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Abstract: The real Fourier–Mukai transform sends a section of
a torus fibration to a connection over the total space of the dual
torus fibration. By this method, Leung, Yau and Zaslow introduced
deformed Hermitian Yang–Mills (dHYM) connections for Kähler
manifolds and Lee and Leung introduced deformed Donaldson–
Thomas (dDT) connections for G2- and Spin(7)-manifolds.

In this paper, we suggest an alternative definition of a dDT
connection for a manifold with a Spin(7)-structure which seems
to be more appropriate by carefully computing the real Fourier–
Mukai transform again. We also post some evidences showing that
the definition we suggest is compatible with dDT connections for a
G2-manifold and dHYM connections of a Calabi–Yau 4-manifold.

Another importance of this paper is that it motivates our study
in our other papers. That is, based on the computations in this
paper, we develop the theories of deformations of dDT connections
for a manifold with a Spin(7)-structure and the “mirror” of the
volume functional, which is called the Dirac–Born–Infeld (DBI)
action in physics.
Keywords: Mirror symmetry, deformed Donaldson–Thomas, spe-
cial holonomy, calibrated submanifold.
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1. Introduction

In the context of mirror symmetry, in particular Kontsevich’s homological
mirror symmetry conjecture, one vital need is to provide a geometric functor
from one side to its mirror side. Originally, the conjecture was stated for
Calabi–Yau manifolds, however, the applicable scope has been extended to
the other special holonomy cases, G2 and Spin(7). Firstly, for the Calabi–
Yau case, Leung, Yau and Zaslow [10] in 2000 found a natural and promising
candidate for such a functor, which is called the real Fourier–Mukai transform
nowadays.

The real Fourier–Mukai transform sends a section of a torus fibration to
a connection over the total space of the dual torus fibration. In their paper
[10], Leung, Yau and Zaslow proved that the real Fourier–Mukai transform of
a special Lagrangian cycle is a deformed Hermitian Yang–Mills (dHYM) con-
nection. This can be considered as a correspondence between supersymmetric
A-cycles and B-cycles in the sense of mirror symmetry.

Even in the case where the total space is not a Calabi–Yau manifold, the
real Fourier–Mukai transform can also work. Actually, Lee and Leung [9] com-
puted the real Fourier–Mukai transform of an associative and a coassociative
cycle in a G2-manifold and of a Cayley cycle in a Spin(7)-manifold. In [9],
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they picked some properties which the real Fourier–Mukai transform satisfies
and called such a connection a deformed Donaldson–Thomas (dDT) connec-
tion. In this paper, we suggest an alternative definition of a dDT connection
for a manifold with a Spin(7)-structure which seems to be more appropriate
by carefully computing the real Fourier–Mukai transform again.

As the real Fourier–Mukai transform of a submanifold written as a graph
of a section of a trivial T 4-fibration over a flat 4-dimensional base B, we
obtain the following.

Theorem 1.1 (Theorem 5.1). Let B ⊂ R
4 be an open set and f : B → T 4

be a smooth function. Denote by S = { (x, f(x)) | x ∈ B } the graph of f ,
a 4-dimensional submanifold in X = B × T 4. By the real Fourier–Mukai
transform, S corresponds to a Hermitian connection ∇S of a trivial complex
line bundle over B × (T 4)∗ ∼= X. Denote by F S

∇ ∈
√
−1Ω2(X) the curvature

2-form of ∇S.
Then, the graph S is a Cayley submanifold with an appropriate orientation

if and only if

π2
7

(
F S
∇ + 1

6 ∗ (F S
∇)3

)
= 0 and π4

7

(
(F S

∇)2
)

= 0.

Here, πk
� : Ωk → Ωk

� is the projection and Ωk
� ⊂ Ωk is the subspace of the space

of k-forms corresponding to the �-dimensional irreducible representation of
Spin(7) as in Subsection 3.4.

We also compute the real Fourier–Mukai transform of a Cayley cycle,
a Cayley submanifold with an ASD connection over it, and show the following.

Theorem 1.2 (Theorem 5.7). Let B ⊂ R
4 be an open set and f : B → T 4 be

a smooth function. Denote by S = { (x, f(x)) | x ∈ B } the graph of f , a 4-
dimensional submanifold in X = B × T 4. Let ∇B be a Hermitian connection
of a trivial complex line bundle B×C → B. Denote by FB

∇ ∈
√
−1Ω2(B) the

curvature of ∇B.
By the real Fourier–Mukai transform, the pair (S,∇B) corresponds to a

Hermitian connection ∇ of a trivial complex line bundle over B× (T 4)∗ ∼= X.
Denote by F∇ ∈

√
−1Ω2(X) the curvature 2-form of ∇. Then, the following

conditions are equivalent.

1. The graph S is a Cayley submanifold with an appropriate orientation
and if we identify −

√
−1FB

∇ ∈ Ω2(B) with a 2-form on S, it is anti-
self-dual with respect to the induced metric and the orientation which
makes S Cayley.
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2. The Hermitian connection ∇ satisfies

π2
7

(
F∇ + 1

6 ∗ F 3
∇

)
= 0 and π4

7

(
F 2
∇

)
= 0.

Based on these theorems, we suggest the following definition.

Definition 1.3. Let X8 be an 8-manifold with a Spin(7)-structure Φ ∈ Ω4

and L → X be a smooth complex line bundle with a Hermitian metric h.
Denote by Ωk

� ⊂ Ωk the subspace of the space of k-forms corresponding to
the �-dimensional irreducible representation of Spin(7) as in Subsection 3.4.
Let πk

� : Ωk → Ωk
� be the projection. A Hermitian connection ∇ of (L, h)

satisfying

π2
7

(
F∇ + 1

6 ∗ F 3
∇

)
= 0 and π4

7(F 2
∇) = 0(1.1)

is called a deformed Donaldson–Thomas connection for a manifold with a
Spin(7)-structure (a Spin(7)-dDT connection). Here, we regard the curvature
2-form F∇ of ∇ as a

√
−1R-valued closed 2-form on X.

In this paper, we post some evidences showing that Definition 1.3 we
suggest for a Spin(7)-manifold is compatible with dDT connections for a G2-
manifold and dHYM connections for a Calabi–Yau 4-manifold in Lemmas 7.1
and 7.2.

We also compute the real Fourier–Mukai transform of (co)associative
cycles in G2-manifolds. This makes us confirm the definition of deformed
Donaldson–Thomas connections for a manifold with a G2-structure intro-
duced by Lee and Leung [9]. This is also useful in the computation of the
real Fourier–Mukai transform of Cayley cycles. It turns out that the real
Fourier–Mukai transform of an associative cycle coincides with that of a coas-
sociative cycle as stated in [9]. Moreover, the real Fourier–Mukai transform
implies identities mirror to associator and Cayley equalities. In [8], we show
them and dDT connections for G2- and Spin(7)-manifolds minimize a kind of
the volume functional, which is called the Dirac-Born-Infeld (DBI) action in
physics.

This paper is organized as follows. In Section 2, we explain the real
Fourier–Mukai transform in detail. Section 3 gives basic identities and some
decompositions of the spaces of differential forms in G2- and Spin(7)-geometry
that are used in this paper. In Section 4–6 we give computations of real
Fourier–Mukai transforms and show Theorems 1.1 and 1.2. In Section 7, we
show compatibilities of our Spin(7)-dDT connections with dDT connections
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for a G2-manifold and dHYM connections for a Calabi–Yau 4-manifold. In
Appendix A, we summarize the notation used in this paper.

2. The real Fourier–Mukai transform

In this section, we explain the real Fourier–Mukai transform. We need the
following two fundamental facts. The first one is that a representation ρ :
π1(M) → GL(k,R) naturally assigns a flat connection ∇̃ of R

k-bundle E
over a manifold M by

E := M̃ ×ρ R
k := (M̃ × R

k)/∼,

where M̃ is the universal cover of M and (x, v) ∼ (x · γ, ρ(γ)−1v) for γ ∈
π1(M). The flat connection ∇̃ of E is induced from the exterior derivative d
on M̃×R

k. The second one is that an n-dimensional torus T n (= R
n/(2πZ)n)

is canonically isomorphic to

Hom(π1((T n)∗), U(1)) = Hom(((2πZ)n)∗, U(1)),

the set of all homomorphisms from the first fundamental group of its dual
torus (T n)∗ (= (Rn)∗/((2πZ)n)∗) to U(1) by

T n 	 a = [ã] 
→ ρa := e−
√
−1〈 · ,ã〉 ∈ Hom(π1((T n)∗), U(1)),

where 〈 · , · 〉 : (Rn)∗ × R
n → R is a dual pairing. Then, combining these two

facts with M = (T n)∗, we see that a point a in T n assigns a flat Hermitian
connection ∇̃a of a complex line bundle Ea := (Rn)∗×ρa C with the standard
Hermitian metric over the dual torus (T n)∗. Actually, πa : Ea → (T n)∗ is
isomorphic to the trivial C-bundle π0 : C → (T n)∗ since we have a nonva-
nishing section s(y) := [ỹ, e

√
−1〈 ỹ,ã〉 · 1] of Ea, where ỹ ∈ (Rn)∗ representing

y ∈ (T n)∗ = (Rn)∗/((2πZ)n)∗ and 1 is the trivial section of (Rn)∗ × C. The
bundle isomorphism ξ : Ea → C is given, on each fiber, by

π−1
a (y) 	 c · s(y) 
→ c ∈ C (= π−1

0 (y)).

Then, a flat Hermitian connection of C is induced from ∇̃a of Ea and de-
note it by ∇a. The connection 1-form of ∇a with respect to the section
1 ∈ Γ((T n)∗,C) is represented as

∇a1 = ξ−1(∇̃a(ξ(1))) =e−
√
−1〈 · ,ã〉d(e

√
−1〈 · ,ã〉 · 1)

=
(√

−1d〈 · , ã〉
)
⊗ 1.
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In summary, a point a = [(a1, · · · , an)] ∈ T n assigns an equivalence class of a
Hermitian complex line bundle with a flat connection over (T n)∗ and one of
its representatives is the trivial C-bundle with the standard Hermitian metric
and a flat Hermitian connection ∇a defined by

∇a := d +
√
−1

n∑
i=1

aidyi,

where y = (y1, · · · , yn) are the standard coordinates on (T n)∗. This corre-
spondence a 
→ ∇a is also explained in [2, Section 3.2.1].

When we consider the family of this correspondence, we get the real
Fourier–Mukai transform. Precisely, let B ⊂ R

k be an open set with co-
ordinates x = (x1, · · · , xk) and f = (f1, · · · , fn) : B → T n be a smooth map.
Then, we get two objects: a submanifold and a connection. The k-dimensional
submanifold in X := B×T n, denoted by S, is defined as the graph of f , that
is,

S := { (x, f(x)) | x ∈ B }.

On the other hand, taking the family of ∇f(x) for all x ∈ B, we get a Hermitian
connection

∇ := d +
√
−1

n∑
i=1

f idyi

of the trivial C-bundle over X∗ := B × (T n)∗. We usually identify B × (T n)∗
with B × T n. We call ∇ the real Fourier–Mukai transform of S. Basically,
a property on S is first interpreted as one of f and second reinterpreted as
one of ∇. We remark that the real Fourier–Mukai transform of (S,∇B), the
pair of a graph of f and a Hermitian connection ∇B = d +

√
−1

∑k
i=1 A

idxi

of the trivial C-bundle over B ∼= S, is also defined by

∇ := d +
√
−1

k∑
i=1

Aidxi +
√
−1

n∑
i=1

f idyi

as a Hermitian connection of the trivial C-bundle over X∗ = B × (T n)∗.

3. Basics on G2- and Spin(7)-geometry

In this section, we collect some basic definitions and equations on G2- and
Spin(7)-geometry which we need in the calculations in this paper for the
reader’s convenience. See for example [1, 3, 4] for references.
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3.1. The Hodge-∗ operator

Let V be an n-dimensional oriented real vector space with an inner product g.
Denote by 〈·, ·〉 the induced inner product on ΛkV ∗ from g. Let ∗ be the
Hodge-∗ operator. The following identities are frequently used throughout
this paper.

For α, β ∈ ΛkV ∗ and v ∈ V , we have

∗2|ΛkV ∗ = (−1)k(n−k)idΛkV ∗ , 〈∗α, ∗β〉 = 〈α, β〉,
i(v) ∗ α = (−1)k ∗ (v� ∧ α), ∗(i(v)α) = (−1)k+1v� ∧ ∗α.

3.2. Basics on G2-geometry

Let V be an oriented 7-dimensional vector space. A G2-structure on V is a
3-form ϕ ∈ Λ3V ∗ such that there is a positively oriented basis { ei }7

i=1 of V
with the dual basis { ei }7

i=1 of V ∗ satisfying

(3.1) ϕ = e123 + e145 + e167 + e246 − e257 − e347 − e356,

where ei1···ik is short for ei1 ∧ · · · ∧ eik . Setting vol := e1···7, the 3-form ϕ
uniquely determines an inner product gϕ via

gϕ(u, v) vol = 1
6 i(u)ϕ ∧ i(v)ϕ ∧ ϕ(3.2)

for u, v ∈ V . It follows that any oriented basis { ei }7
i=1 for which (3.1) holds

is orthonormal with respect to gϕ. Thus, the Hodge-dual of ϕ with respect to
gϕ is given by

(3.3) ∗ ϕ = e4567 + e2367 + e2345 + e1357 − e1346 − e1256 − e1247.

The stabilizer of ϕ is known to be the exceptional 14-dimensional simple Lie
group G2 ⊂ GL(V ). The elements of G2 preserve both gϕ and vol, that is,
G2 ⊂ SO(V, gϕ).

We summarize important well-known facts about the decomposition of
tensor products of G2-modules into irreducible summands. Denote by Vk the
k-dimensional irreducible G2-module if there is a unique such module. For
instance, V7 is the irreducible 7-dimensional G2-module V from above, and
V ∗

7
∼= V7. For its exterior powers, we obtain the decompositions

(3.4)
Λ0V ∗ ∼= Λ7V ∗ ∼= V1, Λ2V ∗ ∼= Λ5V ∗ ∼= V7 ⊕ V14,

Λ1V ∗ ∼= Λ6V ∗ ∼= V7, Λ3V ∗ ∼= Λ4V ∗ ∼= V1 ⊕ V7 ⊕ V27,
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where ΛkV ∗ ∼= Λ7−kV ∗ due to the G2-invariance of the Hodge isomorphism
∗ : ΛkV ∗ → Λ7−kV ∗. We denote by Λk

�V
∗ ⊂ ΛkV ∗ the subspace isomorphic

to V�. Let
πk
� : ΛkV ∗ → Λk

�V
∗

be the canonical projection. Identities for these spaces we need in this paper
are as follows.

Λ2
7V

∗ ={ i(u)ϕ | u ∈ V } = {α ∈ Λ2V ∗ | ∗(ϕ ∧ α) = 2α },
Λ2

14V
∗ ={α ∈ Λ2V ∗ | ∗ϕ ∧ α = 0 } = {α ∈ Λ2V ∗ | ∗(ϕ ∧ α) = −α },

Λ3
1V

∗ =Rϕ,

Λ3
7V

∗ ={ i(u) ∗ ϕ ∈ Λ3V ∗ | u ∈ V }.

The following equations are well-known and useful in this paper.

Lemma 3.1. For any u ∈ V , we have the following identities.

ϕ ∧ i(u) ∗ ϕ = −4 ∗ u�,
∗ϕ ∧ i(u)ϕ = 3 ∗ u�,
ϕ ∧ i(u)ϕ = 2 ∗ (i(u)ϕ) = 2u� ∧ ∗ϕ.

Definition 3.2. Let X be an oriented 7-manifold. A G2-structure on X is a
3-form ϕ ∈ Ω3 such that at each p ∈ X there is a positively oriented basis
{ ei }7

i=1 of TpX such that ϕp ∈ Λ3T ∗
pX is of the form (3.1). As noted above, ϕ

determines a unique Riemannian metric g = gϕ on X by (3.2), and the basis
{ ei }7

i=1 is orthonormal with respect to g. A G2-structure ϕ is called torsion-
free if it is parallel with respect to the Levi-Civita connection of g = gϕ.
A manifold with a torsion-free G2-structure is called a G2-manifold.

A manifold X admits a G2-structure if and only if its frame bundle is
reduced to a G2-subbundle. Hence, considering its associated subbundles,
we see that Λ∗T ∗X has the same decomposition as in (3.4). The algebraic
identities above also hold.

3.3. Associative and coassociative submanifolds

On a G2-manifold (X,ϕ), the G2-structure ϕ and its Hodge dual ∗ϕ are known
to be calibrations. The corresponding calibrated submanifolds are called asso-
ciative submanifolds and coassociative submanifolds, respectively. By [3, 11],
we can characterize these submanifolds as follows.
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Lemma 3.3. An oriented 3-dimensional submanifold A ⊂ X is associative
with an appropriate orientation if and only if ∗ϕ(v1, v2, v3, ·) = 0 for any
p ∈ A and v1, v2, v3 ∈ TpS. An oriented 4-dimensional submanifold C ⊂ X is
coassociative with an appropriate orientation if and only if the restriction of
ϕ to C vanishes.

3.4. Spin(7)-geometry

Let W be an 8-dimensional oriented real vector space. A Spin(7)-structure
on W is a 4-form Φ ∈ Λ4W ∗ such that there is a positively oriented basis
{ ei }7

i=0 of W with dual basis { ei }7
i=0 of W ∗ satisfying

(3.5)
Φ :=e0123 + e0145 + e0167 + e0246 − e0257 − e0347 − e0356

+ e4567 + e2367 + e2345 + e1357 − e1346 − e1256 − e1247,

where ei1···ik is short for ei1 ∧ · · · ∧ eik . Defining forms ϕ and ∗7ϕ on V :=
span{ ei }7

i=1 ⊂ W as in (3.1) and (3.3), where ∗7 stands for the Hodge star
operator on V , we have

Φ = e0 ∧ ϕ + ∗7ϕ.

Note that Φ is self-dual, that is, ∗8Φ = Φ, where ∗8 is the Hodge star operator
on W . It is known that Φ uniquely determines an inner product gΦ and
a volume form and the subgroup of GL(W ) preserving Φ is isomorphic to
Spin(7). As in Definition 3.2, we can define an 8-manifold with a Spin(7)-
structure and a Spin(7)-manifold.

Denote by Wk the k-dimensional irreducible Spin(7)-module if there is
a unique such module. For example, W8 is the irreducible 8-dimensional
Spin(7)-module from above, and W ∗

8
∼= W8. The group Spin(7) acts irre-

ducibly on W7 ∼= R
7 as the double cover of SO(7). For its exterior powers, we

obtain the decompositions

Λ0W ∗ ∼= Λ8W ∗ ∼= W1, Λ2W ∗ ∼= Λ6W ∗ ∼= W7 ⊕W21,

Λ1W ∗ ∼= Λ7W ∗ ∼= W8, Λ3W ∗ ∼= Λ5W ∗ ∼= W8 ⊕W48,

Λ4W ∗ ∼= W1 ⊕W7 ⊕W27 ⊕W35

where ΛkW ∗ ∼= Λ8−kW ∗ due to the Spin(7)-invariance of the Hodge isomor-
phism ∗8 : ΛkW ∗ → Λ8−kW ∗. Again, we denote by Λk

�W
∗ ⊂ ΛkW ∗ the

subspace isomorphic to W� in the above notation.
The space Λk

7W
∗ for k = 2, 4, 6 is explicitly given as follows. For the

explicit descriptions of the other irreducible summands, see for example [5,
(4.7)].
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Lemma 3.4. Let e0 ∈ W ∗ be a unit vector. Set V ∗ = (Re0)⊥, the orthogonal
complement of Re0. The group Spin(7) acts irreducibly on V ∗ as the double
cover of SO(7), and hence, we have the identification V ∗ ∼= W7. Then, the
following maps are Spin(7)-equivariant isometries.

(3.6) λk : V ∗ −→ Λk
7W

∗,

λ2(α) := 1
2
(
e0 ∧ α + i(α�)ϕ

)
,

λ4(α) := 1√
8

(
e0 ∧ i(α�) ∗7 ϕ− α ∧ ϕ

)
,

λ6(α) := 1
3Φ ∧ λ2(α) = ∗8λ

2(α).

Here, ∗8 and ∗7 are the Hodge star operators on W ∗ and V ∗, respectively.

Proof. The maps above are Spin(7)-equivariant isomorphism by [5, Lemma
4.2]. We show that these are isometries. For α ∈ V ∗, we compute

4|λ2(α)|2 = 〈e0 ∧ α + i(α�)ϕ, e0 ∧ α + i(α�)ϕ〉 = |α|2 + |i(α�)ϕ|2.

By Lemma 3.1, we have

(3.7) |i(α�)ϕ|2 = ∗7
(
i(α�)ϕ ∧ ∗7(i(α�)ϕ)

)
= ∗7

(
i(α�)ϕ ∧ α ∧ ∗7ϕ

)
= 3|α|2.

Thus, we see that λ2 is an isometry. By the definition of λ6, this is also an
isometry. We also compute

8|λ4(α)|2 =
〈
e0 ∧ i(α�) ∗7 ϕ− α ∧ ϕ, e0 ∧ i(α�) ∗7 ϕ− α ∧ ϕ

〉
= |i(α�) ∗7 ϕ|2 + |α ∧ ϕ|2

= 2|α ∧ ϕ|2.

The last term is computed as

|α ∧ ϕ|2 =〈ϕ, i(α�)(α ∧ ϕ)〉
=〈ϕ, |α|2ϕ− α ∧ i(α�)ϕ〉 = |α|2|ϕ|2 − |i(α�)ϕ|2 = 4|α|2,

where we use |ϕ|2 = 7 and (3.7). Hence, we see that λ4 is an isometry.

We give a relation between ∗8 and ∗7, which is useful in Section 5.

Lemma 3.5. For α ∈ ΛkV ∗, we have

(3.8) ∗8α = (−1)ke0 ∧ ∗7α, ∗7α = ∗8(e0 ∧ α).
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Proof. Denote by vol7 the volume form on V ∗. The volume form on W ∗ is
given by e0 ∧ vol7. Then, for any β ∈ ΛkV ∗, we have

β ∧ ∗8α = 〈β, α〉e0 ∧ vol7 = e0 ∧ β ∧ ∗7α = (−1)kβ ∧ e0 ∧ ∗7α,

which implies the first equation. The second equation follows from the first.

We give some formulas about projections onto some irreducible sum-
mands. Denote by

πk
� : ΛkW ∗ → Λk

�W
∗(3.9)

the canonical projection. When k = 2, 4, 6 and � = 7, Lemma 3.4 implies that

(3.10) πk
� (αk) =

7∑
μ=1

〈αk, λk(eμ)〉 · λk(eμ)

for αk ∈ ΛkW ∗, where { eμ }7
μ=1 is an orthonormal basis of V ∗.

We give other descriptions of πk
� for k = 2, 6. Since the map Λ2W ∗ 	

α2 
→ ∗8(Φ∧α2) ∈ Λ2W ∗ is Spin(7)-equivariant, the simple computation and
Schur’s lemma give the following:

Λ2
7W

∗ ={α2 ∈ Λ2W ∗ | Φ ∧ α2 = 3 ∗8 α
2 },

Λ2
21W

∗ ={α2 ∈ Λ2W ∗ | Φ ∧ α2 = − ∗8 α
2 }.

Since α2 = π2
7(α2)+π2

21(α2) and ∗8(Φ∧α2) = 3π2
7(α2)−π2

21(α2) for a 2-form
α2 ∈ Λ2W ∗, it follows that

(3.11) π2
7(α2) = α2 + ∗8(Φ ∧ α2)

4 , π2
21(α2) = 3α2 − ∗8(Φ ∧ α2)

4 .

Since ∗8 : Λ6
�W

∗ → Λ2
�W

∗ is an isomorphism, we also obtain for a 6-form
α6 ∈ Λ6W ∗

(3.12) π6
7(α6) = α6 + Φ ∧ ∗8α

6

4 , π6
21(α6) = 3α6 − Φ ∧ ∗8α

6

4 .

3.5. Cayley submanifolds

The 4-form Φ given by (3.5) is known to be a calibration. The corresponding
calibrated submanifold is called a Cayley submanifold. We give a charac-
terization of Cayley submanifolds, which is equivalent to that of [3, 11] by
Lemma 3.4.
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Define a Spin(7)-equivariant map τ : Λ4W → Λ4
7W

∗ by

(3.13) τ(u0, u1, u2, u3) = π4
7(u�0 ∧ u�1 ∧ u�2 ∧ u�3).

If { eμ }7
μ=1 is an oriented orthonormal basis of V ∗, (3.10) implies that

τ =
7∑

μ=1
λ4(eμ) ⊗ λ4(eμ).

Lemma 3.6. For any u0, u1, u2, u3 ∈ W , we have

|Φ(u0, u1, u2, u3)|2 + 8|τ(u0, u1, u2, u3)|2 = |u0 ∧ u1 ∧ u2 ∧ u3|2.

Proof. We only have to show the equation when {u0, u1, u2, u3 } is orthonor-
mal. Since the both sides are Spin(7)-invariant and Spin(7) acts transitively
on Gr3(W ), the Grassmannian of 3-planes in W , we may assume that u0 =
e0, u1 = e1 and u2 = e2. Since the stabilizer at span{ e0, e1, e2 } in Spin(7)
is the group SU(2) acting on the plane span{ e3, e4, e5, e6, e7 } ∼= R ⊕ C

2, we
may assume that u3 = ke3 + �e4, where k2 + �2 = 1. Then, (3.5) implies that

|Φ(u0, u1, u2, u3)|2 = k2.

By (3.6) and (3.3), we have
√

8λ4(eμ)(u0, u1, u2, u3) = ∗7 ϕ(eμ, e1, e2, ke3 + �e4)
= − ∗7ϕ(e1, e2, ke3 + �e4, eμ)
=(e56 + e47)(ke3 + �e4, eμ) = �δμ7.

Then, we have

8|τ(u0, u1, u2, u3)|2 = 8
7∑

μ=1
|λ4(eμ)(u0, u1, u2, u3)|2 = �2.

Since |u0 ∧ u1 ∧ u2 ∧ u3|2 = k2 + �2, the proof is completed.

Lemma 3.6 immediately implies the following.

Lemma 3.7. An oriented 4-dimensional submanifold C ⊂ W is Cayley with
an appropriate orientation if and only if the restriction of τ to C vanishes.
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4. The real Fourier–Mukai transform for coassociative
T 4-fibrations

In this section, we compute the real Fourier–Mukai transform of associative
cycles. This makes us confirm the definition of deformed Donaldson–Thomas
connections for a manifold with a G2-structure introduced by Lee and Leung
[9]. This is also useful in the computation of Section 5.

Let B ⊂ R
3 be an open set with coordinates (x1, x2, x3) and f =

(f4, f5, f6, f7) : B → T 4 be a smooth function with values in T 4. We use
coordinates (y4, y5, y6, y7) for T 4. Put

S := { (x, f(x)) | x ∈ B }

the graph of f , a 3-dimensional submanifold in X := B × T 4. Set

ω1 = dy45 + dy67, ω2 = dy46 + dy75, ω3 = −(dy47 + dy56).

By (3.1) and (3.3), the standard G2-structure ϕ on X and its Hodge dual ∗ϕ
are described as

ϕ = dx123 +
3∑

i=1
dxi ∧ ωi,(4.1)

∗ϕ = dy4567 +
∑

k∈Z/3
dxk,k+1 ∧ ωk+2.(4.2)

Let

∇B = d +
√
−1

3∑
j=1

Ajdxj

be a Hermitian connection of a trivial complex line bundle B×C → B, where
Aj : B → R is a smooth function.

Next, we consider the mirror side. The real Fourier–Mukai transform of
(S,∇B) is the connection on X∗(∼= X) defined by

∇ := d +
√
−1

3∑
j=1

Ajdxj +
√
−1

7∑
a=4

fadya.

Then, its curvature 2-form F∇ is given by F∇ = FB
∇ + F S

∇, where

(4.3) FB
∇ =

√
−1

3∑
i,j=1

∂Aj

∂xi
dxi ∧ dxj , F S

∇ =
√
−1

3∑
i=1

7∑
a=4

∂fa

∂xi
dxi ∧ dya.
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We first describe the condition for S to be associative in terms of F S
∇ in

Proposition 4.1. Using this, we show that the similar statement also holds for
F∇ in Proposition 4.4.

Proposition 4.1. The following conditions are equivalent.

1. The graph S is an associative submanifold with an appropriate orienta-
tion.

2. (F S
∇)3/6 + F S

∇ ∧ ∗ϕ = 0.
3. (F S

∇)3/6 + F S
∇ ∧ ∗ϕ = 0 and ϕ ∧ ∗(F S

∇)2 = 0.

Remark 4.2. A similar statement for graphical submanifolds is given by
Harvey and Lawson in [3, Chapter IV, Theorem 2.4]. In terms of differential
equations for f , they obtained two equations (2)’ and (3)’, which correspond
to (2) and (3), respectively. Then, they stated that (1) and (2)’ are equivalent
in the theorem, and (3)’ appeared only in the proof. They first showed that
(1) and (3)’ are equivalent. Using the assumption that S is a graph, they
showed that (2)’ implies (1). Since (3)’ obviously implies (2)’, they obtained
the equivalence. Actually, (2) and (3) are equivalent in general. See [6, Remark
3.3].

We can also consider the real Fourier–Mukai transform of a coassociative
graph in associative T 3-fibrations. In Proposition 6.1, we show that we obtain
the same equations as stated in [9].

Proof. Since (3) ⇒ (2) is obvious and the converse holds by [6, Remark
3.3], (2) and (3) are equivalent. We show the equivalence of (1) and (3). By
Lemma 3.3, S is associative with an appropriate orientation if and only if
∗ϕ(v1, v2, v3, · ) = 0 for any p ∈ S and v1, v2, v3 ∈ TpS. Set ∂i := ∂/∂xi and
∂a := ∂/∂ya for 1 ≤ i ≤ 3 and 4 ≤ a ≤ 7. Then, the tangent space of S is
spanned by v1, v2, v3, where

vj := ∂j +
7∑

a=4

∂fa

∂xj
∂a.

By (4.3), note that
v�j = dxj + i(∂j)F

where we set F = −
√
−1F S

∇. Since ∗ϕ(v1, v2, v3, · ) = 0 is equivalent to
v�1 ∧ v�2 ∧ v�3 ∧ ϕ = 0, we have

(4.4) 0 =
(
dx1 + i(∂1)F

)
∧
(
dx2 + i(∂2)F

)
∧
(
dx3 + i(∂3)F

)
∧ ϕ.
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Since dx123 ∧ ϕ = 0, this is equivalent to

0 = I1 + I2 + I3,

where
I1 =

∑
k∈Z/3

dxk,k+1 ∧ i(∂k+2)F ∧ ϕ,

I2 =
∑

k∈Z/3
dxk ∧ i(∂k+1)F ∧ i(∂k+2)F ∧ ϕ,

I3 = i(∂1)F ∧ i(∂2)F ∧ i(∂3)F ∧ ϕ.

Since I1 and I3 are linear combinations of dx123 ∧ dyabc’s and I2 is a linear
combination of dxij∧dy4567’s, S is associative with an appropriate orientation
if and only if

(4.5) I1 + I3 = 0, I2 = 0.

Now, we compute I1, I2 and I3. By (4.1), we have

I1 =
∑

k∈Z/3
dxk,k+1 ∧ i(∂k+2)F ∧ (dxk+2 ∧ ωk+2) = −dx123 ∧

3∑
k=1

ωk ∧ i(∂k)F.

Since i(∂k)F is the linear combination of dya’s and dx123∧ωk∧F = 0 by (4.3),
we see that

I1 = −dx123 ∧
3∑

k=1
i(∂k) (ωk ∧ F ) = −

3∑
k=1

(
i(∂k)dx123

)
∧ ωk ∧ F.

Then, by (4.2), we obtain

(4.6) I1 = − ∗ ϕ ∧ F.

Next, we compute I3. Since i(∂k)F is the linear combination of dya’s, we
see that

I3 = −dx123 ∧ i(∂1)F ∧ i(∂2)F ∧ i(∂3)F

and
i(∂3)i(∂2)i(∂1)

(1
6F

3
)

=i(∂3)i(∂2)
(1

2 i(∂1)F ∧ F 2
)

=i(∂3) (−i(∂1)F ∧ i(∂2)F ∧ F )
= − i(∂1)F ∧ i(∂2)F ∧ i(∂3)F.
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By (4.3), F 3 is the linear combination of dx123∧dyabc’s, and hence, we obtain

(4.7) I3 = 1
6F

3.

Finally, we compute I2. By (4.1), we have

dxk ∧ ϕ = dxk ∧ (dxk+1 ∧ ωk+1 + dxk+2 ∧ ωk+2).

Since i(∂k)F is the linear combination of dya’s, we see that

i(∂j)i(∂i)
(1

2F
2
)

= −i(∂i)F ∧ i(∂j)F.

Then, it follows that

I2 = −
∑

k∈Z/3

(
dxk,k+1 ∧ ωk+1 + dxk,k+2 ∧ ωk+2

)
∧ i(∂k+2)i(∂k+1)

(1
2F

2
)

= − 1
2(I2,1 + I2,2),

where
I2,1 =

∑
k∈Z/3

dxk,k+1 ∧ ωk+1 ∧ i(∂k+2)i(∂k+1)F 2

=
∑

k∈Z/3
i(∂k+2)

(
dxk,k+1 ∧ ωk+1 ∧ i(∂k+1)F 2

)

and
I2,2 =

∑
k∈Z/3

dxk+1,k ∧ ωk ∧ i(∂k)i(∂k+2)F 2

=
∑

k∈Z/3
i(∂k+2)

(
dxk,k+1 ∧ ωk ∧ i(∂k)F 2

)
.

Since dxk,k+1 ∧ ωk+1 ∧ F 2 = 0, which is an 8-form, it follows that

I2,1 =
∑

k∈Z/3
i(∂k+2)

(
−i(∂k+1)(dxk,k+1) ∧ ωk+1 ∧ F 2

)

=
∑

k∈Z/3
i(∂k+2)

(
dxk ∧ ωk+1 ∧ F 2

)
.

Similarly, we compute

I2,2 =
∑

k∈Z/3
i(∂k+2)

(
−dxk+1 ∧ ωk ∧ F 2

)
.
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Then, we obtain

2I2 =
∑

k∈Z/3
i(∂k+2)

(
F 2 ∧ (−dxk ∧ ωk+1 + dxk+1 ∧ ωk)

)

=
∑

k∈Z/3
i(∂k)

(
F 2 ∧ (−dxk+1 ∧ ωk+2 + dxk+2 ∧ ωk+1)

)
.

By (4.2), we have i(∂k) ∗ ϕ = dxk+1 ∧ ωk+2 − dxk+2 ∧ ωk+1, and hence,

2I2 = −
3∑

k=1
i(∂k)

(
F 2 ∧ i(∂k) ∗ ϕ

)
.

Since

−F 2 ∧ i(∂k) ∗ ϕ = −〈F 2, ∗(i(∂k) ∗ ϕ)〉vol
= 〈F 2, dxk ∧ ϕ〉vol
= dxk ∧ ϕ ∧ ∗(F 2) = 〈ϕ ∧ ∗(F 2), ∗dxk〉vol,

we see that 2I2 =
∑3

k=1〈ϕ ∧ ∗(F 2), ∗dxk〉 ∗ dxk. The equation (4.3) implies
that ∗(F 2) is the linear combination of dxi ∧ dyab’s, and hence, ϕ ∧ ∗(F 2) is
the linear combination of dxij ∧dy4567’s. Then, we have 〈ϕ∧∗(F 2), ∗dya〉 = 0
for any 4 ≤ a ≤ 7. Hence, we obtain

(4.8) I2 = 1
2ϕ ∧ ∗(F 2).

Then, by (4.5), (4.6), (4.7) and (4.8), the proof is completed.

Before going further, we rewrite the associator equality [3, Chapter IV,
Theorem 1.6]. This is very useful because Lemma 4.3 implies an identity
that will hold in more general settings. In [8], we show that it indeed holds
generally. Using this, we see that dDT connections for G2-manifolds minimize
a kind of the volume functional, which is called the Dirac–Born–Infeld (DBI)
action in physics, and this gives further applications. For more details, see [8].

Lemma 4.3. We have
(

1 + 1
2〈(F

S
∇)2, ∗ϕ〉

)2
+

∣∣∣∣∗ϕ ∧ F S
∇ + 1

6(F S
∇)3

∣∣∣∣2 + 1
4 |ϕ ∧ ∗(F S

∇)2|2

= det
(
idTX + (−

√
−1F S

∇)�
)
,
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where (−
√
−1F S

∇)� is a skew symmetric endomorphism of TX defined by

〈(−
√
−1F S

∇)�u, v〉 = −
√
−1F S

∇(u, v) for u, v ∈ TX.

Proof. Define ι : B → X = B × T 4 by ι(x) = (x, f(x)). Set vi = ι∗(∂i) for
i = 1, 2, 3. Then, by the associator equality [3, Chapter IV, Theorem 1.6], we
have

|ι∗ϕ(∂1, ∂2, ∂3)|2 + | ∗ ϕ(v1, v2, v3, ·)|2 = |v1 ∧ v2 ∧ v3|2.(4.9)

Then, since ι∗dxi = dxi and ι∗dya = dfa, (4.1) implies that

ι∗ϕ

=dx123 + dx1 ∧ (df45 + df67) + dx2 ∧ (df46 + df75) − dx3 ∧ (df47 + df56)

=
(
1 + 〈dx23, df45 + df67〉 + 〈dx31, df46 + df75〉 − 〈dx12, df47 + df56〉

)
dx123,

where dfab is short for dfa∧df b. On the other hand, since F S
∇=

√
−1

∑7
a=4 df

a∧
dya by (4.3), we have

〈(F S
∇)2, ∗ϕ〉 =

7∑
a,b=4

∑
k∈Z/3

〈dfab ∧ dyab, dxk,k+1 ∧ ωk+2〉

= 2
(
〈dx23, df45+df67〉 + 〈dx31, df46+df75〉 − 〈dx12, df47+df56〉

)
.

Hence, we obtain

ι∗ϕ(∂1, ∂2, ∂3) = ϕ(v1, v2, v3) = 1 + 1
2〈(F

S
∇)2, ∗ϕ〉.(4.10)

By the proof of Proposition 4.1, we have

| ∗ ϕ(v1, v2, v3, ·)|2 =|v�1 ∧ v�2 ∧ v�3 ∧ ϕ|2

=|I1 + I3|2 + |I2|2

=
∣∣∣∣∗ϕ ∧ F S

∇ + 1
6(F S

∇)3
∣∣∣∣2 + 1

4 |ϕ ∧ ∗(F S
∇)2|2.

(4.11)

Next, we compute |v1 ∧ v2 ∧ v3|2. Since vi = ι∗(∂i) = ∂i + ∂f/∂xi, we have

|v1 ∧ v2 ∧ v3|2 = det
(
id3 + tAA

)
,
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where id3 is the identity matrix of dimension 3, A is a 4 × 3 matrix defined
by A =

(
∂fa

∂xi

)
4≤a≤7,1≤i≤3

and tA is the transpose of A. Denote by

{0,±
√
−1μ1,±

√
−1μ2,±

√
−1μ3} and {λ1, λ2, λ3}

the eigenvalues of (−
√
−1F S

∇)� and tAA, respectively, where μi ∈ R and
λj ≥ 0. Since

(−
√
−1F S

∇)� =
(

0 −tA
A 0

)
, ((−

√
−1F S

∇)�)2 =
(

−tAA 0
0 −AtA

)

and {0, λ1, λ2, λ3} are the eigenvalues of AtA, we see that

{0, μ2
1, μ

2
2, μ

2
3} = {0, λ1, λ2, λ3}.

Since (−
√
−1F S

∇)� and AtA are conjugate to

0 ⊕
(

0 −μ1
μ1 0

)
⊕

(
0 −μ2
μ2 0

)
⊕

(
0 −μ3
μ3 0

)
and

⎛
⎜⎝ λ1

λ2
λ3

⎞
⎟⎠ ,

respectively, we obtain

det
(
idTX + (−

√
−1F S

∇)�
)

=(1 + μ2
1)(1 + μ2

2)(1 + μ2
3)

=(1 + λ1)(1 + λ2)(1 + λ3)
= det

(
id3 + tAA

)
= |v1 ∧ v2 ∧ v3|2

and the proof is completed.

Using Proposition 4.1, we obtain the following.

Proposition 4.4. The following conditions are equivalent.

1. The graph S is an associative submanifold with an appropriate orienta-
tion and ∇B is flat.

2. F 3
∇/6 + F∇ ∧ ∗ϕ = 0.

3. F 3
∇/6 + F∇ ∧ ∗ϕ = 0 and ϕ ∧ ∗F 2

∇ = 0.

Proof. Since (3) ⇒ (2) is obvious and the converse holds by [6, Remark 3.3],
(2) and (3) are equivalent. We show the equivalence of (1) and (2). By (4.3),
we have (FB

∇ )2 = 0 and FB
∇ ∧ (F S

∇)2 = 0. Thus, we have F 3
∇ = (F S

∇)3 and

F 3
∇/6 + F∇ ∧ ∗ϕ =

(
(F S

∇)3/6 + F S
∇ ∧ ∗ϕ

)
+ FB

∇ ∧ ∗ϕ.
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By (4.3), (F S
∇)3/6 +F S

∇ ∧ ∗ϕ and FB
∇ ∧ ∗ϕ are linear combinations of dx123 ∧

dyabc’s and dxij ∧ dy4567’s, respectively. Hence, (2) is equivalent to

(F S
∇)3/6 + F S

∇ ∧ ∗ϕ = 0 and FB
∇ ∧ ∗ϕ = 0.

The first equation is equivalent to saying that S is an associative submanifold
with an appropriate orientation by Proposition 4.1. By (4.2) and (4.3), we
have FB

∇ ∧ ∗ϕ = FB
∇ ∧ dy4567. Hence, FB

∇ ∧ ∗ϕ = 0 if and only if FB
∇ = 0.

Then, the proof is completed.

5. The real Fourier–Mukai transform for Cayley
T 4-fibrations

In this section, we compute the real Fourier–Mukai transform of Cayley cycles
and prove main theorems.

Let B ⊂ R
4 be an open set with coordinates (x0, x1, x2, x3) and f =

(f4, f5, f6, f7) : B → T 4 be a smooth function with values in T 4. We use
coordinates (y4, y5, y6, y7) for T 4. Put

S := { (x, f(x)) | x ∈ B }

the graph of f , a 4-dimensional submanifold in X := B × T 4. The standard
Spin(7)-structure Φ on X is described as

Φ = dx0 ∧ ϕ + ∗7ϕ,

where we use ϕ in (4.1) and ∗7 is the Hodge star operator on ({ 0 }×R
3)×T 4.

Setting

τ1 = dx01 + dx23, τ2 = dx02 + dx31, τ3 = dx03 + dx12,

ω1 = dy45 + dy67, ω2 = dy46 + dy75, ω3 = −(dy47 + dy56).

Φ is also described as

(5.1) Φ = dx0123 + dy4567 +
3∑

i=1
τi ∧ ωi.

Note that Φ in (3.5) is also described as in (5.1). Let

∇B = d +
√
−1

3∑
j=0

Ajdxj
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be a Hermitian connection of a trivial complex line bundle B×C → B, where
Aj : B → R is a smooth function.

Next, we consider the mirror side. The real Fourier–Mukai transform of
(S,∇B) is the connection on X∗(∼= X) defined by

∇ := d +
√
−1

3∑
j=0

Ajdxj +
√
−1

7∑
a=4

fadya.

Then, its curvature 2-form F∇ is described as F∇ = FB
∇ + F S

∇, where

(5.2) FB
∇ =

√
−1

3∑
i,j=0

∂Aj

∂xi
dxi ∧ dxj , F S

∇ =
√
−1

3∑
i=0

7∑
a=4

∂fa

∂xi
dxi ∧ dya.

Note that the real Fourier–Mukai transform of S is the connection on X∗(∼=X)
defined by

∇S := d +
√
−1

7∑
a=4

fadya

and its curvature 2-form is given by F S
∇. We first describe the condition for

S to be Cayley in terms of F S
∇ in Theorem 5.1. Using this, we show that the

similar statement also holds for F∇ in Theorem 5.7.

Theorem 5.1. Use the notation of Subsection 3.4. The graph S is a Cayley
submanifold with an appropriate orientation if and only if

π2
7

(
F S
∇ + 1

6 ∗8 (F S
∇)3

)
= 0 and π4

7

(
(F S

∇)2
)

= 0.

Remark 5.2. A similar statement for graphical submanifolds is given by
Harvey and Lawson in [3, Chapter IV, Theorem 2.20]. They showed that S
is a Cayley submanifold with an appropriate orientation if and only if two
equations (1)’ and (2)’ are satisfied. These equations are given in terms of
differential equations for f and correspond to the two equations above. They
also showed that if the determinant of the Jacobian of f is never 1, (1)’ implies
(2)’. This is generalized in [7].

Thus, unlike the G2 case ([6, Remark 3.3]), the first equation does not
always imply the second. Counterexamples are provided in [3, p. 132].

Proof. Set
F := −

√
−1F S

∇ = dx0 ∧ F1 + F2
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where F1 : B → (R7)∗ and F2 : B → Λ2(R7)∗ are given by

(5.3) F1 =
7∑

a=4

∂fa

∂x0 dy
a, F2 =

3∑
i=1

7∑
a=4

∂fa

∂xi
dxi ∧ dya.

Set ∂i := ∂/∂xi and ∂a := ∂/∂ya for 0 ≤ i ≤ 3 and 4 ≤ a ≤ 7. By Lemma 3.7
and equations (3.10) and (3.13), S is Cayley with an appropriate orientation
if and only if λ4(α)(v0, v1, v2, v3) = 0 for any p ∈ S, v0, v1, v2, v3 ∈ TpS and
α ∈ span{ dx1, · · · , dx3, dy4, · · · , dy7 }. The tangent space of S is spanned by
v0, v1, v2, v3, where

vj := ∂j +
7∑

a=4

∂fa

∂xj
∂a

for 0 ≤ j ≤ 3. By (5.3), note that

v0 = ∂0 + F �
1 , vj = ∂j + (i(∂j)F2)�

for 1 ≤ j ≤ 3. Then, we compute
√

8λ4(α)(v0, v1, v2, v3)

=
(
dx0 ∧ i(α�) ∗7 ϕ− α ∧ ϕ

)
(v0, v1, v2, v3)

= ∗7 ϕ(α�, v1, v2, v3) − α(v0)ϕ(v1, v2, v3) +
∑

k∈Z/3
α(vk)ϕ(v0, vk+1, vk+2)

= − 〈∗7ϕ(v1, v2, v3, · ), α〉 − 〈α, F1〉ϕ(v1, v2, v3)
+

∑
k∈Z/3

α(vk)ϕ(F �
1 , vk+1, vk+2).

Since − ∗7 ϕ(v1, v2, v3, · ) = −i(v3)i(v2)i(v1) ∗7 ϕ = − ∗7 (v�3 ∧ v�2 ∧ v�1 ∧ ϕ) =
∗7(v�1 ∧ v�2 ∧ v�3 ∧ ϕ), we have
√

8λ4(α)(v0, v1, v2, v3)

=
〈
v�1 ∧ v�2 ∧ v�3 ∧ ϕ− ϕ(v1, v2, v3) ∗7 F1 +

∑
k∈Z/3

ϕ(F �
1 , vk+1, vk+2) ∗7 v

�
k, ∗7α

〉
.

By the proof of Proposition 4.1, we have

v�1 ∧ v�2 ∧ v�3 ∧ ϕ = I1 + I2 + I3,
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where

(5.4) I1 = − ∗7 ϕ ∧ F2, I2 = 1
2ϕ ∧ ∗7F

2
2 , I3 = 1

6F
3
2 .

Here, we set

J1 = I1 + I3 − ϕ(v1, v2, v3) ∗7 F1 +
∑

k∈Z/3
ϕ(F �

1 , vk+1, vk+2) ∗7 (i(∂k)F2),

J2 = I2 +
∑

k∈Z/3
ϕ(F �

1 , vk+1, vk+2) ∗7 dx
k.

(5.5)

Then,
√

8λ4(α)(v0, v1, v2, v3) = 〈J1 + J2, ∗7α〉(5.6)

Since ∗7I1, ∗7I3, F1 are linear combinations of dya’s and ∗7I2 is a linear com-
bination of dxi’s, the graph S is Cayley with an appropriate orientation if
and only if

J1 = 0 and J2 = 0.

To simplify these equations, we show the following.

Lemma 5.3. We have

ϕ(v1, v2, v3) = 1 − 1
2 ∗7

(
ϕ ∧ F 2

2

)
,∑

k∈Z/3
ϕ(F �

1 , vk+1, vk+2)dxk = − ∗7 (F1 ∧ F2 ∧ ϕ).

Proof. The first equation follows from (4.10). We prove the second equation.
Since F1 is a linear combination of dya’s, the equation (4.1) implies that

ϕ(F �
1 , vk+1, vk+2) = ϕ(F �

1 , ∂k+1, (i(∂k+2)F2)�) + ϕ(F �
1 , (i(∂k+1)F2)�, ∂k+2).

We compute

ϕ(F �
1 , ∂k+1, (i(∂k+2)F2)�) = −ωk+1(F �

1 , (i(∂k+2)F2)�)
= −〈F1 ∧ i(∂k+2)F2, ωk+1〉
= 〈i(∂k+2)(F1 ∧ F2), ωk+1〉
= 〈F1 ∧ F2, dx

k+2 ∧ ωk+1〉.
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Then, we have

ϕ(F �
1 , vk+1, vk+2) = 〈F1 ∧ F2, dx

k+2 ∧ ωk+1 − dxk+1 ∧ ωk+2〉
= −〈F1 ∧ F2, i(∂k) ∗7 ϕ〉
= −〈dxk ∧ F1 ∧ F2, ∗7ϕ〉 = −〈dxk, ∗7(F1 ∧ F2 ∧ ϕ)〉.

By (4.1) and (5.3), F1 ∧F2 ∧ϕ is a linear combination of dxij ∧ dy4567’s, and
hence, the proof is completed.

Thus, by (5.4), (5.5) and Lemma 5.3, we see that

J1 = − ∗7ϕ ∧ F2 + 1
6F

3
2 −

(
1 − 1

2 ∗7
(
ϕ ∧ F 2

2

))
∗7 F1

+ ∗7(F1 ∧ F2 ∧ ϕ) ∧ ∗7F2,

J2 =1
2ϕ ∧ ∗7F

2
2 − F1 ∧ F2 ∧ ϕ.

(5.7)

Now, we describe π2
7(F − ∗8F

3/6) and π4
7(F 2).

Lemma 5.4. We have

2π2
7

(
F − 1

6 ∗8 F
3
)

=λ2
(
∗7

(
∗7ϕ ∧ F2 −

1
6F

3
2 +

(
1 − 1

2 ∗7
(
ϕ ∧ F 2

2

))
∗7 F1

− ∗7 (F1 ∧ F2 ∧ ϕ) ∧ ∗7F2)) ,
√

8π4
7(F 2) =λ4

(
∗7

(
2F1 ∧ F2 ∧ ϕ− ϕ ∧ ∗7F

2
2

))
.

Proof. Set

{ e0, · · · , e7 } = { dx0, · · · , dx3, dy4, · · · , dy7 } and
{ e0, · · · , e7 } = { ∂0, · · · , ∂7 }.

Then, by (3.10) and (3.6), we have

2π2
7(F ) =2

7∑
μ=1

〈F, λ2(eμ)〉 · λ2(eμ)

=
7∑

μ=1
〈e0 ∧ F1 + F2, e

0 ∧ eμ + i(eμ)ϕ〉 · λ2(eμ)

=
7∑

μ=1
(〈F1, e

μ〉 + 〈F2, i(eμ)ϕ〉) · λ2(eμ).
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Since 〈F2, i(eμ)ϕ〉 = ∗7(F2 ∧ eμ ∧ ∗7ϕ) = 〈eμ, ∗7(F2 ∧ ∗7ϕ)〉, we obtain

(5.8) 2π2
7(F ) = λ2 (F1 + ∗7(F2 ∧ ∗7ϕ)) .

We also compute

π2
7(∗8F

3) =
7∑

μ=1
〈∗8F

3, λ2(eμ)〉 · λ2(eμ) =
7∑

μ=1
〈F 3, λ6(eμ)〉 · λ2(eμ).

By (3.8), we have for 1 ≤ μ ≤ 7

2λ6(eμ) = ∗8
(
e0 ∧ eμ + i(eμ)ϕ

)
= ∗7e

μ + eμ ∧ ∗8ϕ = ∗7e
μ + e0 ∧ eμ ∧ ∗7ϕ,

and hence,

2〈F 3, λ6(eμ)〉 = 〈3e0 ∧ F1 ∧ F 2
2 + F 3

2 , ∗7e
μ + e0 ∧ eμ ∧ ∗7ϕ〉

= 3〈F1 ∧ F 2
2 , e

μ ∧ ∗7ϕ〉 + 〈F 3
2 , ∗7e

μ〉.

The first term is computed as

3〈F1 ∧ F 2
2 , e

μ ∧ ∗7ϕ〉 =3〈i(eμ)
(
F1 ∧ F 2

2

)
, ∗7ϕ〉

=3 ∗7
((

〈eμ, F1〉F 2
2 − 2F1 ∧ (i(eμ)F2) ∧ F2

)
∧ ϕ

)
=3〈∗7(F 2

2 ∧ ϕ)F1, e
μ〉 − 6 ∗7 (F1 ∧ (i(eμ)F2) ∧ F2 ∧ ϕ) .

The second term is computed as

−6 ∗7 (F1 ∧ (i(eμ)F2) ∧ F2 ∧ ϕ) = 6〈i(eμ)F2, ∗7 (F1 ∧ F2 ∧ ϕ)〉
= −6 ∗7 (∗7 (F1 ∧ F2 ∧ ϕ) ∧ eμ ∧ ∗7F2)
= 6〈∗7 (∗7 (F1 ∧ F2 ∧ ϕ) ∧ ∗7F2) , eμ〉.

Summarizing these equations, we obtain
(5.9)
2π2

7(∗8F
3) = λ2

(
∗7

(
F 3

2 + 3 ∗7 (F 2
2 ∧ ϕ) ∗7 F1 + 6 ∗7 (F1 ∧ F2 ∧ ϕ) ∧ ∗7F2

))
.
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Then, by (5.8) and (5.9), it follows that

2π2
7

(
F − 1

6 ∗8 F
3
)

=λ2 (F1 + ∗7(F2 ∧ ∗7ϕ)

−1
6 ∗7

(
F 3

2 + 3 ∗7 (F 2
2 ∧ ϕ) ∗7 F1 + 6 ∗7 (F1 ∧ F2 ∧ ϕ) ∧ ∗7F2

))

=λ2
(
∗7

(
∗7ϕ ∧ F2 −

1
6F

3
2 +

(
1 − 1

2 ∗7
(
ϕ ∧ F 2

2

))
∗7 F1

− ∗7 (F1 ∧ F2 ∧ ϕ) ∧ ∗7F2)) ,

which implies the first equation of Lemma 5.4.
Next, we compute π4

7(F 2). By (3.10), we have

π4
7(F 2) =

7∑
μ=1

〈F 2, λ4(eμ)〉 · λ4(eμ).

For 1 ≤ μ ≤ 7, we have by (3.6)
√

8〈F 2, λ4(eμ)〉 =〈2e0 ∧ F1 ∧ F2 + F 2
2 , e

0 ∧ i(eμ) ∗7 ϕ− eμ ∧ ϕ〉
=2〈F1 ∧ F2, i(eμ) ∗7 ϕ〉 − 〈F 2

2 , e
μ ∧ ϕ〉

and

2〈F1 ∧ F2, i(eμ) ∗7 ϕ〉 = − 2 ∗7 (F1 ∧ F2 ∧ eμ ∧ ϕ)
=2〈∗7 (F1 ∧ F2 ∧ ϕ) , eμ〉,

−〈F 2
2 , e

μ ∧ ϕ〉 = − ∗7(eμ ∧ ϕ ∧ ∗7F
2
2 ) = −〈∗7

(
ϕ ∧ ∗7F

2
2

)
, eμ〉.

Hence, we obtain the second equation of Lemma 5.4.

Then, by (5.7) and Lemma 5.4, we obtain

∗7J1 = 2(λ2)−1
(
π2

7

(
−F + 1

6 ∗8 F
3
))

,(5.10)

∗7J2 = −
√

8
2 (λ4)−1π4

7(F 2).(5.11)

Hence, by (5.10) and (5.11), we see that the graph S is Cayley with an
appropriate orientation if and only if π2

7
(
F − ∗8F

3/6
)

= 0 and π4
7(F 2) =

0.
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Before going further, we rewrite the Cayley equality [3, Chapter IV, The-
orem 1.28]. This is very useful because Lemma 5.5 implies an identity that
will hold in more general settings as in Lemma 4.3. We show that it indeed
holds generally and gives many applications. For more details, see [8].

Lemma 5.5. We have
(

1 + 1
2〈(F

S
∇)2,Φ〉 + ∗8(F S

∇)4

24

)2

+ 4
∣∣∣∣π2

7

(
F S
∇ + 1

6 ∗8 (F S
∇)3

)∣∣∣∣2

+ 2
∣∣∣π4

7

(
(F S

∇)2
)∣∣∣2

= det(idTX + (−
√
−1F S

∇)�),

where (−
√
−1F S

∇)� is a skew symmetric endomorphism of TX defined by

〈(−
√
−1F S

∇)�u, v〉 = −
√
−1F S

∇(u, v) for u, v ∈ TX.

Proof. Define ι : B → X = B × T 4 by ι(x) = (x, f(x)). Set vi = ι∗(∂i)
for i = 0, 1, 2, 3. Then, by the Cayley equality [3, Chapter IV, Theorem 1.6],
which is equivalent to Lemma 3.6, we have

|ι∗Φ(∂0, ∂1, ∂2, ∂3)|2 + 8|τ(v0, v1, v2, v3)|2 = |v0 ∧ v1 ∧ v2 ∧ v3|2,(5.12)

where τ is defined by (3.13). Then, since ι∗dxi = dxi and ι∗dya = dfa, (5.1)
implies that

ι∗Φ
=dx0123 + df4567 + τ1 ∧ (df45 + df67) + τ2 ∧ (df46 + df75) − τ3 ∧ (df47 + df56)

=
(
1 + ∗4(df4567) + 〈τ1, df45 + df67〉

+ 〈τ2, df46 + df75〉 − 〈τ3, df47 + df56〉
)
dx0123,

where ∗4 is the Hodge star on the space spanned by dy4, · · · , dy7 and dfa1···ak

is short for dfa1∧· · ·∧dfak . On the other hand, since F S
∇ =

√
−1

∑7
a=4 df

a∧dya
by (5.2), we have

∗8(F S
∇)4

24 =
7∑

a,b,c,d=4
∗8

(
dfabcd ∧ dyabcd

24

)

= ∗8
(
df4567 ∧ dy4567

)
= ∗4

(
df4567

)
,
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〈(F S
∇)2,Φ〉 =

7∑
a,b=4

3∑
i=1

〈dfab ∧ dyab, τi ∧ ωi〉

=
7∑

a,b=4

3∑
i=1

〈dfab, τi〉〈dyab, ωi〉

=2
(
〈τ1, df45 + df67〉 + 〈τ2, df46 + df75〉 − 〈τ3, df47 + df56〉

)
.

Hence, we obtain

|ι∗Φ(∂0, ∂1, ∂2, ∂3)|2 =
(

1 + 1
2〈(F

S
∇)2,Φ〉 + ∗8(F S

∇)4

24

)2

.(5.13)

Next, we compute 8|τ(v0, v1, v2, v3)|2. By (3.13) and (5.6), we have

8|τ(v0, v1, v2, v3)|2 = 8
7∑

μ=1

(
λ4(eμ)(v0, v1, v2, v3)

)2
=

7∑
μ=1

〈∗7J1 + ∗7J2, e
μ〉2 .

Recall that ∗7J1 and ∗7J2 are linear combinations of dya’s and dxi’s, respec-
tively, and λj is an isometry by Lemma 3.4. Then, by (5.10) and (5.11), we
obtain

8|τ(v0, v1, v2, v3)|2 =
7∑

μ=1
〈∗7J1, e

μ〉2 + 〈∗7J2, e
μ〉2

=4
∣∣∣∣π2

7

(
F S
∇ + 1

6 ∗8 (F S
∇)3

)∣∣∣∣2 + 2
∣∣∣π4

7

(
(F S

∇)2
)∣∣∣2 .

(5.14)

By the same argument as in the proof of Lemma 4.3, we see that

|v0 ∧ v1 ∧ v2 ∧ v3|2 = det
(
idTX + (−

√
−1F S

∇)�
)

and the proof is completed.

Using Theorem 5.1, we obtain the following Theorem 5.7. We first prove
the following lemma.

Lemma 5.6. Let U ⊂ R
8 be a Cayley subspace, a subspace of R8 which is

a Cayley submanifold. Denote by U⊥ the orthogonal complement of U . We
identify ΛkU∗ with the subspace of Λk(R8)∗ by

ΛkU∗ = {α ∈ Λk(R8)∗ | i(v)α = 0 for any v ∈ U⊥ }.
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Then, α ∈ Λ2U∗ is anti-self-dual with respect to the induced metric if and
only if π2

7(α) = 0.

Proof. Since U is Cayley, there is an orthonormal basis

{ ∂/∂x0, · · · , ∂/∂x3, ∂/∂y4, · · · , ∂/∂y7 }

with its dual { dx0, · · · , dx3, dy4, · · · , dy7 } such that U is spanned by
∂/∂x0, · · · , ∂/∂x3, which is positively oriented, U⊥ is spanned by ∂/∂y4, · · · ,
∂/∂y7 and (5.1) holds.

Denote by ∗4 and ∗8 the Hodge stars on U and R
8, respectively. Then,

by (3.11), we have

4π2
7(α) =α + ∗8(Φ ∧ α)

=α + ∗8

⎛
⎝dy4567 ∧ α +

3∑
j=1

α ∧ τi ∧ ωi

⎞
⎠

=α + ∗4α + ∗8

⎛
⎝ 3∑

j=1
〈α, τi〉dx0123 ∧ ωi

⎞
⎠

=α + ∗4α +
3∑

j=1
〈α, τi〉ωi.

Since {∂/∂x0, · · · , ∂/∂x3} is positively oriented, { τ1, τ2, τ3 } is a basis of the
space of self-dual 2-forms on U . Hence, the proof is completed.

Theorem 5.7. The following conditions are equivalent.

1. The graph S is a Cayley submanifold with an appropriate orientation
and if we identify −

√
−1FB

∇ ∈ Ω2(B) with a 2-form on S, it is anti-
self-dual with respect to the induced metric and the orientation which
makes S Cayley.

2.
π2

7

(
F∇ + 1

6 ∗8 F
3
∇

)
= 0 and π4

7

(
F 2
∇

)
= 0.

Proof. By (5.2), we have (FB
∇ )3 = 0 and (FB

∇ )2 ∧ F S
∇ = 0. Thus, we have

F 3
∇ = 3FB

∇ ∧ (F S
∇)2 + (F S

∇)3. Hence,

π2
7

(
F∇ + 1

6 ∗8 F
3
∇

)

=π2
7

((
F S
∇ + 1

6 ∗8 (F S
∇)3

)
+

(
FB
∇ + 1

2 ∗8
(
FB
∇ ∧ (F S

∇)2
)))

.
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Note that F S
∇+∗8(F S

∇)3/6, FB
∇ and ∗8

(
FB
∇ ∧ (F S

∇)2/2
)

are linear combinations
of dxi ∧ dya’s, dxij ’s and dyab’s, respectively. Then, by (3.11) and (5.1), the
first term π2

7
(
F S
∇ + ∗8(F S

∇)3/6
)

is a linear combination of dxi ∧ dya’s and the
second term π2

7
(
FB
∇ + ∗8

(
FB
∇ ∧ (F S

∇)2/2
))

is that of dxij ’s and dyab’s. Hence,
π2

7
(
F∇ + ∗8F

3
∇/6

)
= 0 if and only if

(5.15) π2
7

(
F S
∇ + 1

6 ∗8 (F S
∇)3

)
= 0, π2

7

(
FB
∇ + 1

2 ∗8
(
FB
∇ ∧ (F S

∇)2
))

= 0.

Next, we consider π4
7
(
F 2
∇
)

= π4
7
(
(FB

∇ )2 + 2FB
∇ ∧ F S

∇ + (F S
∇)2

)
= 0. By

the definition of λ4 in (3.6), (4.1) and (4.2), λ4(dxi) is a linear combination
of dxjk ∧ dybc’s for each 1 ≤ i ≤ 3, and λ4(dya) is a linear combination of
dxj ∧ dybcd’s and dxjk� ∧ dyb’s for each 4 ≤ a ≤ 7. By (5.2), (FB

∇ )2, FB
∇ ∧ F S

∇
and (F S

∇)2 are linear combinations of dx0123, dxijk ∧ dya’s and dxij ∧ dyab’s,
respectively. Hence, we have π4

7
(
(FB

∇ )2
)

= 0 and π4
7
(
F 2
∇
)

= 0 if and only if

π4
7

(
(F S

∇)2
)

= 0, π4
7

(
FB
∇ ∧ F S

∇

)
= 0.(5.16)

The first equations of (5.15) and (5.16) are equivalent to saying that
S is a Cayley submanifold with an appropriate orientation by Theorem 5.1.
Thus, assuming that S is a Cayley submanifold, we may show that
π2

7
(
FB
∇ + ∗8

(
FB
∇ ∧ (F S

∇)2/2
))

= 0 and π4
7
(
FB
∇ ∧ F S

∇
)

= 0 if and only if
−
√
−1FB

∇ is anti-self-dual with respect to the induced metric and the ori-
entation which makes S Cayley. For simplicity, set

(F S)� = (−
√
−1F S

∇)�,

where (−
√
−1F S

∇)� is defined in Lemma 5.5. Then, assuming that S is a
Cayley submanifold, π2

7
(
FB
∇ + ∗8

(
FB
∇ ∧ (F S

∇)2/2
))

= 0 and π4
7
(
FB
∇ ∧ F S

∇
)

=
0 if and only if

π2
7

((
(idTX + (F S)�)−1

)∗
FB
∇

)
= 0(5.17)

by [7, Theorem A.8 (2)].
Now, we observe (5.17) pointwisely. Fix x ∈ B and regard (F S)� =

(F S)�(x,f(x)) ∈ End(T(x,f(x))X) ∼= End(R8). By the definition of (F S)�, we
see that

(idTX + (F S)�)∗
(

∂

∂xi

)
= ∂

∂xi
+

7∑
a=4

∂fa

∂xi
(x) ∂

∂ya
,

(idTX + (F S)�)∗
(

∂

∂ya

)
= ∂

∂ya
−

3∑
i=0

∂fa

∂xi
(x) ∂

∂xi
.
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Then, we can regard (idTX + (F S)�)∗
(
∂/∂xi

)
as an element of T(x,f(x))S

and (idTX + (F S)�)∗ (∂/∂ya) as an element of T⊥
(x,f(x))S. Moreover, (idTX +

(F S)�)∗|W0 : W0 → T(x,f(x))S and (idTX + (F S)�)∗|V0 : V0 → T⊥
(x,f(x))S are

isomorphisms, where W0 and V0 are subspaces of R8 spanned by ∂/∂x0, · · · ,
∂/∂x3 and ∂/∂y4, · · · , ∂/∂y7, respectively. Since FB

∇ is a linear combination
of dxij ’s, we see that

((idTX + (F S)�)−1)∗(−
√
−1FB

∇ ) ∈ Λ2T ∗
(x,f(x))S

in the sense of Lemma 5.6. Then, by Lemma 5.6, (5.17) holds if and only if
((idTX + (F S)�)−1)∗(−

√
−1FB

∇ ) ∈ Λ2T ∗
(x,f(x))S is anti-self-dual with respect

to the induced metric and the orientation which makes S Cayley.
Since the identification between B and S is given by κ : B 	 x 
→

(x, f(x)) ∈ S and (dκ)x = (idTX + (F S)�)∗|W0 , where we identify TxB with
W0, we obtain the desired statement.

6. The real Fourier–Mukai transform for associative
T 3-fibrations

In this section, we compute the real Fourier–Mukai transform of coassociative
cycles using Theorems 5.1 and 5.7. It turns out that the real Fourier–Mukai
transform of an associative cycle coincides with that of a coassociative cycle
as stated in [9].

Let B ⊂ R
4 be an open set with coordinates (y4, y5, y6, y7) and f =

(f1, f2, f3) : B → T 3 be a smooth function with values in T 3, where we use
coordinates (x1, x2, x3) for T 3. Put

S := { (y, f(y)) | y ∈ B }

the graph of f , a 4-dimensional submanifold in X := B×T 3. The manifold X
admits a G2-structure ϕ with its Hodge dual ∗ϕ = ∗7ϕ as in (4.1) and (4.2).
Let

∇B = d +
√
−1

7∑
a=4

Aadya

be a Hermitian connection of a trivial complex line bundle B×C → B, where
Aj : B → R is a smooth function.

Next, we consider the mirror side. The real Fourier–Mukai transform of
(S,∇B) is the connection on X∗(∼= X) defined by

∇ := d +
√
−1

7∑
a=4

Aadya +
√
−1

3∑
j=1

f jdxj .
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Then, its curvature 2-form F∇ is given by F∇ = FB
∇ + F S

∇, where

(6.1) FB
∇ =

√
−1

7∑
a,b=4

∂Ab

∂ya
dya ∧ dyb, F S

∇ =
√
−1

3∑
j=1

7∑
a=4

∂f j

∂ya
dya ∧ dxj .

We first describe the condition for S to be coassociative in terms of F S
∇.

Proposition 6.1. The following conditions are equivalent.

1. The graph S is a coassociative submanifold with an appropriate orien-
tation.

2. (F S
∇)3/6 + F S

∇ ∧ ∗ϕ = 0.
3. (F S

∇)3/6 + F S
∇ ∧ ∗ϕ = 0 and ϕ ∧ ∗(F S

∇)2 = 0.

Thus, we obtain the same equations as in Proposition 4.1.

Proof. Since (3) obviously implies (2) and the converse holds by [6, Remark
3.3], (2) and (3) are equivalent. We show the equivalence of (1) and (3). Fixing
∗ ∈ S1, we have an embedding

ι : B × T 3 ∼= B × {∗ } × T 3 ↪→ B × T 4.

Let (x0, x1, x2, x3) be coordinates for T 4. We canonically identify F S
∇ on B ×

(T 3)∗ with a 2-form on B × (T 4)∗ such that i(∂/∂x0)F S
∇ = 0.

The manifold B × T 4 admits a Spin(7)-structure Φ given by

Φ = dx0 ∧ ϕ + ∗7ϕ,

and the graph S is coassociative if and only if ι(S) is Cayley. Then, The-
orem 5.1 implies that S is a coassociative submanifold with an appropriate
orientation if and only if

π6
7

(
∗8F

S
∇ + (F S

∇)3/6
)

= 0 and π4
7

(
(F S

∇)2
)

= 0.

We describe these equations in terms of the G2-structure ϕ on B × T 3.
By (3.12) and (3.8), we have

4π6
7

(
∗8F

S
∇

)
= ∗8F

S
∇ + Φ ∧ F S

∇

= dx0 ∧ ∗7F
S
∇ + (dx0 ∧ ϕ + ∗7ϕ) ∧ F S

∇

= dx0 ∧ (∗7F
S
∇ + ϕ ∧ F S

∇) + ∗7ϕ ∧ F S
∇,
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4π6
7

(
(F S

∇)3
)

= (F S
∇)3 + Φ ∧ ∗8(F S

∇)3

= (F S
∇)3 + (dx0 ∧ ϕ + ∗7ϕ) ∧ dx0 ∧ ∗7(F S

∇)3

= dx0 ∧ ∗7F
3
∇ ∧ ∗7ϕ + (F S

∇)3.

Hence, π6
7
(
∗8F

S
∇ + (F S

∇)3/6
)

= 0 is equivalent to

∗7F
S
∇ + ϕ ∧ F S

∇ + 1
6 ∗7 (F S

∇)3 ∧ ∗7ϕ = 0, ∗7ϕ ∧ F S
∇ + 1

6(F S
∇)3 = 0.

Since these two equations are equivalent by [6, Lemma 3.2], π6
7
(
∗8 F S

∇ +
(F S

∇)3/6
)

= 0 is equivalent to ∗7ϕ ∧ F S
∇ + (F S

∇)3/6 = 0.
Next, we consider π4

7
(
(F S

∇)2
)

= 0. By Lemma 3.4, π4
7
(
(F S

∇)2
)

= 0 if and
only if

〈dx0 ∧ i(α�) ∗7 ϕ− α ∧ ϕ, (F S
∇)2〉 = 0

for any α ∈ Ω1(B × T 3). Since i(∂/∂x0)F S
∇ = 0, this is equivalent to

0 = 〈α ∧ ϕ, (F S
∇)2〉 = ∗7(α ∧ ϕ ∧ ∗7(F S

∇)2) = 〈α, ∗7(ϕ ∧ ∗7(F S
∇)2)〉.

Hence, the proof is completed by [6, Remark 3.3].

Similarly, we obtain the following Proposition 6.2 from Theorem 5.7.

Proposition 6.2. The following conditions are equivalent.

1. The graph S is a coassociative submanifold with an appropriate orien-
tation and if we identify −

√
−1FB

∇ ∈ Ω2(B) with a 2-form on S, it
is anti-self-dual with respect to the induced metric and the orientation
which makes S coassociative.

2. F 3
∇/6 + F∇ ∧ ∗ϕ = 0.

3. F 3
∇/6 + F∇ ∧ ∗ϕ = 0 and ϕ ∧ ∗F 2

∇ = 0.

Since the lemma corresponding to Lemma 5.6 would be interesting in
itself, we write it down here.

Lemma 6.3. Let U ⊂ R
7 be a coassociative subspace, a subspace of R7 which

is a coassociative submanifold. Denote by U⊥ the orthogonal complement of
U . We identify ΛkU∗ with the subspace of Λk(R7)∗ by

ΛkU∗ = {α ∈ Λk(R7)∗ | i(v)α = 0 for any v ∈ U⊥ }.

Then α ∈ Λ2U∗ is anti-self-dual with respect to the induced metric if and only
if α ∧ ∗ϕ = 0.
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Proof. Since U is coassociative, there is an orthonormal basis { ei }7
i=1 with

its dual { ei }7
i=1 such that U is spanned by e4, · · · , e7, which is positively

oriented, U⊥ is spanned by e1, · · · , e3 and (3.1) holds. Setting ω1 = e45 +
e67, ω2 = e46−e57 and ω3 = −(e47+e56), we have ∗ϕ = e4567+

∑
k∈Z/3 e

k,k+1∧
ωk+2. Then, it follows that

α ∧ ∗ϕ =
∑

k∈Z/3
ek,k+1 ∧ α ∧ ωk+2 =

∑
k∈Z/3

ek,k+1 ∧ 〈α, ωk+2〉e4567.

Since {e4, · · · , e7} is positively oriented, {ω1, ω2, ω3 } is a basis of the space
of self-dual 2-forms on U . Hence, the proof is completed.

By this lemma and results in [6], we can also prove Proposition 6.2 without
using Theorem 5.7.

7. Compatibilities with other connections

In this section, we post some evidences showing that Definition 1.3 we suggest
is compatible with deformed Donaldson–Thomas (dDT) connections for a
G2-manifold and deformed Hermitian Yang–Mills (dHYM) connections of a
Calabi–Yau 4-manifold.

Use the notation (and identities) of Subsection 3.4. Let X8 be a compact
connected 8-manifold with a Spin(7)-structure Φ and L → X be a smooth
complex line bundle with a Hermitian metric h. Set

A0 ={∇ | a Hermitian connection of (L, h) } = ∇ +
√
−1Ω1 · idL

for a fixed connection ∇ ∈ A0. We regard the curvature 2-form F∇ of ∇ as a√
−1R-valued closed 2-form on X.

Define maps F1
Spin(7) : A0 →

√
−1Ω2

7 and F2
Spin(7) : A0 → Ω4

7 by

F1
Spin(7)(∇) = π2

7

(
F∇ + 1

6 ∗ F 3
∇

)

= 1
4

(
F∇ + 1

6 ∗ F 3
∇ + ∗

((
F∇ + 1

6 ∗ F 3
∇

)
∧ Φ

))
,

F2
Spin(7)(∇) = π4

7(F 2
∇).

Then, a Hermitian connection ∇ of (L, h) satisfying

F1
Spin(7)(∇) = 0 and F2

Spin(7)(∇) = 0

is a Spin(7)-dDT connection defined in Definition 1.3.
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Lemma 7.1. Let (Y 7, ϕ, g) be a G2-manifold with the Hodge dual ∗7ϕ ∈ Ω4.
Then, X8 = S1 × Y 7 is a Spin(7)-manifold. Let L → Y be a smooth complex
line bundle with a Hermitian metric h. Identify a connection ∇ on Y 7 with
that on X8 by the pullback. Then, the following are equivalent.

1. ∇ is a dDT connection in the sense of G2, that is, FG2(∇) = ∗7ϕ ∧
F∇ + F 3

∇/6 = 0.
2. F1

Spin(7)(∇) = 0.
3. F1

Spin(7)(∇) = F2
Spin(7)(∇) = 0.

Proof. Recall that the induced Spin(7)-structure on X8 is given by

Φ = dx ∧ ϕ + ∗7ϕ,

where x is a coordinate of S1 and ∗7 is the Hodge star on Y 7. By (3.8), we
have

∗F∇ = dx ∧ ∗7F∇, ∗F 3
∇ = dx ∧ (∗7F

3
∇),

where ∗ = ∗8 is the Hodge star on X8. Then, we have

4 ∗ F1
Spin(7)(∇)

=dx ∧ ∗7F∇ + 1
6F

3
∇ + F∇ ∧ (dx ∧ ϕ + ∗7ϕ) + 1

6dx ∧ (∗7F
3
∇) ∧ ∗7ϕ

=dx ∧
(
∗7F∇ + ϕ ∧ F∇ + 1

6(∗7F
3
∇) ∧ ∗7ϕ

)
+ ∗7ϕ ∧ F∇ + 1

6F
3
∇.

Thus, we see that (1) and (2) are equivalent by [6, Lemma 3.2].
The equivalence of (2) and (3) follows from [7, Proposition 3.3] since

F 4
∇ = 0. This equivalence can also be proved by [6, Remark 3.3].

Lemma 7.2. Let (X8, J, g, ω,Ω) be a Calabi–Yau 4-manifold and L → X be
a complex line bundle with a Hermitian metric h. Equip X with a Spin(7)-
structure Φ given by

Φ = 1
2ω

2 + Re Ω.

Suppose that ∇ is a Hermitian connection such that the (0, 2)-part F 0,2
∇ of F∇

vanishes. Then, we have F2
Spin(7)(∇) = 0. Moreover, ∇ is a dHYM connection

with phase 1 on X8, that is, Im (ω + F∇)4 = 0, if and only if ∇ is a Spin(7)-
dDT connection, that is, F1

Spin(7)(∇) = 0.
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Proof. By [12, Proposition 2], Λ4
7T

∗X is contained in the space of (3, 1), (1, 3),
(4, 0) and (0, 4)-forms. Since F 0,2

∇ = 0, F 2
∇ is a real (2, 2)-form, which implies

that F2
Spin(7)(∇) = π4

7(F 2
∇) = 0.

Next, we show the second statement. By [12, Proposition 2], we have
Λ2

7T
∗X = Rω ⊕ A+, where A+ is a subspace of Λ2,0T ∗X ⊕ Λ0,2T ∗X. Then,

we have
〈A+,F1

Spin(7)(∇)〉 = 〈A+, F∇ + ∗F 3
∇/6〉 = 0

since F∇ is a (1, 1)-form. Thus, F1
Spin(7)(∇) = 0 if and only if 〈ω, F∇ +

∗F 3
∇/6〉 = 0. Since ∗ω = ω3/6, we have〈
ω, F∇ + 1

6 ∗ F 3
∇

〉
vol = ∗ω ∧ F∇ + 1

6ω ∧ F 3
∇

= 1
6
(
ω3 ∧ F∇ + ω ∧ F 3

∇

)
=

√
−1
24 Im (ω + F∇)4.

Hence, the proof is completed.

Remark 7.3. Note that dHYM connections do not depend on the holomor-
phic volume form Ω. Then, since

(
X8, J, g, ω, e−

√
−1θΩ

)
is again a Calabi–Yau

manifold for θ ∈ R, Lemma 7.2 implies that for a Hermitian connection ∇
with F 0,2

∇ = 0, ∇ is a dHYM connection with phase 1 if and only if ∇ is a
Spin(7)-dDT connection with respect to Φθ = ω2/2 + Re(e−

√
−1θΩ).

Appendix A. Notation

We summarize the notation used in this paper. We use the following for
a manifold X with a G2- or Spin(7)-structure. Denote by g the associated
Riemannian metric.

Notation Meaning
i( · ) The interior product
Γ(X,E) The space of all smooth sections of a vector bundle E → X
Ωk Ωk = Ωk(X) = Γ(X,ΛkT ∗X)
v� ∈ T ∗X v� = g(v, · ) for v ∈ TX
α� ∈ TX α = g(α�, · ) for α ∈ T ∗X
vol The volume form induced from g
Λk
�T

∗X The subspace of ΛkT ∗X corresponding to an �-dimensional
irreducible subrepresentation as in Subsection 3.4

Ωk
� Ωk

� = Γ(X,Λk
�T

∗X)
πk
� The projection ΛkT ∗X → Λk

�T
∗X or Ωk → Ωk

�
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