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On subregular slices of the elliptic
Grothendieck–Springer resolution

Dougal Davis
∗

Abstract: We study singularities, resolutions and deformations
coming from subregular slices of the elliptic Grothendieck–Springer
resolution constructed by the author in [5]. This is a simultaneous
log resolution of an extended coarse moduli space map with do-
main the stack of principal bundles on an elliptic curve with sim-
ply connected simple structure group. We construct explicit slices
of this stack through all subregular unstable bundles, for all pos-
sible structure groups. When the structure group is not SL2, we
describe the pullbacks of the elliptic Grothendieck–Springer reso-
lution to these slices as concrete varieties, extending and refining
earlier work of I. Grojnowski and N. Shepherd-Barron, who re-
lated these varieties for exceptional structure groups to del Pezzo
surfaces. We use the resolutions to identify the singularities of the
unstable locus of the subregular slices, and prove that the extended
coarse moduli space map gives torus-equivariant deformations that
are miniversal among those with appropriately restricted weights.
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1. Introduction

Since the work of E. Brieskorn [2] and P. Slodowy [16], it has been well known
that du Val (aka simple, Kleinian, ADE, etc.) singularities of algebraic sur-
faces arise naturally in the geometry of simple algebraic groups and their
Lie algebras. If G is a simply connected simple algebraic group, say over an
algebraically closed field k of characteristic 0, then the cone N of nilpotent
elements inside the Lie algebra g of G is a singular variety canonically as-
sociated to g. The cone N has dimension dimG − l, where l is the rank of
G; to obtain a surface singularity, one first chooses a subregular nilpotent
element x ∈ g (i.e., one satisfying dim StabG(x) = l + 2) and a transversal
slice Z (a locally closed subvariety Z ⊆ g transverse to all G-orbits for the
adjoint representation) such that x is the unique subregular nilpotent in Z.
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Then Z ∩N is a surface, with a unique du Val singularity at x whose Dynkin
diagram is the same as that of G when G is of type A, D or E.

The singular surfaces constructed in this way are also furnished with
natural Lie-theoretic deformations and resolutions. The deformations arise
from the (additive) adjoint quotient map

(1.0.1) χadd : g −→ g//G = Spec k[g]G,

where G acts on g via the adjoint representation. The morphism χadd is a flat
family of affine varieties with central fibre N = (χadd)−1(0); the restriction
χZ = χ|Z : Z → g//G gives a flat deformation of the singular surface Z∩N =
χ−1
Z (0). In types ADE, it was proved by Brieskorn that this recovers the

miniversal deformation of the singular surface Z ∩N , while in types BCFG
it was shown by Slodowy that the deformation is miniversal among those
preserving a “folding symmetry” of the ADE du Val singularity.

The resolutions arise from a commutative diagram

(1.0.2)

g̃ g

t t//W ∼= g//G,

ψadd

χ̃add χadd

q

where g̃ = G×B b for B ⊆ G a Borel subgroup with Lie algebra b, t is the Lie
algebra of a maximal torus T ⊆ G and W = NG(T )/T is the Weyl group. The
diagram (1.0.2) is called the (additive) Grothendieck–Springer resolution; it
is a simultaneous resolution of singularities in the sense that χ̃add is smooth,
ψadd is proper, and (χ̃add)−1(t) → (χadd)−1(q(t)) is a resolution of singularities
for all t ∈ t. Setting Z̃ = g̃×g Z, the induced diagram

Z̃ Z

t t//W

ψZ

χ̃Z χZ

is a simultaneous resolution for χZ . One pleasing way to identify the du
Val singularity of χ−1

Z (0) is to compute the fibre ψ−1
Z (x), and to show that

this gives the correct Dynkin configuration of (−2)-curves on the resolution
χ̃−1
Z (0).
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This paper is concerned with an elliptic version of the above additive
story. (From now on, k can be any algebraically closed field.) Building on
earlier work [11, 1, 8], the author constructed in [5] a commutative diagram

(1.0.3)

B̃unG BunG

Θ−1
Y /Gm (Ŷ //W )/Gm,

ψ

χ̃ χ

q

where BunG is the stack of principal G-bundles on an elliptic curve E, B̃unG

is the Kontsevich–Mori compactification of the stack Bun0
B of degree 0 B-

bundles on E, Θ−1
Y is an anti-ample W -linearised line bundle on the coarse

moduli space Y = Hom(X∗(T ),Pic0(E)) of degree 0 T -bundles on E, Ŷ is
the affine cone over Y obtained by contracting the zero section of Θ−1

Y to a
point, and /Gm denotes the stack quotient by Gm. Away from the image of
the cone point of Ŷ , χ agrees with the semistable coarse moduli space map
χss : Bunss

G → Y //W of R. Friedman and J. Morgan [6], and the preimage of
the (stacky) cone point is precisely the locus of unstable bundles.

The diagram (1.0.3) is called the elliptic Grothendieck–Springer resolu-
tion, and is closely analogous to a stacky version of (1.0.2) where the varieties
g and g̃ are replaced by the stack quotients g/G and g̃/G. It was shown in
[5, Corollary 4.4.7] that it is a simultaneous log resolution with respect to the
zero section of Θ−1

Y [5, Definition 1.0.3]; this means that the total space B̃unG

is smooth, χ̃ is smooth away from the zero section, the preimage of the zero
section is a divisor with normal crossings, the map ψ is proper (with finite
relative stabilisers) and for all y ∈ Θ−1

Y /Gm, the map χ̃−1(y) → χ−1(q(y))
is an isomorphism over a dense open subset of the target. In particular, the
restriction to semistable bundles is a genuine simultaneous resolution, and
for y in the zero section of Θ−1

Y , each irreducible component of the locus
χ−1(q(y)) = χ−1(0) of unstable bundles is resolved by some component of
χ̃−1(y).

Subregular slices in the elliptic setting have been studied by S. Helmke
and P. Slodowy [10, 11] and I. Grojnowski and N. Shepherd-Barron [8]. In
[10], Helmke and Slodowy classified the subregular unstable bundles (Defini-
tion 2.1.1) and gave simple descriptions of their coarse moduli spaces for all
simply connected groups G; these bundles play the role of subregular nilpo-
tent elements in elliptic Springer theory. In [11], they constructed a version
of the coarse quotient map χ using loop groups, and briefly sketched the as-
sociated surface singularities arising from slices through subregular unstable
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bundles in types A, D and E. In [8], Grojnowski and Shepherd-Barron con-
sidered certain subregular slices Z → BunG for G of types D5 = E5, E6, E7
and E8 only, and studied simultaneous log resolutions

(1.0.4)

Z̃ Z

Θ−1
Y Ŷ //W

ψZ

χ̃Z χZ

deduced from (1.0.3), where Z̃ = B̃unG ×BunG
Z. They showed that, in their

examples, the preimage χ̃−1
Z (0Θ−1

Y
) of the zero section decomposes as a simple

normal crossings divisor

χ̃−1
Z (0Θ−1

Y
) = D0 + D1 + Q,

where D0 → Y is a family of resolutions of the singular surface χ−1
Z (0), D1 →

Y is some other family of projective surfaces, and Q → Y is a P1×P1-bundle.
Moreover, they showed that contracting Q along a ruling and flopping an
unknown number of curves from D0 to D1 produces a birational modification
Z̃ ��� Z̃− such that the preimage of 0Θ−1

Y
decomposes as D−

0 + D−
1 , where

D−
0 is a line bundle over Y × E and D−

1 → Y is a family of del Pezzo
surfaces of degree 9 − l, from which they deduced that χ−1

Z (0) has a simply
elliptic singularity of the same degree. Their results show that the elliptic
Grothendieck–Springer resolution in some sense “contains” the well-known
combinatorial correspondence between exceptional groups, del Pezzo surfaces,
and simply elliptic singularities.
Remark 1.0.1. One of the nice features of Grojnowski and Shepherd-Barron’s
construction is that the stack quotients by Gm in the bottom row of (1.0.3)
are exchanged for a global action of Gm on the sliced diagram (1.0.4). This
desirable behaviour is axiomatised by the notion of equivariant slices in [5,
Definition 4.1.9]; these are stacks Z equipped with an action of a torus H
(the equivariance group), a morphism Z/H → BunG (or to the rigidifica-
tion BunG,rig [5, §2.2]), and a lift of Z → (Ŷ //W )/Gm to an H-equivariant
morphism Z → Ŷ //W , where H acts on Ŷ //W through some fixed weight
H → Gm, such that the morphism Z → BunG (or BunG,rig) is smooth mod-
ulo translations.

The goal of the present work is to describe all the singularities and log
resolutions obtained from the elliptic Grothendieck–Springer resolution by
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taking equivariant slices through subregular unstable bundles, for all simply
connected groups G.

Our first main result gives the existence of an equivariant slice with par-
ticularly nice properties through any subregular bundle (when G �= SL2). In
order to to ensure the existence of slices Z with generically trivial inertia, we
have chosen to work with the rigidified stack BunG,rig (cf. [5, §2.2]) obtained
by taking the quotient of all automorphism groups in BunG by the centre
Z(G) of G.

Theorem 1.0.2. Let ξG → E be a subregular unstable G-bundle, and assume
that G �= SL2. Then there exists an equivariant slice Z → BunG,rig with
equivariance group

H =
{
Gm ×Gm, in type A,

Gm, otherwise,

with the following properties.

(1) The H-fixed locus Z0 = ZH is a proper Artin stack with finite and
generically trivial inertia.

(2) The set of points z ∈ Z such that the associated G-bundle is subregular
unstable is equal to Z0, and the given family identifies the coarse moduli
space of Z0 with the connected component of the coarse moduli space of
subregular unstable G-bundles up to translation containing ξG.

(3) All nonempty geometric fibres of the morphism Z0 → BunG,rig/E are
connected.

There are no essentially new ideas in the proof of Theorem 1.0.2: fol-
lowing a suggestion of Helmke and Slodowy [10, Remark 5.14], the slices
Z → BunG,rig are constructed by parabolic induction from regular slices
Z0 → BunL,rig, for L the Harder–Narasimhan Levi of ξG, which are either
obvious or in turn constructed by parabolic induction from a single unsta-
ble L-bundle according to the recipe of Friedman and Morgan [7]. The only
new thing we do in Theorem 1.0.2 is to check by hand that the morphisms
Z → BunG,rig constructed in this way are actually equivariant slices with the
desired properties.

For each of the equivariant slices Z constructed in Theorem 1.0.2, we get
a morphism

χ̃Z : Z̃ = B̃unG,rig ×BunG,rig
Z −→ Θ−1

Y .

Our second main result gives very explicit descriptions of the unstable fibres
χ̃−1
Z (y) for y ∈ 0Θ−1

Y
. This result is really the core content of the paper.
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Theorem 1.0.3. Assume that G �= SL2, let ξG → E be a subregular unstable
G-bundle, and let Z → BunG,rig be the equivariant slice of Theorem 1.0.2.
Then we have the following.

(1) The preimage of the zero section of Θ−1
Y decomposes as a divisor with

normal crossings

χ̃−1
Z (0Θ−1

Y
) = dDα∨

i
(Z) + Dα∨

j
(Z) + Dα∨

i +α∨
j
(Z),

where each component Dλ(Z) is smooth over Y , and

d =

⎧⎪⎪⎨⎪⎪⎩
1, if ξG is of type A,B,D or E,

2, if ξG is of type C or F,
3, if ξG is of type G.

(Here αi and αj are certain simple roots depending on the subregular
unstable bundle ξG; see Notation 2.3.2.)

(2) The divisor Dα∨
j
(Z) is isomorphic to the iterated blowup of a line bun-

dle D1 on Y × E at a specified sequence of sections (given in Proposi-
tion 3.4.1) over Y .

(3) Each fibre of the morphism Dα∨
i +α∨

j
(Z) → Y is isomorphic to the Hirze-

bruch surface Fd−1.
(4) The divisor Dα∨

i
(Z) is the iterated blowup of a smooth family of surfaces

D′
1 → Y at a specified sequence of sections (given in Proposition 3.6.1)

over Y , where each fibre of D′
1 → Y is isomorphic to

• a line bundle on E, if ξG is of type A,
• one of the Hirzebruch surfaces F0 or F2, if ξG is of type C, D or
F ,

• one of the stacky Hirzebruch surfaces PP(1,2)(O ⊕ O(1)) or
PP(1,2)(O ⊕O(3)), if ξG is of type B, or

• the projective plane P2, if ξG is of type E or G.

Remark 1.0.4. In Theorem 1.0.3, we have referred to the type of the subregular
unstable G-bundle ξG, rather than to the type of the group G. This follows the
terminology introduced in §2.1. The idea is that a given algebraic group G may
belong to multiple series in the classification (the relevant examples here being
D5 = E5 and B3 = F3); in these cases, there are connected components of the
locus of subregular unstable bundles corresponding to each of the different
series.
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Remark 1.0.5. In type El, Theorem 1.0.3 recovers Grojnowski and Shepherd-
Barron’s result discussed above, with D0 = Dα∨

j
(Z), D1 = Dα∨

i
(Z) and

Q = Dα∨
i +α∨

j
(Z). Moreover, the slightly mysterious flopping curves are made

manifest in our description as the exceptional fibres of the blowups of the line
bundle D1 (excluding the last one, which undoes the contraction of Q). In
particular, the detailed statement Proposition 3.6.1 specifies the exact num-
ber (n0 = l − 4) and configuration of these curves, which was not accessible
using Grojnowski and Shepherd-Barron’s proof. The del Pezzo surfaces also
appear very concretely as blowups of D′

1 = P2 at l points; the first 4 are the
blowups in (4) giving Dα∨

i
(Z), and the remaining l − 4 are the result of the

flops.
As an application of Theorem 1.0.3, we deduce the following descriptions

of the singular surfaces χ−1
Z (0) and their deformations. For completeness, we

have also included the case G = SL2 with the subregular slice Z = IndG
T (Z0)

with equivariance group Gm of Remark 2.2.10, although this slice does not
satisfy the conditions of Theorem 1.0.2.

Theorem 1.0.6 (Theorems 4.1.3 and 4.2.9). If the characteristic of k is not
2 or 3, then the surface χ−1

Z (0) can be constructed explicitly as follows.

(1) In type Al, l > 1, χ−1
Z (0) is obtained by gluing together two line bundles

on E along their zero sections.
(2) In types C and D (resp., B), χ−1

Z (0) is obtained by identifying points
in the fibres of a degree 2 map E → P1 (resp., E → P(1, 2)) inside the
zero section of a line bundle on E.

(3) In types A1, E, F and G, χ−1
Z (0) is a cone obtained by contracting the

zero section of a line bundle on E to a point.

In each case, the deformation χZ : Z → Ŷ //W is miniversal among H-
equivariant deformations with weights in Z>0λ, where λ ∈ X∗(H) is the weight
of the equivariant slice Z → BunG,rig.

Remark 1.0.7. The description of the singularities in types A, D and E was
given without proof in [11]. As far as we know, the description for types B,
C, F and G is new.
Remark 1.0.8. It follows from the explicit degrees and weights given in The-
orems 4.1.3 and 4.2.9 and in Table 4 that the deformations of types A1, C,
F and G are related to those of types D and E by a curious twist on the
usual folding story for du Val singularities. For each pair (A1, E5), (Cl, Dl+4),
(Fl, El+3) and (G2, E8), the surfaces χ−1

Z (0) are isomorphic in both cases, and
the deformation for the first case is naturally identified with the subspace pre-
serving the action of μd ⊆ Gm inside the deformation for the second, where
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d = 2 or 3. Note that this links different pairs of groups to the usual folding,
i.e., the du Val singularities are not the same in these cases.
Remark 1.0.9. An important aspect of this story that we have not addressed
in this paper is the existence of symplectic and Poisson structures on our
varieties. In the additive context, the Slodowy slices Z carry natural Poisson
brackets and the Grothendieck–Springer resolution provides symplectic reso-
lutions of the fibres of χZ : Z → t//W . Although we will not go into details
here, a similar statement is true in our setting: the elliptic slices Z → BunG,rig

that we construct are all Poisson, and the elliptic Grothendieck–Springer res-
olution provides symplectic resolutions of the semistable fibres of χZ (i.e., the
fibres over points not in the zero section of Θ−1

Y ). We intend to return to the
study of these structures, their degenerations over the unstable locus, and
their representation theory in future work.
Remark 1.0.10. With the exception of the miniversality statement in Theo-
rem 1.0.6, the results presented here can also be found in Chapters 5 and 6
of the author’s PhD thesis [4].

1.1. Plan of the paper

The paper consists of 4 sections, including this introduction.
The main purpose of §2 is to prove Theorem 1.0.2. We lay the ground-

work in §2.1 by reviewing Helmke and Slodowy’s classification of subregular
unstable bundles (Theorem 2.1.2). In §2.2, we review the theory of parabolic
induction for equivariant slices, and use it to reduce Theorem 1.0.2 to a state-
ment about existence of slices for Levi subgroups of G (Theorem 2.2.6). We
prove this theorem in §2.4 using a detailed study of the structure of the
relevant Levis in §2.3.

In §3, we prove Theorem 1.0.3. The theorem is broken into four parts,
Proposition 3.1.1, 3.4.1, 3.5.1 and 3.6.1, concerning the decomposition of
χ̃−1
Z (0Θ−1

Y
) into irreducible components and the detailed structure of each of

the three components respectively, which are proved in subsections 3.1, 3.4,
3.5 and 3.6. This section also features a brief review of the construction of
“Bruhat cells” for principal bundles in §3.2 and an important auxiliary cal-
culation of certain Bruhat cells G = GLn in §3.3.

In §4, we give the application to the identification of the singular sur-
faces χ−1

Z (0) and their deformations. We give the identification of the surfaces
(Theorem 4.1.3) in §4.1. In §4.2, we briefly discuss deformation theory with
weights, and prove (Theorem 4.2.9) that the deformations χZ : Z → Ŷ //W
have the miniversality properties asserted in Theorem 1.0.6.
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1.2. Notation and conventions

Our notations and conventions are all consistent with [5].
Unless otherwise specified, by a reductive group we will mean a split con-

nected reductive group scheme over SpecZ.
Throughout the paper, we will fix a connected regular stack S, a smooth

elliptic curve E → S with origin OE : S → E, and a simply connected simple
reductive group G (over SpecZ) with maximal torus and Borel subgroup
T ⊆ B ⊆ G.

We will write (X∗(T ),Φ,X∗(T ),Φ∨) for the root datum of G, where

X∗(T ) = Hom(T,Gm) and X∗(T ) = Hom(Gm, T )

are the groups of characters and cocharacters of the split torus T . The set
of roots Φ is by definition the set of weights of T acting on the Lie algebra
g = Lie(G); we will adopt the convention that the set Φ− ⊆ Φ of negative
roots is the set of nonzero weights of T acting on Lie(B), and let Φ+ = −Φ− be
the corresponding set of positive roots. Note that this convention means that
for λ ∈ X∗(T ), the line bundle Lλ = G×B Zλ on the flag variety G/B is nef
if and only if λ is dominant (i.e., 〈λ, α∨〉 ≥ 0 for all α∨ ∈ Φ∨

+). We will write
Δ = {α1, . . . , αl} ⊆ Φ+ and Δ∨ = {α∨

1 , . . . , α
∨
l } ⊆ Φ∨

+ for the sets of positive
simple roots and coroots respectively, and {�1, . . . , �l} and {�∨

1 , . . . , �
∨
l }

for the bases of (ZΦ∨)∨ and (ZΦ)∨ dual to Δ and Δ∨ respectively. Note that
ZΦ∨ = X∗(T ) since G is simply connected, so {α∨

1 , . . . , α
∨
l } is a basis for X∗(T )

and {�1, . . . , �l} is a basis for X∗(T ). We will also write W ∼= NG(T )/T for
the Weyl group of G generated by the reflections si ∈ W in the simple roots
αi ∈ Δ.

We will also use the notation

X∗(T )+ = {λ ∈ X∗(T ) | 〈�i, λ〉 ≥ 0 for all αi ∈ Δ} = Z≥0Φ∨
+

and set X∗(T )− = −X∗(T )+. We have a related partial ordering on X∗(T )
defined by λ ≤ μ if μ − λ ∈ X∗(T )+. Similarly, for any reductive group and
coweights λ and μ, we define λ ≤ μ if μ− λ is an integer linear combination
of positive coroots with nonnegative coefficients.

If P ⊆ G is a parabolic subgroup, we will say that P is standard if B ⊆ P ,
and that a Levi factor L ⊆ P is standard if T ⊆ L. Every parabolic subgroup
is conjugate to a unique standard one, and every standard parabolic has a
unique standard Levi. If P is standard, the type of P is the set

t(P ) = {αi ∈ Δ | αi is not a root of P} ⊆ Δ.
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More generally, one defines the type of a parabolic subgroup for any reductive
group with a choice of Borel as a subset of the positive simple roots in the
same way. The construction P → t(P ) defines a bijection between (proper)
parabolic subgroups of G and (nonempty) subsets of Δ. For any parabolic
subgroup P , we will often write TP = P/[P, P ] for the torus with character
group X∗(TP ) = X∗(P ).

We also fix the following notation for the root datum and parabolic sub-
groups of GLn. Define parabolic subgroups

Qn
k = {(ap,q)1≤p,q≤n ∈ GLn | ap,q = 0 for p < min(q, k)}

for 1 ≤ k ≤ n. Note that Qn
n ⊆ GLn is the Borel subgroup of lower triangular

matrices, so TQn
n

:= Qn
n/[Qn

n, Q
n
n] is naturally identified with the maximal

torus of diagonal matrices in GLn. We will write e1, . . . , en ∈ X∗(TQn
n
) for the

basis given by ei(aj,k) = ai,i, and e∗1, . . . , e
∗
n ∈ X∗(TQn

n
) for the dual basis. We

label the simple roots of GLn as βi = ei − ei+1 for 1 ≤ i < n, so Qn
k ⊆ GLn

is the standard parabolic subgroup of type {β1, . . . , βk−1}.
For any group scheme H over SpecZ, we will write BunH for the rel-

ative stack of H-bundles on E over S. If the quotient H/Ru(H) of H by
its unipotent radical Ru(H) is split reductive and ξH → X is an H-bundle
on a curve X, then we write deg ξH ∈ X∗(H/Ru(H)[H,H]) and μ(ξH) ∈
X∗(Z(H/Ru(H))◦)Q for degree and slope of ξH in the sense of [5, §1.2]. Note
that these are related by

〈λ, deg(ξH)〉 = 〈λ, μ(ξH)〉

for all λ ∈ X∗(H) under the obvious pairings, so in fact there is a canonical
bijection between degrees and slopes. We write Bund

H ⊆ BunH and Bunμ
H

for the open and closed substacks of H-bundles of degree d and slope μ
respectively. A superscript (−)ss denotes the open substack of semistable
bundles.

For any split torus T ′ and λ ∈ X∗(T ′), we write Y λ
T ′ for the coarse moduli

space of Bunλ
T ′ over S. This can also be described as the quotient by the

natural BT ′-action, and the fine moduli space of T ′-bundles of degree λ on
E trivialised at OE . For the sake of brevity, we will drop the subscript (−)T ′

when T ′ = T is the maximal torus of G, and drop the superscript (−)λ when
λ = 0. So, in particular, Y denotes the coarse moduli space of T -bundles on
E of degree 0. We will also write YP = YTP when TP = P/[P, P ] for some
parabolic subgroup P of a reductive group.

For any reductive group H and parabolic subgroup P ⊆ H with Levi
subgroup L ∼= P/Ru(P ), and a degree d ∈ X∗(L/[L,L]) (resp., slope d ∈
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X∗(Z(L)◦)Q) we will write KMd
P,H for the Kontsevich–Mori compactification

of Bund
P over BunG. This is a smooth stack, proper over BunH , containing

Bund
P as a dense open substack whose complement is a divisor with normal

crossings, such that the natural map Bund
P → Y d

P extends to KMd
P,H → Y d

P .
It parametrises tuples (ξH , C, σ) where ξH → E is an H-bundle and σ : C →
ξH/P is a stable map from a nodal curve of genus 1 such that C → E
is degree 1 and deg σ∗(ξH ×P Zλ) = 〈λ, d〉 for all λ ∈ X∗(P ). As in the
introduction, we will write B̃unG = KM0

B,G. For a detailed discussion of these
compactifications, see [4, Chapter 3] or [3].

If X is any stack equipped with an injective action of the classifying stack
BZ(G) of the centre of G, then we write Xrig for the rigidification of X with
respect to Z(G) obtained by taking the quotient of all automorphism groups
in X by Z(G) [5, Definition 2.2.2]. For example, if H is any group scheme
with Z(G) ⊆ Z(H), then BZ(G) acts injectively on BunH , so we have a
rigidification BunH,rig.

If X → S is a morphism of Artin stacks, we will write LX/S for the
relative cotangent complex [15, §8] and TX/S = (LX/S)∨ for the relative
tangent complex.

If V is a vector space or a vector bundle on a scheme, we adopt the con-
vention that the projectivisation P(V ) parametrises 1-dimensional subspaces
or subbundles (rather than quotients).

2. Subregular slices

The purpose of this section is to prove Theorem 1.0.2. We prepare the ground
in §2.1, where we review the classification of subregular unstable bundles, and
§2.2, where we review the parabolic induction construction for slices and use
it to reduce Theorem 1.0.2 to a statement for Levi subgroups (Theorem 2.2.6).
We give very explicit descriptions of all the relevant Levi subgroups in §2.3,
and use these descriptions to give a case-by-case proof of Theorem 2.2.6 in
§2.4.

2.1. Subregular unstable bundles

In this subsection, we review Helmke and Slodowy’s classification of subreg-
ular unstable bundles [10].

Definition 2.1.1. Let s : Spec k → S be a geometric point and let ξG → Es

be an unstable G-bundle. We say that ξG is regular (resp., subregular) if
dim Aut(ξG) = l + 2 (resp. l + 4).
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In the following theorem, if s : Spec k → S is a geometric point, L ⊆ G
is a Levi subgroup, and ξL is a semistable L-bundle on Es of slope μ ∈
X∗(Z(L)◦)Q, then we say that ξL is regular if its automorphism group has
minimal dimension among all automorphism groups of semistable L-bundles
on Es of slope μ.

Theorem 2.1.2. Let s : Spec k → S be a geometric point and let ξG → Es be
an unstable G-bundle. Then either ξG is regular and dim Aut(ξG) = l + 2, or
dim Aut(ξG) ≥ l+4. If ξG has Harder–Narasimhan reduction ξP to a standard
parabolic P with Levi factor L, and associated L-bundle ξL of slope μ, then
ξG is subregular if and only if ξL is regular semistable and (G,P, μ) satisfies
one of the following conditions.

(Type A1) G is of type A1, t(P ) = {α1} and 〈�1, μ〉 = −2.
(Type Al) G is of type Al for l > 1, t(P ) = {αi, αi+1} for some i with

1 ≤ i < l, and 〈�i, μ〉 = 〈�i+1, μ〉 = −1.
(Type Bl) G is of type Bl for l ≥ 3, t(P ) = {αl−2} and 〈�l−2, μ〉 = −1.
(Type Cl) G is of type Cl for l ≥ 2, t(P ) = {αl−1} and 〈�l−1, μ〉 = −1.
(Type Dl) G is of type Dl for l ≥ 4, t(P ) = {αi} and 〈�i, μ〉 = −1, where

i ∈ {1, 3, 4} if l = 4 and i = l − 3 otherwise.
(Type El) G is of type D5, E6, E7 or E8, t(P ) = {αi} and 〈�i, μ〉 = −1,

where i ∈ {4, 5} if G is of type D5, i ∈ {2, 5} if G is of type E6, and
i = 5 if G is of type E7 or E8.

(Type Fl) G is of type B3 or F4, t(P ) = {α3} and 〈�3, μ〉 = −1.
(Type Gl) G is of type G2, t(P ) = {α1} and 〈�1, μ〉 = −1.

Here the labelling of the Dynkin diagrams is as in Table 1.

Proof. The theorem is a selection of statements from [10, Theorems 5.1 and
5.12], which are proved there when S = SpecC. To deduce the theorem in
general, note that by specialisation (and [10, Proposition 2.4, (c)], whose proof
works over any field) we have

dim Aut(ξG) = −〈2ρ, μ〉 + dim Aut(ξL) ≥ −〈2ρ, μ〉 + d(L, μ),

where d(L, μ) is the dimension of the automorphism group of a regular semi-
stable L-bundle with slope μ on an elliptic curve over C. So [5, Proposition
4.2.3] and the statement of the theorem over C imply that there are no un-
stable bundles with dim Aut(ξG) = l + 3 and that the Harder–Narasimhan
reduction of any subregular unstable bundle must appear on the list above.
A priori, there may be an elliptic curve Es over a field of positive char-
acteristic such that regular semistable L-bundles ξL on Es of slope μ have
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Table 1: Labelling of the Dynkin diagrams
Al:

1 2 3 l−1 l

Bl:
1 2 l−2 l−1 l

>

Cl:
1 2 l−2 l−1 l

<

Dl:
1 2 l−3 l−2 l

l−1

El:
1 2 3

4

5 l

F4:
1 2 3 4

>

G2:
1 2

<

dim Aut(ξL) > d(L, μ), and hence G-bundles with Harder–Narasimhan reduc-
tions on the list above that are not subregular. However, in (Type A1) this
cannot happen since L = T , and the proof of Theorem 2.2.6 shows that this
does not happen for the other Levis and slopes on the list (see Remark 2.2.7).
So the theorem holds in all characteristics.

Definition 2.1.3. We will say that a tuple (G,P, μ) consisting of a simply
connected simple group G, a standard parabolic P with Levi factor L, and a
Harder–Narasimhan vector μ for P is a subregular Harder–Narasimhan class
if ξL×LG is subregular unstable for ξL a regular semistable L-bundle of slope
μ. (Recall from [5, Definition 2.3.3] that μ is a Harder–Narasimhan vector if,
for every root α ∈ Φ of G, α is a root of P if and only if 〈α, μ〉 ≥ 0. By
definition, the slope of a Harder–Narasimhan reduction is always a Harder–
Narasimhan vector.) We will say that (G,P, μ) is of type A1 (resp., type Al,
type Bl, etc.) if it satisfies (Type A1) (resp., (Type Al), (Type Bl), etc.) of
Theorem 2.1.2.
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Remark 2.1.4. We stress that the type of a subregular Harder–Narasimhan
class (G,P, μ) is often, but not always, the type of the group G. For example,
for G of type B3, there are subregular Harder–Narasimhan classes of types
B3 and F3, and for G of type D5, there are subregular Harder–Narasimhan
classes of types D5 and E5.

2.2. Slicing by parabolic induction

In this subsection, we explain how the proof of Theorem 1.0.2 can be re-
duced to the construction of well-behaved slices of Bunss,μ

L,rig for each subreg-
ular Harder–Narasimhan class. We first recall the definitions.

Definition 2.2.1. Let L ⊆ G be a Levi subgroup. A slice of BunL,rig is stack
Z equipped with a map Z → BunL,rig such that the map Z → BunL,rig/E is
smooth, where the quotient is taken with respect to the natural action of E on
BunL,rig by translations. If H is a torus and λ ∈ X∗(H) is an equivariant slice
(of BunG,rig) with equivariance group H and weight λ is a stack Z equipped
with an action of H, a slice Z/H → BunG,rig, and an H-equivariant lift
Z → Ŷ //W of the coarse quotient map Z → BunG,rig → (Ŷ //W )/Gm, where
H acts on Ŷ //W through the Gm-action and the homomorphism λ : H → Gm.

We also recall a few elements of the theory of parabolic induction for
slices, the idea of which goes back to R. Friedman and J. Morgan [7]. A more
detailed exposition can be found in [5, §4.1] or [4, §5.1–5.2].

Definition 2.2.2 ([5, Definition 4.1.1] or [4, Definition 5.2.1]). Let L ⊆ L′ ⊆
G be Levi subgroups, let μ ∈ X∗(Z(L)◦)Q, and let P+ ⊆ L′ be the unique
parabolic subgroup with Levi factor L for which −μ is a Harder–Narasimhan
vector for P+ [5, Definition 2.3.3]. If Z0 → Bunss,μ

L,rig is a slice, then the
parabolic induction of Z0 to L′ is the slice

IndL′

L (Z0) = BunP+,rig ×BunL,rig
Z0 −→ Bunμ′

P+,rig −→ Bunμ′

L′,rig,

where μ′ ∈ X∗(Z(L′)◦)Q is the image of μ.

In the following proposition, we write

Φμ = {α ∈ ΦL′ | 〈α, μ〉 < 0}

for the set of roots in the unipotent radical Ru(P+) ⊆ L′, and

2ρP+ = −
∑
α∈Φμ

α.
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Proposition 2.2.3. In the situation of Definition 2.2.2, the natural mor-
phism IndL′

L (Z0) → Z0 is an affine space bundle, with fibres of dimension
〈2ρP+ , μ〉. Moreover, the torus Z(L)rig := Z(L)/Z(G) naturally acts on the fi-
bres of this bundle with weights in −Φμ. The morphism IndL′

L (Z0) → BunL′,rig

is equivariant with respect to this action.

Proof. This is an immediate consequence of [5, Propositions 4.1.6 and 4.1.8].

From now on, we will take L′ = G.
Recall from [5, §3.2] that there is a unique positive generator ΘBunG,rig

∈
Pic(BunG,rig); this theta bundle is nothing but the inverse of the pullback of
the universal line bundle under

BunG,rig −→ (Ŷ //W )/Gm −→ BGm.

Definition 2.2.4 ([5, Definition 4.1.15]). Let L and μ be as in Definition 2.2.2.
A Θ-trivial slice of Bunss,μ

L,rig is a slice Z0 → Bunss,μ
L,rig equipped with a trivial-

isation of the pullback of ΘBunG,rig along

Z0 −→ Bunss,μ
L,rig −→ BunG,rig.

The point of Θ-trivial slices is that they naturally give equivariant slices
after parabolic induction. In the following proposition, we write ( | ) : X∗(T )⊗
X∗(T ) → Z for the Killing form normalised so that (α∨ |α∨) = 2 for α∨ ∈ Φ∨

a short coroot.

Proposition 2.2.5 ([5, Proposition 4.1.12]). Let Z0 → Bunss,μ
L,rig be a Θ-trivial

slice. Then IndG
L (Z0) → BunG,rig is naturally endowed with the structure of

an equivariant slice with equivariance group Z(L)rig and weight (μ | −).

The parabolic induction construction allows us to deduce Theorem 1.0.2
from the following statement.

Theorem 2.2.6. Let (G,P, μ) be a subregular Harder–Narasimhan class not
of type A1, and let d ∈ {1, 2, 3} be as in Theorem 1.0.3. Then there is a μd-
gerbe Guni on the stack M1,1 of elliptic curves such that if the pullback G of
Guni to S is trivial then there exists a Θ-trivial slice Z0 → Bunss,μ

L,rig with the
following properties.

(1) The morphism Z0 → S is smooth and proper with finite and generically
trivial relative stabilisers.

(2) The morphism Z0 → Bunss,μ
L,rig/E is smooth with connected fibres.
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(3) The image of Z0 → Bunss,μ
L,rig/E is equal to the locus of regular semistable

bundles.
(4) The induced equivariant slice Z = IndG

L (Z0) → BunG,rig has relative
dimension l + 3 over S.

We will prove Theorem 2.2.6 in §2.4 by writing down explicit slices in
each case of Theorem 2.1.2. Although a classification-free proof is probably
possible, the explicit slices are also useful in the proof of Theorem 1.0.3.
Remark 2.2.7. The proof will show that Theorem 2.2.6 holds for every tuple
(G,P, μ) on the list of Theorem 2.1.2, excluding (Type A1). In the notation
of the proof of Theorem 2.1.2, this shows that in each case we have a slice
Z0 → Bunss,μ

L,rig with relative dimension l + 3 + 〈2ρ, μ〉 = d(L, μ) − 1 over
S, and hence relative dimension d(L, μ) over Bunss,μ

L,rig/E. Since Z0 → S has
finite relative stabilisers, this shows that dim Aut(ξL) ≤ d(L, μ) for a regular
semistable L-bundle in all characteristics.

Corollary 2.2.8. Theorem 1.0.2 is true (with S = Spec k for k an alge-
braically closed field as in the introduction).

Proof. Let (G,P, μ) be the subregular Harder–Narasimhan class of ξG. Since
S = Spec k, the μd-gerbe G on S of Theorem 2.2.6 is necessarily trivial,
so there exists a Θ-trivial slice Z0 → Bunss,μ

L,rig satisfying conditions (1)–(4).
We let Z = IndG

L (Z0) → BunG,rig be the parabolic induction of Z0 to G,
endowed with the equivariant slice structure of Proposition 2.2.5. Note that
the equivariance group H = Z(L)rig is isomorphic to Gm ×Gm for (G,P, μ)
of type A and Gm otherwise, as required for the statement of Theorem 1.0.2.

Condition (1) of Theorem 1.0.2 follows immediately from Proposition 2.2.3
and (1) of Theorem 2.2.6 (note that Z0 = IndG

L (Z0)Z(L)rig). Condition (3) of
Theorem 1.0.2 follows from (2) of Theorem 2.2.6.

To prove that Theorem 1.0.2 (2) is satisfied, first note that for any z ∈ Z \
Z0, comparing the codimensions of Z(L)rig · z in Z and the corresponding G-
bundle ξG,z in BunG,rig/E shows that dim Aut(ξG,z) ≤ l+3, so ξG,z is not sub-
regular. Moreover, we claim that the smooth morphism Z0 → Bunss,reg,μ

L,rig /E
is a bijection on K-points for any algebraically closed field K, from which it
follows that it is an isomorphism on coarse moduli spaces. This proves (2),
modulo the claim.

To prove the claim, note that Proposition 2.2.3 shows that the dimension
of the fibre (Z0)x of Z0 → Bunss,μ

L,rig/E over the image x of ξL = ξP ×P L is
given by

l + 4 − 〈2ρP+ , μ〉 = l + 4 + 〈2ρ, μ〉.
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But from Remark 2.2.7 and the proof of Theorem 2.1.2, this is equal to the
dimension d(L, μ) of Aut(ξL). So (Z0)x/Aut(x) ⊆ (Z0)s ⊆ Zs is a closed
connected substack of dimension 0, where s is the image of x in S, and hence
has a single point over any algebraically closed field since (Z0)s has finite
stabilisers.

Remark 2.2.9. From the proof, we can also read off the weights of the equiv-
ariant slices in Theorem 1.0.2: abstractly, they are the characters (μ | −) ∈
X∗(Z(L)rig) by Proposition 2.2.5. More explicitly, if we identify Z(L)rig with
Gm via the cocharacter −�∨

i ∈ X∗(Z(L)rig) where t(P ) = {αi} (resp., with
Gm × Gm via (−�∨

i ,−�∨
i+1) in type A), then the weight is identified with

(1, 1) in type A and with d ∈ {1, 2, 3} in the other types.
Remark 2.2.10. We have deliberately excluded the subregular Harder–
Narasimhan class of type A1 from Theorem 2.2.6. In this case, we have
L = T ∼= Gm and Bunss,μ

L,rig = Bun−2
Gm,rig, and one can try to construct the

desired slice Z0 = S → Bunss,μ
L by lifting the natural section O(−2OE) : Z0 =

S → Pic−2
S (E). It follows from [5, Proposition 4.1.15] that the fibre of the

map
Bun−2

Gm,rig = Pic−2
S (E) × BGm −→ BGm

classifying the pullback of the theta bundle is a μ2-gerbe on Pic−2
S (E), which

is trivial if and only if Z0 → Pic−2
S (E) lifts to a Θ-trivial map Z0 → Bunss,μ

L,rig.
This map will be a slice as long as 2 is invertible in OS (so that the stabiliser
E[2] of a point in Pic−2

S (E) is smooth). This slice satisfies (1), (3) and (4),
but the map Z0 → Bunss,−2

L,rig /E is a torsor under an extension of E[2] by Gm

and hence has disconnected fibres. See also, however, Proposition 4.1.9.

2.3. The structure of Levi subgroups

In this subsection, we explicitly describe the Levi subgroups L ⊆ P for each
subregular Harder–Narasimhan class, i.e. for each (G,P, μ) on the list of The-
orem 2.1.2.

We begin with a general description of Levi subgroups L ⊆ G whose
Dynkin diagrams are of type A. Suppose that L is the Levi subgroup of a
standard parabolic of type t ⊆ Δ. Then the Dynkin diagram of L is obtained
from the Dynkin diagram of G by deleting the nodes labelled by elements
of t. We will assume that the Dynkin diagram of L is a union of connected
components of type A.

The reductive group L can be described directly in terms of the following
data. First, write π0 = π0(Δ \ t) for the set of connected components of the
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Dynkin diagram of L. For each component c ∈ π0, write nc for the number
of nodes in c, and choose a labelling αc,1, . . . , αc,nc of the nodes of c so that
αc,i is adjacent to αc,i+1 for 1 ≤ i ≤ nc − 1. For each αk ∈ t adjacent to a
node of c, let αc,ic,k be the unique node adjacent to αk, and for each αk ∈ t
not adjacent to any node of c, set ic,k = nc + 1. Finally, write

mc,k = −
nc∑
i=1

〈αc,i, α
∨
k 〉 =

{
−〈αc,ic,k , α

∨
k 〉, if ic,k ≤ nc,

0, if ic,k = nc + 1,

for c ∈ π0 and αk ∈ t.

Proposition 2.3.1. Assume we are in the setup above. Then there is an
isomorphism φ from the Levi subgroup L to
(2.3.1){

((Ac)c∈π0 , (λk)αk∈t) ∈
∏
c∈π0

GLnc+1 ×
∏
αk∈t

Gm

∣∣∣∣∣ detAc =
∏
αk∈t

λ
mc,k(nc+1−ic,k)
k

}

with the property that for each αk ∈ t, the character �k of L is given by φ
composed with the projection ((Ac)c∈π0 , (λj)αj∈t) → λk.

Proof. Since both L and (2.3.1) are split reductive groups over SpecZ, it is
enough to specify an isomorphism between their root data.

The root datum (M0,Ψ0,M
∨
0 ,Ψ∨

0 ) of
∏

c∈π0 GLnc+1 ×
∏

αk∈tGm is speci-
fied as follows. The weight lattice is

M0 =
⊕
c∈π0

Znc+1 ⊕
⊕
αk∈t

Zωk.

The roots and coroots Ψ0 and Ψ∨
0 are determined by requiring that

{βc,j = ec,j − ec,j+1 | c ∈ π0 and 1 ≤ j ≤ nc} ⊆ M0

be a set of positive simple roots for Ψ0, and that

β∨
c,j = e∗c,j − e∗c,j+1

where {ec,j | 1 ≤ j ≤ nc + 1} is the standard basis for Znc+1, and e∗c,j ∈ M∨
0

satisfies

〈ec′,j′ , e∗c,j〉 =
{

1, if (c′, j′) = (c, j),
0, otherwise,

and 〈ωk, e
∗
c,j〉 = 0.
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The root datum (M,Ψ,M∨,Ψ∨) of (2.3.1) is given by setting

M = M0

Z-span
{∑nc+1

j=1 ec,j −
∑

αk∈tmc,k(nc + 1 − ic,k)ωk

∣∣∣ c ∈ π0
} ,

setting Ψ to be the image of Ψ0 in M , and setting Ψ∨ ⊆ M∨ to be the
preimage of Ψ∨

0 under the injection M∨ ↪→ M∨
0 . Note that M is indeed a

lattice, so this is the root datum of a connected reductive group.
We define an isomorphism of (M,Ψ,M∨,Ψ∨) with the root datum

(X∗(T ),Φt,X∗(T ),Φ∨
t )

of L via the isomorphism

φ : X∗(T ) ∼−→ M∨

α∨
c,j −→ e∗c,j − e∗c,j+1

α∨
k −→ ω∗

k +
∑
c∈π0

nc+1∑
j=ic,k+1

mc,ke
∗
c,j ,

for c ∈ π0, 1 ≤ j ≤ nc and αk ∈ t, where ω∗
k ∈ M∨

0 satisfies 〈ec,j , ω∗
k〉 = 0 and

〈ωk′ , ω∗
k〉 = δk,k′ . It is clear by inspection that φ is a well-defined homomor-

phism of free abelian groups such that the dual is surjective. Since M∨ and
X∗(T ) have the same rank, φ is therefore an isomorphism. To prove that φ de-
fines an isomorphism of root data, it is enough to show that φ : X∗(T ) → M∨

sends α∨
c,j to β∨

c,j and that φ∗ : M → X∗(T ) sends βc,j to αc,j for all c ∈ π0 and
1 ≤ j ≤ nc. This is easily checked by direct calculation, so we are done.

Now fix a subregular Harder–Narasimhan class (G,P, μ) not of type A1.
It will be convenient to decompose the Dynkin diagram of G as follows.
Notation 2.3.2. If (G,P, μ) is of type A, then let {αi, αj} = {αi, αi+1} = t(P ).
Otherwise, we let {αi} = t(P ) and let αj ∈ Δ be the unique special root.
(Recall [7, Definition 3.1.1] [5, Definition 4.2.1] that a simple root α ∈ Δ is
special if it is a long root such that the Dynkin diagram Δ \ {α} is a union of
components of type A each meeting α at a single end.) Theorem 2.1.2 shows
that in each case, αi is adjacent to αj . Deleting the edge joining αi and αj

breaks the Dynkin diagram of G into two connected components; we write c0
(resp., c1) for the component containing αi (resp., αj) and n0 (resp., n1) for
the number of vertices in c0 (resp., c1). Since αj is special, the Dynkin diagram
of c0 is of type An0 . We write {αc0,1, . . . , αc0,n0} ⊆ Δ for the vertices of c0,
labelled so that αc0,k is adjacent to αc0,k+1 for all k < n0 and αc0,n0 = αi.
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For c ∈ {c0, c1} and αc,k a root of c, we also write �c,k ∈ X∗(T ) for the
corresponding fundamental dominant weight.

Our descriptions of the Levi subgroup L ⊆ P fall into four distinct cases.

Case 1: (G,P, μ) is of type A. In this case, we have the following elementary
description of the Levi L.

Lemma 2.3.3. In the setup above, there is an isomorphism

L ∼= GLi ×GLl−i = GLn0 ×GLn1

so that the characters �i and �i+1 are identified with the determinants of the
first and second factors respectively.

Proof. The desired isomorphism is given by applying Proposition 2.3.1 with
an appropriate labelling. Explicitly, it is given by

GLi ×GLl−i
∼−→ L ⊆ SLl+1

(A,B) −→

⎛⎜⎝A 0 0
0 (detA)−1 detB 0
0 0 v(Bt)−1v−1

⎞⎟⎠ ,

where v ∈ Sl−i is the matrix of the permutation of {1, . . . , l− i} sending j to
l − i− j + 1.

Case 2: (G,P, μ) is of type C, D, E or F . In this case, the connected com-
ponent c1 containing αj of the Dynkin diagram with the edge joining αi and
αj deleted is of type An1 , and we can choose a labelling αc1,1, . . . , αc1,n1 such
that αc1,p is adjacent to αc1,p+1 for each p and αj is either αc1,n1 (in types C

and F ) or αc1,n1−1 (in types D and E). We have the following description of
L.

Lemma 2.3.4. In the setup above, there is an isomorphism

L ∼= {(A,B) ∈ GLn0 ×GLn1+1 | detB = (detA)2},

such that �i is identified with the character (A,B) → detA and L∩B is the
preimage of the Borel subgroup Qn0

n0 × Qn1+1
n1+1 ⊆ GLn0 × GLn1+1. Moreover,

the induced map

X∗(Qn1+1
n1+1) −→ X∗(L ∩B) = X∗(T )
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is given in types D and E by

ek −→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�c1,1, if k = 1,
�c1,k −�c1,k−1, if 1 < k < n1,

�c1,n1 −�c1,n1−1 + �i, if k = n1,

−�c1,n1 + �i, if k = n1 + 1,

and in types C and F by

ek −→

⎧⎪⎪⎨⎪⎪⎩
�c1,1, if k = 1,
�c1,k −�c1,k−1, if 1 < k ≤ n1,

−�c1,n1 + 2�i, if k = n1 + 1.

Proof. Apply Proposition 2.3.1; the expressions for X∗(Qn1+1
n1+1) → X∗(T ) fol-

low by examining the specific isomorphism given in the proof.

Case 3: (G,P, μ) is of type G. In type G, the Levi L has a similarly simple
form.

Lemma 2.3.5. Assume that (G,P, μ) is of type G. Then there is an isomor-
phism

(2.3.2) L
∼−→ {(λ,A) ∈ Gm ×GL2 | detA = λ3}

such that �1 is identified with the character (λ,A) → λ and L ∩ B is the
preimage of the Borel subgroup Gm×Q2

2 ⊆ Gm×GL2. Moreover, the induced
morphism

X∗(Q2
2) −→ X∗(L ∩B) = X∗(T )

sends the characters e1 and e2 to �2 and 3�1 −�2 respectively.

Proof. Apply Proposition 2.3.1 again and inspect the explicit isomorphism
given in the proof to compute X∗(Q2

2) → X∗(T ).

Case 4: (G,P, μ) is of type B. This case is somewhat more complicated, as
the Levi subgroup L is not of type A. In what follows, we let

GSp4 = {B ∈ GL4 | BtJB = χ(B)J for some χ(B) ∈ Gm},

where

J =

⎛⎜⎜⎜⎝
0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

⎞⎟⎟⎟⎠ .



On subregular slices of the elliptic Grothendieck–Springer resolution 1935

Note that GSp4 is a reductive group with weight lattice X∗(GSp4 ∩ Q4
4) =⊕4

k=1 Zfk/Z(f1 − f2 − f3 + f4), where fk is the character sending a matrix to
its kth diagonal entry, simple roots β1 = f2−f3 and β2 = f1 −f2, and simple
coroots β∨

1 = f∗
2 − f∗

3 and β∨
2 = f∗

1 − f∗
2 + f∗

3 − f∗
4 . In this description, χ is

the character χ = f1 + f4 = f2 + f3.

Lemma 2.3.6. If (G,P, μ) is of type B, then there is an isomorphism

L
∼−→ {(A,B) ∈ GLl−2 ×GSp4 | det(A) = χ(B)},

such that �i = �l−2 is identified with the character (A,B) → det(A) = χ(B)
and L ∩ B is the preimage of the Borel subgroup Ql−2

l−2 × (GSp4 ∩ Q4
4) ⊆

GLl−2 ×GSp4. Moreover, the induced morphism

X∗(GSp4 ∩Q4
4) =

4⊕
k=1

Zfk −→ X∗(L ∩B) = X∗(T )

sends f1, f2, f3 and f4 to �l, �l−1 − �l, �l−2 − �l−1 + �l and �l−2 − �l

respectively.

Proof. We describe the isomorphism at the level of root data.
Write

L0 = {(A,B) ∈ GLl−2 ×GSp4 | det(A) = χ(B)} ⊆ GLl−2 ×GSp4.

The root datum (M,Ψ,M∨,Ψ∨) of L0 is specified as follows. The weight
lattice is

M =
⊕l−2

i=1 Zei ⊕
⊕4

j=1 Zfj

〈f1 − f2 − f3 + f4, f1 + f4 −
∑l−2

i=1 ei〉
,

and the coweight lattice is therefore

M∨ =

⎧⎨⎩λ ∈
l−2⊕
i=1

Ze∗i ⊕
4⊕

j=1
Zf∗

j

∣∣∣∣∣∣ 〈f1 + f4, λ〉 = 〈f2 + f3, λ〉 =
l−2∑
i=1

〈ei, λ〉

⎫⎬⎭ .

The roots Ψ and coroots Ψ∨ and the bijection Ψ → Ψ∨ are determined by
requiring that

{γi | 1 ≤ i ≤ l, i �= l − 2}
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be a set of simple roots, where

γi =

⎧⎪⎪⎨⎪⎪⎩
ei − ei+1, if i < l − 2,
f2 − f3, if i = l − 1,
f1 − f2, if i = l,

and

γ∨i =

⎧⎪⎪⎨⎪⎪⎩
e∗i − e∗i+1, if i < l − 2,
f∗
2 − f∗

3 , if i = l − 1,
f∗
1 − f∗

2 + f∗
3 − f∗

4 , if i = l.

There is an isomorphism

φ : X∗(T ) =
l⊕

i=1
Zα∨

i
∼−→ M∨

sending α∨
i to γ∨i for i �= l− 2, and α∨

l−2 to e∗l−2 + f∗
3 + f∗

4 , such that the dual
φ∗ : M → X∗(T ) sends βi to αi for i �= l − 2. So φ defines an isomorphism of
root data, which has the desired properties by inspection.

2.4. Existence of slices

In this section, we give the proof of Theorem 2.2.6. The proof we give here is
somewhat ad hoc, and relies on the explicit descriptions of the Levi subgroups
given in §2.3.

We first give the construction in type A.

Proof of Theorem 2.2.6 in type A. First note that since d = 1 in this case,
the μd = μ1-gerbe Guni must be the trivial one.

Using the identification L ∼= GLi×GLl−i, Atiyah’s classification of stable
vector bundles (in the form [5, Theorem 4.2.6]) implies that the morphism

(�i, �i+1) : Bunss,μ
L,rig −→ Pic−1

S (E) ×S Pic−1
S (E)

is a trivial Z(L)rig-gerbe. Note that in particular, all semistable L-bundles of
slope μ are regular in this case.

By [5, Proposition 4.1.15], the pullback of Θ to Bunss,μ
L,rig has Z(L)rig-

weight (−μ | −) ∈ X∗(Z(L)rig). (This means that tensoring a map X →
BunL,rig with a Z(L)rig-torsor η on X tensors the pullback of ΘBunG,rig

to
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X with the line bundle (−μ | η).) Since the corresponding homomorphism
X∗(Z(L)rig) → Z is surjective, it follows that there exists a section

Pic−1
S (E) ×S Pic−1

S (E) −→ Bunss,μ
L,rig

such that the pullback of ΘBunG,rig is trivial. Since such a section is necessarily
smooth, composing it with any choice of section of

Pic−1
S (E) ×S Pic−1

S (E) −→ Pic−1
S (E) ×S Pic−1

S (E)/E ∼= E

gives a Θ-trivial slice Z0 → Bunss,μ
L,rig with Z0 = E, such that Z0 → Bunss,μ

L,rig/E
is surjective with fibres isomorphic to Z(L)rig, hence connected. So (1), (2)
and (3) are satisfied. A simple root-theoretic calculation shows that −〈2ρ, μ〉 =
l+2, so (4) follows from Proposition 2.2.3. So this proves the theorem in this
case.

The construction in the exceptional types E, F and G is also fairly
straightforward.

Proof of Theorem 2.2.6 in types E, F and G. In these cases, Proposi-
tion 2.3.1 and Atiyah’s theorem show that the morphism

(2.4.1) �i : Bunss,μ
L,rig −→ Pic−1

S (E)

is a Gm = Z(L)rig-gerbe. Let Z0 = S, and let G′ be the Z(L)rig-gerbe given
by the pullback along O(−OE) : Z0 → Pic−1

S (E). By [5, Proposition 4.1.15],
the pullback of the theta bundle defines a BZ(L)rig-equivariant morphism
G′ → BGm, where BZ(L)rig acts on BGm through the homomorphism

−(μ | −) : Z(L)rig −→ Gm.

So a section of G′ such that the pullback of ΘBunG,rig
is trivial is the same

thing as a section of the μd = ker(μ | −)-gerbe G = G′ ×BGm SpecZ. The
μd-gerbe is by construction pulled back from one Guni on M1,1, defined in the
same way, and if it is trivial then there is a morphism Z0 → Bunss,μ

L,rig lifting
the section O(−OE) : Z0 → Pic−1

S (E) such that the pullback of ΘBunG,rig is
trivial.

It is immediately clear that (1) is satisfied. Letting (Bunss,μ
L,rig)0 be the

fibre of (2.4.1) over O(−OE) : S → Pic−1
S (E), we have that (Bunss,μ

L,rig)0 ∼=
Bunss,μ

L,rig/E is a Z(L)rig-gerbe over S = Z0 and the map Z0 → Bunss,μ
L,rig/E

is a section. In particular, it is smooth with connected fibres (isomorphic to
Z(L)rig), so (2) is satisfied, and surjective, so (3) is also satisfied. Finally,
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to prove (4), simply note that Proposition 2.2.3 and a simple root-theoretic
calculation show that Z = IndG

L (Z0) → Z0 = S is an affine space bundle of
relative dimension l + 3.

The proof of Theorem 2.2.6 in types B, C and D will require a few more
preliminaries. First, we remark on the following realisation of GSp4-bundles
in terms of vector bundles.

Definition 2.4.1. A conformally symplectic vector bundle is a tuple

(W,M,ω),

where W is a vector bundle, M is a line bundle, and ω : ∧2 W → M is a
morphism such that the induced morphism W → W∨⊗M is an isomorphism.

Lemma 2.4.2. There is an isomorphism of BunGSp4 with the relative stack
of rank 4 conformally symplectic vector bundles (W,M,ω) on E over S, which
identifies χ : BunGSp4 → BunGm with the map (W,M,ω) → M .

Proof. Let V be the standard representation of GSp4 coming from the inclu-
sion GSp4 ⊆ GL4. Then J defines a homomorphism of GSp4-representations
J : ∧2 V → Zχ. The isomorphism from BunGSp4 to the stack of conformally
symplectic vector bundles sends a GSp4-bundle ξ to

(ξ ×GSp4 V, ξ ×GSp4 Zχ, ξ ×GSp4 J).

Now assume that (G,P, μ) is a subregular Harder–Narasimhan class of
type B, C or D with corresponding Levi L ⊆ P . Let P ′ ⊆ L denote the
standard parabolic of type t(P ′) = {αl}, and L′ ⊆ P ′ its standard Levi
subgroup. In types C and D, let ρL : L → GLn1+1 be the composition of the
isomorphism of Lemma 2.3.4 with the projection to the second factor (where
for concreteness we choose the labelling so that αc1,n1 = αl), and in type B
let ρL : L → GL4 be the composition of the isomorphism of Lemma 2.3.6 with
the projection to the second factor and the inclusion GSp4 ⊆ GL4.

Lemma 2.4.3. Assume we are in types B, C or D. Then there is an isomor-
phism of BunP ′ with the stack of pairs (ξL,M ⊆ W ), where ξL ∈ BunL and
M ⊆ W is a line subbundle of the vector bundle W associated to ξL under
the representation ρL, such that the morphism

�l : BunP ′ −→ BunGm
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is identified with the morphism

(ξL,M ⊆ W ) −→
{
�i(ξL) ⊗M−1, in types B and D,

�i(ξL)⊗2 ⊗M−1, in type C.

In types C and D (resp., type B), if ξP ′ corresponds to (ξL,M ⊆ W ) and V is
the vector bundle induced by ξL under the projection L → GLn0 coming from
Lemma 2.3.4 (resp., 2.3.6), then the L′-bundle ξP ′ ×P ′

L′ is semistable if and
only if the vector bundles V and W/M (resp., ker(ω : W/M → detV ⊗M∨))
are semistable.

Proof. In types C and D, the isomorphism of Lemma 2.3.4 identifies P ′

with the parabolic GLn0 × Rn1+1, where Rn1+1 ⊆ GLn1+1 is the maximal
parabolic of type {βn1}, and the result follows routinely. In type B, using
Lemma 2.3.6 we have an L-equivariant identification L/P ′ ∼= GSp4/(GSp4 ∩
R4) ∼= GL4/R4 ∼= P4 with the space of lines in the representation ρL, where

R4 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝
∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ⊆ GL4.

The claimed isomorphism in this case now follows. To get the desired identi-
fication of the semistable bundles, notice that the Levi factor of GSp4 ∩ R4
is ⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛⎜⎜⎜⎝
λ−1 detA 0 0 0

0 0
0 A 0
0 0 0 λ

⎞⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣A ∈ GL2, λ ∈ Gm

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ∼= GL2 ×Gm,

so we have an isomorphism

BunL′ ∼= BunGLn0
×BunGm

BunGL2 ×S BunGm ,

such that the map BunP ′ → BunL′ is identified with

(ξL,M ⊆ W ) −→ (V, ker(W/M → detV ⊗M∨),M).

This now implies the claim.

Lemma 2.4.4. Let (G,P, μ) be of type B, C or D, and assume that ξL → Es

is a semistable L-bundle of slope μ over a geometric fibre of E → S. Then
dim Aut(ξL) ≥ 2.
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Proof. By Lemmas 2.3.4, 2.3.6 and 2.4.2 and [5, Theorem 4.2.6], it suffices to
show that if W is a semistable vector bundle of degree −2 and rank 2r (resp.,
(W,M,ω) is a conformally symplectic vector bundle with W semistable and
degM = −1), then dim Aut(W ) ≥ 2 (resp., dim Aut(W,M,ω) ≥ 2).

In the first case, observe that if U and U ′ are nonisomorphic semistable
vector bundles of degree −1 and rank r, then U ⊗ (U ′)∨ is a vector bundle of
degree 0 with H0(E,U ⊗ (U ′)∨) = 0, and hence H1(E,U ⊗ (U ′)∨) = 0 also.
It follows that the morphism

Bunss,−1
GLr

× Bunss,−1
GLr

−→ Bunss,−2
GL2r

(U,U ′) −→ U ⊕ U ′

is étale at (U,U ′) if U �∼= U ′. Since the locus of vector bundles W in Bunss,−2
GL2d

with dim Aut(W ) < 2 is open, it is either empty or dense. So by openness of
étale morphisms, if it is nonempty, then there exists such a bundle W = U⊕U ′

with U �∼= U ′. But Aut(W ) = Aut(U)×Aut(U ′) = Gm×Gm for such bundles,
so this is a contradiction and we are done in this case.

The proof for conformally symplectic bundles is similar. Consider the Levi
subgroup

GL2 ×Gm
∼= L′′ =

{(
λJ0(At)−1J0 0

0 λA

)∣∣∣∣∣A ∈ GL2, λ ∈ Gm

}
,

where

J0 =
(

0 1
1 0

)
.

Given (U,M) ∈ Bunss,−1
GL2

×S Bun−1
Gm

corresponding to an L′′-bundle ξL′′ , with
U �∼= U∨ ⊗M , we have that

ξL′′ ×L′′
gsp4/l

′′ ⊆ U∨ ⊗ (U∨ ⊗M) ⊕ U ⊗ (U∨ ⊗M)∨

is a degree 0 vector bundle on Es with H0(Es, ξL′′ ×L′′
gsp4/l

′′) = 0 and hence
H1(Es, ξL′′ ×L′′

gsp4/l
′′) = 0 also, where gsp4 = Lie(GSp4) and l′′ = Lie(L′′).

So we conclude that the morphism

BunL′′ −→ Bun−1
GSp4

is étale at (U,M).
Since the locus of conformally symplectic vector bundles (W,M,ω) in

Bunss,−1
GSp4

with automorphism group of dimension < 2 is open, it is either
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empty or dense. If it is nonempty, then by openness of étale morphisms
we can find such a bundle of the form W = U ⊕ U∨ ⊗ M as above. But
dim AutGSp4(W ) = dim Aut(U)× dim Aut(M) = 2, so this is a contradiction
and the lemma is proved.

Proof of Theorem 2.2.6 in types B, C and D. Let μ′ ∈ X∗(Z(L′))Q be the
unique vector with 〈�i, μ

′〉 = −1 and 〈�l, μ
′〉 = 0. Then Proposition 2.3.1

and Atiyah’s classification show that the morphism

(�i, �l) : Bunss,μ′

L′,rig −→ Pic−1
S (E) ×S Pic0

S(E)

is a Z(L′)rig-gerbe. Let G′′ be the Z(L′)rig-gerbe on S given by pulling back
along the section

(O(−OE),O) : S → Pic−1
S (E) ×S Pic0

S(E).

The pullback of the theta bundle gives a BZ(L′)rig-equivariant morphism
G′′ → BGm where BZ(L′)rig acts through the homomorphism (−μ′ | −), so
we get a ker(μ′ | −)-gerbe G′ = G′′ ×BGm SpecZ. Let G be the rigidification
of G′ with respect to �∨

l (Gm). Then G is a ker(μ′ | −)/�∨
l (Gm) ∼= μd-gerbe,

pulled back from a gerbe Guni on M1,1, and if it is trivial then we have a
BGm-equivariant morphism BSGm → Bunss,μ′

L′,rig (with BGm acting through
�∨

l ) lifting the section (O(−OE),O) such that the pullback of the theta
bundle is trivial. Define

Z0 = IndL
L′(BSGm) \ BSGm −→ Bunμ

L,rig,

and observe that the pullback of ΘBunG,rig
to Z0 is also trivial since Z0 →

BSGm is an affine space bundle.

Table 2: Roots of L with 〈α, μ′〉 < 0

Type α ∈ ΦL with 〈α, μ′〉 < 0 〈α, μ′〉 〈α,�∨
l 〉

B
−αl −1

2 −1
−αl−1 − αl −1

2 −1
−αl−1 − 2αl −1 −2

C −αl −2 −1

D
−αl −2

3 −1
−αl−2 − αl −2

3 −1
−αl−2 − αl−1 − αl −2

3 −1
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We now check that Z0 satisfies the conditions of Theorem 2.2.6. Since
the claims are local on S, we can assume for convenience that the section
BSGm → Bunss,μ′

L′,rig lifts to a morphism S → Bunss,μ′

L′ and that the line bundle
on E associated to this section via the character �l is trivial. Note that in
this case, we have a natural identification

Z0 ∼= (IndL
L′(S) \ S)/Gm.

First, the roots α ∈ ΦL with 〈α, μ′〉 < 0 are given in Table 2, along with
the values of 〈α, μ′〉 and 〈α,�∨

l 〉. Using Proposition 2.2.3 and [4, Proposition
5.2.7], it follows that IndL

L′(S) → S is an A2-bundle on which Gm acts with
weight 1 in types C and D, and weights 1 and 2 in type B. So Z0 → S is a
P(1, 2)-bundle in type B and a P1-bundle in types C and D. In particular, (1)
is satisfied.

We next show that Z0 → Bunμ
L,rig factors through Bunss,μ

L,rig. Note that
Table 2 shows that −μ′ is a Harder–Narasimhan vector for P ′ ⊆ L, so
IndL

L′(S) = Bunss,μ′

P ′,rig ×Bunss,μ′
L′,rig

S. So Lemma 2.4.3 shows that ξL is in the

image of IndL
L′(S) if and only if V is semistable of determinant O(−OE)

and there exists a nonvanishing section of W ⊗O(dOE) such that the vector
bundle

U =
{
W/O(−dOE), in types C and D,

ker(W/O(−(dOE) → O), in type B,

is semistable. Here V and W are as in the statement of Lemma 2.4.3, and

d =
{

1, in types B and D,

2, in type C

is as in the statement of the theorem. The bundle ξL is in the image of
IndL

L′(S) \ S if and only if O(−dOE) → W can be chosen not to admit a
retraction. Suppose that ξL is such a bundle and that ξL is unstable; we
deduce a contradiction in each type.

In type B, W is an unstable conformally symplectic vector bundle of
rank 4 and degree −2, so there exists a quotient W → N where N has
slope < −1/2. Replacing N with coker(N∨ ⊗ O(−OE) → W ) if necessary,
we can assume that N has rank ≤ 2. Since any vector bundle of rank 2
and slope < −1/2 surjects onto some line bundle of negative degree, we can
therefore assume without loss of generality that N is a line bundle. Examining
slopes, we see from semistability of U that W → N does not factor through
W/O(−OE), and hence that O(−OE) → N is nonzero. So O(−OE) → N
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must be an isomorphism since degN ≤ degO(−OE), and we therefore have
a retraction W → O(−OE) = N . Since this is a contradiction, we are done
in this case.

In type C, W is an unstable vector bundle of rank 2 and degree −2, so
there exists a quotient W → N where N is a a line bundle of degree < −1.
Examining slopes, we see that W → N does not factor through W/O(−2OE)
and hence that O(−2OE) → N is nonzero. So O(−2OE) → N must be an
isomorphism since degN ≤ degO(−2OE), and we therefore have a retraction
W → O(−2OE) = N . Since this is a contradiction, we are done in this case
as well.

Finally, in type D, W is an unstable vector bundle of rank 4 and degree
−2, so there exists a quotient W → N where N is a semistable vector bundle
of slope < −1/2. Examining slopes and using semistability of W/O(−OE)
and of N , we see that W → N does not factor through W/O(−OE) and we
again get a retraction W → N ∼= O(−OE). So we have shown that ξL must
be semistable in all cases.

We next show that the morphism Z0 → Bunss,μ
L,rig/E is smooth with con-

nected fibres, which proves (2) and that Z0 → Bunss,μ
L,rig is a Θ-trivial slice.

Write (Bunss,μ
L )0 for the fibre of �i : Bunss,μ

L → Pic−1
S (E) over O(−OE) and

(Bunμ′

P ′)ss0 = Bunμ′

P ′ ×Bunμ
L

(Bunss,μ
L )0. Then Lemma 2.4.3 gives an open im-

mersion
(Bunμ′

P ′)ss0 ⊆ P(Bunss,μ
L )0π∗(W

uni ⊗O(dOE)),

where we write W uni for the universal bundle on (Bunss,μ
L )0 ×S E induced

by the representation ρL of L and π : (Bunss,μ
L )0 ×S E → (Bunss,μ

L )0 for the
natural projection. Moreover,

Z0 ×(Bunss,μ
L,rig)0 (Bunss,μ

L )0 −→ (Bunμ′

P ′)ss0

is a Gm = Z(L)rig/�∨
l (Gm)-torsor over the open substack where the asso-

ciated L′-bundle is semistable. This shows in particular that Z0 ×(Bunss,μ
L,rig)0

(Bunss,μ
L )0 → (Bunss,μ

L )0 is smooth with connected fibres of dimension 2, and
hence that the same is true for Z0 → (Bunss,μ

L,rig)0 ∼= Bunss,μ
L,rig/E as claimed.

To prove (3), first observe that since Z0 → S has finite relative stabilisers,
any L-bundle in the image of Z0 → (Bunss,μ

L,rig)0 ⊆ Bunss,μ
L,rig can have automor-

phism group of dimension at most 2, and is hence regular by Lemma 2.4.4. For
the converse, note that since every regular semistable L-bundle is a translate
of one in (Bunss,μ

L )0, it suffices to show that any regular semistable bundle in
(Bunss,μ

L )0 is in the image of (Bunss,μ
P ′ )0 → Bunμ

L, and hence in the image of
Z0 → Bunss,μ

L,rig.
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Suppose then that ξL → Es is a semistable L-bundle in (Bunss,μ
L )0 over

s : Spec k → S that is not in the image of (Bunss,μ′

P ′ )0. We show in each type
that dim Aut(ξL) > 2 so ξL is not regular.

In type B, in the notation of Lemma 2.4.3, we have that for every nonzero
morphism γ : O(−OE) → W , the vector bundle Uγ = ker(W/O(−OE) → O)
is unstable. (Note that W is semistable of rank 4 and degree −2, so any such
morphism is a subbundle.) Using semistability of W , the Harder–Narasimhan
decomposition of Uγ must be of the form

Uγ = Nγ ⊕N∨
γ ⊗O(−OE),

where Nγ is a line bundle of degree 0 on Es and the preimage of Nγ in W
is the unique non-split extension N ′

γ of Nγ by O(−OE). By uniqueness of
Harder–Narasimhan filtrations, it follows that we have a morphism P1

k =
PH0(Es,W ⊗ O(OE)) → Pic0(Es) sending γ to the isomorphism class of
Nγ . Since there are no non-constant morphisms from P1

k to any elliptic curve
over k, we deduce that Nγ = N and N ′

γ = N ′ are independent of γ. So every
nonzero morphism O(−OE) → W factors through some Lagrangian inclusion
N ′ ↪→ W . Choosing any such morphism gives an exact sequence

0 −→ N ′ −→ W −→ (N ′)∨ ⊗O(−OE) −→ 0.

Since dim Hom(O(−OE), N ′) = 1 and dim Hom(O(−OE),W ) = 2, we can
choose another homomorphism O(−OE) not factoring through the given copy
of N ′, and hence get another Lagrangian inclusion N ′ ↪→ W , which must map
N ′ isomorphically onto (N ′)∨⊗O(−OE). So the above exact sequence splits,
and we have

W ∼= N ′ ⊕N ′,

where both summands are Lagrangian. In particular, W and hence ξL carries
a faithful action of Sp2, so dim Aut(ξL) > 2 as claimed.

In type C, we have that every nonzero morphism γ : O(−2OE) → W
must vanish at some unique point xγ ∈ Es. So again we have a morphism
P1
k = PH0(Es,W⊗O(−2OE)) → Es sending γ to xγ , which must be constant.

So xγ = x is independent of γ, and every morphism O(−2OE) → W therefore
factors through a subbundle O(x − 2OE) ⊆ W . Since W is semistable of
trivial determinant, choosing any two linearly independent morphisms gives
an isomorphism W ∼= O(x − 2OE) ⊕O(x − 2OE). So SL2 acts faithfully on
W and hence on ξL and dim Aut(ξL) > 2 as claimed.

In type D, we have that Uγ = W/O(−OE) is unstable for every nonzero
morphism γ : O(−OE) → W . (Note that again any such γ must be a sub-
bundle since W is semistable of slope −1/2.) Since W is semistable, one
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sees that the Harder–Narasimhan decomposition of Uγ must be of the form
Uγ = Nγ ⊕det(Nγ)∨⊗O(−OE), where Nγ is a rank 2 semistable vector bun-
dle of degree −1. Again we get a morphism P1

k = PH0(Es,W ⊗ O(OE)) →
Pic−1(Es) sending γ to the isomorphism class of det(Nγ), which again must
be constant. So det(Nγ), and hence Nγ = N are independent of γ, and every
nonzero morphism O(−OE) → W factors through the kernel of some surjec-
tion W → N . Choosing two linearly independent morphisms O(−OE) → W
therefore gives a map W → N ⊕N , which one easily sees must be an isomor-
phism. So again SL2 acts faithfully on W fixing the determinant, and hence
on ξL, which proves that dim Aut(ξL) > 2 in this case as well.

Finally, to prove (4), simply note that Proposition 2.2.3 implies that Z →
Z0 is an affine space bundle of relative dimension −〈2ρ, μ〉 = l+ 2, so Z → S
has relative dimension l + 3 as required.

3. Computing resolutions

The purpose of this section is to give the proof of Theorem 1.0.3. We prove (1),
(2), (3) and (4) separately (as Propositions 3.1.1, 3.4.1, 3.5.1 and 3.6.1) in
§3.1, §3.4, §3.5 and §3.6 respectively.

The proofs of Propositions 3.4.1 and 3.6.1 make use of the idea that
sections of a flag variety bundle decompose naturally according to which
Bruhat cells they meet. This is used to give decompositions of the divisor
Dα∨

i
(Z) and Dα∨

j
(Z) into locally closed subsets, each of which can be identified

in terms of an analogous set of sections of a flag variety for some copy of GLn

inside G. We manage to show that these “Bruhat cells” fit together into
the blowups in Theorem 1.0.3 by explicitly constructing the blow downs as
spaces of (stable) sections of partial flag variety bundles. The Bruhat cells
are discussed in general in §3.2, and the specific cells of interest for GLn are
studied in §3.3.

3.1. Decomposition of χ̃−1
Z (0Θ−1

Y
)

In this subsection, we prove the following proposition, which is a slightly more
general version of part (1) of Theorem 1.0.3.

Proposition 3.1.1. Let (G,P, μ) be a subregular Harder–Narasimhan class
not of type A1. Assume that the μd-gerbe G of Theorem 2.2.6 is trivial, let
Z0 → Bunss,μ

L,rig be the corresponding Θ-trivial slice, and let Z = IndG
L (Z0) →

BunG,rig be the induced equivariant slice. Then the preimage of the zero section
of Θ−1

Y in Z̃ = B̃unG,rig×BunGZ decomposes as a divisor with normal crossings

(3.1.1) χ̃−1
Z (0Θ−1

Y
) = dDα∨

i
(Z) + Dα∨

j
(Z) + Dα∨

i +α∨
j
(Z)
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such that each summand is smooth over Y , where Dλ(Z) denotes the closure of
the locus of stable maps with a single rational component of degree λ ∈ X∗(T ).

Proof. Since Z → BunG,rig is a slice, [5, Proposition 2.1.10 and Corollary
3.3.8] imply that the preimage of the zero section decomposes as a divisor
with normal crossings

χ̃−1
Z (0Θ−1

Y
) =

∑
λ∈X∗(T )+

1
2(λ |λ)Dλ(Z),

where ( | ) is the normalised Killing form on X∗(T ). By Lemma 3.1.2 below,
Dλ(Z) = ∅ unless λ ∈ {α∨

i , α
∨
j , α

∨
i + α∨

j }, so this simplifies to (3.1.1) as
required, since α∨

j and α∨
i + α∨

j are short coroots and (α∨
i |α∨

i ) = 2d in each
case.

It remains to show that each Dλ(Z) is smooth over Y . Note that χ̃−1
Z (0Θ−1

Y
)

is in fact a divisor with normal crossings relative to Y : this follows from [4,
Proposition 3.5.3], the definition [5, Definition 2.1.14] of the blow down mor-
phism B̃unG → Y , and the fact that the boundary of the stack DegS(E) of
prestable degenerations of E is a divisor with normal crossings relative to S
[5, Proposition 2.1.7]. So it is enough to show that each Dλ(Z) has no self-
intersections. But a point in such a self-intersection would have to be given
by a stable map with at least two rational components both of degree ≥ α∨

i

or both of degree ≥ α∨
j . But this is forbidden by Lemma 3.1.2, so we are

done.

Lemma 3.1.2. For λ ∈ X∗(T )+, we have Dλ(Z) �= ∅ if and only if λ ∈
{α∨

i , α
∨
j , α

∨
i + α∨

j }.

Proof. For simplicity, we can assume without loss of generality that S =
Spec k for k an algebraically closed field. We first show that Dα∨

i
(Z) �= ∅ and

Dα∨
j
(Z) �= ∅.
If (G,P, μ) is of type A, then μ is the image of −α∨

i − α∨
j under the

homomorphism X∗(T ) → X∗(Z(L)◦)Q and 〈α, α∨
i + α∨

j 〉 ≤ 0 for all α ∈ Φ+ a
root of P . So by [4, Proposition 3.6.4], the morphism

KM−α∨
i −α∨

j

B,G −→ KMμ
P,G

is surjective. In particular, for every z ∈ Z0, there exists a section of ξL,z ×L

P/B ⊆ ξL,z×LG/B with degree −λ0 ≤ −α∨
i −α∨

j . So we must have Dλ0(Z) �=
∅, and hence Dα∨

i
(Z) �= ∅ and Dα∨

j
(Z) �= ∅, since we can always add rational

tails to such a section to produce a stable map in each of these divisors.
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On the other hand, if (G,P, μ) is not of type A, then μ is the image of
−α∨

i in X∗(Z(L)◦)Q, and 〈α, α∨
i 〉 ≤ 0 for α ∈ Φ+ a root of P . So

KM−α∨
i

B,G −→ KMμ
P,G

is surjective by [4, Proposition 3.6.4], so we deduce that Dα∨
i
(Z) �= ∅. For

Dα∨
j
(Z), note that since αj ∈ Δ is the unique special root, [5, Proposition

4.2.3] implies that the Harder–Narasimhan locus Bunss,−α∨
j

Q ⊆ BunG is dense
in the locus of unstable G-bundles, where Q is the standard parabolic with
t(Q) = {α∨

j }. So Bunss,−α∨
j

Q,rig ×BunG,rig
Z �= ∅, and hence Dα∨

j
(Z) �= ∅ by [5,

Proposition 4.3.8].
Conversely, suppose that λ ∈ X∗(T ) and that Dλ(Z) �= ∅. Then for

any αk ∈ Δ with corresponding maximal parabolic Pk, there exists a point
in Z and a section of the corresponding G/Pk-bundle with degree νk =
−〈�k, λ〉/〈�k, �

∨
k 〉�∨

k (the image of λ in X∗(TPk
)). So by Lemma 3.1.3 and

[7, Lemma 3.3.2], we must have

(l + 1)〈�k, λ〉 ≤
〈2ρ,�∨

k 〉
〈�k, �∨

k 〉
〈�k, λ〉 = −〈2ρ, νk〉 ≤ −〈2ρ, μ〉 ≤ l + 3.

So

〈�k, λ〉 ≤
l + 3
l + 1 < 2,

since l > 1. So 〈�k, λ〉 = 0 or 1 for all k.
Now assume for a contradiction that there exists λ ∈ X∗(T )+ \ {α∨

i , α
∨
j ,

α∨
i + α∨

j } such that Dλ(Z) �= ∅. Since the divisor D(Z) = χ̃−1
Z (0Θ−1

Y
) is con-

nected by Lemma 3.1.4 below, we can choose λ so that Dλ(Z) has nonempty
intersection with one of Dα∨

i
(Z), Dα∨

j
(Z) or Dα∨

i +α∨
j
(Z). Choose a point in

such an intersection over z ∈ Z, and let −λ′ ∈ X∗(T )− denote the degree of
the corresponding stable map restricted to the irreducible component of genus
1. Then we have Dλ′(Z) �= ∅, λ′ ≥ λ and λ′ ≥ α∨

r for some αr ∈ {αi, αj}. By
the bound proved above, we must have 〈�k, λ〉 = 1 for some αk ∈ Δ\{αi, αj},
and hence λ′ ≥ α∨

r + α∨
k . So adding rational tails to the degree −λ′ section if

necessary, we deduce Dα∨
r +α∨

k
(Z) �= ∅ and Dα∨

k
(Z) �= ∅.

Assume first that G is not of type A. Since Dα∨
k
(Z) �= ∅, there exists z ∈ Z

and a section of ξG,z/B with degree −α∨
k , and hence a section of ξG,z/Pk with

slope −�∨
k /〈�k, �

∨
k 〉. So by Lemma 3.1.3, there exists z′ ∈ Z such that ξG,z′

has Harder–Narasimhan reduction to Pk with slope −�∨
k /〈�k, �

∨
k 〉. Since

Pk �= P , we have z′ ∈ Z \ Z0 so in particular z is not fixed under the
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Z(L)rig-action. Comparing codimensions in BunG,rig/E and in Z, we deduce
that ξG,z′ must be regular unstable, which is a contradiction since it has the
wrong Harder–Narasimhan type, as αk is not a special root.

Assume on the other hand that G is of type A. We have k /∈ {i, i+1} and
r ∈ {i, i+1} such that Dα∨

r +α∨
k
(Z) �= ∅. So there exists z ∈ Z and a section of

ξG,z/Pr,k of slope ν ∈ X∗(Z(Lr,k)◦)Q satisfying 〈�r, ν〉 = 〈�k, ν〉 = −1, where
Pr,k ⊆ G is the standard parabolic of type {αr, αk} and Lr,k its standard Levi
factor. But ν is a Harder–Narasimhan vector for Pr,k, so by Lemma 3.1.3, there
exists z′ ∈ Z such that ξG,z′ has Harder–Narasimhan reduction to Pr,k with
slope ν. Since Pr,k �= P , we have z ∈ Z \ Z0. Again this implies that ξG,z′ is
regular unstable, giving a contradiction.

So Dλ(Z) = ∅ for λ /∈ {α∨
i , α

∨
j , α

∨
i + α∨

j }, and Dα∨
i
(Z), Dα∨

j
(Z) �= ∅.

This implies that Dα∨
i +α∨

j
(Z) �= ∅, for if this were not the case, we would

have Dα∨
i
(Z) ∩ Dα∨

j
(Z) = ∅ and hence χ̃−1

Z (0Θ−1
Y

) would be disconnected,
contradicting Lemma 3.1.4.

Lemma 3.1.3. In the setup of Proposition 3.1.1, fix some z ∈ Z with cor-
responding G-bundle ξG,z. If there exists a section of ξG,z/Q of degree ν,
where Q is any standard parabolic with Harder–Narasimhan vector ν and
(Q, ν) �= (P, μ), then

(1) there exists z′ ∈ Z such that the corresponding G-bundle ξG,z′ has
Harder–Narasimhan reduction to Q with degree ν, and

(2) −〈2ρ, ν〉 ≤ l + 2.

Proof. The assumptions imply that the stack Z×BunG,rigBunν
Q,rig is nonempty.

Since Z → BunG,rig/E is smooth, the preimage Z ×BunG,rig
Bunss,ν

Q,rig of
Bunss,ν

Q,rig/E under the morphism

Z ×BunG,rig
Bunν

Q,rig = Z ×BunG,rig/E BunQ,rig/E −→ Bunν
Q,rig/E

is dense, hence nonempty. This proves (1). Since (Q, ν) �= (P, μ), by unique-
ness of Harder–Narasimhan reductions, the Z(L)rig-invariant locally closed
substack Z ×BunG,rig

Bunss,ν
Q,rig ⊆ Z is disjoint from the Z(L)rig-fixed locus

Z0 ⊆ Z. Since Z0 → S has finite relative stabilisers, Z×BunG,rig Bunν
Q,rig → S

is therefore flat of relative dimension at least 1, and hence has codimension
at most

dimS Z − 1 = l + 2.

But this codimension is equal to the codimension −〈2ρ, ν〉 of Bunss,ν
Q,rig/E in

BunG,rig/E, so (2) follows.
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Lemma 3.1.4. The morphisms

(3.1.2) B̃unG −→ BunG ×(Ŷ //W )/Gm
Θ−1

Y /Gm

and

(3.1.3) χ̃−1
Z (0Θ−1

Y
) −→ Y

have connected fibres.

Proof. Note that the target of (3.1.2) is a local complete intersection, hence
Cohen–Macaulay. Moreover, (3.1.2) is an isomorphism over the open substack
Bunreg

G ×(Ŷ //W )/Gm
Θ−1

Y /Gm, where Bunreg
G ⊆ BunG is the open substack of

regular bundles [5, §4.4]. This open substack is big (i.e., the complement has
codimension at least 2) by [5, Proposition 4.4.6], so the target is normal and
the pushforward of O is O. Connectedness of the fibres now follows from
Zariski’s connectedness theorem [15, Theorem 11.3].

We can write (3.1.3) as a composition

(3.1.4) χ̃−1
Z (0Θ−1

Y
) −→ χ−1

Z (0) ×S 0Θ−1
Y

−→ 0Θ−1
Y

= Y.

The first factor is a pullback of (3.1.2), so has connected fibres. The mor-
phism χ−1

Z (0) → S also has connected fibres, since the H = Z(L)rig-action
contracts χ−1

Z (0) onto Z0 and Z0 → S has connected fibres. So both factors
of (3.1.4) have connected fibres, and the first is proper, so their composition
has connected fibres also.

3.2. Digression: Bruhat cells for P -bundles

In this subsection, we consider G an arbitrary reductive group. (The examples
of interest will be our simply connected simple group G from the rest of the
paper, and G = GLn.) The material presented here is a brief recap of [4,
§3.7].

Given two parabolic subgroups P, P ′ ⊆ G, which we may as well assume
standard, for each w in the Weyl group W of G, there is an associated Bruhat
cell

Cw
P,P ′ ⊆ BunP ×BunG

BunP ′ .

Thinking of the stack on the right as the stack of pairs (ξP , σ), where ξP is
a P -bundle and σ is a section of the partial flag variety bundle ξP ×P G/P ′,
we can define Cw

P,P ′ as the locally closed substack of pairs such that σ factors
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through the Bruhat cell ξP ×P PwP ′/P ′. Since PwP ′/P ′ ∼= P/P ∩ wP ′w−1

by the orbit-stabiliser theorem, we have

Cw
P,P ′ ∼= BunP∩wP ′w−1 .

Under this identification, the map Cw
P,P ′ → BunP (resp. Cw

P,P ′ → BunP ′)
sends a P ∩ wP ′w−1-bundle of degree μ ∈ X∗(TP∩wP ′w−1) to a P -bundle of
degree iw(μ) (resp. a P ′-bundle of degree jw(μ)), where iw : X∗(TP∩wP ′w−1) →
X∗(TP ) and jw : X∗(TP∩wP ′w−1) → X∗(TP ′) are induced by the two inclusions

P ←−↩ P ∩ wP ′w−1↪−w−1(−)w−−−−−→P ′.

The cell Cw
P,P ′ depends only on the double coset WPwWP ′ , where WP and

WP ′ are the Weyl groups of (the Levi subgroups of) P and P ′. A particularly
nice choice of double coset representatives is given by

(3.2.1) W 0
P,P ′ =

{
w ∈ W

∣∣∣∣∣ w−1αi ∈ Φ+ and wαj ∈ Φ+
for αi ∈ Δ \ t(P ) and αj ∈ Δ \ t(P ′)

}
.

These are the coset representatives of minimal length. Note that WP (resp.,
WP ′) are generated by the simple reflections si in the roots αi ∈ Δ \ t(P )
(resp., αi ∈ Δ \ t(P ′)).

When we want to keep track of the associated P -bundle and the degree
of the associated P ′-bundle, we write

Cw,λ
P,P ′ = Cw

P,P ′ ×BunP ′ Bunλ
P ′ and Cw,λ

P,P ′,ξP
= {ξP } ×BunP Cw,λ

P,P ′

for λ ∈ X∗(TP ′) and ξP ∈ BunP .
The following proposition gives an extremely useful criterion for determin-

ing when the Bruhat cells cover a given fibre of BunP ×BunG
Bunλ

P ′ → BunP .

Proposition 3.2.1 ([4, Proposition 3.7.6]). Let ξP → Es be a P -bundle on a
geometric fibre of E → S and suppose that there exists a point in BunP ×BunG

Bunλ
P ′ over ξP that does not lie in any Bruhat cell. Then there exists w ∈

W 0
P,P ′ \ {1} and λ′ < λ such that Cw,λ′

P,P ′,ξL×LP �= ∅, where L is the Levi factor
of P and ξL = ξP ×P L is the associated L-bundle.

3.3. Digression: some Bruhat cells for unstable vector bundles

The aim of this subsection is to describe certain spaces of stable maps to
partial flag variety bundles associated to particular minimally unstable GLn-
bundles on E. The spaces considered here will crop up again and again in the
subregular part of the elliptic Grothendieck–Springer resolution B̃unG.
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Recall the notation for the root datum of GLn and the standard parabolic
subgroups Qn

k ⊆ GLn given in §1.2 We also consider the standard parabolic
subgroup

Rn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
∗ ∗ · · · ∗ 0
...

...
...

...
∗ ∗ · · · ∗ 0
∗ ∗ · · · ∗ ∗

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

= {(ap,q)1≤p,q≤n ∈ GLn | ap,q = 0 for q > max(p, n− 1)}

of type {βn−1}. For 1 ≤ k ≤ n, let

Xn
k = Y

−e∗n
Qn

n
×

Y
−e∗n
Qn
k

KM−e∗n
Qn

k
,GLn

×Bun−1
GLn

Bunss,−e∗1
Rn

,

where, for any standard parabolic subgroup P ⊇ Qn
n, we use the same notation

for a cocharacter λ ∈ X∗(Qn
n) and for its image in X∗(P/[P, P ]). In words,

a point of the stack Xn
k over s ∈ S consists of a tuple (y, σ : C → ξRn ×Rn

GLn/Q
n
k , ξRn), where ξRn → Es is a semistable Rn-bundle of degree −e∗1

(which is the Harder–Narasimhan reduction of the unstable GLn-bundle of
the subsection title), σ is a stable section of degree −e∗n, and y is a lift of (the
isomorphism class of) the associated TQn

k
-bundle to a TQn

n
-bundle of degree

−e∗n.
For 1 ≤ p ≤ n− 1, let wp ∈ WGLn = Sn be the cyclic permutation

wp = (n, n− 1, . . . , p + 1, p) = sn−1sn−2 · · · sp

and let wn = 1 be the identity, where WGLn is the Weyl group of GLn, and
si = (i, i + 1) is the reflection in the root βi. For 1 ≤ p, k ≤ n, we write
CGLn

k,p ⊆ Xn
k for the locally closed substack of tuples (y, σ, ξRn) such that the

restriction of σ to the genus 1 component factors through the Bruhat cell

ξRn ×Rn RnwpQ
n
k/Q

n
k ⊆ ξRn ×Rn GLn/Q

n
k .

Proposition 3.3.1. For 1 ≤ k ≤ n, there is a decomposition

Xn
k =

⋃
1≤p<k

CGLn

k,p ∪ CGLn

k,n

into disjoint locally closed substacks.

We break the proof of Proposition 3.3.1 into several lemmas.
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Lemma 3.3.2. Assume that ξRn → Es is a semistable Rn-bundle on a geo-
metric fibre of E → S of degree −e∗1 and that σ : Es → ξRn ×Rn GLn/Q

n
n is a

section of degree λ ≤ −e∗n. Then λ ∈ {−e∗n,−e∗n−1}.
Proof. The section σ corresponds to a complete flag

0 = Vn � Vn−1 � · · · � V0 = V,

where V is the vector bundle associated to the GLn-bundle ξGLn = ξRn ×Rn

GLn, such that Vi−1/Vi is a line bundle of degree 〈ei, λ〉 for i = 1, . . . , n. Since
ξRn is the Harder–Narasimhan reduction of ξGLn , V has Harder–Narasimhan
decomposition V = M ⊕ U , where U is a semistable vector bundle of rank
n − 1 and degree −1 and M is a line bundle of degree 0. In particular, any
quotient bundle of V has slope ≥ −1/(n− 1), so we deduce that

(3.3.1) 〈e1 + · · · + ei, λ〉 = deg V/Vi ≥
−i

n− 1

for i = 1, . . . , n− 1.
Since λ ≤ −e∗n by assumption, we have

λ = −e∗n −
n−1∑
i=1

diβ
∨
i

for some di ∈ Z≥0, where β∨
i = e∗i − e∗i+1. Applying (3.3.1), we have di = 0

for 1 ≤ i ≤ n− 2 and dn−1 ∈ {0, 1}, which implies the lemma.

In what follows, we will write

Cw,λ
k = Bunss,−e∗1

Rn
×BunRn

Cw,λ
Rn,Qn

k
⊆ BunRn ×BunGLn

BunQn
k

for w ∈ W 0
Rn,Qn

k
and λ ∈ X∗(TQn

k
). Here Cw,λ

Rn,Qn
k

is the Bruhat cell of §3.2.

Lemma 3.3.3. Assume that w ∈ W 0
Rn,Qn

n
and λ ∈ X∗(TQn

n
) with Cw,λ

n �= ∅
and λ ≤ −e∗n. Then

(w, λ) ∈ {(1,−e∗n−1)} ∪ {(wp,−e∗n) | 1 ≤ p < n}.

Proof. First note that by Lemma 3.3.2, we know that λ ∈ {−e∗n,−e∗n−1}.
Moreover, we have from the definition (3.2.1) that

W 0
Rn,Qn

n
= {w ∈ Sn | w−1(i) < w−1(i + 1) for 1 ≤ i < n− 1}
= {wp | 1 ≤ p ≤ n}.
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Since Qn
n ⊆ GLn is the standard Borel subgroup, the homomorphism

jw : X∗(TQn
n
) = X∗(TRn∩Qn

n
) = X∗(TRn∩wQn

nw
−1) −→ X∗(TQn

n
)

defined in §3.2 is just the isomorphism given by w−1. So by nonemptiness of
Cw,λ

n there exists a semistable Ln-bundle ξLn → Es on a geometric fibre of
E → S of degree −e∗1, where Ln

∼= GLn−1×Gm is the standard Levi factor of
Rn and a section σL : Es → ξLn/(Ln ∩Qn

n) of degree wλ. In particular, since
en ∈ X∗(Ln), 〈en, wλ〉 = 〈en,−e∗1〉 = 0 and wλ is the degree of a section

Es
σL−→ ξLn/(Ln ∩Qn

n) ↪−→ ξLn ×Ln GLn/Q
n
n.

If λ = −e∗n and w = wp, then

wλ =
{
−e∗n−1, if p < n,

−e∗n, if p = n,

so from the above discussion we must have p ∈ {1, . . . , n− 1}. If λ = −e∗n−1,
on the other hand, then

wλ =

⎧⎪⎪⎨⎪⎪⎩
−e∗n−2, if p < n− 1,
−e∗n, if p = n− 1,
−e∗n−1, if p = n,

so the above discussion and Lemma 3.3.2 imply that p = n. Combining these
two cases gives that (w, λ) is in the desired set.

Lemma 3.3.4. For all λ ∈ X∗(TQn
n
) with λ ≤ −e∗n, we have

⋃
w∈W 0

Rn,Qn
n

Cw,λ
n = Bunλ

Qn
n
×Bun−1

GLn
Bunss,−e∗1

Rn
.

Proof. Assume for a contradiction that this fails for some λ ≤ −e∗n. Then by
Proposition 3.2.1 there exist w ∈ W 0

Rn,Qn
n
\{1} and λ′ < λ such that Cw,λ′

n �= ∅.
So Lemmas 3.3.2 and 3.3.3 imply that λ′ = −e∗n and λ ∈ {−e∗n,−e∗n−1}. But
this contradicts λ′ < λ so we are done.

Lemma 3.3.5. Let 1 ≤ k < n. Then

W 0
Rn,Qn

k
= {wp | 1 ≤ p < k} ∪ {wn}
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and

(3.3.2) Bun−e∗n
Qn

k
×BunGLn

Bunss,−e∗1
Rn

=
⋃

w∈W 0
Rn,Qn

k

C
w,−e∗n
k .

Proof. From the definition,

W 0
Rn,Qn

k
= {w ∈ W 0

Rn,Qn
n
| w(i) < w(i + 1) for k ≤ i ≤ n− 1}

= {wp | 1 ≤ p < k} ∪ {wn}

as claimed. Next, note that by [4, Proposition 3.6.4] the natural morphism

KM−e∗n
Qn

n,GLn
−→ KM−e∗n

Qn
k
,GLn

is surjective. So any geometric point of Bun−e∗n
Qn

k
×BunGLn

Bunss,−e∗1
Rn

lifts to
a point of Bunλ

Qn
n
×BunGLn

Bunss,−e∗1
Rn

for some λ ≤ −e∗n, and hence λ ∈
{−e∗n,−e∗n−1} by Lemma 3.3.2. So by Lemma 3.3.4, the morphism∐

w∈W 0
Rn,Qn

n

λ∈{−e∗n,−e∗n−1}

Cw,λ
n −→

∐
w∈W 0

Rn,Qn
k

C
w,−e∗n
k −→ Bun−e∗n

Qn
k

×BunGLn
Bunss,−e∗1

Rn

is surjective, which proves (3.3.2).

Proof of Proposition 3.3.1. Suppose first that k < n. Since any Qn
k -bundle

of degree ≤ −e∗n can be reduced to a Qn
n-bundle of degree ≤ −e∗n by [4,

Proposition 3.6.4], Lemma 3.3.2 implies that

KM−e∗n
Qn

k
,GLn

×BunGLn
Bunss,−e∗1

Rn
= Bun−e∗n

Qn
k

×BunGLn
Bunss,−e∗1

Rn
,

since −e∗n and −e∗n−1 have the same image in X∗(TQn
k
). So we have the desired

decomposition of Xn
k into locally closed substacks by Lemma 3.3.5 (note that

CGLn

k,p is the preimage of Cwp,λ
k in Xn

k in this case).
On the other hand, if k = n, then Lemma 3.3.2 implies that Xn

n decom-
poses as a disjoint union

Xn
n = (Bun−e∗n

Qn
n

×BunGLn
Bunss,−e∗1

Rn
) ∪ (Bun−e∗n−1

Qn
n

×BunGLn
Bunss,−e∗1

Rn
×S E)

of locally closed substacks, where the first factor is the locus of stable sections
with irreducible domain and the second factor is the locus of stable sections
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with a single rational component of degree β∨
n−1 = e∗n−1−e∗n. By Lemmas 3.3.3

and 3.3.4, this decomposes further as the desired decomposition

Xn
n =

⋃
1≤p<n

CGLn
n,p ∪ CGLn

n,n

so we are done.

From the proof of Proposition 3.3.1, we have that

CGLn
n,n

∼= C
1,−e∗n−1
n ×S E = Bun−e∗n−1

Qn
n

×BunGLn
Bunss,−e∗1

Rn
×S E

is the locus of stable maps with a single rational component of degree β∨
n−1.

The natural projection to E keeps track of the point of attachment of the
rational component, and the projection to the other factors keeps track of the
restriction to the elliptic component. Note that the projection to E agrees
with composition of CGLn

n,n → CGLn
1,n with the morphism

CGLn
1,n −→ Y

−e∗n
Qn

n
×Pic−1

S (E) Y
−e∗1
Rn

−→ Pic1
S(E) = E(3.3.3)

(y, y′) −→ en(y′) − en(y).

For 1 ≤ p < n, we let
MGLn

p ⊆ CGLn
1,n

be the closed substack given by the fibre product

MGLn
p CGLn

1,n

Y
−e∗n
Qn

n
Y

−e∗n
Qn

n
×S E,

θGLn
p

where the morphism CGLn
1,n → E is (3.3.3), and the morphism Y

−e∗n
Qn

n
→

Y
−e∗n
Qn

n
×S Pic1

S(E) is given by

θGLn
p : Y −e∗n

Qn
n

−→ Y
−e∗n
Qn

n
×S Pic1

S(E) = Y
−e∗n
Qn

n
×S E

y −→ (y, ep(y) − en(y)).
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Proposition 3.3.6. For all 1 ≤ k < n, the morphism Xn
k+1 → Xn

k restricts
to isomorphisms

CGLn

k+1,n
∼−→ CGLn

k,n and CGLn

k+1,p
∼−→ CGLn

k,p

for 1 ≤ p < k, and a morphism

CGLn

k+1,k −→ MGLn

k ⊆ CGLn

k,n
∼= CGLn

1,n

that exhibits CGLn

k+1,k as an A1-bundle over MGLn

k .

Proof. If k < n − 1, then the morphism CGLn

k+1,n → CGLn

k,n can be identified
with

Y
−e∗n
Qn

n
×

Y
−e∗n
Qn
k+1

Bun−e∗n−1
Rn∩Qn

k+1
×

Bun
−e∗1
Rn

Bunss,−e∗1
Rn

−→ Y
−e∗n
Qn

n
×

Y
−e∗n
Qn
k

Bun−e∗n−1
Rn∩Qn

k
×

Bun
−e∗1
Rn

Bunss,−e∗1
Rn

This is a pullback of

Bun−e∗n−1
Qn−1

k+1
×BunGLn−1

Bunss,−1
GLn−1

−→ Y
−e∗n−1
Qn−1

k+1
×

Y
−e∗

n−1
Qn−1
k

Bun−e∗n−1
Qn−1

k

×BunGLn−1
Bunss,−1

GLn−1

under the morphism Rn → GLn−1 forgetting the last row and column, hence
an isomorphism by [5, Lemma 4.3.7].

If k = n− 1, then we can identify CGLn

k+1,n → CGLn

k,n with the morphism

Bun−e∗n−1
Qn

n∩Rn
×BunRn

Bunss,−e∗1
Rn

×S E

−→ Y
−e∗n
Qn

n
×

Y
−e∗n
Qn
n−1

Bun−e∗n−1
Rn∩Qn

n−1
×BunRn

Bunss,−e∗1
Rn

.

Since Rn ∩Qn
n = Rn ∩Qn

n−1 = Qn
n, this is naturally a pullback of the isomor-

phism

Y
−e∗n−1
Qn

n
×S E

∼−→ Y
−e∗n
Qn

n
×

Y
−e∗n
Qn
n−1

Y
−e∗n−1
Qn

n

(y, x) −→ (y + β∨
n−1(x), y),

hence an isomorphism itself.
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If k ≤ n and 1 ≤ p < k, then Ln∩wpQ
n
kw

−1
p = Ln∩Qn

k−1, where Ln ⊆ Rn

is the standard Levi factor. One easily checks that, in the notation of §3.2,
the morphism

(iwp , jwp) : X∗(TRn∩wpQn
k
w−1

p
) −→ X∗(TRn) ⊕ X∗(TQn

k
)

is injective and sends −e∗n−1 to (−e∗1,−e∗n). So

C
wp,−e∗n
k = Bun−e∗n−1

Rn∩wpQn
k
w−1

p
×BunRn

Bunss,−e∗1
Rn

.

By general nonsense, the right hand side is the relative space of sections of

ηk,p×(Ln∩wpQn
kw

−1
p )Ru(Rn) Ru(Rn)

Ru(Rn) ∩ wpQn
kw

−1
p

−→ Bun−e∗n−1
Ln∩wpQn

k
w−1

p
×BunLn

Bunss,−e∗1
Rn

×S E

over

Bun−e∗n−1
Ln∩wpQn

k
w−1

p
×BunLn

Bunss,−e∗1
Rn

⊆ Bun(Ln∩wpQn
k
w−1

p )Ru(Rn),

where ηk,p is the universal (Ln ∩ wpQ
n
kw

−1
p )Ru(Rn)-bundle. By Lemma 3.3.7

below, we can therefore identify CGLn

k,p = Y
−e∗n
Qn

n
×

Y
−e∗n
Qn
k

C
wp,−e∗n
k with the relative

space of sections of

(3.3.4) η̄k,p ×(Ln∩wpQn
kw

−1
p )Ru(Rn) Ru(Rn)

Ru(Rn) ∩ wpQn
kw

−1
p

−→ MGLn
p ×S E

over Mp ⊆ CGLn
1,n , where η̄k,p is a pullback of ηk,p. Note that by Lemma 3.3.8

below, there is an isomorphism

Ru(Rn)
Ru(Rn) ∩ wpQn

kw
−1
p

∼= U∨
k,p ⊗ Zen ,

of Ln ∩wpQ
n
kw

−1
p -varieties, where Uk,p is the representation described imme-

diately before Lemma 3.3.8. So after pulling back along the smooth surjection
Bunss,−e∗1

Ln
→ Bunss,−e∗1

Rn
, (3.3.4) becomes a family of stable vector bundles on

E of degree 1.
If k ≤ n− 1, then by the above discussion, the morphism CGLn

k+1,p → CGLn

k,p

becomes the pushforward of a surjective morphism between families of stable
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vector bundles of degree 1 over MGLn
p after pulling back along Bunss,−e∗1

Ln
→

Bunss,−e∗1
Rn

, and is therefore an isomorphism as claimed. On the other hand,
the morphism CGLn

k+1,k → CGLn

k,n becomes the relative space of sections over
MGLn

k ⊆ CGLn
1,n

∼= CGLn

k,n of a family of stable vector bundles of degree 1, and
is therefore an A1-bundle over MGLn

k .

Lemma 3.3.7. If p < k ≤ n, then the morphism

Y
−e∗n
Qn

n
×

Y
−e∗n
Qn
k

(Bun−e∗n−1
Ln∩wpQn

k
w−1

p
×

Bun
−e∗1
Ln

Bunss,−e∗1
Rn

)(3.3.5)

−→ Y
−e∗n
Qn

n
×Pic−1

S (E) Bunss,−e∗1
Rn

= CGLn
1,n = Xn

1

induced by the inclusion Ln∩wpQ
n
kw

−1
p ⊆ Ln factors through an isomorphism

onto MGLn
p . Here the morphisms to Pic−1

S (E) in the fibre product in the right
hand side of (3.3.5) are both given by the determinant.

Proof. First note that the morphism

Bun−e∗n−1
Ln∩wpQn

k
w−1

p
×

Bun
−e∗1
Ln

Bunss,−e∗1
Rn

−→ Y
−e∗n−1
Ln∩wpQn

k
w−1

p
×

Y
−e∗1
Rn

Bunss,−e∗1
Rn

is a pullback of

Bun−e∗n−1
Qn−1

k−1
×BunGLn−1

Bunss,−1
GLn−1

−→ Y
−e∗n−1
Qn−1

k−1
×Pic−1

S (E) Bunss,−1
GLn−1

and hence an isomorphism by [5, Lemma 4.3.7]. Composing with the isomor-
phism

jwp : Y −e∗n−1
Ln∩wpQn

k
w−1

p

∼−→ Y
−e∗n
Qn

k

allows us to identify (3.3.5) with the closed immerison

Y
−e∗n
Qn

n
×

Y
−e∗1
Rn

Bunss,−e∗1
Rn

−→ Y
−e∗n
Qn

n
×Pic−1

S (E) Bunss,−e∗1
Rn

,

where the morphism Y
−e∗n
Qn

n
→ Y

−e∗1
Rn

is the composition

Y
−e∗n
Qn

n
−→ Y

−e∗n
Qn

k

j−1
wp−−→ Y

−e∗n−1
Ln∩wpQn

k
w−1

p

iwp−−→ Y
−e∗1
Rn

.

Chasing through the various definitions now shows that the source of this
morphism is precisely MGLn

p , so we are done.
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In the following lemma, we write Uk,p for the Ln∩wpQ
n
kw

−1
p -representation

induced by the homomorphism

Ln ∩ wpQ
n
kw

−1
p = Qn−1

k−1 ×Gm −→ Qn−1
k−1 −→ GLn−p

given by deleting the last row and column and the first p−1 rows and columns.

Lemma 3.3.8. If p < k, then there is an Ln∩wpQ
n
kw

−1
p -equivariant isomor-

phism

(3.3.6) Ru(Rn)/(Ru(Rn) ∩ wpQ
n
kw

−1
p ) ∼−→ U∨

k,p ⊗ Zen .

Proof. If β is a root of Ru(Rn), then the root subgroup Uβ
∼= Ga ⊆ Ru(Rn)

maps injectively into Ru(Rn)/(Ru(Rn)∩wpQ
n
kw

−1
p ) if and only if w−1

p β is not
a root of Qn

k . In particular, this implies that β is a negative root and w−1
p β

is a positive root, and hence that

β ∈ Σ = {−βn−1,−βn−1 − βn−2, . . . ,−βn−1 − βn−2 − · · · − βp},

and
w−1
p β ∈ {βn−1 + βn−2 + · · · + βp, βn−2 + · · · + βp, . . . , βp}.

Note that if β ∈ Σ, then Uβ ⊆ Ru(P ), and w−1
p β is not a root of Qn

k , so Σ is
precisely the set of roots appearing in Ru(Rn)/(Ru(Rn) ∩ wpQ

n
kw

−1
p ).

It is clear from the above that Ru(Rn)/(Ru(Rn) ∩ wpQ
n
kw

−1
p ) is isomor-

phic to an Ln∩wpQ
n
kw

−1
p -representation. The isomorphism (3.3.6) follows by

inspection of the weights of this representation.

3.4. The divisor Dα∨
j
(Z)

The purpose of this subsection is to prove Proposition 3.4.1 below, which
refines Theorem 1.0.3, (2). For the statement, recall Notation 2.3.2. For 1 ≤
k ≤ n0 + 1, we write θk for the section

θk : Y −→ Y ×S Pic0
S(E)

y −→

⎧⎪⎪⎨⎪⎪⎩
(y,�j(y) −�i(y) −�c0,1(y)), if k = 1,
(y,�j(y) −�i(y) −�c0,k(y) + �c0,k−1(y)), if 1 < k ≤ n0,

(y, 0), if k = n0 + 1.
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Proposition 3.4.1. Assume we are in the setup of Proposition 3.1.1. Then
there is a sequence of n0 + 1 morphisms

Dα∨
j
(Z) = Dn0+2 −→ Dn0+1 −→ · · · −→ D1

over Y ×SZ such that D1 is a line bundle over Y ×S Pic0
S(E) and Dk+1 → Dk

is the blowup along the section θk : Y → Y ×S Pic0
S(E) ⊆ Dk of the proper

transform of the zero section of D1.

Proof. The spaces Dk are defined as follows. For 1 ≤ k ≤ n0, let Pk ⊆ G
be the standard parabolic with type t(Pk) = Δ \ {αc0,k, . . . , αc0,n0} = Δ \
{αc0,k, . . . , αc0,n0−1, αi}, and let Pn0+1 = B. Then for 1 ≤ k ≤ n0 + 1, we
define

Dk = Y
−α∨

j

B ×
Y

−α∨
j

Pk

KM−α∨
j

Pk,G,rig ×BunG,rig
Z ×S E

∼= Y ×YPk
(KM−α∨

j

Pk,G,rig ×BunG,rig
Z ×S E),

where the morphism to YPk
in the last fibre product is given by the compo-

sition

KM−α∨
j

Pk,G/S,rig ×BunG,rig
Z ×S E

BlPk−−−→ Y
−α∨

j

Pk
×S E −→ YPk

(y, x) −→ y + α∨
j (x).

For k ≤ n0, the morphism Dk+1 → Dk is the obvious one induced by the
inclusion Pk+1 ⊆ Pk. To describe the morphism Dα∨

j
(Z) → Dn0+1, note that

every stable map parametrised by a point in Dα∨
j
(Z) has a unique rational

irreducible component of degree α∨
j . Deleting this rational component and

recording the point of E over which it was attached defines the morphism

Dα∨
j
(Z) −→ KM−α∨

j

B,G,rig ×BunG,rig
Z ×S E = Dn0+1.

For k ≤ n0 + 1, the spaces Dk can be decomposed into locally closed
subsets as follows. First, by Proposition 3.4.2, for z ∈ Z0 ⊆ Z, every stable
section of ξG,z/P1 = ξP,z ×P G/P1 of degree −α∨

j is in fact a genuine section
of the subvariety ξP,z×P PP1/P1 ∼= ξP,z/(P ∩P1). So there is an isomorphism
(3.4.1)

KM−α∨
j

Pk,G,rig ×BunG,rig Z0 ∼= KM−α∨
j

Pk,P1,rig
×BunP1,rig

Bun−α∨
i −α∨

j

P∩P1,rig
×BunP,rig Z0.

Explicitly, the right hand side is tautologically identified with the space of
pairs (z, σ) where z ∈ Z0 and σ is a stable section of ξP,z ×P∩P1 P1/Pk of
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appropriate degree such that the image in ξP,z/(P ∩ P1) is a genuine section,
while the left hand side is the space of pairs (z, σ) where z ∈ Z0 and σ
is a stable section of ξP,z ×P G/Pk. The isomorphism (3.4.1) is obtained in
this description by applying the isomorphism P ×P∩P1 P1/Pk

∼= PP1/Pk and
the inclusion PP1/Pk ↪→ G/Pk. The homomorphism πP1 : P1 → GLn0+1 of
Proposition 3.4.5 therefore induces a morphism

(3.4.2) Dk ×Z Z0 −→ Xn0+1
k,rig ,

where Xn0+1
k,rig is the rigidification of the space Xn0+1

k of §3.3 with respect to
the image of Z(G) in Z(GLn0+1). We therefore get a decomposition

(3.4.3) Dk = (Dk ×Z (Z \ Z0)) ∪
⋃

1≤p<k

Ck,p ∪ Ck,n0+1,

where Ck,p is the preimage of CGLn0+1
k,p ⊆ Xn0+1

k under (3.4.2). The behaviour
of these locally closed subsets under the morphisms Dk+1 → Dk is described
by Proposition 3.4.6.

There is a morphism C1,n0+1 → Y ×S Pic0
S(E) (3.4.6), which is defined

so that the image of a stable section in Dα∨
j
(Z) over y ∈ Y with two rational

components is sent to (y, xj −xi), where xj ∈ E (resp. xi ∈ E) is the point of
attachment of the rational component of degree α∨

j (resp. α∨
i ). This morphism

is an isomorphism by Lemma 3.4.8.
Since KM−α∨

j

Pk,G,rig×BunG,rigZ is smooth over Y −α∨
j

Pk
, each space Dk is smooth

over Y . Proposition 3.4.6 implies that they are all isomorphic to Dn0+1, and
hence to Dα∨

j
(Z), outside Z0. So the spaces Dk are all smooth surfaces over

Y .
In particular, C1,n0+1 = D1 ×Z Z0 is a Cartier divisor on D1. Moreover,

choosing any cocharacter of the torus Z(L)rig whose negative is a Harder–
Narasimhan vector for the parabolic P+ opposite to P , we get compatible
actions of Gm on Z and D1 acting trivially on Z0 and D1×ZZ0, such that Gm

acts on the fibres of the affine space bundle Z → Z0 with positive weights.
Since the normal cone of D1 ×Z Z0 in D1 is a line bundle and Gm acts
nontrivially on it, Gm acts on it with a single nonzero weight. So [5, Lemma
4.3.11] shows that D1 is isomorphic to a line bundle over C1,n0+1 = Y ×S

Pic0
S(E) as claimed.
It remains to show that Dk+1 → Dk is the blowup along the proper trans-

form of θk for 1 ≤ k ≤ n0 + 1. If k ≤ n0, this follows from Proposition 3.4.6
and Lemma 3.4.10. For k = n0 +1, note that Dn0+2 = Dα∨

j
(Z) → Dn0+1 is an

isomorphism outside the proper transform of θn0+1 (the locus of curves with
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a degree α∨
i rational component over the point of attachment of the degree

α∨
j rational curve), and the fibre over any point in this proper transform is

an irreducible curve. The claim now follows by Lemma 3.4.10 again.

The rest of the subsection is devoted to the various lemmas and proposi-
tions quoted in the proof of Proposition 3.4.1.

Proposition 3.4.2. Let z ∈ Z0 ⊆ Z and let ξP,z and ξG,z = ξP,z ×P G be the
corresponding P and G-bundles. Then any stable section of ξG,z/P1 = ξP,z×G

G/P1 of degree −α∨
j is a genuine section, and factors through ξP,z×P PP1/P1.

Proof. The proposition is equivalent to the claim that

(3.4.4) C
1,−α∨

j

P1
(Z0) ↪−→ Bun−α∨

j

P1,rig
×BunG,rig

Z0 ↪−→ KM−α∨
j

P1,G,rig ×BunG,rig
Z0

is surjective, where, for 1 ≤ k ≤ n0 +1, w ∈ W 0
P,Pk

and λ ∈ X∗(TPk
), we write

Cw,λ
Pk

(Z0) = Cw,λ
P,Pk,rig

×BunP,rig Z0,

where Cw,λ
P,Pk,rig

is the rigidification of the Bruhat cell Cw,λ
P,Pk

of §3.2. Lemma
3.4.3 below and Proposition 3.2.1 imply that the morphism∐

w∈W 0
P,B∩WL1

λ=−w−1(α∨
i +α∨

j )

Cw,λ(Z0) −→ Bunλ
B,rig ×BunG,rig

Z0

is surjective for all λ ≤ −α∨
j , where WL1 is the Weyl group of the Levi factor

L1 ⊆ P1 and Cw,λ(Z0) = Cw,λ
Pn0+1

(Z0). Since the morphism KM−α∨
j

B,G → KM−α∨
j

P1,G

is also surjective by [4, Proposition 3.6.4], and maps sections coming from
Cw,λ(Z0) to C

1,−α∨
j

P1
(Z0), surjectivity of (3.4.4) now follows.

Lemma 3.4.3. Assume that w ∈ W 0
P,B, λ ≤ −α∨

j and Cw,λ(Z0) �= ∅. Then
w ∈ WL1 and λ = −w−1(α∨

i + α∨
j ) ∈ {−α∨

j ,−α∨
i − α∨

j }, where L1 ⊆ P1 is
the standard Levi subgroup.

Proof. It is immediate from Lemma 3.1.2 that λ ∈ {−α∨
j ,−α∨

i − α∨
j }. If

Cw,λ(Z0) �= ∅, then there exists a geometric point z : Spec k → Z0 over
s : Spec k → S and a section σL : Es → ξL,z/(L ∩ B) of degree wλ ∈ X∗(T ).
Since ξL,z has slope μ, we must have

〈�i, wλ〉 = 〈�i, μ〉 = −1.
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Since λ and hence wλ is a coroot, we therefore have wλ ∈ Φ∨
− ⊆ X∗(T )−.

Since composing σL with the inclusion ξL,z/(L ∩ B) → ξG,z/B defines a
section of degree wλ, we deduce that D−wλ(Z) �= ∅, and hence that wλ ∈
{−α∨

i ,−α∨
i − α∨

j }.
If wλ = −α∨

i , then w−1α∨
i ∈ Φ∨

+, so w = 1 since w ∈ W 0
P,B. So λ = −α∨

i ,
contradicting λ ≤ −α∨

j . So we must have wλ = −α∨
i − α∨

j , and in particular
w−1(α∨

i + α∨
j ) ∈ Φ∨

+.
If (G,P, μ) is not of type A, then w−1(α∨

k ) ∈ Φ∨
+ for αk �= αi (since

w ∈ W 0
P,B and t(P ) = {αi}) so Lemma 3.4.4 implies that w ∈ WL1 . If

(G,P, μ) is of type A, then w−1(α∨
k ) ∈ Φ∨

+ for αk �= αi, αj . If w−1(α∨
j ) ∈ Φ∨

+
then w ∈ WL1 by Lemma 3.4.4 again. Otherwise, we must have w−1(α∨

i ) ∈ Φ∨
+

and hence
w ∈ {si+1si+2 · · · sk | i < k ≤ l}

by Lemma 3.4.4. But this implies that λ = w−1(−α∨
i − α∨

j ) = w−1(−α∨
i −

α∨
i+1) = −α∨

i , contradicting λ ≤ −α∨
j , so we are done.

Lemma 3.4.4. Let (M,Ψ,M∨,Ψ∨) be a root datum with Weyl group W (Ψ),
and let Γ ⊆ Ψ be a complete set of positive simple roots. Let βj ∈ Γ be a
simple root, and let c ∈ π0(Γ \ {βj}) be a connected component of the Dynkin
diagram of Γ \ {βj} of type An such that βj is adjacent to one end of c. Let
βc,1, . . . , βc,n ∈ Γ denote the nodes of c, labelled so that βc,k is adjacent to
βc,k+1 for all k and βc,n is adjacent to βj, and let

Σ = {w ∈ W (Ψ) | w−1β∨
k ∈ Ψ∨

+ for all βk ∈ Γ \ {βc,n} and
w−1(β∨

c,n + β∨
j ) ∈ Ψ∨

+}.

Then
Σ = {1} ∪ {sc,nsc,n−1 · · · sc,k | 1 ≤ k ≤ n}

where sc,k ∈ W (Ψ) is the reflection in the root βc,k
Proof. First note that an easy inspection shows that

{1} ∪ {sc,nsc,n−1 · · · sc,k | 1 ≤ k ≤ n} ⊆ Σ,

so it suffices to prove the reverse inclusion.
We prove the claim by induction on n ≥ 1. Suppose that w ∈ Σ. Then

either w = 1 or w−1βc,n ∈ Ψ−. In the second case, we see that (sc,nw)−1β∨
k ∈

Ψ∨
+ for βk ∈ Γ\{βc,n−1} and (sc,nw)−1(β∨

c,n−1 +β∨
c,n) ∈ Ψ∨

+ if n > 1. So either
n = 1 and w ∈ {1, sc,n}, or n > 1 and by induction we have

sc,nw ∈ {sc,n−1 · · · sc,k | 1 ≤ k ≤ n− 1},
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and hence
w ∈ {1} ∪ {sc,nsc,n−1 · · · sc,k | 1 ≤ k ≤ n}.

This proves the lemma.

Proposition 3.4.5. There exists a surjective homomorphism

πP1 : P1 −→ GLn0+1

such that π−1
P1

(Rn0+1) = P ∩ P1 and π−1
P1

(Qn0+1
k ) = Pk for 1 ≤ k ≤ n0 + 1,

and such that the induced map T = TPn0+1 → Qn0+1
n0+1 is given on cocharacters

by

X∗(T ) −→ X∗(TQ
n0+1
n0+1

)

α∨
c0,k −→ e∗k − e∗k+1

α∨
j −→ e∗n0+1

α∨
p −→ 0, if αp /∈ {αc0,1, . . . , αc0,n0 , αj}.

Proof. Since the Dynkin diagram Δ \ t(P1) has exactly one connected com-
ponent of type An0 , Proposition 2.3.1 gives an embedding

(3.4.5) L1 ↪−→ GLn0+1 ×Gn1
m .

Let πL1 be the composition of (3.4.5) with the projection to the first factor,
and let πP1 be the composition of πL1 with the quotient P1 → L1. The
remaining claims can now be checked routinely using the explicit isomorphism
of Proposition 2.3.1.

By construction, the morphism C1,n0+1 → C
GLn0+1
1,n0+1 factors through a

morphism

C1,n0+1 −→ Y −α∨
j ×

Y
−e∗

n0+1

Q
n0+1
n0+1

(CGLn0+1
1,n0+1 ×S E) = Y ×Y

Q
n0+1
n0+1

(CGLn0+1
1,n0+1 ×S E),

where the morphism C
GLn0+1
1,n0+1 ×SE → Y

Q
n0+1
n0+1

is given by the natural morphism

to Y
−e∗n0+1

Q
n0+1
n0+1

×S E composed with (y, x) → y + e∗n0+1(x). Composing with the

morphism (3.3.3) gives a morphism C1,n0+1 → Y ×S E ×S E and hence a
morphism

C1,n0+1 −→ Y ×S E ×S E −→ Y ×S Pic0
S(E)(3.4.6)

(y, xi, xj) −→ (y, xj − xi)
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over Y . We remark that for the image of a stable map with two rational
components of degree α∨

i and α∨
j , xi and xj above are just the points of

attachment of the two rational curves.
For 1 ≤ p ≤ n0 + 1, we let

Mp ⊆ C1,n0+1

be the closed substack given by the fibre product

Mp C1,n0+1

Y Y ×S Pic0
S(E).

(3.4.6)

θp

Proposition 3.4.6. For all 1 ≤ k ≤ n0, the morphism Dk+1 → Dk restricts
to isomorphisms

Dk+1 ×Z (Z \ Z0)
∼−→ Dk ×Z (Z \ Z0),

Ck+1,n0+1
∼−→ Ck,n0+1

and

Ck+1,p
∼−→ Ck,p

for 1 ≤ p < k, and a morphism

Ck+1,k −→ Mk ⊆ Ck,n0+1 ∼= C1,n0+1

that realises Ck+1,k as an A1-bundle over Mk.

Proof. Chasing through the definitions, we have

Mk = C1,n0+1 ×
C

GLn0+1
1,n0+1

M
GLn0+1
k .

Since the diagram

Dk+1 ×Z Z0 Xn0+1
k+1,rig

Dk ×Z Z0 Xn0+1
k,rig
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is Cartesian, Proposition 3.3.6 implies everything except the claim that

(3.4.7) Dk+1 ×Z (Z \ Z0) −→ Dk ×Z (Z \ Z0)

is an isomorphism. To prove this, first note that every G-bundle in the image
of Dk×Z (Z \Z0) is regular unstable, as follows from comparing the codimen-
sions of its Z(L)rig-orbit in Z and in BunG,rig/E. Since KM−α∨

j

B,G → KM−α∨
j

Pk,G
is

surjective for all k by [4, Proposition 3.6.4], all such bundles necessarily have
Harder–Narasimhan reduction to the parabolic Q of type t(Q) = {αj} by [5,
Lemma 4.3.4]. So the morphism to BunG,rig factors as

Dk ×Z (Z \ Z0) −→ Bunss,−α∨
j

Q,rig ↪−→ BunG,rig.

The argument of the proof of [5, Proposition 4.3.8], shows that we have iso-
morphisms

Dk×Z(Z\Z0) ∼= Y×YPk
(Bun−α∨

j

M∩Pk,rig
×

Bun
−α∨

j
M,rig

Bunss,−α∨
j

Q,rig ×BunG,rig
(Z\Z0)×SE)

for all k, where M is the Levi factor of Q (note that the first two factors in
the parentheses above are just the Bruhat cell C1,−α∨

j

Pk,Q
). So Proposition 2.3.1

and [5, Lemma 4.3.7] show that (3.4.7) is an isomorphism as claimed.

Lemma 3.4.7. The morphism (3.4.6) is smooth with connected fibres.

Proof. From the construction, we have

C1,n0+1 = D1 ×Z Z0 = Y −α∨
j ×

Y
−α∨

j
P1

Bun−α∨
i −α∨

j

L∩P1,rig
×BunL,rig Z0 ×S E.

There is an isomorphism

Y ×YP1
YL∩P1

∼−→ Y ×S Pic0
S(E)(3.4.8)

(y1, y2) −→ (y1, �i(y2) −�i(y1)).

Chasing through the definitions of the various morphisms involved, we deduce
that there is a pullback

C1,n0+1 Y ×S Pic0
S(E)

Bun−α∨
i −α∨

j

L∩P1,rig
×BunL,rig Z0 ×S E Y

−α∨
i −α∨

j

L∩P1
×S E YL∩P1 ,

(3.4.6)
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where the morphisms Y ×SPic0
S(E) → YL∩P1 is the composition of the inverse

to (3.4.8) with the natural projection.
It therefore suffices to show that the composition f of the first two mor-

phisms in the bottom row is smooth with connected fibres. Note that the
morphism

Y
−α∨

i −α∨
j

L∩P1
×S E −→ YL∩P1

naturally identifies YL∩P1 with the quotient (Y −α∨
i −α∨

j

L∩P1
×S E)/E by the diag-

onal action of E by translations. So we can identify f with the composition
of the middle vertical arrows in the diagram
(3.4.9)

Bun−α∨
i −α∨

j

L∩P1,rig
×Bunμ

L,rig
Z0 ×S E Z0

Bun−α∨
i −α∨

j

L∩P1,rig
×S E (Bun−α∨

i −α∨
j

L∩P1,rig
×S E)/E Bunμ

L,rig/E

Y
−α∨

i −α∨
j

L∩P1
×S E (Y −α∨

i −α∨
j

L∩P1
×S E)/E.

The vertical arrow on the left in (3.4.9) is smooth, and has connected fibres
since the semisimple part of L ∩ P1 is simply connected. The vertical arrow
on the right in (3.4.9) is smooth with connected fibres by assumption. Since
both squares are Cartesian, and the horizontal arrows in the square on the
left are faithfully flat, it follows that both vertical arrows in the middle are
smooth with connected fibres, and hence so is their composition f .

Lemma 3.4.8. The morphism (3.4.6) is an isomorphism.

Proof. Observe that the cell

Cn0+1,n0+1 ⊆ Dn0+1 = KM−α∨
j

B,G,rig ×BunG,rig Z ×S E

is equal to the locus of singular domain curves, and is therefore a divisor in
Dn0+1 flat over Y . Since Dn0+1 → Y has relative dimension 2, Cn0+1,n0+1 → Y
therefore has relative dimension 1. So by Lemma 3.4.7, (3.4.6) is a smooth
proper morphism with connected fibres and finite relative stabilisers between
smooth stacks of the same dimension over S. Since Cn0+1,n0+1 → S is repre-
sentable over the dense open substack where Z0 → S is representable (note
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that Z̃ → Z is representable, and even projective since all stable maps in-
volved in the definition have trivial automorphism group), so is Cn0+1,n0+1 →
Y ×S Pic0

S(E). Since Y ×S Pic0
S(E) → S has irreducible fibres, (3.4.6) is there-

fore surjective, so by Lemma 3.4.9 below, it is an isomorphism as claimed.

Lemma 3.4.9. Let X and X ′ be stacks that are smooth and of the same
dimension over S, and let f : X → X ′ be a smooth surjective proper morphism
with connected fibres and finite relative stabilisers. Assume that there exists
some open set U ⊆ X that is dense in every fibre of X → S such that f |U is
representable. Then f is an isomorphism.

Proof. First note that f |U : U → X ′ is étale and representable with connected
fibres, and hence an open immersion. Moreover, the morphism X×X′ X → X
is smooth with connected fibres, so the preimage of U under either projection
is dense. So the diagonal X → X ×X′ X, which is finite by assumption, is
an isomorphism over the dense open subset U , and hence surjective. Since
X ×X′ X is smooth over S, and hence normal, it follows that X → X ×X′ X
is an isomorphism. Since f is smooth and surjective, by flat descent it follows
that f : X → X ′ is also an isomorphism as claimed.

Lemma 3.4.10. Let U be a regular stack, let X → U and X ′ → U be smooth
representable morphisms of relative dimension 2, and let f : X → X ′ be a
projective morphism over U . Suppose that there exists a section g : U → X ′

such that f−1(X ′ \g(U)) → X ′ \g(U) is an isomorphism, and such that every
fibre of f over a point in g(U) is an irreducible curve. Then f is the blowup
of X ′ along g(U).

Proof. Since the claim is local in the smooth topology on U and in the étale
topology on X ′, we can reduce to the case where X ′ → U is a smooth mor-
phism of schemes with U connected and regular.

First note that the underlying reduced scheme D of the exceptional lo-
cus f−1(g(U)) is an integral closed subscheme of codimension 1 in a regular
scheme, and hence a Cartier divisor. Since X and X ′ are smooth over U and
f is an isomorphism outside D, we therefore have KX/U = f∗KX′/U (nD)
for some n > 0. If k is any field and u : Spec k → U is a k-point, we have
D|Xu = muCu for some mu > 0, where Cu ⊆ Xu is the irreducible curve
contracted under f , and hence, by adjunction

−2 ≤ degKCu = (mun + 1)C2
u.

Since C2
u < 0, we deduce that mu = n = 1, C2

u = −1, degKCu = −2, and
hence that Cu is a smooth rational curve. In particular, by Castelnuovo’s
theorem, fu : Xu → X ′

u is the blowup at g(u).
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Now let η : SpecK → U be the generic point of U . We have shown that
on the generic fibre fη : Xη → X ′

η is the blowup along g(η), so the same
must be true on some dense open set U with complement V . So we get an
isomorphism

h : X \ f−1(g(V )) ∼−→ X̃ ′ \ π−1(g(V ))
over X ′, where π : X̃ ′ → X ′ is the blowup of X ′ along g(U). Since f is
projective and is an isomorphism outside D, it follows that either D or −D
is f -ample. Since D · Cu = (C2

u)Xu = −1 for all points u : Spec k → X ′,
it follows that −D is f -ample. But h is an isomorphism in codimension 1
between regular schemes projective over X ′, h(D \ f−1(g(V ))) = π−1(g(U)) \
π−1(g(V )), and −π−1(g(U)) is f -ample, so

X
∼−→ ProjX′

⊕
d≥0

f∗O(−dD) ∼= ProjX′

⊕
d≥0

π∗O(−dπ−1(g(U))) ∼←− X̃ ′,

which proves that X is the blowup as claimed.

3.5. The divisor Dα∨
i +α∨

j
(Z)

In this subsection, we prove the following proposition, which is essentially
Theorem 1.0.3 (3).

Proposition 3.5.1. Assume we are in the setup of Proposition 3.1.1. Then
every fibre of the morphism

Dα∨
i +α∨

j
(Z) −→ Y

is isomorphic to the Hirzebruch surface Fd−1.

Proof. By Proposition 3.1.1, we have Dλ(Z) = ∅ for all λ > α∨
i + α∨

j , so any
stable map parametrised by a point in Dα∨

i +α∨
j
(Z) must be the union of a

section of the relevant G/B-bundle of degree −α∨
i −α∨

j and a single connected
stable map of genus 0 and degree α∨

i + α∨
j to a fibre of the G/B-bundle. We

deduce that

Dα∨
i +α∨

j
(Z) ∼= η ×B/Z(G) M̄+

0,1(G/B, α∨
i + α∨

j ),

where
η −→ Bun−α∨

i −α∨
j

B,rig ×BunG,rig Z ×S E

is the pullback of the universal B/Z(G)-bundle on BunB,rig ×S E, and

M̄+
0,1(G/B, α∨

i + α∨
j )
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is the moduli space of 1-pointed stable maps of genus 0 and degree α∨
i + α∨

j

sending the marked point to the base point B/B ∈ G/B. The morphism
Dα∨

i +α∨
j
(Z) → Y factors through

Bun−α∨
i −α∨

j

B,rig ×BunG,rig Z ×S E
ΔE−−→ Bun−α∨

i −α∨
j

B,rig ×BunG,rig Z ×S E ×S E

= Cn0+1,n0+1 −→ Y,(3.5.1)

where the last morphism is the map Cn0+1,n0+1 → C1,n0+1 composed with
(3.4.6) and the projection to Y . Proposition 3.4.6 and Lemma 3.4.8 identify
the last morphism with Y ×S Pic0

S(E) → Y and the first with the zero sec-
tion. So (3.5.1) is an isomorphism, so we can identify Dα∨

i +α∨
j
(Z) with the

morphism
η ×B/Z(G) M̄+

0,1(G/B, α∨
i + α∨

j ) → Y

for some B/Z(G)-bundle η → Y . The proposition now follows from Proposi-
tion 3.5.2 below.

Proposition 3.5.2. With notation as in the proof of Proposition 3.5.1, there
is an isomorphism

M̄+
0,1(G/B, α∨

i + α∨
j ) ∼= Fd−1,

such that the closure of the locus of stable maps with dual graph

α∨
i α∨

j

(resp.
α∨
j α∨

i

)

is a fibre of Fd−1 → P1 (resp. a section P1 → Fd−1 with self-intersection
1 − d).

An important role in the proof of Proposition 3.5.2 is played by the Schu-
bert varieties in G/B. Given w ∈ W , recall that the Schubert variety associ-
ated to w is the closed subvariety

Xw = BwB/B ⊆ G/B.

In what follows, we write Qi, Qj ⊆ G for the standard minimal parabolics of
types t(Qi) = Δ \ {αi} and t(Qj) = Δ \ {αj}.

Lemma 3.5.3. There are isomorphisms

Xsisj
∼= Fd, (resp. Xsjsi

∼= F1 )
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such that Xsj is identified with a fibre of Fd → P1 (resp., the unique section
P1 → F1 of self-intersection −1) and Xsi is identified with the unique section
P1 → Fd of self-intersection −d (resp., a fibre of F1 → P1).

Proof. We prove the claim for Xsisj ; the proof for Xsjsi is identical after
noting that 〈αi, α

∨
j 〉 = −1.

There is an isomorphism

SL2 ×BSL2 ,ραi Qj/B = Qi ×B Qj/B
∼−→ Xsisj ,

given by multiplication, where BSL2 ⊆ SL2 is the Borel subgroup of lower
triangular matrices, and ραi : SL2 → G is the root homomorphism corre-
sponding to αi. We also have an isomorphism of Qj-varieties Qj/B ∼= P(V ∨),
where V is the Qj-representation V = IndQj

B (Z�j ), and an exact sequence

0 −→ Z�j−αj −→ V −→ Z�j −→ 0

of B-representations, which splits uniquely as an exact sequence of BSL2-
representations. So we have

Xsisj = SL2 ×BSL2 P(V ∨)
= PP1(O(−〈�j , α

∨
i 〉) ⊕O(−〈�j − αj , α

∨
i 〉))

= PP1(O ⊕O(−d)))
= Fd.

(Recall that P(−) denotes the projective space of 1-dimensional subspaces or
rank 1 subbundles of a vector space or vector bundle.) The identifications of
Xsi = Qi/B and Xsj = Qj/B under this isomorphism follow immediately.

Lemma 3.5.4. The partial Schubert variety Xsisj/Qi = BsisjQi/Qi ⊆ G/Qi

is isomorphic to the projective cone P̂1
d on P1 of degree d, and the morphism

(3.5.2) Xsisj −→ Xsisj/Qi

is the blowup of Xsisj/Qi at the origin Qi/Qi.

Proof. First note that the morphisms

BsisjB/B −→ BsisjQi/Qi and BsjB/B −→ BsjQi/Qi

are isomorphisms. So (3.5.2) is birational and finite outside Qi/Qi, and hence
an isomorphism outside Qi/Qi since partial Schubert varieties are always
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normal. Since the preimage of Qi/Qi under (3.5.2) is Qi/B = Xsi , using nor-
mality of Xsisj/Qi and of P̂1

d, we can conclude from Lemma 3.5.3 that (3.5.2)
can be identified with the morphism

Fd −→ P̂1
d

contracting the curve of self-intersection −d. But this is indeed the blowup
at the cone point, so we are done.

Lemma 3.5.5. There is a Qi-equivariant isomorphism

M̄+
0,1(Xsisj/Qi, α

∨
j ) ∼= Qi/B ∼= P1,

identifying the universal stable map with

(3.5.3) Qi ×B Qj/B −→ Xsisj −→ Xsisj/Qi.

Proof. Assume that U is a scheme and (f : C → Xsisj/Qi, x : U → C) is a
1-pointed stable map over U of degree α∨

j sending x to the base point. We
need to show that there is a unique morphism U → Qi/B such that f and x
are the pullbacks of (3.5.3) and the canonical section Qi/B = Qi ×B B/B →
Qi ×B Qj/B.

We first claim that C → U is smooth and that every geometric fibre of
f−1(Qi/Qi) → U is a reduced point. Since f−1(Qi/Qi) → U has a section x,
it then follows that it is an isomorphism.

To prove the claim, fix a geometric point u : Spec k → U , and consider the
stable map fu : Cu → (Xsisj/Qi)k. Since α∨

j is not the sum of two nonzero
effective curve classes, it follows that Cu is irreducible, hence smooth over
Spec k. Since this holds for all geometric points, C → U is smooth as claimed,
and f−1

u (Qi/Qi) is a Cartier divisor on Cu. So by Lemmas 3.5.3 and 3.5.4, fu
lifts to a morphism f̄u : Cu → (Xsisj )k ∼= (Fd)k such that Cu · Xsi > 0 and
Cu · (dXsj + Xsi) = 1. (Note that dXsj + Xsi is linearly equivalent to the
pullback of L�j .) Since d > 0, it follows that Cu ·Xsi = 1 and Cu ·Xsj = 0.
In particular, f−1

u (Qi/Qi) = Cu ∩ Xsi is a reduced closed point on Cu, so
f−1
u (Qi/Qi) ∼= Spec k as claimed.

Since f−1(Qi/Qi) ⊆ C is a section of the smooth curve C → U , it is a
Cartier divisor, so by Lemma 3.5.4, f lifts uniquely to a morphism f̄ : C →
Xsisj . Since the above argument shows that the composition f̄ : C → Xsisj =
Qi ×B Qj/B → Qi/B has degree 0 on every fibre, this descends to a unique
morphism U → Qi/B. The induced morphism

(3.5.4) C −→ U ×Qi/B (Qi ×B Qj/B)
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has degree 1 on every fibre and is therefore an isomorphism. Since (3.5.4)
sends the section x to the section Qi/B → Qi ×B Qj/B (as both are the
preimage of Qi/Qi ⊆ Xsisj/Qi), this proves the lemma.

Proof of Proposition 3.5.2. For the sake of brevity, write

M = M̄+
0,1(G/B, α∨

i + α∨
j ).

We first claim that M is connected. To see this, observe that B acts on
M , that any B-fixed point corresponds to a stable map factoring through
Xsi ∪ Xsj ⊆ G/B, and that there is a unique such pointed stable map of
class α∨

i + α∨
j defined over k for any algebraically closed field k. Since every

connected component of M must have at least one B-fixed point over every
algebraically closed field, connectedness of M follows immediately.

We now compute the closed subscheme

M ′ = M̄+
0,1(Xsisjsi , α

∨
i + α∨

j ) ⊆ M

consisting of stable maps factoring through the Schubert variety Xsisjsi . We
will show that M ′ ∼= Fd is smooth and projective of relative dimension 2 over
SpecZ. Since the same is true for M and M is connected, it follows that
M ′ = M .

Since Xsisjsi/Qi = Xsisj/Qi, by Lemma 3.5.5 we have a morphism

M ′ −→ M̄+
0,1(Xsisj/Qi, α

∨
j ) ∼= Qi/B = P1

sending a stable map to the stabilisation of its composition with G/B →
G/Qi. The pullback of the universal domain curve of M̄+

0,1(Xsisj/Qi, α
∨
j ) along

Xsisjsi → Xsisj/Qi is

Xsisjsi ×Xsisj /Qi
(Qi ×B Qj/B) = G/B ×G/Qi

(Qi ×B Qj/B),

which is identified with the Bott–Samelson variety X̃sisjsi via

X̃sisjsi = Qi ×B Qj ×B Qi/B
∼−→ G/B ×G/Qi

(Qi ×B Qj/B)
(g1, g2, g3B) −→ (g1g2g3B, (g1, g2B)).

So we can identify M ′ with the relative space of stable maps

M ′ ∼= M̄+
0,1,Qi/B

(X̃sisjsi , α
∨
i + α∨

j ),
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where M̄+
0,1,Qi/B

(X̃sisjsi , α
∨
i + α∨

j ) is the fibre product

M̄+
0,1,Qi/B

(X̃sisjsi , α
∨
i + α∨

j ) Qi/B

M̄0,1,Qi/B(X̃sisjsi , α
∨
i + α∨

j ) X̃sisjsi .

σ

Here σ is the section defined by Qi/B ∼= m−1(B/B) → X̃sisjsi , for

m : X̃sisjsi → G/B

the natural morphism given by multiplication. Note that

M̄0,1,Qi/B(X̃sisjsi , α
∨
i + α∨

j )

is naturally identified with the universal domain curve over the space

M̄0,Qi/B(X̃sisjsi , α
∨
i + α∨

j )

of unpointed stable maps.
By Lemma 3.5.3, every fibre of X̃sisjsj → Qi/B is isomorphic to F1 =

Xsjsi = Qj×BQi/B, and α∨
i +α∨

j is the class Xsi +Xsj of the (−1)-curve plus
a fibre of F1 → P1. Unpointed stable maps of class α∨

i +α∨
j are the same things

as closed subschemes with ideal sheaf O(−Xsi −Xsj ) = m∗L−�i . So we can
identify M0,Qi/B(X̃sisjsi , α

∨
i + α∨

j ) with the Hilbert scheme PQi/B(π∗m∗L�i)
and M ′ with the closed subscheme

M ′ = PQi/B(kerπ∗m∗L�i → σ∗m∗L�i)

of curves meeting σ(Qi/B), where π : X̃sisjsi → Qi/B is the natural projec-
tion.

It therefore remains to identify the vector bundle π∗m∗L�i on Qi/B ∼= P1

and the morphism π∗m
∗L�i → σ∗m∗L�i = O. It is clear from the identifica-

tion X̃sisjsi = Qi ×B Qj ×B Qi/B that π∗m
∗L�i is the Qi-linearised vector

bundle associated to the B-representation

V = IndQj

B IndQi

B Z�i .

The representation V has rank 3, with weights �i, �i − αi and �i − αi −
αj , and restricting V to a BSL2-representation via the root homomorphism
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ραi : SL2 → Qi ⊆ G, we have

V = U ⊕ Z〈�i−αi−αj ,α∨
i 〉 = U ⊕ Zd−1,

where U is the standard representation of SL2 and Zd−1 is the rank 1 BSL2-
module of weight d− 1. So we get

π∗m
∗L�i = U ⊗OP1 ⊕O(d− 1).

Since d > 0, the kernel of

π∗m
∗L�i = O ⊕O ⊕O(d− 1) −→ O = σ∗m∗L�i

must be isomorphic to O ⊕ O(d − 1), which gives the desired isomorphism
M = M ′ ∼= Fd−1.

Finally, to identify the loci of stable maps with given dual graphs in the
statement of the proposition, notice that each closure is isomorphic to P1

(since there are unique curves of classes α∨
i and α∨

j through every point in
G/B), and that the closure of curves with dual graph

α∨
i α∨

j

is contracted under the map to M+
0,1(G/Qi, α

∨
j ), and is hence a fibre of Fd−1 →

P1 as claimed. For the other statement, note that the map

π∗m
∗L�i −→ π′

∗(σ′)∗m∗L�i

is just the quotient map U ⊗ OP1 ⊕ O(d − 1) → U ⊗ OP1 , where σ′ is the
morphism Qi×BQi/B = Qi×BB×BQi/B → X̃sisjsi and π′ : Qi×BQi/B →
Qi/B is the natural projection onto the first factor. So the subscheme

PQi/B(kerπ∗m∗L�i → π′
∗(σ′)∗m∗L�i)

⊆ PQi/B(kerπ∗m∗L�i → σ∗m∗L�i) = M ′

is the canonical section of Fd−1 of degree 1− d. But this parametrises curves
of class α∨

i +α∨
j containing some curve of class α∨

i , so this must be the closure
of the locus of curves with dual graph

α∨
j α∨

i

as claimed.
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3.6. The divisor Dα∨
i
(Z)

In this subsection, we complete the proof of Theorem 1.0.3 by proving Propo-
sition 3.6.1 below.

For the statement, we let

N =

⎧⎪⎪⎨⎪⎪⎩
n1 + 1, in type A,

n1 − 1, in type F,

n1, otherwise.

We let θ′N : Y → Y ×S Pic0
S(E) be the section θ′N (y) = (y, 0), and for 1 ≤ k <

N , we let θ′k : Y → Y ×S Pic0
S(E) be the section given in type A by

θ′k(y) =
{

(y,−�i(y) + �i+1(y) + �l(y)), if k = 1,
(y,−�i(y) + �i+1(y) + �l−k+1(y) −�l−k+2(y)), if k > 1,

and in types B, D and E by

θ′k(y) =

⎧⎪⎪⎨⎪⎪⎩
(y, αl−1(y)), in type B,

(y, αl−2(y) + · · · + αl−k(y)), in type D,

(y, αk(y) + αk+1(y) + · · · + α3(y)), in type E.

Note that N = 1 in types C, F and G.

Proposition 3.6.1. Assume we are in the setup of Proposition 3.1.1, and
moreover assume for simplicity of notation that i = l − 3 if (G,P, μ) is of
type D, and that i = 5 if (G,P, μ) is of type E. Then there is a sequence of
N morphisms

Dα∨
i
(Z) = D′

N+1 −→ D′
N −→ · · · −→ D′

1

over Y ×S Z such that D′
1 is a family of smooth surfaces over Y containing

Y ×S Pic0
S(E) as a closed substack, and D′

k+1 → D′
k is the blowup along

the section θ′k : Y → Y ×S Pic0
S(E) ⊆ D′

k of the proper transform of Y ×S

Pic0
S(E) ⊆ D′

1. Moreover, we have the following descriptions of D′
1 in each

type.

(1) In type A, D′
1 → Y ×S Z0 = Y ×S Pic0(E) is a line bundle.
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(2) In type B, the morphism D′
1 → Y×SZ0 is a P1-bundle such that the fibre

of D′
1 → Y over a point y ∈ Y is isomorphic to the stacky Hirzebruch

surface

(D′
1)y ∼=

{
PP(1,2)(O ⊕O(1)), if �l(y) �= 0,
PP(1,2)(O ⊕O(3)), if �l(y) = 0.

(3) In types C and D, the morphism D′
1 → Y ×SZ0 is a P1-bundle such that

the fibre of D′
1 → Y over a point y ∈ Y is isomorphic to the Hirzebruch

surface

(D′
1)y ∼=

{
F0, if �l(y) �= 0,
F2, if �l(y) = 0.

(4) In types E and G, the morphism D′
1 → Y ×S Z0 = Y is a P2-bundle.

(5) In type F , the morphism D′
1 → Y ×S Z0 = Y factors as a sequence of

two P1-bundles D′
1 → D′′

1 → Y , and the fibre over a point y ∈ Y is
isomorphic to the Hirzebruch surface

(D′
1)y ∼=

{
F0, if α1(y) �= 0,
F2, if α1(y) = 0.

Proof. First note that in type A, the roots αi and αj = αi+1 play completely
symmetric roles. So applying Proposition 3.4.1 with the vertices of the Dynkin
diagram Al labelled in reverse order gives contractions

Dα∨
i
(Z) = D′

l−i+2 −→ D′
l−i+1 −→ · · · −→ D′

1

with the desired properties, where to get the correct blowup loci we have
composed the identification of D′

1 with a line bundle over Y ×S Pic0
S(E) given

by Proposition 3.4.1 with the isomorphism

Y ×S Pic0
S(E) ∼−→ Y ×S Pic0

S(E)
(y, x) −→ (y,−x).

If G is not of type A, then we define

(3.6.1) Dα∨
i
(Z) −→ D′

N := KM−α∨
i

B,G,rig ×BunG,rig
Z ×S E

to be the map given by deleting the unique degree α∨
i rational component of

a stable section and recording its image in E.
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Let
(D′

N )0 = Bun−α∨
i

B,rig ×BunG,rig Z ×S E ⊆ D′
N

and let (D′
N )1 = D′

N \ (D′
N )0. Then (D′

N )1 is a smooth divisor in D′
N isomor-

phic to

(D′
N )1 ∼= Bun−α∨

i −α∨
j

B,rig ×BunG,rig Z ×S E ×S E,

where the first (resp., second) factor of E above keeps track of the point of
attachment of an α∨

j curve. There is a morphism

(3.6.2) (D′
N )1 −→ Y ×S Pic0

S(E)

given on the first factor by the morphism (D′
N )1 → D′

N → Y and on the
second by the morphism

(D′
N )1 −→ E ×S E −→ Pic0

S(E)
(xj , xi) −→ xj − xi.

Using the fact that Dα∨
i
(Z) is naturally identified with the pullback of the

universal domain curve over KM−α∨
i

B,G,rig ×BunG,rig
Z, one can deduce from [5,

Proposition 2.1.7] that (3.6.1) is the blow up at the preimage of the section
θN : Y → Y ×S Pic0

S(E) under (3.6.2). It follows that the strict transform
Dα∨

i
(Z) ∩Dα∨

j
(Z) of (D′

N )1 maps isomorphically to it. By construction, the
composition

Dα∨
i
(Z) ∩Dα∨

j
(Z) ∼−→ (D′

N )1
(3.6.2)−−−−→ Y ×S Pic0

S(E)

agrees with the composition

Dα∨
i
(Z) ∩Dα∨

j
(Z) ∼−→ C1,n0+1

(3.4.6)−−−−→ Y ×S Pic0
S(E),

and is therefore an isomorphism by Lemma 3.4.8.
The next step is to construct the spaces D′

k for 1 ≤ k < N . This is
vacuous for types C, F and G (since N = 1 in these cases). In the remaining
types, we define standard parabolics P ′

k ⊆ G for 1 ≤ k < N and set

D′
k = Y ×YP ′

k

(KMP ′
k
,G,rig ×BunG,rig

Z ×S E).

In type B, N = 2, and we let P ′
1 be the standard parabolic with type

t(P ′
1) = {αi, αl} = {αl−2, αl}. In type D, N = 3, and we let t(P ′

1) =
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{αi, αl} = {αl−3, αl} and t(P ′
2) = {αl−3, αl−1, αl}. Finally, in type E, N = 4,

and we let t(P ′
1) = {αi, α4} = {α4, α5}, t(P ′

2) = {α1, α4, α5} and t(P ′
3) =

{α1, α2, α4, α5}. Note that in each case, we have a sequence of morphisms

D′
N −→ D′

N−1 −→ · · · −→ D′
1

coming from the inclusions of the parabolics.
We prove below in Proposition 3.6.6 that the spaces D′

1 are as described in
the statement of the proposition. This completes the proof of the proposition
in types C, F and G. In types B, D and E, we still need to show that
D′

k+1 → D′
k is the blowup at the desired section for 1 ≤ k < N . As in the

proof of Proposition 3.4.1, the proof relies on a decomposition into locally
closed substacks coming from the Bruhat cells of §3.3.

We define representations πP ′
1
: P ′

1 → GLn1 of P ′
1 as follows. In type B,

we let πP ′
1

be given by

P ′
1 −→ P ′

1/Ru(P ) = L ∩ P ′
1

ρL−→ GSp4 ∩R4,

composed with the homomorphism

GSp4 ∩R4 −→ GL2⎛⎜⎜⎜⎝
λ−1 detA 0 0 0

0 0
0 A 0
0 0 0 λ

⎞⎟⎟⎟⎠ −→ A,

where ρL is the representation defined in §2.4. In types D and E, we let
πP ′

1
: P ′

1 → GLn1 be the composition

πP ′
1
: P ′

1 −→ L ∩ P ′
1

ρL−→ Rn1+1 −→ GLn1 ,

where the last homomorphism is given by deleting the last row and column,
and ρL is the composition of the isomorphism of Lemma 2.3.4 with the pro-
jection to the second factor.

In each of types B, D and E, we have P ′
k = (πP ′

1
)−1(Qn1

k ) for 1 ≤ k ≤ N ,
where we set P ′

N = P ∩ P1 in the notation of §3.4. Note that the morphism

(3.6.3) D′
N −→ Y ×YP ′

N

(KM−α∨
i

P ′
N ,G,rig ×BunG,rig

Z ×S E)
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is an isomorphism by [5, Lemma 4.3.7], since there is an isomorphism P ′
N/B

∼=
GLn0/Q

n0
n0 identifying sections of degree −α∨

i with sections of degree −e∗n0 .
So we have a sequence of pullback squares

(3.6.4)

D′
k+1 Y

−e∗n1
Q

n1
n1

×
Y

−e∗n1
Q
n1
k+1

KM−e∗n1
Q

n1
k+1,GLn1 ,rig

D′
k Y

−e∗n1
Q

n1
n1

×
Y

−e∗n1
Q
n1
k

KM−e∗n1
Q

n1
k

,GLn1 ,rig
,

where the subscript (−)rig denotes the rigidification with respect to the image
of Z(G) in Z(GLn1).

By Lemma 3.6.2, there is a stable section of ξG,z×GG/P of degree −α∨
i if

and only if z ∈ Z0 ⊆ Z, and for such z, the unique such section is the canonical
(Harder–Narasimhan) one of ξG,z ×GG/P = ξL,z ×LG/P . Since P ′

k ⊆ P , one
can use this fact, the definition of the slice Z0 and elementary slope arguments
(see e.g., [4, Lemma 6.6.11]) to show in each case that any unstable GLn1-
bundle in the image of D′

1 → Bun−1
GLn1 ,rig

has Harder–Narasimhan reduction
to Rn1 of degree −e∗1. By Proposition 3.3.1, we therefore have a decomposition

D′
k = (D′

k ×Bun−1
GLn1 ,rig

Bunss,−1
GLn1 ,rig

) ∪
⋃

1≤p<k

C ′
k,p ∪ C ′

k,n1

into disjoint locally closed substacks for 1 ≤ k ≤ n1 = N , where C ′
k,p ⊆ D′

k

is the preimage of CGLn1
k,p,rig ⊆ Xn1

k,rig in D′
k. We remark that C ′

N,n1
= (D′

N )1 ∼=
Y ×S Pic0

S(E).
Using Proposition 3.3.6, Lemma 3.4.10, [5, Lemma 4.3.7] and the pullback

squares (3.6.4), one can now check that D′
k+1 → D′

k is the blowup along the
desired section θ′k of C ′

k,n1
∼= C ′

N,n1
= Y ×S Pic0

S(E) exactly as in the proof
of Proposition 3.4.1.

In the rest of this subsection, we will establish the propositions and lem-
mas quoted in the proof of Proposition 3.6.1. We will assume from now on
that (G,P, μ) is not of type A.

Lemma 3.6.2. Assume z ∈ Z is such that there exists a section of ξG,z ×G

G/P of degree ≤ −α∨
i . Then z ∈ Z0 ⊆ Z, and the only such section is the

canonical (Harder–Narasimhan) one of ξG,z ×G G/P = ξP,z ×P G/P .
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Proof. First note that KM−α∨
i

B,G → KM−α∨
i

P,G is surjective by [4, Proposition
3.6.4]. Since z /∈ Z0 implies that ξG,z is either semistable or regular unstable,
we must therefore have z ∈ Z0 by [5, Lemma 4.3.4] as αi is not a special
root. Given a section σ of ξG,z ×G G/P of degree ≤ −α∨

i , any lift to a sec-
tion of ξG,z ×G G/B of degree ≤ −α∨

i must factor through ξP,z ×P P/B by
Lemma 3.6.3 and Proposition 3.2.1, so σ must be the canonical section as
claimed.

Lemma 3.6.3. Assume w ∈ W 0
P,B, λ ≤ −α∨

i and Cw,λ(Z0) �= ∅. Then w = 1
and λ ∈ {−α∨

i ,−α∨
i − α∨

j }.
Proof. From the proof of Lemma 3.4.3, we have either wλ = −α∨

i and w = 1,
or wλ = −α∨

i − α∨
j and

w ∈ {1} ∪ {sc0,n0sc0,n0−1 · · · sc0,k | 1 ≤ k ≤ n0}.

If w �= 1, then this implies that λ = −w−1(α∨
i + α∨

j ) = −α∨
j , contradicting

λ ≤ −α∨
i . So this proves the lemma.

It now remains only to describe the maps D′
1 → Y ×S Z0. We do this in

Proposition 3.6.6 after a few preparations.
Since the statement is local on S, we will assume from now on that the

initial section S → Bunss,μ
L,rig (resp. BSGm → Bunss,μ′

L′,rig) used in the construc-
tion of the slice Z0 in types E, F and G (resp. B, C and D) lifts to a section
S → Bunss,μ

L (resp. S → Bunss,μ′

L′ ). We will also write Z1 = Z0 = S in types
E, F and G and Z1 = IndL

L′(S) \ S in types B, C and D; our assumption
implies that Z0 → Bunss,μ

L,rig lifts to Z1 → Bunss,μ
L .

We first relate D′
1 → Y ×S Z0 to the projectivisation of a vector bundle.

Let ρL be the representation of L given by the isomorphism of Lemmas 2.3.4
and 2.3.5 composed with the projection to the second factor in types C, D,
E, F and G, and given by the isomorphism of Lemma 2.3.6 composed with
the projection to the second factor and the inclusion GSp4 ⊆ GL4 in type B.
We will write W for the vector bundle on Z1 ×S E induced by Z1 → Bunss,μ

L

and ρL. We will also write λ ∈ X∗(T ) for the character

λ =

⎧⎪⎪⎨⎪⎪⎩
�l, in types B,C,D,

�4, in type E,

�2, in type G.

Lemma 3.6.4. In types B, C, D, E and G, there is an isomorphism

D′
1 ×Z0 Z1 ∼= PY×SZ1π∗(Mλ ⊗O(dOE) ⊗W ),
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where π : Y ×S Z1 ×S E → Y ×S Z1 is the natural projection and Mλ is the
line bundle on Y ×S Z1 ×S E classified by the morphism

Y ×S Z1 −→ Y
λ−→ Pic0

S(E).

Proof. We first prove the lemma in types B, D and E. Let

X = Y ×YP ′
1

(Bun−α∨
i

L∩P ′
1
×BunL

Z1 ×S E) ⊆ D′
1 ×Z0 Z1,

where we note that Lemma 3.6.2 implies that

D′
1 = Y ×YP ′

1
(KM−α∨

i

L∩P ′
1,L,rig

×BunL,rig
Z0 ×S E).

Lemmas 2.3.4 and 2.4.3 show that X is the stack of tuples (y, z,M−1
λ,y ⊗

O(−OE) ⊆ Wz), where y ∈ Y , z ∈ Z1, Mλ,y is the line bundle on E cor-
responding to λ(y) ∈ Pic0

S(E), and Wz is the restriction of W to the fibre
over z ∈ Z1. Since the vector bundle Wz is semistable of slope < 0, any
nonzero morphism M−1

λ,y ⊗O(−OE) → Wz must be a subbundle, so we have
an isomorphism

X ∼= PY×SZ1π∗(Mλ ⊗O(OE) ⊗W ).

Since this implies in particular that X is already proper over Y ×S Z1 =
Y ×YP ′

1
(Z1 ×S E), we conclude that X = D′

1 ×Z0 Z1 and the claim is proved.
In types C and G, we argue instead as follows. Observe that there is a

pullback

(3.6.5)

D′
1 ×Z0 Z1 KM−de∗2

Q2
2,GL2

×BunGL2
Bunss,−d

GL2

Y ×S Z1 Pic−d
S (E) ×S Bunss,−d

GL2
,

where the bottom morphism is given by

(y, z) −→ (M−1
λ,y ⊗O(−dOE),Wz)

and the right morphism is given on the first factor by the blow down to
TQ2

2
-bundles composed with the character e2. If (y, z) ∈ Y ×S Z1 lies over

a geometric point s : Spec k → S, then any stable map to the GL2 flag
variety bundle P(W∨

z ) corresponding to a point in D′
1 ×Z0 Z1 over (y, z) is
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a closed immersion with ideal sheaf p∗(M−1
λ,y ⊗ O(−d)OE)) ⊗ O(−1), where

p : P(W∨
z ) → Es is the structure morphism. So we deduce that

D′
1 ×Z0 Z1 = PY×SZ1π∗p∗(p∗(Mλ ⊗O(dOE)) ⊗O(1))

= PY×SZ1π∗(Mλ ⊗O(dOE) ⊗Wz)

as claimed.

The situation in type F is similar. In this case, we let P ′′
1 ⊆ L be the

standard parabolic subgroup of type t(P ′′
1 ) = {α1}, and define

D′′
1 = Y ×YP ′′

1
(KM−α∨

i

P ′′
1 ,L,rig ×Bunμ

L,rig
Z0 ×S E).

Lemma 3.6.5. In type F , there are isomorphisms

D′′
1
∼= PY×SZ1π∗(M�1 ⊗W∨)

and

D′
1
∼= PD′′

1
π′
∗(p∗M�2 ⊗O(2OE) ⊗ ker(p∗W → p∗M�1 ⊗OD′′

1
(1))),

where π : Y ×S Z1 ×S E → Y ×S Z1 and π′ : D′
1 ×S Z1 ×S E → Y ×S Z1 are

the natural projections, and p : D′′
1 → Y ×S Z1 is the structure morphism.

Proof. Recall that αi = α3 and Z1 = S in this case and let

X = Y ×YP ′′
1

(Bun−α∨
3

P ′′
1

×Bunμ
L
Z1 ×S E) ⊆ D′′

1 .

Then Lemma 2.3.4 shows that X is the stack of tuples (y, z,Wz � M�1,y),
where y ∈ Y and z ∈ Z1. Since the vector bundle Wz is semistable of slope
> −1, any nonzero morphism Wz → M�1,y is surjective, so we have an
isomorphism

X ∼= PY×SZ1(π∗(M�1 ⊗W∨)).
Since this shows that X is already proper over Y ×S Z1 = Y ×YP ′′

1
(Z1 ×S E),

it follows that X = D′′
1 , so this gives the first of the desired isomorphisms.

For the second isomorphism, there is a pullback

D′
1 KM−2e∗2

Q2
2,GL2

×Bun−2
GL2

Bunss,−2
GL2

D′′
1 Pic−2

S (E) ×S Bunss,−2
GL2
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where the bottom horizontal morphism is classified by the pair

(p∗M−1
�2 ⊗O(−2OE), ker(p∗W → p∗M�1 ⊗OD′′

1
(1)))

of line bundle and vector bundle on D′′
1 ×S E. Since any stable map to the

associated flag variety bundle appearing in D′
1 is again a closed immersion,

the argument used in the proof of Lemma 3.6.4 for types C and G gives the
desired isomorphism

D′
1
∼= PD′′

1
π′
∗(p∗M�2 ⊗O(2OE) ⊗ ker(p∗W → p∗M�1 ⊗OD′′

1
(1))).

Proposition 3.6.6. The descriptions given in Proposition 3.6.1 for the maps
D′

1 → Y ×S Z0 are correct.

Proof. First observe that in types E and G, Mλ ⊗ O(dOE) ⊗W is a family
of semistable vector bundles of degree 3, so Lemma 3.6.4 shows that D′

1 →
Y ×S Z1 = Y is a P2-bundle, which proves (4).

In types B, C and D, Mλ ⊗O((d + 1)OE) ⊗W is a family of semistable
vector bundles of degree 2, so Lemma 3.6.4 shows that D′

1 ×Z0 Z1 → Y ×S Z1
is a P1-bundle, and hence that D′

1 → Y ×S Z0 is also.
To complete the proof of (2), note that in type B, we have a canoni-

cal Z(L′)-invariant subbundle O(−OE) ⊆ W and a Z(L′)-equivariant exact
sequence

0 −→ U −→ W/O(−OE) −→ O −→ 0,
where U is a family of stable vector bundles on E of rank 2 and determinant
O(−OE). So if we fix a geometric point y : Spec k → Y over s : Spec k → S,
we have Z(L′)-equivariant exact sequences

0 → π∗(M�l,y) → π∗(M�l,y ⊗O(OE) ⊗Ws)
(3.6.6)

→ π∗(M�l,y ⊗O(OE) ⊗ (Ws/O(−OE))) → R1π∗(M�l,y) → 0,

and

0 → π∗(M�l,y ⊗O(OE) ⊗ Us)
(3.6.7)

→ π∗(M�l,y ⊗O(OE) ⊗ (Ws/O(−OE))) → π∗(M�l,y ⊗O(OE)) → 0

of Z(L′)-linearised vector bundles on (Z1)s. Note that π∗(M�l,y), R1π∗(M�l,y),
π∗(M�l,y ⊗O(OE)⊗Us) and π∗(M�l,y ⊗O(OE)) are each either a trivial line
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bundle or zero, with Z(L′)-weights f4, f4, f2 = f3 and f1 respectively, where
we use the notation of the proof of Lemma 2.3.6. So after tensoring with the
character −f1 of Z(L′), Z(G) acts trivially on (3.6.6) and (3.6.7), so they
descend to exact sequences of vector bundles on (Z0)s = (Z1)s/Gm

∼= P(1, 2).
Examining the Gm-weights, the sequence (3.6.7) descends to a sequence of
the form

0 −→ O(1) −→ W ′ −→ O −→ 0.

Since any such sequence splits, we must have W ′ ∼= O⊕O(1) as vector bundles
on P(1, 2).

If �l(y) �= 0, then π∗(M�l,y) = R1π∗(M�l,y) = 0, so we have

π∗(M�l,y ⊗O(OE) ⊗Ws) ∼= π∗(M�l,y ⊗O(OE) ⊗Ws/O(−OE)),

and hence (D′
1)y = PP(1,2)(W ′) = PP(1,2)(O ⊕ O(1)). Otherwise, (3.6.6) ten-

sored with −f1 descends to an exact sequence

0 −→ O(2) −→ W ′′ −→ W ′ = O ⊕O(1) −→ O(2) −→ 0

such that (D′
1)y = PP(1,2)(W ′′). But since the kernel of any surjection O ⊕

O(1) → O(2) on P(1, 2) must be isomorphic to O(−1), this means that we
must have W ′′ = O(−1) ⊕O(2), so

(D′
1)y = PP(1,2)(O(−1) ⊕O(2)) = PP(1,2)(O ⊕O(3)).

This proves (2).
Similarly, to prove (3), note that in types C and D we have a canonical

Z(L′)-equivariant exact sequence

0 −→ O(−dOE) −→ W −→ U −→ 0,

where U is semistable and Z(L′) acts on O(−dOE) and O respectively with
weights

en1+1 = −�l + (d + 1)�i =
{
−�l + 2�l−1, in type C,

−�l + �l−3, in type D,

and

e1 =
{
�l, in type C,

�l−1, in type D.
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So over any geometric point y : Spec k → Y over s : Spec k → S, we have an
exact sequence

0 → π∗(M�l,y) → π∗(M�l,y ⊗O(dOE) ⊗Ws)
(3.6.8)

→ π∗(M�l,y ⊗O(dOE) ⊗ Us) → R1π∗(M�l,y) → 0,

of Z(L′)-linearised vector bundles on (Z1)s, which descends to an exact se-
quence of vector bundles on P1 = (Z0)s = (Z1)s/Gm after tensoring with
−e1. Note that in both cases M�l,y ⊗ O((d + 1)OE) ⊗ Us is a semistable
vector bundle of degree 2 on which Z(L′) acts with the single weight e1, so
π∗(M�l,y ⊗ O((d + 1)OE) ⊗ Us) ⊗ Z−e1 descends to a trivial rank 2 vector
bundle O ⊕O on P1.

If �l(y) �= 0, then π∗(M�l,y) = R1π∗(M�l,y) = 0, so

π∗(M�l,y⊗O((d+1)OE)⊗Ws)⊗Z−e1 = π∗(M�l,y⊗O((d+1)OE)⊗Us)⊗Z−e1

descends to O ⊕ O on P1, which together with Lemma 3.6.4 shows that
(D′

1)y = PP1(O ⊕O) = F0. Otherwise, (3.6.8) descends to an exact sequence

0 −→ O(1) −→ W ′ −→ O ⊕O −→ O(1) −→ 0

such that (D′
1)y ∼= PP1(W ′). Since the kernel of any surjection O⊕O → O(1)

must be isomorphic to O(−1), this implies that W ′ ∼= O(−1) ⊕ O(1) and
hence that

(D′
1)y ∼= PP1(O(−1) ⊕O(1)) ∼= F2.

This proves (3).
Finally, in type F , we have already constructed the morphisms D′

1 →
D′′

1 → Y = Y ×S Z0. Since M�1 ⊗ W∨ is a family of semistable vector
bundles of degree 2, Lemma 3.6.5 shows that D′′

1 → Y is a P1-bundle as
claimed. Moreover, any rank 2 degree −2 subbundle of W is necessarily also
semistable, so Lemma 3.6.5 also shows that D′

1 → D′′
1 is a P1-bundle.

If y : Spec k → Y is a geometric point over s : Spec k → S, then by
Lemma 3.6.5 we have an exact sequence

0 −→ U −→q∗(M�2,y ⊗O(2OE) ⊗Ws)(3.6.9)
−→ q∗(M�1+�2,y ⊗O(2OE)) ⊗ (π′)∗O(1) −→ 0

of vector bundles on P1×Es such that (D′
1)y = Pπ′

∗U , where π′ and q are the
projections to the first and second factors respectively. Since U is a vector
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bundle of rank 2 and determinant q∗(M−�1+2�2,y ⊗O(2OE)) ⊗ (π′)∗O(−1),
it follows that we have an isomorphism

U
∼−→ U∨ ⊗ detU = U∨ ⊗ q∗(M−�1+2�2,y ⊗O(2OE)) ⊗ (π′)∗O(−1).

So the dual of (3.6.9) gives an exact sequence

0 −→ q∗M−2�1+�2,y ⊗ (π′)∗O(−2)
−→ q∗(M−�1+�2,y ⊗W∨

s ) ⊗ (π′)∗O(−1) −→ U −→ 0,

and hence an exact sequence

0 → H0(Es,M−2�1+�2,y) ⊗O(−2) → H0(Es,M−�1+�2,y ⊗W∨
s ) ⊗O(−1)

→ (π′)∗U → H1(Es,M−2�1+�2,y) ⊗O(−2) → 0.(3.6.10)

If α1(y) = 2�1(y) −�2(y) �= 0, then

H0(Es,M−2�1+�2,y) = H1(Es,M−2�1+�2,y) = 0,

so (3.6.10) gives an isomorphism

(π′)∗U ∼= H0(Es,M−�1+�2,y ⊗W∨
s ) ⊗O(−1) = O(−1) ⊕O(−1),

so (D′
1)y ∼= PP1(O(−1) ⊕ O(−1)) = F0. Otherwise, (3.6.10) gives an exact

sequence

0 −→ O(−2) −→ O(−1) ⊕O(−1) −→ (π′)∗U −→ O(−2) −→ 0.

Since the cokernel of the injective morphism O(−2) → O(−1)⊕O(−1) must
be isomorphic to O, we get (π′)∗U ∼= O(−2)⊕O and hence (D′

1)y ∼= F2. This
completes the proof of (5) and of the proposition.

4. Singularities

In this section, we apply the results of §3 to the study of the singularities
of the unstable varieties χ−1

Z (0) and their deformations χZ : Z → Ŷ //W . We
describe the singularities explicitly in §4.1, which are given in Theorem 4.1.3.
In §4.2, we briefly sketch a minor variation on standard deformation theory
(in which all deformation rings are graded by the character lattice of a torus)
before stating and proving weighted miniversality of the deformations χZ

(Theorem 4.2.9). Theorems 4.1.3 and 4.2.9 together include all the statements
from Theorem 1.0.6 from the introduction.
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4.1. Codimension 2 singularities of the locus of unstable bundles

Theorem 1.0.3 (and the more refined statements in Propositions 3.4.1 and
3.5.1) give very explicit descriptions of the families of normal crossings sur-
faces χ̃−1

Z (0Θ−1
Y

) → Y . We show in this section how these results can be used
to give equally explicit descriptions of the unstable loci χ−1

Z (0) (which give
local models for the singularities of the unstable loci of BunG, since the maps
Z → BunG are slices). For the sake of simplicity, we will assume always that
S = Spec k for some algebraically closed field k.

We will see below that there is a dichotomy between the classical types
(Al for l > 1, B, C and D) and the exceptional types (E, F , G and A1). In the
exceptional types, the unstable varieties are always cones over elliptic curves,
with unique isolated singularities. In the classical types, the unstable varieties
have non-isolated singularities obtained via the following construction.
Construction 4.1.1. Let π : X → X ′ be a degree 2 morphism between smooth,
possibly stacky curves over k, and let L be a line bundle on X. The surface
obtained by gluing L along π is the affine stack over X ′ given by the spectrum
of the fibre product

R π∗
⊕

n≥0 L
⊗−n

OX′ π∗OX ,

where the vertical arrow on the right is given by restriction of a function on
the total space of L to the zero section. Geometrically, SpecX′ R is the surface
obtained by identifying points in the zero section of the total space of L with
the same image under π.
Remark 4.1.2. Assume that the characteristic of k is not 2, let X ′′ be a surface
obtained by Construction 4.1.1, and let p ∈ X ′′ be a singular point. If p does
not lie over a branch point of π, then the singularity at p is of type A∞, i.e.,
we can choose (formal) local coordinates x, y and z at p so that X ′′ has local
equation xy = 0. If p does lie over a branch point, then the singularity is
of type D∞, i.e., we can choose local coordinates so that X ′′ has equation
x2 = y2z.

Theorem 4.1.3. Assume that S = Spec k for k an algebraically closed
field and let (G,P, μ) be a subregular Harder–Narasimhan class. Assume that
(G,P, μ) is not of type A1 (resp., (G,P, μ) is of type A1 and k does not have
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characteristic 2) and let Z = IndG
L (Z0) → BunG,rig be the equivariant slice

constructed in the proof of Theorem 2.2.6 (resp., Remark 2.2.10). Then the
stack χ−1

Z (0) ⊆ Z can be constructed as follows.

(1) If (G,P, μ) is of type A (but not A1), then then there are two line bundles
L1 and L2 with degL1 + degL2 = l + 1 such that χ−1

Z (0) is obtained by
gluing the corresponding line bundle on E �E along the canonical map
E � E → E. In particular, χ−1

Z (0) has singularities of type A∞ only.
(2) If (G,P, μ) is of type B (resp., C, D), then there exists a line bundle L

on E of degree l− 6 (resp., l− 4, l− 8) such that χ−1
Z (0) is obtained by

gluing L along a degree 2 map E → P(1, 2) (resp., E → P1) branched
over 3 (resp., 4) points. The singularities are of type A∞ at the non-
branch points of P(1, 2) (resp., P1) and, if the characteristic of k is not
2, of type D∞ at the branch points.

(3) If (G,P, μ) is of type E (resp., F , G, A1), then χ−1
Z (0) is the cone over

E obtained by contracting the zero section of a line bundle L on E of
degree l− 9 (resp., l− 5, l− 3 = −1, −4) to a point. The singularity is
simply elliptic of degree 9 − l (resp., 5 − l, 3 − l, 4).

Proof. We first prove (3). If (G,P, μ) is of type A1, then the claim is proved
in Proposition 4.1.9 below. So assume that (G,P, μ) is of type E (resp., F ,
G).

By construction, χ−1
Z (0) is affine, and the open subset

χ−1
Z (0)reg = χ−1

Z (0) ×BunG,rig Bunreg
G,rig

is big, where Bunreg
G,rig ⊆ BunG,rig is the open substack of regular bundles of

[5, Proposition 4.4.6]. So choosing any y : Spec k → 0Θ−1
Y

, we have

χ−1
Z (0) = SpecH0(χ−1

Z (0),O)
= SpecH0(χ−1

Z (0)reg,O) = SpecH0(χ̃−1
Z (y)reg,O),

where χ̃−1
Z (y)reg = χ̃−1

Z (y) ∩ ψ−1
Z (χ−1

Z (0)reg) ∼= χ−1
Z (y)reg. But by Proposi-

tion 3.4.1 (and the fact that αi is not a special root), χ̃−1
Z (y)reg = (D1)y \ E

is the complement of the zero section in the line bundle L−1 = (D1)y over
E = {y} × Pic0(E), which has (negative) degree l− 9 (resp., l− 5, l− 3). So

χ−1
Z (0) = SpecH0((D1)y \ E,O) = Spec

⊕
n≥0

H0(E,L⊗n)

is a cone over E of the asserted degree.
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To prove (1) and (2), we argue as follows. Since ψZ,y∗O = O by Proposi-
tion 4.1.8 below and χ−1

Z (0) → Z0 is affine, we have

χ−1
Z (0) = SpecZ0 π∗OD̄y

= SpecZ0 π∗ODy ,

for any choice of y : Spec k → 0Θ−1
Y

, where π : χ̃−1
Z (y) → Z0 is the natural

morphism and we write

D = Dα∨
i
(Z) + Dα∨

j
(Z) + Dα∨

i +α∨
j
(Z) and D̄ = χ̃−1

Z (0Θ−1
Y

).

Using Theorem 1.0.3 and Propositions 3.4.1 and 3.6.1, it is easy to see that

π∗ODy
∼= π∗O(D1)y ×π∗OE π∗O(D′

1)y ,

where we have identified {y}×Pic0(E) = Dα∨
i
(Z)y ∩Dα∨

j
(Z)y with E and by

mild abuse of notation we have also written π for the morphisms (D1)y → Z0,
(D′

1)y → Z0 and E → Z0. In type A, L1 = (D1)y and L2 = (D′
1)y are line

bundles satisfying degL1 + degL2 = l + 1 by Lemma 4.1.7 below, which
proves (1). In type B (resp., C, D), L = (D1)y is a line bundle on E of
the desired degree by Lemma 4.1.7, π∗O(D′

1)y = OZ0 , and E → Z0 = P(1, 2)
(resp., P1) has degree 2 by Lemma 4.1.6. Since any degree 2 map E → P(1, 2)
(resp., E → P1) is branched over 3 (resp., 4) points, (2) now follows.

In order to prove the lemmas quoted in the proof of Theorem 4.1.3, we
will appeal to the following formula for the canonical bundle of B̃unG,rig.

Proposition 4.1.4. There exists a line bundle M on BunG,rig such that

KB̃unG,rig/BunG,rig

∼= ψ∗M ⊗O

⎛⎝ ∑
μ∈X∗(T )+

(−2 + 〈ρ, μ〉)Dμ

⎞⎠ .

Proof. This is an immediate consequence of [4, Theorem 4.6.1].

Corollary 4.1.5. For any slice Z → BunG,rig, there exists a line bundle M
on Z such that

KZ̃/Z = ψ∗
ZM ⊗O

⎛⎝ ∑
μ∈X∗(T )+

(−2 + 〈ρ, μ〉)Dμ(Z)

⎞⎠ .

Lemma 4.1.6. Assume that (G,P, μ) is of type B, C or D. Then for any
y : Spec k → Y = 0Θ−1

Y
, the morphism Pic0(E) = {y} × Pic0(E) ⊆ χ̃−1

Z (y) →
Z0 has degree 2.
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Proof. By Corollary 4.1.5,

KZ̃ = ψ∗
ZKZ ⊗KZ̃/Z = ψ∗

ZM ⊗O(−Dα∨
i
(Z) −Dα∨

j
(Z))

for some line bundle M on Z. So by adjunction, we have

(4.1.1) KDα∨
i

(Z)y = (KZ̃ ⊗O(Dα∨
i
(Z)))|Dα∨

i
(Z)y = ψ∗

ZM |Dα∨
i

(Z)y ⊗O(−E),

where we write E = {y} × Pic0(E) ⊆ Dα∨
i
(Z)y. To compute the degree of

the finite morphism E → Z0, choose a k-point z ∈ Z0 disjoint from the
images of θ′k(y) and the stacky point in type B, and let Fz

∼= P1
k be the

fibre of Dα∨
i
(Z)y → Z0 over z. By (4.1.1) and adjunction, the degree is the

intersection product

E · Fz = −KDα∨
i

(Z)y · Fz = −(KDα∨
i

(Z)y + Fz) · Fz = − degKFz = 2,

which proves the lemma.

Lemma 4.1.7. Assume we are in the setup of Propositions 3.4.1 and 3.6.1
and fix a geometric point y : Spec k → Y . Then we have the following.

(1) If (G,P, μ) is of type A (not A1), then sum of the degrees of the line
bundles (D1)y and (D′

1)y on Pic0(E) is l + 1.
(2) If (G,P, μ) is not of type A, then the degree of the line bundle (D1)y on

Pic0(E) is given in Table 3.

Table 3: Degree of (D1)y
Type B C D E F G

deg(D1)y l − 6 l − 4 l − 8 l − 9 l − 5 l − 3

Proof. To simplify the notation, identify Pic0(E) ⊆ (D1)y with E. The degree
of the line bundle (D1)y is equal to the self-intersection number (E2)(D1)y of
E on the surface (D1)y.

First note that by Proposition 3.4.1, Dα∨
j
(Z)y is the iterated blowup of

(D1)y at n0 + 1 points on E, so we have

(4.1.2) (E2)(D1)y = (E2)Dα∨
j

(Z)y + n0 + 1.
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Next, observe that we have

0 = χ̃−1
Z (0Θ−1

Y
) · E = (dDα∨

i
(Z) + Dα∨

j
(Z) + Dα∨

i +α∨
j
(Z)) · E(4.1.3)

= d(E2)Dα∨
j

(Z)y + (E2)Dα∨
i

(Z)y + 1,

where d = 1
2(α∨

i |α∨
i ) and we have used the fact that Dα∨

i
(Z)y∩Dα∨

j
(Z)y = E

and that the exceptional curve of the final blowup Dα∨
i +α∨

j
(Z)y ∩ Dα∨

j
(Z)y

meets E transversely in a single point. Since Dα∨
j
(Z)y is the iterated blowup

of the smooth surface (D′
1)y of Proposition 3.6.1 at N points on E, we have

(E2)Dα∨
i

(Z) = (E2)(D′
1)y −N,

and hence (4.1.2) and (4.1.3) give

(4.1.4) (E2)(D1)y = 1
d
(N − (E2)(D′

1)y − 1) + n0 + 1.

In type A, d = 1 and N = n1 + 1, so (4.1.4) is equivalent to

deg(D1)y + deg(D′
1)y = (E2)(D1)y + (E2)(D′

1)y = n0 + n1 + 1 = l + 1,

which proves (1).
In types B, C and D, we argue as follows. By Lemma 4.1.6, E is a smooth

elliptic curve contained in a (possibly stacky) Hirzebruch surface (D′
1)y map-

ping with degree 2 to the base Z0 = P(1, 2) or P1. It follows from a straight-
forward adjunction calculation that E is an anticanonical divisor on (D′

1)y
and satisfies (E2)D′

1
= 6 in type B and (E2)(D′

1)y = 8 in types C and D.
Substituting into (4.1.4) gives the degrees in Table 3.

Finally, in types E, F and G, note that by Corollary 4.1.5, we have

KZ̃/Z = ψ∗
ZM ⊗O(−Dα∨

i
(Z) −Dα∨

j
(Z))

for some line bundle on M on Z. Since Z ∼= Al+3 is an affine space, every line
bundle on Z is trivial, so

KZ̃ = KZ̃/Z ⊗ ψ∗
ZKZ

∼= O(−Dα∨
i
(Z) −Dα∨

j
(Z)).

By adjunction, we therefore have a linear equivalence

KDα∨
i

(Z)y ∼ (KZ̃ + Dα∨
i
(Z))|Dα∨

i
(Z)y = −Dα∨

i
(Z)y ∩Dα∨

j
(Z)y = −E.
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So E ⊆ Dα∨
i
(Z)y is an anticanonical divisor, from which it follows that

E ⊆ (D′
1)y is also an anticanonical divisor in the blow down. So from the

explicit identification of the surface (D′
1)y given in Proposition 3.6.1 as either

a Hirzebruch surface or P2, we have

(E2)(D′
1)y = K2

(D′
1)y

=
{

9, in types E and G,

8, in type F.

Substituting the values of N , n0 and d into (4.1.4) in each of the different
cases gives the desired expressions for (E2)(D1)y .

Proposition 4.1.8. Fix any geometric point y : Spec k → Θ−1
Y , and let

ψy : χ̃−1(y) −→ χ−1(y)

be the pullback of the elliptic Grothendieck–Springer resolution. We have
ψy∗O = O.

Proof. Since χ−1(y) is a local complete intersection, hence Cohen–Macaulay,
it is enough to prove the claim on an open substack of the target whose
complement has codimension at least 2. We therefore reduce to proving that
the map

ψZ,y : χ̃−1
Z (y) −→ χ−1

Z (y)

satisfies ψZ,y∗O = O for each of the slices Z → BunG,rig of Theorem 1.0.2.
Note that by the proof of Lemma 3.1.4, we have ψ′

Z∗O = O, where

ψ′
Z : Z̃ −→ Z ×

Ŷ //W
Θ−1

Y

is the natural morphism induced by ψZ . Since the domain and codomain
of ψ′

Z are both flat over Θ−1
Y , it is enough by base change to show that

Riψ′
Z∗O = 0 for all i > 0. By equivariance, this will follow from the claim

that RiψZ,y∗O = 0 for all i > 0 and all y ∈ 0Θ−1
Y

= Y .
Since χ−1

Z (0) → Z0 is affine by construction, it is enough to show that
Riπ∗O = 0 for i > 0, where π : χ̃−1

Z (y) → Z0 is the natural morphism. This
holds by inspection for the fibre over y ∈ Y of the reduced normal crossings
variety

D = Dα∨
i
(Z) + Dα∨

j
(Z) + Dα∨

i +α∨
j
(Z),

from the explicit descriptions of the components given by Theorem 1.0.3
and Proposition 3.6.1, using the fact that Rf∗O = O whenever f is either
a P1-bundle or the blow up of a smooth surface at a point. This proves
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the claim in types A, B and D. In type C, we claim that the morphism
Rπ∗OD̄y

→ Rπ∗ODy is a quasi-isomorphism, where D̄ = χ̃−1
Z (0Θ−1

Y
), from

which the desired vanishing follows. To see this, note that we have a short
exact sequence

0 −→ O(−D)|Dα∨
i

(Z) −→ OD̄ −→ OD −→ 0,

so it is enough to show that Riπ∗O(−D)|Dα∨
i

(Z)y = 0 for all i. From the
explicit description of Dα∨

i
(Z)y given in Proposition 3.6.1, it is enough to

show that O(−D)|Dα∨
i

(Z)y has degree 0 on the exceptional curve γ of the
blowup and degree −1 on every irreducible fibre of D′

1 → Z0 = P1. But since
ΘY is trivial on Dα∨

i
(Z)y, we have a linear equivalence

−2D|Dα∨
i

(Z)y ∼ −Dα∨
j
(Z)y ∩Dα∨

i
(Z)y −Dα∨

i +α∨
j
(Z)y ∩Dα∨

i
(Z)y = −E − γ,

from which the claim follows by Lemma 4.1.6.

Proposition 4.1.9. Assume that (G,P, μ) is of type A1, so that G = SL2,
P = T and 〈�1, μ〉 = −2. Let Spec k → Bunμ

T = Bun−2
Gm

be the slice classify-
ing the line bundle O(−2OE) of Remark 2.2.10 and let Z = IndSL2

T (Spec k) →
BunSL2 be the induced equivariant slice. Then the unstable fibre χ−1

Z (0) is iso-
morphic to the affine cone over E obtained by contracting the zero section of
a degree −4 line bundle to a point.

Proof. If we identify BunSL2 with the stack of rank 2 vector bundles with
trivial determinant, then the slice Z is nothing but the vector space

Z = Ext1(O(2OE),O(−2OE)) ∼= H1(E,O(−4OE)),

with its tautological map to BunSL2 . To describe the unstable locus, note
that a point z ∈ Z corresponds to an unstable extension

0 −→ O(−2OE) −→ Vz −→ O(2OE) −→ 0

if and only if there exists a degree 1 line bundle L on E such that z is in the
(1-dimensional) kernel of the map

Ext1(O(2OE),O(−2OE)) −→ Ext1(L,O(−2OE))

induced by the unique (up to scale) nonzero morphism L → O(2OE). We
deduce that χ−1

Z (0) \ {0} must be a Gm-torsor over Pic1(E) ∼= E, so the
normal variety χ−1

Z (0) must be an affine cone over E as claimed.
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To identify the degree, observe that since Z → BunSL2 is an equivariant
slice with equivariance group Gm and weight 2 by Proposition 2.2.5, the mor-
phism χZ : A4 ∼= Z → Ŷ //W ∼= A2 is equivariant with respect to the weight 1
action on A4 and the weight 2 action on A2. So taking projectivisations, we
deduce that the elliptic curve (χ−1

Z (0) \ {0})/Gm is presented as an intersec-
tion of two quadric surfaces in P3, from which we deduce that the polarising
line bundle has degree 4. The proposition now follows.

4.2. Deformation theory

In this subsection, we study the deformation theory of the unstable varieties
χ−1
Z (0) of §4.1. As in the previous subsection, We will assume for simplicity

that S = Spec k for some algebraically closed field k.

Definition 4.2.1. Let H be a torus with character group X∗(H), let
X∗(H)+ ⊆ X∗(H) be a sub-monoid (without unit), and let X be an alge-
braic stack over Spec k with H-action.

(1) An X∗(H)+-weighted deformation ring is an X∗(H)-graded Noetherian
k-algebra

R =
⊕

λ∈−X∗(H)+∪{0}
Rλ

such that R0 = k. Given such an R, we write

R̂ =
∏

λ∈−X∗(H)+∪{0}
Rλ

for the completion at the maximal ideal mR =
⊕

λ∈−X∗(H)+ Rλ.
(2) An X∗(H)+-weighted deformation of X over an X∗(H)+-weighted defor-

mation ring R is a flat H-equivariant morphism X̄ → Spf R̂ of formal
stacks equipped with an H-equivariant isomorphism X̄s

∼= X, where
s : Spec k → Spf R̂ is the unique (H-fixed) point.

(3) We say that an X∗(H)+-weighted deformation X̄ → Spf R is versal
if for every surjective (graded) homomorphism R′ → R′′ of X∗(H)+-
weighted deformation rings, every homomorphism φ′ : R → R′′ and
every weighted deformation X̄R′ → Spf R̂′ with an isomorphism
α : X̄R′ ×Spf R̂′ Spf R̂′′ ∼= X̄ ×Spf R̂ Spf R̂′′, there exists a lift φ : R → R′

and an isomorphism X̄R′ ∼= X̄ ×Spf R̂ Spf R̂′ lifting α.
(4) We say that a versal X∗(H)+-weighted deformation X̄ → Spf R is

miniversal (or semi-universal) if for all X∗(H)+-weighted deformation
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rings R′ and pairs φ, φ′ : R → R′ of graded homomorphisms with
X̄ ×Spf R̂,φ

Spf R̂′ ∼= X̄ ×Spf R̂,φ′ Spf R̂′, the maps

dφ, dφ′ : Ts′ SpecR′ −→ Ts SpecR

on tangent spaces at fixed points are equal.

Remark 4.2.2. Note that a versal (resp., miniversal) X∗(H)+-weighted defor-
mation need not be versal (resp., miniversal) as a plain unweighted deforma-
tion.

Weighted deformation theory in this sense works in more or less the same
way as unweighted deformation theory for schemes. (See, for example, [9] or
[13, Chapitre III] for the unweighted case.) For example, we have the following.

Proposition 4.2.3. Let TX be the tangent complex to X (the OX-linear dual
to the cotangent complex). Let R′ → R is a surjection of Artinian X∗(H)+-
weighted deformation rings with kernel I satisfying mR′I = 0, and let X̄ →
Spf R̂ = SpecR be a weighted deformation of X.

(1) There is an H-invariant obstruction class ob ∈ (H2(X,TX)⊗ I)H such
that X̄ lifts to a weighted deformation over R′ if and only if ob = 0.

(2) If lifts exist, then the set of isomorphism classes of H-equivariant lifts
form a torsor under the group (H1(X,TX) ⊗ I)H ⊆ H1(X,TX) ⊗ I.

As a consequence, we deduce the following via the usual argument for
existence and behaviour of a miniversal deformation.

Proposition 4.2.4. Assume that X∗(H)+-weighted subspace H1(X,TX)+ of
H1(X,TX) is finite dimensional. Then there exists a miniversal X∗(H)+-
weighted deformation X̄ → Spf R̂, and Spf R̂ has tangent space H1(X,TX)+
at the fixed point. Moreover, if the X∗(H)+-weighted subspace H2(X,TX)+ of
H2(X,TX) vanishes, then

R ∼= Sym(H1(X,TX)+)∨

as X∗(H)-graded rings.

Remark 4.2.5. The obstruction class of Proposition 4.2.3 is the same as the
obstruction for lifting ordinary (unweighted) deformations. It follows that if
X̄ → Spf R̂ is an unweighted miniversal deformation such that R is X∗(H)-
graded and the H-action on X lifts to a compatible action on X̄, then the
restriction to Spf R̂′ is an X∗(H)+-graded miniversal deformation, where R′ is
the quotient of R by the ideal generated by all weight spaces of the maximal
ideal of R with weights �∈ X∗(H)+.
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We now turn to the weighted deformation theory of the singularities of
§4.1.

Lemma 4.2.6. Assume we are in the setup of Construction 4.1.1, and assume
moreover that either k has characteristic not 2 or that the morphism π : X →
X ′ is unramified. Let X ′′ be the surface obtained by gluing a line bundle L on
X along π. Let H be a torus equipped with a sub-monoid X∗(H)+ ⊆ X∗(H)
(not containing 0) acting on the line bundle L (and hence on the surface
X ′′) in such a way that for every x ∈ X ′, the weights λ1 and λ2 at the two
preimages of x satisfy

λ1, λ2 ∈ X∗(H)+ and λ1 − λ2, λ2 − λ1 �∈ X∗(H)+.

Then, in the notation of Proposition 4.2.4,

H1(X ′′,TX′′)+ = H0(X ′, I∨) ⊕
⊕

x∈ram(π)
L−1
x ⊗ I∨π(x)

and
H2(X ′′,TX′′)+ = H1(X ′, I∨),

where ram(π) ⊆ X is the set of ramification points of π and

I = ker(Sym2 π∗(L−1) −→ π∗(L−2)).

Proof. First note that since H acts on L with weights in X∗(H)+ it follows
that H i(X ′′, f∗TX′) has weights in −X∗(H)+ (and hence none in X∗(H)+)
for all i, where f : X ′′ → X ′ is the structure map. So we can replace TX′′

with TX′′/X′ in the statement of the lemma. We can also assume without loss
of generality that X ′ is connected, so that the weights {λ1, λ2} of H on L

restricted to π−1(x) are independent of x ∈ X ′.
By definition, we have X ′′ = SpecX′ R, where R is the sheaf of algebras

R = π∗
⊕
n≥0

L−n ×π∗OX OX′ ∼= Sym π∗(L−1)
Sym π∗(L−1) ⊗ I

.

So X ′′ is a local complete intersection over X ′ and the pushforwards of the
relative tangent complex along the structure map f : X ′′ → X ′ is

f∗TX′′/X′ = [Sym π∗(L−1) ⊗ π∗(L−1)∨ → Sym π∗(L−1) ⊗ I∨],
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concentrated in cohomological degrees 0 and 1. Since π∗(L−1) has weights
−λ1 and −λ2 and I∨ has weight λ1 + λ2, it follows that the X∗(H)+-weight
part of f∗TX′′/X′ is

(f∗TX′′/X′)+ = I∨[−1] ⊕ [π∗(L−1)∨ → π∗(L−1) ⊗ I∨].

A local computation now shows that the second term has vanishing cohomol-
ogy away from the ramification points. If k does not have characteristic 2,
then π is given in formal local coordinates by x → x2 near any ramification
point, from which one can show that the natural map

[π∗(L−1)∨ → π∗(L−1) ⊗ I∨] −→
⊕

x∈ram(π)
L−1
x ⊗ I∨π(x)[−1]

is a quasi-isomorphism, where the terms of the direct sum on the right are
interpreted as skyscraper sheaves at the branch points π(x) ∈ X ′. The lemma
now follows.

Lemma 4.2.7. Let (G,P, μ) be a subregular Harder–Narasimhan class, and
identify the torus Z(L)rig with Gm (resp., Gm×Gm in type A) via the cochar-
acter −�∨

i : Gm → Z(L)rig (resp., (−�∨
i ,−�i+1) : Gm × Gm → Z(L)rig),

where i is as in Notation 2.3.2. The weights of the Z(L)rig-action on the line
bundles in Theorem 4.1.3 are as follows.

(1) If (G,P, μ) is of type A (but not A1), then the line bundles L1 and L2
have weights (1, 0) and (0, 1).

(2) In all other cases, the line bundle L has weight 1.

Proof. We deduce this from the weights of the Z(L)rig-action on the affine
space Ŷ //W and the fibres of the affine space bundle Z → Z0. By construc-
tion, the Z(L)rig-weights of Ŷ //W are the canonical Gm-weights multiplied
by (μ | −). By a theorem of Looijenga [14, Theorem 3.4], these Gm weights
are 1, g1, . . . , gl, where gi are the coroot integers defined by

g1α
∨
1 + · · · + glα

∨
l = α̃∨,

where α̃ is the highest root of G. The Z(L)rig-weights on Z, on the other
hand, can be computed using, for example, the formula in [5, Proposition
4.1.7] for the weight multiplicities in a parabolic induction. These are all given
in Table 4 below. In type Al, l > 1, observe that the fixed loci of {1} × Gm

and Gm × {1} ⊆ Z(L)rig are necessarily contained in the zero fibre χ−1
Z (0).

Since these are both line bundles over E = Z0, they must be L1 and L2. So
the weights of these are (1, 0) and (0, 1) as claimed.
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Table 4: Weights of the subregular slices
Type Gm-weights of Ŷ //W (μ | −) Z(L)rig-weights of Z
A1 12 2 14

Al, l > 1 1l+1 (1, 1) (1, 0)1(0, 1)1(1, 1)l

Bl 132l−2 1 152l−3

Cl 1l+1 2 122l

Dl 142l−3 1 162l−4

E5 1422 1 18

E6 132331 1 1623

E7 12223241 1 142432

E8 112232425161 1 1223334251

F3 1321 2 1224

F4 12223 2 11233142

G2 1221 3 112133

In the other types, assume for a contradiction that L has weight w > 1.
(Note that it cannot have negative weight, since all weights of Z are positive.)
So the whole zero fibre χ−1

Z (0) is contained in the fixed locus of μw, and hence
the images of the weight −1 generators of the polynomial ring Γ(Ŷ //W,O)
span the weight −1 part of p∗OZ , where p : Z → Z0 is the natural map.
But in each case the multiplicity of the weight −1 in p∗OZ is larger than in
Γ(Ŷ //W,O), so this is a contradiction, and the lemma is proved.

Lemma 4.2.8. Let X be a cone over E of degree 1 ≤ d ≤ 4, and assume
that (char(k), d) �= (2, 2), (3, 3). Then the miniversal Z>0-deformation space
of X is an affine space with the same weights as Ŷ //W in type E9−d given in
Table 4.

Proof. Except for d = 4, this is pointed out in [8, Theorem 6.24]: the result is
well-known in characteristic 0, and is due to M. Hirokado [12, Theorem 4.4]
in positive characteristic.

For d = 4, we argue as follows. In this csae, the cone X is a complete
intersection

X = Spec k[x1, x2, x3, x4]
(f1, f2)

,

where f1, f2 are homogeneous polynomials of degree 2. The deformation the-
ory of X is unobstructed, and weight d part of the tangent space is the degree
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2 − d part of the cokernel of the 2 × 4 Jacobian matrix

A =
(
∂fi
∂xj

)

with entries in R = k[x1, x2, x3, x4]/(f1, f2). So the miniversal Z>0-weighted
deformation space is an affine space with weights 1422 as long as intersection
of the kernels of the two Hessian matrices

Hi =
(

∂2fi
∂xj∂xk

)
1≤j,k≤4

, i = 1, 2

is zero.
If the characteristic of k is not 2, then

fi(x) = 1
2x

tHix, and dfi = dxtHix.

So any nonzero vector v in the intersection of the kernels gives a singular
point in the curve E = Proj(R), which is a contradiction.

If the characteristic of k is 2, then (Hi)j,j = 0 (so Hi is the matrix of an
alternating form on k4), and fi is of the form

fi(x) =
∑

1≤j<k≤4
(Hi)j,kxjxk +

4∑
j=1

ai,jx
2
j

for some vectors ai = (ai,1, ai,2, ai,3, ai,4) ∈ k4. The variety of all possible
tuples (H1, H2, a1, a2) such that H1 and H2 have a common vector in their
kernels is irreducible (it admits a surjection from a vector bundle over the
projective space P3), and the subset of such tuples defining a smooth elliptic
curve is an open subset; we will show that this subset must be empty.

Consider the open subset of tuples as above such that dim kerH1 =
dim kerH2 = 2, dim kerH1 ∩ kerH2 = 1, a1 and a2 are linearly indepen-
dent, and some vector in the span of a1 and a2 does not lie in kerH1 +kerH2.
For any such tuple, after performing an invertible linear transformation on f1
and f2, and changing basis on k4, we can arrange that

H1 =

⎛⎜⎜⎜⎝
0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

⎞⎟⎟⎟⎠ , H2 =

⎛⎜⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎟⎠ , a1 =

⎛⎜⎜⎜⎝
0
0
0
1

⎞⎟⎟⎟⎠ , a2 =

⎛⎜⎜⎜⎝
a
b
c
0

⎞⎟⎟⎟⎠ ,
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for some a, b, c ∈ k. A straightforward Jacobian calculation shows that Proj(R)
is singular in this case. So this nonempty open subset is disjoint from the open
subset yielding smooth elliptic curves, so the latter must be empty by irre-
ducibility, and we are done.

Theorem 4.2.9. Assume we are in the setup of Theorem 4.1.3 and, more-
over, that k does not have characteristic 2 if (G,P, μ) is of type A1, B, C,
E7 or F3, and that k does not have characteristic 3 if (G,P, μ) is of type E6.
Then (the formal completion of) the family χZ : Z → Ŷ //W is a miniversal
Z>0(μ | −)-weighted deformation of χ−1

Z (0) with respect to the action of the
torus Z(L)rig.

Proof. We first argue that there is no non-constant Gm-orbit (equivalently,
Z(L)rig-orbit) closure in Ŷ //W on which the family χZ is equivariantly trivial
over the completion at 0. To see this, note that every Gm-orbit closure is of the
form q(Θ−1

Y,y), where q : Θ−1
Y → Ŷ //W is the quotient map and Θ−1

Y,y
∼= A1 is

the fibre of the line bundle Θ−1
Y over a point y ∈ Y . If the pullback X → A1

of Z to this fibre is equivariantly trivial over the formal completion at 0,
then it is trivial relative to Z0 (since there are no deformations of the map
χ−1
Z (0) → Z0 of the relevant weights). Since X is affine over Z0, the equivari-

ant formal trivialisation therefore lifts uniquely to an equivariant isomorphism
X ∼= χ−1

Z (0) × A1.
Now, there is a simultaneous log resolution π : X̃ = Z̃y → X ∼= χ−1

Z (0) ×
A1 over A1, relative to the divisor 0 ∈ A1. Moreover, for any t ∈ A1 \ {t}, the
map πt : X̃t → Xt is an isomorphism over the dense open locus of points in
Xt whose associated G-bundle is regular, and has positive dimensional fibres
over all other points. Since X̃t is smooth, it follows that Xt = χ−1

Z (0) is regu-
lar in codimension 1. This contradicts Theorem 4.1.3 in the classical types Al

(l > 1), B, C and D. In types A1, E, F and G, we instead note that Corol-
lary 4.1.5 implies that X̃t has trivial canonical bundle (since Z0 = Spec k in
these cases) for t �= 0. In particular, from adjunction, every projective curve
in X̃t is rational with self-intersection −2. But X̃t is a resolution of the elliptic
cone χ−1

Z (0) and is therefore birational (over χ−1
Z (0)) to a line bundle over

an elliptic curve. Since a birational map between smooth surfaces projective
over a common base is a sequence of blowups at points and contractions of
(−1)-curves, this implies that X̃t must contain a projective curve whose nor-
malisation is elliptic, which is a contradiction. So the deformation is formally
nontrivial on all orbit closures as claimed.

Now let X → Spf(R̂) be a miniversal Z>0(μ | −)-weighted deformation of
χ−1
Z (0). Then the completion of χZ : Z → Ŷ //W is the pullback of X along

some Z(L)rig-equivariant map Ŷ //W → SpecR such that the preimage of
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the origin is (set-theoretically) the fixed point. We will show that SpecR is
an affine space with linear Z(L)rig-action of the same weights as Ŷ //W , from
which it follows that Ŷ //W → SpecR must be an isomorphism.

In type E, the claim is proved in Lemma 4.2.8.
In type Al, l > 1, in the notation of Lemma 4.2.7, Z(L)rig ∼= Gm×Gm acts

on L1 and L2 with weights (1, 0) and (0, 1) respectively and I = L−1
1 ⊗ L−1

2
is a line bundle of degree −l − 1. So applying Lemma 4.2.6 and Proposi-
tion 4.2.4, we have that the miniversal Z2

>0-weighted deformation is an affine
space with weights (1, 1)l+1. Since (μ | −) = (1, 1) in this presentation, this is
also a miniversal Z>0(μ | −)-weighted deformation with weights (μ | −)l+1 as
required to prove.

In type B, we identify the line bundle I on P(1, 2) of Lemma 4.2.6 as
follows. First, note that since line bundles on P(1, 2) are rigid, we may assume
without loss of generality that L = O((l−6)p) = π∗OP(1,2)(l−6), where p ∈ E
maps to the stacky point of P(1, 2). So we have

π∗L
−1 = π∗O ⊗O(6 − l) and π∗(L−2) = π∗O ⊗O(12 − 2l).

Since π : E → P(1, 2) is finite and flat of degree 2 (and the characteristic is
not 2), we have π∗O = O ⊕ O(d) for some d ∈ Z. Since h1(P(1, 2), π∗O) =
h1(E,O) = 1, we deduce that d = −3 or −4. If d = −4, then the μ2-stabiliser
of the stacky point of P(1, 2) would act trivially on the fibre of π, which
contradicts the fact that E is a scheme. So d = −3. We deduce that

I = ker(Sym2(O(6 − l) ⊕O(3 − l)) → O(12 − 2l) ⊕O(9 − 2l)) ∼= O(6 − 2l).

Since l ≥ 3, 2l − 6 ≥ 0, so H1(P(1, 2), I∨) = 0, and h1(P(1, 2), I∨) = l − 2.
Since Z(L)rig = Gm acts on L with weight 1 by Lemma 4.2.7 and hence on I∨

with weight 2, we deduce from Lemma 4.2.6 and Proposition 4.2.4 that the
miniversal weighted deformation space SpecR is an affine space with weights
132l−2, which are the same weights has Ŷ //W from Table 4.

The proof in type D is similar: comparing Euler characteristics, we see
that the rank 2 bundles π∗L

−1 and π∗L
−2 on P1 have degrees 6 − l and

14 − 2l. It follows that the kernel of the surjection Sym2 π∗L
−1 → π∗L

−2 is
I = O(4 − l). Since l ≥ 4, we have H1(P1, I∨) = 0 and h0(P1, I∨) = l − 3.
So the weighted miniversal deformation space SpecR is an affine space with
weights 142l−3, which again agree with the weights of Ŷ //W from Table 4.

For the remaining types, we note that in type A1 (resp., Cl, Fl, G2), the
unstable variety χ−1

Z (0) is equivariantly isomorphic to the unstable variety
for type E5 (resp., Dl+4, El+4, E8), with (μ | −) = 2 (resp., 2, 2, 3). So the
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miniversal Z>0(μ | −)-weighted deformation is just the μ2- (resp., μ2-, μ2-,
μ3-)fixed part of the miniversal Z>0-weighted deformation. It follows from
the cases proved above and inspection of Table 4 that this is an affine space
with the desired weights.
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