2 +2μP (x0)Q(x0)+ν Q(x0)2

)2
.

It follows that the minimal resolution of the total space Z is an elliptic K3
surface (not necessarily with section) with an obvious projection map πZ :
Z → Px0 . Here, we have set

κ = (γδ)2

2 − γδ S′(0) − 2(γ + δ)S(0) + S′(0)2

2 ,

μ = γδ(γ + δ)
2 + (γ + δ)

2 S′(0) + S(0) , ν = (γ − δ)2

2 ,

(3.13)

with S(ξ) given in Equation (3.1). For γ = δ, the curve Qx0 is reducible.
Hence, we will always assume that γ, δ ∈ C are chosen such that

(3.14) ν �= 0 , μ2 − νκ �= 0 .

If we consider two pairs of points ±qγ ,±qδ ∈ E on the elliptic curve in Equa-
tion (3.1) with coordinates (ξqγ = γ, ±ηqγ ) with η2

qγ = S(γ) and (ξqδ =
δ, ±ηqδ) with η2

qδ
= S(δ), respectively, we find μ2 − νκ = η2

qγη
2
qδ

. The con-
straint μ2 − νκ �= 0 implies that neither qγ nor qδ is a 2-torsion point of E ,
i.e., 2qγ , 2qδ �= 0 where 0 ∈ E denotes the neutral element of the elliptic curve.
Thus, the constraints in Equation (3.14) are equivalent to requiring

(3.15) qγ �= ±qδ , and qγ + qδ �= ±
(
qγ − qδ

)
.

We have the following crucial lemma:

Lemma 3.3. The elliptic fibration πZ : Z → Px0 admits four sections –
rational over C(x0) – given by p′′n : (x,w) = (x′′n, B(x′′n, x0)) with 1 ≤ n ≤ 4
and

(3.16) B(x, x0) = γδ (x− x0)2 − 4R1(x, x0) − 2(γ + δ)R(x, x0) ,

where {x′′n}4
n=1 are the roots of P (x) = 0.
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Proof. The proof follows by checking that (x,w) = (x′′n, B(x′′n, x0)) is a poly-
nomial solution of Equation (3.9) for 1 ≤ n ≤ 4.

Proposition 3.4. The elliptic fibration πZ : Z → Px0 is birationally equiva-
lent to a Jacobian elliptic K3 surface with a Weierstrass model given by

Y 2 = X3 − 2
(
μP (x0) + νQ(x0)

)
X2(3.17)

+
((
μP (x0) + νQ(x0)

)2 −
(
μ2 − κν

)
P (x0)2

)
X ,

with zero section σZ and a 2-torsion section τZ : (X, Y ) = (0, 0). Generically,
the Weierstrass model has 12 singular fibers of Kodaira type I2, and a Mordell–
Weil group with MW(Z, πZ)tor = (Z/2Z)2 and rank MW(Z, πZ) = 3.

Proof. A Weierstrass model for the Jacobian Jac(Qx0) of the curve of genus
one Qx0 can be constructed using Hermite’s equations in Section 3.1. Ac-
cordingly, the minimal resolution of the total space Z ′′ =

∐
x0 Jac(Qx0) is

a Jacobian elliptic K3 surface (Z ′′, πZ′′ , σZ′′) where πZ′′ : Z ′′ → Px0 is the
projection map and the section σZ′′ is given by the smooth point at infinity
in each fiber. One also checks that the discriminant of the Jacobian elliptic
fibration is given by ΔZ′′ = 2−18ΔZ . The resulting equation is easily seen
to admit three 2-torsion sections T1, T2, T3 (as we vary x0), and accordingly
the equation can be brought into the form of Equation (3.17). The torsion
sections are given by T1 = τZ : (X, Y ) = (0, 0) and

T2,3 : (X, Y ) =
(
(−μ±

√
μ2 − κν)P (x0) − νQ(x0), 0

)
.

For P (x) =
∏

n(x− x′′n), the fibration in Equation (3.9) has four rational
sections given by (x,w) = (x′′n, w′′

n) with 1 ≤ n ≤ 4 where w′′
n = B(x′′n, x0) is

the polynomial in x0. The existence of at least one rational section implies
an isomorphism Z ′′ ∼= Z as elliptic K3 surfaces; see [15, Thm. 3.4]. This can
be seen as follows: we consider Equation (3.9) – when expanded in terms of
x – an equation of the form

(3.18) Qx0 : w2 = ã0(x0)x4 + · · · + ã4(x0) ,

with polynomials ãi(x0) of degree four. On Qx0 the point (x,w) = (x′′1, w′′
1) is

a rational point for every x0 and can be used to construct a (fiberwise) Abel–
Jacobi map as in Lemma 3.1. The Abel–Jacobi map, viewed as a birational
map (x0, x, w) �→ (x0, X, Y ), then induces the isomorphism Z ′′ ∼= Z and maps
(x′′1, w′′

1) to the section σZ , given by the point at infinity in each fiber. One
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checks that this isomorphism maps the other three sections (x,w) = (x′′n, w′′
n)

for n = 2, 3, 4 to the non-torsion sections Sm : (X, Y ) = (X ′′
m(x0), Y ′′

m(x0))
with m = n− 1 where X ′′

m(x0) and Y ′′
m(x0) are certain polynomials with co-

efficients in Q[γ, δ, x′′1, . . . x′′4] of degree four and six, respectively. The same
computation as in [17] then shows that the three sections Sm are combina-
tions of sections of minimal height that generate a Mordell–Weil group with
rank MW(Z, πZ) = 3.

For two arbitrary sections S′ and S′′ of a Jacobian elliptic fibration, one
defines the height pairing using the formula

(3.19) 〈S′, S′′〉 = χhol + σZ ◦ S′ + σZ ◦ S′′ − S′ ◦ S′′ −
∑

{x0|ΔZ=0}
C−1

x0 (S′, S′′) ,

where the holomorphic Euler characteristic is χhol = 2, and C−1
x0 is the inverse

Cartan matrix of the reducible fiber at x0. In our case, C−1
x0 is the inverse

Cartan matrix of a fibre of type A1 located over the points x0 with ΔZ = 0 in
Equation (3.12) and contributes (1

2) if and only if both S′ and S′′ intersect the
non-neutral component of this fiber, i.e., the component not met by the zero-
section σZ . The non-neutral components constitute twelve rational divisors
K4, . . . ,K15 of NS(Z) with Kn ◦F = 0 and Km ◦Kn = −2δmn for 4 ≤ m,n ≤
15. We have the following:

Corollary 3.5. Under the equivalence in Proposition 3.4, the four sections
{p′′n}4

n=1 from Lemma 3.3 are mapped to the zero-section σZ and three non-
torsion sections {Sm}3

m=1 of πZ . The sections define divisor classes K0 = [σZ ]
and Km = [Sm] with Km ◦ F = 1 and Km ◦ Kn = −2δmn for 0 ≤ m ≤ 3 and
0 ≤ n ≤ 15 where K4, . . . ,K15 are the non-neutral components of the reducible
fibers of type A1. In particular, the Jacobian elliptic fibration is never singular
along σZ , S1, S2, S3.

Proof. By a direct computation one shows that the sections S1, S2, S3 do not
intersect each other, nor σZ , nor any non-neutral components of the reducible
fibers.

The 2-torsion sections T1 = τZ , T2, T3, spanning MW(Z, πZ)tor, each in-
tersect the non-neutral components of eight reducible fibers of type A1 –
partitioning the twelve rational curves (of the non-neutral components) into
three sets of eight curves with pairwise intersections consisting of four curves
and no triple intersection. The 2-torsion sections do not intersect the zero
section, but each 2-torsion section intersects each of the sections S1, S2, S3
twice. The intersection pairings for all aforementioned divisor classes and
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Table 1: Intersection and Height Pairings

◦ F σZ T1 T2 T3 S1 S2 S3

F 0 1 1 1 1 1 1 1
σZ 1 −2 0 0 0 0 0 0
T1 1 0 −2 0 0 2 2 2
T2 1 0 0 −2 0 2 2 2
T3 1 0 0 0 −2 2 2 2
S1 1 0 2 2 2 −2 0 0
S2 1 0 2 2 2 0 −2 0
S3 1 0 2 2 2 0 0 −2

〈•, •〉 σZ T1 T2 T3 S1 S2 S3

σZ 0 0 0 0 0 0 0
T1 0 0 0 0 0 0 0
T2 0 0 0 0 0 0 0
T3 0 0 0 0 0 0 0
S1 0 0 0 0 4 2 2
S2 0 0 0 0 2 4 2
S3 0 0 0 0 2 2 4

height pairings of the corresponding sections are given in Table 1. We make
the following:

Remark 3.6. A second Jacobian elliptic K3 surface πZ′ : Z ′ → P1 is given
by the Weierstrass model

(3.20) y2 = x3 + 4
(
μP (x0) + ν Q(x0)

)
x2 + 4

(
μ2 − κν

)
P (x0)2x ,

with zero section σZ′ and the 2-torsion section τZ′ : (x, y) = (0, 0). Gener-
ically, the model has four singular fibers of Kodaira type I4, eight singular
fibers of type I1, and a Mordell–Weil group with MW(Z ′, πZ′)tor = Z/2Z and
rank MW(Z ′, πZ′) = 3.

The K3 surfaces Z in Proposition 3.4 and Z ′ are related by a pair of dual
geometric 2-isogenies similar to Equation (2.21), i.e.,

(3.21) ZıZ Z ′ ıZ′

The isogenies are covered by the van Geemen–Sarti involutions ıZ and ıZ′

obtained as translations by the 2-torsion section τZ : (X, Y ) = (0, 0) on Z
and τZ′ : (x, y) = (0, 0) on Z ′, respectively.

3.3. Canonical curves of genus three

We will now construct a family of plane, quartic curves Dx0 with a bielliptic
involution j over the projective line Px0 . Generically Dx0 is a smooth curve of
genus three. We have the following:

Proposition 3.7. Assuming Equations (3.6) and (3.15), the family given by
{Dx0}x0∈Px0

over the projective line Px0 given by

(3.22) Dx0 : z4 + 2B(x, x0) z2 + 4
(
γ − δ

)2
P (x0)P (x) = 0 ,



1764 Adrian Clingher et al.

is a linear pencil of plane, quartic curves with affine coordinates x, z, B(x, x0)
given in Equation (3.16), and bielliptic involution j : (x, z) �→ (x,−z) cover-
ing the degree-two map πx0 : Dx0 → Qx0 = Dx0/〈j〉 such that

1. Dx0 is a smooth curve of genus three if and only if ΔZ �= 0 in Equa-
tion (3.12),

2. the pencil induces the elliptic fibration Z =
∐

x0 Qx0 → Px0 in Equa-
tion (3.9),

3. the branch locus of ψ is given by the divisors K0,K1,K2,K3 or, equiva-
lently, p′′n in Corollary 3.5.

Proof. For P (x0) = 0 the curve Dx0 is reducible: it consists of a rational
component z = 0 of multiplicity two and the conic z2 = −2B(x, x0). The
latter is irreducible since the discriminant DiscrxB(x, x0) does not vanish
at a root of P (x0) = 0. Now assume P0 = P (x0) �= 0: Equation (3.22)
cannot have a singularity for z = 0 since Discrx(P ) �= 0 whence z �= 0.
Taking the derivative of Equation (3.22) with respect to z at a singular point
(x, z) yields z2 = −B(x), and B(x)2 − 4P0P (x) = 0 from Equation (3.22).
The vanishing of the derivative of Equation (3.22) with respect to x yields
2B(x)B′(x)−4(γ−δ)2P0 P

′(x) = 0. Thus, for Dx0 to be reducible or to have
a singular point, we must have

(3.23) 0 = Discrx
(
B(x)2 − 4 (γ − δ)2P0P (x)

)
= ΔZ .

This proves (1). We obtain a double cover πx0Dx0 → Qx0 by setting w = z2 +
B(x, x0) in Equation (3.9) giving Equation (3.22). It follows that Dx0 is the
double cover of the curve Qx0 branched over four points, and the two sheets
of the covering are interchanged by the involution j : (x, z) �→ (x,−z). Thus,
the pencil induces the elliptic fibration Z =

∐
x0 Qx0 → Px0 in Equation (3.9)

by means of the quotient Qx0
∼= Dx0/〈j〉. This proves (2). Finally, (3) follows

from Lemma 3.3 and Corollary 3.5.

We have the following:

Proposition 3.8. For any smooth curve Dx0 in Equation (3.22) with biel-
liptic structure the map πx0 : Dx0 → Qx0 induces an isogeny

(3.24) Jac (Dx0) � Prym (Dx0 , πx0) × Jac(Qx0) ,

where Prym (Dx0 , πx0) is the Prym variety with a polarization of type (1, 2). In
particular, Dx0 is embedded into Prym (Dx0 , πx0) as a curve of self-intersection
four.
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Proof. Assuming Equations (3.6) and (3.15), Dx0 in Equation (3.22) is
smooth, bielliptic with genus three if and only if ΔZ �= 0 in Equation (3.12).
Dx0 is the double cover of the curve Qx0 branched over four points. The dou-
ble covering ψ induces an associated norm morphism Jac (Dx0) → Jac(Qx0).
The involution ı extends to an involution on Jac (Dx0) → Jac(Qx0). Then
Jac (Dx0) splits into an even part and an odd part. By definition the latter
is the Prym variety. It follows from [5, Sec. 1.4] that the Prym has a natural
polarization on it, induced by the theta divisor on Jac (Qx0), which is the
theta divisor {[p− p6]| p ∈ Jac (Qx0)} where p6 defines the neutral element of
the elliptic group law such that

(3.25) Prym (Dx0 , πx0) ∼= Jac (Dx0)/π∗
x0 Jac(Qx0) .

Barth also proved that a smooth, bielliptic curve of genus three is embedded
into Prym (Dx0 , πx0) as a curve of self-intersection four.

Remark 3.9. The notion of Prym variety in Proposition 3.8 can be gener-
alized to include the singular covers πx0 : Dx0 → Qx0 using the results of
[7, Prop. 3.5] and [23, Lemma 1]. The Prym is then replaced by a gener-
alized Prym variety for an allowable cover birational to the singular cover
πx0 : Dx0 → Qx0 .

3.4. Singular and hyperelliptic fibers

In this section, we shall examine the singular and hyperelliptic elements of
the pencil of curves of genus three after some elementary modifications. Sub-
stituting w = y + B(x, x0) into Equation (3.9) we obtain its equivalent form

(3.26) Qx0 : y2 + 2B(x, x0) y + 4 (γ − δ)2 P (x0)P (x) = 0 .

The double cover πx0 : Dx0 → Qx0 is then simply given by y = z2, and the
four branch points are (x, y) = (x′′n, 0) with P (x′′n) = 0 for 1 ≤ n ≤ 4. Blowing
up at the points P (x0) = 0, we set y = 2P (x0) ỹ and take the strict transform
to obtain

(3.27) Q̃x0 : P (x0) ỹ2 + B(x, x0) ỹ + (γ − δ)2 P (x) = 0 ,

and a double cover πx0 : D̃x0 → Q̃x0 given by ỹ = z̃2 with

(3.28) D̃x0 : P (x0) z̃4 + B(x, x0) z̃2 + (γ − δ)2P (x) = 0 ,

and the bielliptic involution j : (x, z̃) �→ (x,−z̃). We have the following:
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Proposition 3.10. For ΔZ �= 0 in Equation (3.12) the curve D̃x0 is a smooth
irreducible curve of genus three isomorphic to Dx0 . For ΔZ = 0 there are
twelve singular curves forming three sets of four isomorphic curves over the
roots of κP (x0)+ (μ±

√
μ2 − κν)Q(x0) = 0 and P (x0) = 0, respectively. The

former eight are irreducible curves of geometric genus two with one node. The
latter four are reducible nodal curves isomorphic to P1 ∪ C′ where C′ is the
curve of genus two given by

(3.29) C′ : η2 =
(
ξ − γ

)(
ξ − δ

)
S(ξ) .

Here, (ξ, η) ∈ C2 are affine coordinates and S(ξ) is given in Equation (3.1).

Proof. One checks that the general element Dx0 is smooth and irreducible. It
is bielliptic and of genus three by construction. For P (x0) �= 0 we obviously
have D̃x0

∼= Dx0 and Q̃x0
∼= Qx0 . Equation (3.12) shows that there are twelve

singular curves and one checks by an explicit coordinate transformation that
the singular curves form three sets of four isomorphic curves. A curve over a
root of κP (x0)+(μ±

√
μ2 − κν)Q(x0) = 0 is an irreducible curve of geometric

genus two with one double point, which is easily seen to be a node.
Let the polynomial P (x) be given by P (x) =

∏
n(x−x′′n). Setting x0 = x′′n

in Equation (3.28) and rescaling z̃ = iZ/(3(γ − δ)B(x, x0)) yields

(3.30) Z2 =
(
γ − δ

)
P (x)

(
3 (x− x′′n)γ + αx + β

)(
3 (x− x′′n)δ + αx + β

)
,

where α and β are cubic and quadratic polynomials, respectively, in the coef-
ficients x′′1, . . . , x

′′
4 symmetric in {x′′m}m �=n. Equation (3.29) obviously defines

a curve of genus two. We compute its Igusa–Clebsch invariants, using the
same normalization as in [32, 33]. Denoting the Igusa–Clebsch invariants of
the curve of genus two in Equation (3.30) and (3.29) by [I2 : I4 : I6 : I10] ∈
P(2, 4, 6, 10) and [I ′2 : I ′4 : I ′6 : I ′10], respectively, one checks that

(3.31) [I2 : I4 : I6 : I10] = [r2I ′2 : r4I ′4 : r6I ′6 : r10I ′10] = [I ′2 : I ′4 : I ′6 : I ′10] ,

with r = 9(γ − δ)(x′′1 − x′′2)(x′′1 − x′′3)(x′′1 − x′′4). Thus, the two curves of genus
two are isomorphic.

We also have the following:

Proposition 3.11. The curve D̃x0 in Equation (3.28) admits a hyperelliptic
involution if and only if x0 is a root of [P,Q]x0 = 0. There are six such
hyperelliptic elements, and they are smooth if and only if 2(qγ ± qδ) �= 0 in
Equation (3.15).
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Proof. If D̃x0 admits a hyperelliptic involution k it commutes with the biel-
liptic involution j. As the two involutions commute, k induces a permutation
on the fixed points of j. For P (x) =

∏
n(x − x′′n) as in the proof of Proposi-

tion 3.10, we define the fractional linear map T given by

(3.32) x �→ T (x) = −(ab− cd)x + (abc + abd− acd− bcd)
−(a + b− c− d)x + (ab− cd) ,

such that x = T (T (x)), T (a) = b, T (b) = a, T (c) = d, T (d) = c. We then set
a = x′′1, b = x′′2, c = x′′3, d = x′′4 such that

(3.33) P
(
T (x)

)
= (x′′1 − x′′3)2(x′′1 − x′′4)2(x′′2 − x′′3)2(x′′2 − x′′4)2(

(x′′1 + x′′2 − x′′3 − x′′4)x− (x′′1x′′2 − x′′3x
′′
4)
)4︸ ︷︷ ︸

=:C(x)4

P (x) .

It follows that if D̃x0 admits a hyperelliptic involution, it is of the form

(3.34) k :
(
x, z

)
�→

(−(ab− cd)x + (abc + abd− acd− bcd)
−(a + b− c− d)x + (ab− cd) , z

)
.

The rational functions B
(
T (x)

)
−C(x)2 B(x) and P

(
T (x)

)
−C(x)4 P (x) have

the only common factor

r1234(x0) =
(
x′′1 + x′′2 − x′′3 − x′′4

)
x2

0 − 2
(
x′′1x

′′
2 − x′′3x

′′
4
)
x0 + x′′1x

′′
2
(
x′′3 + x′′4

)(3.35)

−
(
x′′1 + x′′2

)
x′′3x

′′
4 .

One then checks that a permutation of the roots yields

(3.36) r1234(x0) r1324(x0) r1423(x0) = −4 [P,Q]x0 .

Moreover, [P,Q]x is a polynomial of degree six.
It easily follows that P (x0) and [P,Q]x0 never vanish at the same time,

given our assumption in Equation (3.6). One then checks that for α, β ∈ C

with β �= 0, the resultant satisfies

(3.37) Resx
(
αP + βQ, [P,Q]

)
= 2−8 Discrx(P )3 β6S

(
α

β

)2
.

Thus, αP (x0) + βQ(x0) and [P,Q]x0 vanish simultaneously, if and only if
S(α/β) = 0 where S(ξ) was given in Equation (3.1).
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We use the elliptic group law on E to compute the coordinates of the
points ±(qγ + qδ),±(qγ − qδ) ∈ E with coordinates (ξqγ+qδ , ±ηqγ+qδ) and
(ξqγ−qδ , ±ηqγ−qδ), respectively. It follows that

(3.38)
{
ξqγ+qδ , ξqγ−qδ

}
=

{
μ +

√
μ2 − κν

ν
,
μ−

√
μ2 − κν

ν

}
.

The second factor of the discriminant in Equation (3.12) is

κP (x0)2 + 2μP (x0)Q(x0) + ν Q(x0)2

= ν

(
μ +

√
μ2 − κν

ν
P (x0) + Q(x0)

)(
μ−

√
μ2 − κν

ν
P (x0) + Q(x0)

)
.

(3.39)

Using Equation (3.37) it follows that [P,Q]x0 and the discriminant ΔQx0
do

not have a common factor if and only if S(ξqγ+qδ) �= 0 and S(ξqγ+qδ) �= 0.
This is equivalent to the points qγ ± qδ not being 2-torsion points of E .

3.5. Canonical curves of genus five

We identify the smooth curve of genus three D = D̃x0 in Equation (3.28) with
its canonical model in the plane P2 = P(X, Y, Z) given by P2 ∼= |KD|∗, and
write

(3.40) D : a0 Z
4 + b2(X, Y )Z2 + c4(X, Y ) = 0 ,

such that a0 = P (x0), b2(x, 1) = B(x, x0), and c4(x, 1) = (γ − δ)2P (x). We
will also assume a0 = P (x0) �= 0.

We set Q = Q̃x0 and the bielliptic involution is j : [X : Y : Z] �→ [X : Y :
−Z] covers π : D → Q with branch locus B = p′′1 + p′′2 + p′′3 + p′′4 ⊂ Q given
in Lemma 3.3 which is an effective divisor of degree four without multiple
points. Let N be the line bundle corresponding to half of the divisor class
of B, then N 2 = OQ(B). Conversely, the data of (Q,N ,B) determines the
double cover D uniquely up to isomorphism. By slight abuse of notation, we
set {p′′1, . . . , p′′4} = π−1(B) ⊂ D with p′′n : [X : Y : Z] = [x′′n : 1 : 0] and
P (x′′n) = 0 or, equivalently, c4(x′′n, 1) = 0 for 1 ≤ n ≤ 4.

The adjunction formula implies that the linear systems |KQ|∗ and |N |∗
can be identified in the projective plane |KD|∗ with a point O and a line
L0, respectively [4]. There is a classical characterization of the data (O,L0):
it is well known that j on a canonical curve of genus three is induced by a
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projective involution j̃ whose set of fixed points consists of a point O and a
line L0 such that the intersection L0 ∩ D are the fixed points of j. Since the
points p′′n : [X : Y : Z] = [x′′n : 1 : 0] in Equation (3.40) with c(x′′n, 1) = 0 for
1 ≤ n ≤ 4 are the ramification points of π : D → Q, we obtain L0 = V(Z) and
D∩L0 = p′′1 + · · ·+p′′4. The tangent lines at the points p′′n are V(X−x′′n Y ) for
1 ≤ n ≤ 4, and they all must pass through the point O [4, Thm. 2.5] whence
O : [X : Y : Z] = [0 : 0 : 1].

On the other hand, χ : Q → P1 has the ramification divisor p′1 + p′2 +
p′3 + p′4 ⊂ Q; see Section 3.2. The preimages of p′n in D are pairs of points
p′n,± : [X : Y : Z] = [x′n : 1 : ±z′n] with 4 a0c4(x′n, 1) − b2(x′n, 1)2 = 0
and 2a0(z′n)2 + b2(x′n, 1) = 0 for 1 ≤ n ≤ 4. The tangent line Ln at p′n,±
is given by Ln = V(X − x′nY ), and all Ln pass through the same point
O : [X : Y : Z] = [0 : 0 : 1]. The lines Ln are in fact bitangents with
intersection divisors D ∩ Ln = 2p′n,+ + 2p′n,−. This characterization of the
bielliptic structure in terms of bitangents is originally due to Kovalevskaya;
see Dolgachev [21] and work by the authors [17]:

Theorem 3.12 (Kovalevskaya). The point O is the intersection point of four
distinct bitangents Ln of D with 1 ≤ n ≤ 4. Conversely, if a plane quartic
has four bitangents Ln intersecting at a point O, then there exists a bielliptic
involution ı of D such that the projective involution ı̃ has O as its isolated
fixed point.

It is well known that a smooth plane quartic has exactly 28 bitangents;
together with the points of order two on Jac(D) they have a rich symme-
try, called the 6428-symmetry. The established normal form for D̃x0 in Equa-
tion (3.40) determines a grouping of four bielliptic tangents into two pairs as
follows: because of D ∩ Ln = 2p′n,+ + 2p′n,−, each divisor 2p′n,+ + 2p′n,− for
1 ≤ n ≤ 4 is a canonical divisor, and Θn = p′n,+ + p′n,− is a theta divisor, i.e.,
a point in Pic2(D) such that 2 Θn ∼ KD. The difference of any pair of theta
divisors Θn−Θm is a point of order two in Jac(D). Since

∑
n Θn ∼ 2KD there

exists a conic C0 that cuts out the divisor
∑

n p
′
n,+ + p′n,− on D. Since 2 C0

and L1 + · · · + L4 cut out the same divisor on D, the equation for D can be
re-written as

(3.41) D : q2
0 = l1 · · · l4 ,

where Ln = V(ln) and C0 = V(q0) with q0(X, Y, Z) = 2a0Z
2 + b2(X, Y ).

Notice that because of Θn−Θm ∼ Θn +Θm−KD, the differences of any two
pairs of theta divisors always add up to zero, i.e., for {m,n, r, s} = {1, 2, 3, 4}
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we have

(3.42)
(
Θm − Θn

)
+

(
Θr − Θs

)
∼

4∑
n=1

Θn − 2KD = 0 .

On the other hand, grouping the four bitangents from Theorem 3.12 into two
pairs or, equivalently, the choice of ±(Θm−Θn) ∈ Jac(D)[2] (or ±(Θr−Θs)),
amounts to combining pairs of lines into two quadrics q1 = lmln and q2 = lrls
and writing the bielliptic curve D as plane projective model

(3.43) q0
(
X, Y, Z

)2 = q1
(
X, Y

)
q2
(
X, Y

)
.

Our construction in Section 3.2 naturally provides such a grouping of bi-
tangents into two pairs for D = D̃x0 . In fact, for the normal form given in
Equation (3.40) the three conics Ci = V(qi) with 0 ≤ i ≤ 2 are given by

q1(x, 1) = γ2(x− x0)2 − 4 γ R(x, x0) − 4R1(x, x0)
q2(x, 1) = δ2(x− x0)2 − 4 δ R(x, x0) − 4R1(x, x0)

q0(x, 1, z̃) = 2P (x0) z̃2 + γδ (x− x0)2 − 2(γ + δ)R(x, x0) − 4R1(x, x0) .

(3.44)

It was proven in [11] that the curves of genus three of the form (3.43)
admit an unramified double cover ρ′x0 : Fx0 → D̃x0 where the double cover
Fx0 is a non-hyperelliptic curve of genus five given as the intersection of the
three quadrics Qi with 0 ≤ i ≤ 2 in P4 = P(V,W,X, Y, Z) given by

(3.45) Fx0 :

⎧⎪⎨⎪⎩
0 = Q0(V,W,X, Y, Z) = q0(X, Y, Z) − VW
0 = Q1(V,W,X, Y ) = q1(X, Y ) − V 2

0 = Q2(V,W,X, Y ) = q2(X, Y ) −W 2.

The involution

(3.46) ı′ : P4 → P4 , [V : W : X : Y : Z] �→ [−V : −W : X : Y : Z] ,

interchanges the sheets of the double cover ρ′x0 : Fx0 → D̃x0 . Conversely, the
canonical model of any non-hyperelliptic, (non-trigonal) curve of genus five
is the intersection of three quadrics in P4 by Petri’s Theorem [3, p. 131]. We
have the following:

Lemma 3.13. The involution ı has no fixed points iff ΔZ |x0 �= 0 in Equa-
tion (3.12).
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Proof. First assume P (x0) �= 0: the quadrics q1 and q2 have a common zero
if ΔZ |x0= 0. Since

(3.47) q0(x, 1, z̃) = 2P (x0) z̃2 + 1
2
(
q1(x, 1) + q2(x, 1) − (γ − δ)2(x− x0)2

)
,

we can then solve q0 = 0 to find the fixed points of the involution. Next, we
observe that the discriminants Discrx(q1) and Discrx(q2) and the resultant
Resx(R, x− x0) are all proportional to P (x0). Using Equation (3.4) we thus
have a fixed locus for the involution for P (x) = P (x0) = 0.

Remark 3.14. The constructed unramified double cover ρ′x0 : Fx0 → D̃x0

corresponds to choosing one out of three possible groupings of the four marked
bielliptic tangents into two pairs. Each choice is determined by an element
D = ±(Θm − Θn) ∈ Jac(D)[2], or, equivalently, D = ±(Θk − Θl) with
{k, l,m, n} = {1, 2, 3, 4}; see Equation (3.42). In turn, D is a divisor of degree
zero with associated line bundle L ′ = OD(D) satisfying L ′ ⊗2 = OD. The
zero section of L ′ then determines the unramified double cover ρ′x0 : Fx0 →
D̃x0 uniquely (up to isomorphism).

We also have the analogue of Lemma 3.3:

Lemma 3.15. On Fx0 there are eight points – rational over Q(x0) – with
X = x′′n, Y = 1, Z = 0 where {x′′n}4

n=1 are the roots of P (x) = 0.

Proof. The proof follows by checking that for X = x′′n, Y = 1 the quadrics
q1, q2 in Equation (3.44) are perfect squares with roots ±V and ±W such
VW = q0(X, Y, 0).

Using the Riemann–Roch theorem, it follows that the hypernet

(3.48) Q(α0, α1, α2) = α0Q0 + α1Q1 + α2Q2

is precisely the linear system of all quadrics in P4 containing Fx0 in Equa-
tion (3.45). Let Γ be the locus of quadrics of rank less or equal to four, i.e.,

(3.49) Γ =
{
[α0 : α1 : α2] ∈ P2

∣∣∣ detQ(α0, α1, α2) = 0
}
,

where the quadrics Qi for 0 ≤ i ≤ 2 are identified with the symmetric five-by-
five matrices corresponding to the quadratic forms they represent. A simple
computation shows that Γ = Γ+ ∪ Γ− is one-dimensional with

(3.50)
Γ+ = V

(
det

(
α0 q0 + α1 q1 + α2 q2

))
,

Γ− = V
(

det
(

α1
1
2α0

1
2α0 α2

))
= V

(
α2

0 − 4α1α2
)
.
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Thus, Γ consists of a cubic curve Γ+ and a conic Γ− without multiple compo-
nents. The singular locus of Γ is the zero-dimensional locus Γ′ ⊂ Γ of quadrics
of rank less or equal to three, and the singularities of Γ are all ordinary nodes.
We also consider the scheme of special divisors on Fx0 , given by

(3.51) W 1
4 (Fx0) =

{
D ∈ Pic4(Fx0)

∣∣∣ h0(Fx0 ,OFx0
(D)) ≥ 2

}
,

which is equipped with a natural map φ : W 1
4 (Fx0) → Γ of degree two

branched exactly over Γ′ [11, Cor. 4.2].
One irreducible component of W 1

4 (Fx0) is C′ = φ−1(Γ−), i.e., the double
cover of P1 ∼= Γ− branched on the six points of Γ+∩Γ−. One can show that the
Jacobian of C′ spans a two-dimensional abelian sub-variety in Jac(Fx0) [3].
In fact, using the rational parametrization [α0 : α1 : α2] = [2ξ : 1 : ξ2] for Γ−

we obtain an explicit equation for C′. The following was proved in [34], [3,
Ex. VI.F] and in [11] over a general field of characteristic zero:

Proposition 3.16. In the situation above, we have

(3.52) Prym(Fx0 , ρ
′
x0) = Jac(C′) ,

where the smooth curve C′ of genus two is given by

(3.53) C′ : η2 = − det
(
2 ξ q0 + q1 + ξ2 q2

)
,

and the conics qi for 0 ≤ i ≤ 2 are considered symmetric three-by-three
matrices corresponding to the quadratic forms they represent.

For the curves of genus five Fx0 over D̃x0 we have the following:

Corollary 3.17. For ΔZ �= 0 the curve Fx0 in Equation (3.45) is a smooth
curve of genus five admitting the unramified double cover ρ′x0 : Fx0 → D̃x0.
The Prym variety is canonically isomorphic to the principally polarized abelian
surface Prym(Fx0 , ρ

′
x0) = Jac(C′) where C′ is isomorphic to the smooth curve

of genus two in Equation (3.29).

Proof. We compute the Igusa–Clebsch invariants, using the same normaliza-
tion as in [32, 33]. Denoting the Igusa–Clebsch invariants of the curves of
genus two in Equation (3.29) and (3.53) by [I2 : I4 : I6 : I10] ∈ P(2, 4, 6, 10)
and [I ′2 : I ′4 : I ′6 : I ′10], respectively, one checks that

(3.54) [I2 : I4 : I6 : I10] = [r2I ′2 : r4I ′4 : r6I ′6 : r10I ′10] = [I ′2 : I ′4 : I ′6 : I ′10] ,

with r = 32 (γ − δ)P (x0)2. Thus, the curves are isomorphic.
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Because of Lemma 3.15 we can embed Fx0 into Jac(Fx0). We then combine
this map with the projection map id∗−j∗ : Jac(Fx0) → Prym(Fx0 , ρ

′
x0), which

is called the Abel–Prym map. We have the following:

Lemma 3.18. Each smooth curve Fx0 embeds into Jac(C′) via the Abel–Prym
map.

Proof. The curve Fx0 embeds into the abelian surface Jac(Fx0) which de-
composes into Prym (Fx0 , ρ

′
x0) and Jac(D̃x0). It was proved in [34, Prop. 5.3]

that for an unramified double cover ρ′x0 : Fx0 → D̃x0 this embedding misses
Jac(D̃x0). Verra proves that the curves of genus five Fx0 ⊂ Jac(C′) of the form
in Equation (3.45), up to translation by a 2-torsion point, are Abel–Prym em-
beddings [49].

In Equation (3.45) q1, q2 do not depend on the variable Z; thus, Γ+ = L∪C
decomposes into a line component L and another irreducible conic C. In
general, there is a bijection between lines in Γ and bielliptic structures on F .
In fact, the following was proved in [3, Ex. VI.F]:

Lemma 3.19. If L ⊂ Γ is a line component and E ′ → L the double cover
branched on the four points of L ∩ (Γ − L), then F is the double cover of E ′.

We have the following:

Proposition 3.20. Let Fx0 be a smooth curve of genus five and L, C ⊂ Γ+

as above. The double cover of P1 branched on the four point of L∩ (C∪Γ−) is
an irreducible component of W 1

4 (Fx0), and E ′
x0 = φ−1(L) is the elliptic curve

(3.55)
E ′
x0 : y2 = S(γ)P (x0)x3 +

(
2μP (x0) + (γ − δ)2 Q(x0)

)
x2 + S(δ)P (x0)x ,

where S(ξ), P (x), Q(x), μ are defined in Section 3.1 and Equation (3.13).
Moreover, each curve Fx0 admits a double cover π′

x0 : Fx0 → E ′
x0 .

Proof. One checks that Γ+ = L ∪ C decomposes into the line component L
and another irreducible conic C with L = V(α0) and C = V(q(α0, α1, α2))
for a certain conic q. The double cover of P1 branched on the four points of
Γ− ∩ C is then given by

((
α2

0 − 4α1α2
)
q(α0, α1, α2)

)∣∣∣
[α0:α1:α2]=[0:x:z]

= S(γ)P (x0)x3 +
(
2μP (x0) + (γ − δ)2 Q(x0)

)
x2z + S(δ)P (x0)xz2 ,

(3.56)

which agrees with Equation (3.55) in the affine coordinate chart z = 1.
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We also introduce Z ′ =
∐

x0 E ′
x0 , i.e., the total space of the elliptic fibra-

tion obtained by varying the parameter x0 in Equation (3.55). We have the
following:

Corollary 3.21. The total space of the elliptic fibration Z ′ =
∐

x0 E ′
x0 is

birationally equivalent to the Jacobian elliptic fibration in Equation (3.20).

Proof. Using μ2 − νκ = S(γ)S(δ) the map given by

(3.57) (x, y) �→
(
4P (x0)S(γ)x, 2

√
2P (x0)S(γ) y

)
provides a birationally equivalence of the Jacobian elliptic fibration in Equa-
tion (3.20) with Equation (3.55).

We also describe the remaining irreducible component of W 1
4 (Fx0) which

is C̃x0 = φ−1(C). There is a classification of the singular fibers of pencils of
curves of genus two due to Namikawa and Ueno [40] analogous to the Kodaira
classification of singular fibers of Jacobian elliptic fibrations [29]. We have the
following:

Proposition 3.22. Let Fx0 be a smooth curve of genus five and L, C ⊂ Γ+ as
above. The double cover of P1 ∼= C branched on the six points of C∩ (L∪Γ−)
is an irreducible component of W 1

4 (Fx0), and C̃x0 = φ−1(C) is the curve of
genus two

C̃x0 : η2 =
((
γξ + 1

)
P (x0) + ξ Q(x0)

)(
S(γ) ξ3 +

(
3γ2 + S′(0)

)
ξ2 + 3γξ

)
×
((
S(γ) ξ2 + (2γ2 + γδ + S′(0)) ξ2 + γ + δ

)
P (x0) −

(
(γ − δ)ξ + 1

)
Q(x0)

)
,

(3.58)

where S(ξ), P (x), Q(x) are defined in Section 3.1 and Equation (3.13). More-
over, the family C̃x0 has six singular fibers of Namikawa–Ueno type [I0−I∗0−0]
over the roots of [P,Q]x0 .

Proof. One checks that the component C = V(q(α0, α1, α2)) ⊂ Γ+ contains
the rational point [α0 : α1 : α2] = [−2 : 1 : 1], and a rational parametrization
is given by setting α1 = α2 + (−1 + (γ − δ)ξ/2)(α0 + 2α2). We obtain the
double cover of P1 ∼= C branched on the six intersection points of L ∪ Γ−, by



Prym varieties for special bielliptic curves 1775

substituting the rational parametrization into α0(α2
0 − 4α1α2). We obtain

η2 =
((
γξ + 1

)
P (x0) + ξ (x0)

)
︸ ︷︷ ︸

=: p1(ξ)

(
S(γ) ξ3 +

(
3γ2 + S′(0)

)
ξ2 + 3γξ

)
︸ ︷︷ ︸

=: p2(ξ)

×
((
S(γ) ξ2 + (2γ2 + γδ + S′(0)) ξ2 + γ + δ

)
P (x0) −

(
(γ − δ)ξ + 1

)
Q(x0)

)
︸ ︷︷ ︸

=: p3(ξ)

.

(3.59)

We compute the following resultants

Resξ
(
p1(ξ), p2(ξ)

)
= S(γ)S(δ)

(
S(0)P (x0)3 −S′(0)P (x0)2Q(x0)−Q(x0)3

)
,

Resξ
(
p1(ξ), p3(ξ)

)
= Resξ

(
p2(ξ), p3(ξ)

)
= S(0)P (x0)3 − S′(0)P (x0)2Q(x0) −Q(x0)3 .

We then compute the Igusa–Clebsch invariants of the curve of genus two,
using the same normalization as in [32, 33]. Denoting the Igusa–Clebsch in-
variants of the curve of genus two in Equation (3.59) by [I2 : I4 : I6 : I10] ∈
P(2, 4, 6, 10), one checks that for

(3.60) ε = 4
(
S(0)P (x0)3 − S′(0)P (x0)2Q(x0) −Q(x0)3

)
=

(
[P,Q]x0

)2

we obtain

(3.61) [I2 : I4 : I6 : I10] =
[
I2 : ε2I ′4 : ε2I ′6 : ε6I ′10

]
,

where I2, I
′
4, I

′
6, I

′
10 are polynomials in x0 that do not have a common factor

with [P,Q]x0 . Using the results of Namikawa and Ueno [40] we conclude that
a local model for C̃x0 near ε = 0 is given by

(3.62) η2 =
(
ξ3 + α ξ + 1

)(
ξ3 + ε2β ξ + ε3

)
,

where α, β are suitable rational functions that do not vanish for ε = 0.

4. Proof of the main results

We have the following:
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Proposition 4.1. For

P (x) = x4 − Λ1x
2 + 1 , R(x, x0) = x2x2

0 −
Λ1

6
(
x2 + 4x0x + x2

0
)
+ 1 ,

R1(x, x0) = −2
3Λ1 x

2x2
0 +

(
2 − 5

18Λ2
1

)
xx0 +

(
1 − 1

36Λ2
1

) (
x2 + x2

0
)
− 2

3Λ1 ,

(4.1)

and parameters

(4.2) γ + δ = − c1
3κ1,5κ2,3c2

, γδ = c0
9λ1λ2λ3c2

,

with c0, c1, c2 given by either Equation (2.7) or Equation (2.8), the Jacobian
elliptic K3 surfaces Y and Z in Equation (2.19) and Equation (3.17) coincide
for v = x0. In particular, the Jacobian elliptic fibrations realize the fibration
from Proposition 2.11 where K0, . . . ,K3 are the divisor classes from Corol-
lary 3.5. The same applies to the Jacobian elliptic K3 surfaces X ′ and Z ′ in
Equation (2.20) and Equation (3.20)/Equation (3.55), respectively.

Proof. We have the two (pairs of) points ±qγ ,±qδ ∈ E on the elliptic curve
in Equation (3.1) with coordinates (ξqγ = γ, ±ηqγ ) with η2

qγ = S(γ) and
(ξqδ = δ, ±ηqδ) with η2

qδ
= S(δ). One then checks that μ2 − κν = S(γ)S(δ).

By a rescaling one obtains from Equation (3.17) the Weierstrass model

Y 2 = X3 − 2
(
μP (x0)
ηqγηqδ

+ ν Q(x0)
ηqγηqδ

)
X2(4.3)

+

⎛⎝(
μP (x0)
ηqγηqδ

+ ν Q(x0)
ηqγηqδ

)2

− P (x0)2
⎞⎠X ,

with

μ

ηqγηqδ
=

ξqγ+qδ + ξqγ−qδ

ξqγ+qδ − ξqγ−qδ

,
ν

ηqγηqδ
= 2

ξqγ+qδ − ξqγ−qδ

.(4.4)

The choice of sign ±ηqγ and ±ηqγ does not matter as it can always be absorbed
in a rescaling (X, Y ) �→ (−X, iY ). Plugging in P (x) and γ, δ, one checks that
the Weierstrass models in Equation (2.19) and Equation (4.3) are identical
for v = x0. In particular, it follows that Equation (2.7) and (2.8) are the only
solutions that make the Jacobian elliptic K3 surfaces Y and Z coincide up to
a sign change ±κp.
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According to Remark 2.3 there are exactly 3 inequivalent Göpel groups
containing a given point of order two p46 ∈ Jac(C)[2]. The point of order
two determines a rational double cover φΔp46

: Y ��� X = Kum(Jac C). Re-
mark 2.9 shows that the full Göpel group G′ � p46 also determines Weierstrass
models in Equation (2.15) and Equation (2.19), together with a marked 2-
torsion section. Following Remark 2.16, the marked 2-torsion section on Y
defines an even eight ΔG′ of exceptional curves on Y = Kum(B) which in
turn determines a rational double cover φΔG′ : X ′ ��� Y . Thus, the Kum-
mer surface X ′ = Kum(Jac C′) is obtained from the Göpel group G′ such
that Jac(C′) = Jac(C)/G′. As φΔG′ is associated with a van Geemen–Sarti
involution this establishes a Jacobian elliptic fibration on X ′.

4.1. Proof of Theorem 1.1

Let us first explain the rescaling that yields the pencil D̃x0 in Equation (1.8)
from Equation (3.28) using the parameters in Equation (4.1) and Equa-
tion (4.2). We set x =

√
lX, x0 =

√
lt, z̃ = Z/

√
9c2l with l = κ1,5κ2,3,

and
(4.5)

p(X, Y ) =P
(√

lX
Y

)
Y 4 , Δ(t)(X, Y ) =

(
X − t Y

)2
,

r(t)(X, Y ) = 6R
(√

lX
Y ,

√
lt
)
Y 2 , r

(t)
1 (X, Y ) =−36 l R1

(√
lX
Y ,

√
lt
)
Y 2 ,

multiply Equation (3.28) with (9c2l)2 to obtain the equation for Dt := D̃x0

given by

(4.6) Dt : p
(t)
0 Z4 +

(
c2r

(t)
1 + c1r

(t) + c0Δ(t)
)
Z2 + 9

(
c21 − 4c0c2

)
p = 0 ,

where c0, c1, c2 are given by Equation (2.7) or Equation (2.8), and κ2
p = λ2λ3

or κ2
p = λ1, respectively. Note that changing from Dx0 to D̃x0 in Equa-

tion (3.28) does not affect the smooth fibers – this also applies to Sec-
tions 4.2/4.3. In the following, we will restrict ourselves to the case of Equa-
tion (2.8), i.e., κ2

1,5 = λ1, and M′ = M′
p15 . The other case is completely

analogous.
(1) It follows from Proposition 4.1 that the Jacobian elliptic K3 surfaces

Z and Y in Equation (3.17) and Equation (2.19) coincide for x0 = v. It was
proven in Proposition 2.13 that the K3 surface Y is the Kummer surface of
an abelian surface Bp46 with a polarization of type (1, 2). Proposition 3.7 then
shows that the pencil of curves of genus three Dx0 is obtained as double cover
of Z =

∐
x0 Qx0 branched on the divisor classes K0, . . . ,K3 in Corollary 3.5.
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According to Theorem 2.10, this is precisely the pencil on B realizing the linear
system |V | for the (1, 2)-polarization on B given by an ample symmetric line
bundle V with V 2 = 4. Thus, the claim follows.

(2) and (3) One checks that the discriminant in Equation (3.12) vanishes
for t2 = λ1, λ2λ3, t2 = λ2, λ1λ3, and t2 = λ3, λ1λ2. The proof then follows
from Proposition 3.10 together with Proposition 2.1.

(4) The claims follows from Proposition 3.11 as follows: one checks that
the roots of [P,Q]x0 = 0 are given by t2 = 0,±λ1λ2λ3,∞ and that for γ, δ
given by Equations (4.2), the condition 2(qγ ± qδ) �= 0 is satisfied.

4.2. Proof of Theorem 1.2

The point p46 ∈ Jac(C)[2] determines a 2-isogeny Φ : B → Jac(C) which
covers φΔp46

: Y ��� X . The Weierstrass model (with marked 2-torsion) on
Y ∼= Z in Equation (2.19) is then used in Proposition 3.7 to construct the
pencil Dx0 of bielliptic curves of genus three realizing |V | where V is the
polarization line bundle on B induced by pull-back. The equivalent pencil
D̃x0 has the property that the normalization of four singular fibers is given by
the (2, 2)-isogenous curve C′; see Proposition 3.10. The normal form for D̃x0 in
Equation (3.40) also determines an unramified double cover ρ′x0 : Fx0 → D̃x0

by a non-hyperelliptic curve of genus five Fx0 ; see Remark 3.14. Its Prym
variety is the principally polarized abelian surface Prym(Fx0 , ρ

′
x0) = Jac(C′);

see Corollary 3.17. Proposition 3.20 proves that the curves of genus five Fx0

also admit a double cover π′
x0 : Fx0 → E ′

x0 onto the elliptic curves E ′
x0 such

that Z ′ =
∐

x0 E ′
x0 is the Jacobian elliptic fibration (2.20) on the Kummer

surface X ′ = Kum(Jac C′). We have the following:

Lemma 4.2. Assuming Equations (4.1) and (4.2), the curves of genus five
Fx0 admitting the unramified cover ρ′x0 : Fx0 → D̃x0 form a pencil on Jac(C′),
and Fx0 embeds into Prym (Fx0 , ρ

′
x0) ∼= Jac(C′) as a curve of self-intersection

eight.

Proof. The proof follows from Lemma 3.18. Since Fx0 represents the pull-back
of a theta divisor via a degree-two map the self-intersection is eight.

We make the following:

Remark 4.3. Geometrically, D̃x0 is obtained as follows: given the curve of
genus two C′ and its Kummer quartic K′ = Jac(C′)/〈−id〉 ⊂ P3, we can always
find a plane Vx0 ⊂ P3 such that D̃x0 = Vx0∩K′ is a non-singular quartic curve
not meeting the ramification locus of π : Jac(C′) → K′. Then, Fx0 = π−1(C′)
is an unramified double cover of C′ and connected, whence of genus five. This
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model of D̃x0 as a plane section of K′ also determines the 28 bitangents of
D̃x0 . The tropes on K′ cut out sixteen bitangents; the remaining twelve come
in pairs from singular conics in Γ. Our model for D̃x0 in Equation (3.40) has
only six rational tangents over M′; see Remark 2.4 and [16, Table 3]. However,
there are additional bitangents coming from singular conics which determine
q1, q2 in Equation (3.43): they are in general not rational over M′, but their
product always is. In fact, only γ + δ and γδ in Equation (3.44) are rational
over M′; see Equation (4.2).

We use the same identification of moduli as in Section 4.1. In addition,
we rescale V,W �→ V/(3

√
lc2),W/(3

√
lc2) with l = κ1,5κ2,3. Note that l = 0

or c2 = 0 implies that C is singular. We then introduce the parameters e =
−γ/(3l) and f = −δ/(3l) such that Equation (4.2) becomes e + f = c1/c2,
ef = c0/c2 and Equation (3.45) becomes Equation (1.10). Interchanging e and
f amounts to the changing the sign of

√
c21 − 4c0c2 which is easily checked to

correspond to a sign change ±κ1,5 or, equivalently, swapping the two sheets of
the double cover M′ → M. A computation then shows that the curves of genus
two in Proposition 2.1 and Proposition 3.16/Corollary 3.17 coincide. Upon
re-scaling of variables we obtain Equation (1.12). The fact that the curve is
an Abel–Prym embedding and also bielliptic was proved in Lemma 3.18 and
Proposition 3.20; finally, we use Lemma 4.2.

4.3. Proof of Corollary 1.3

Theorem 1.1 already proves that for a smooth curve Dx0 the Prym variety
Prym(Dx0 , πx0) with its polarization of type (1, 2) is 2-isogenous to the prin-
cipally polarized Jacobian variety Jac(C). The proof of the corollary then
follows from Lemma 2.5 and Proposition 3.8 after observing that for x0 = 0
the curve Dx0 is smooth and for its bielliptic quotient Qx0 = Dx0/〈j〉 the
Jacobian Jac(Qx0) has the same j-invariant as the one in Equation (2.13).
The same argument applies for x0 = ∞.
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