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Introduction

Viewed as dynamical systems, polynomial diffeomorphisms of C
2 have fea-

tures in common with complex polynomial maps in one variable and the well
studied family of Hénon maps of R

2. Friedland–Milnor [13] show that the
dynamically interesting polynomial diffeomorphisms are finite compositions
of generalized (complex) Hénon mappings.

We begin by defining sets based with the basic dichotomy of bounded/
unbounded orbits; K± are the sets where the forward/backward orbits are

Received June 16, 2020.

5

https://www.intlpress.com/site/pub/pages/journals/items/pamq/_home/_main/index.php


6 Eric Bedford et al.

bounded. Thus K± and K := K+ ∩K− are the analogues of the filled Julia
sets for polynomial maps of C. The sets where the forward/backward iterates
are not equicontinuous are given by J± := ∂K±. These sets are analogues
of the Julia set of polynomial maps in C. The chaotic dynamics takes place
inside the set J := J+ ∩ J−.

Another analogue of the Julia set in dimension two is the boundary J∗ :=
∂SK ⊂ J , where ∂S denotes the Shilov boundary (in the sense of function
algebras). In [4] we showed that J∗ is equal to the closure of the set S of
saddle periodic points. Additional dynamical properties/characterizations for
J∗ were obtained in [3, 4] and [2].

There are several reasons to be interested in polynomial diffeomorphisms
which are hyperbolic. Our understanding of chaotic dynamical systems is
most complete in the hyperbolic case. It is also interesting to know how the
locus of hyperbolic maps sits inside the parameter space and the relation
between hyperbolicity and structural stability (see [11] and [7]). We take
hyperbolicity to mean that the system is hyperbolic on its chain recurrent set.
For polynomial diffeomorphisms this is equivalent to the condition that the
set J is a hyperbolic set, though the chain recurrent set may be larger than
J (see [3]). Further, it was shown that J = J∗ for hyperbolic maps, and the
stable manifolds Ws give a Riemann surface lamination of J+. In fact, [5,
Theorem 8.3] characterized hyperbolicity on J in terms of the existence of
transverse Riemann surface laminations of J+ and J− in a neighborhood of
J . We will strengthen this characterization in Theorem 6.5.

The standard notion of hyperbolicity involves uniform expansion and
contraction, as well as transversality between expanding and contracting di-
rections. In [5] we defined a canonical metric ‖ ‖#

q on the unstable space
Eu

q ⊂ TqC
2 for each saddle q ∈ S. A map is said to be quasi-expanding if

Df expands this metric uniformly (independently of q ∈ S) in the sense that
there is a κ > 1 with ||Dfqv||#f(q) ≥ κ||v||#q for any nonzero v ∈ Eu

q . For
quasi-expanding maps, this extends to x ∈ J∗. In [5] it was shown that every
hyperbolic map is quasi-expanding, with ‖ · ‖# equivalent to the Euclidean
norm. A map is quasi-contracting if its inverse is quasi-expanding.

We let B(q, r) denote the ball of radius r centered at q and let W s
q,r

denote the connected component of W s
q ∩ B(q, r) containing x. A geometric

characterization of quasi-expansion is the Proper, Bounded Area Condition:
there exists r > 0 such that for all saddles q ∈ S, (i) W u

q,r is proper, i.e.,
closed in B(q, r), and (ii) the area of W u

q,r is uniformly bounded. This means
that the degree of local folding of the manifolds {W u

q : q ∈ S} near a saddle
point q0 will be bounded. On the other hand, if {W u

q : q ∈ S} is part of a
lamination, then there is no local folding.
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Quasi-expansion may be viewed as a 2-dimensional analogue of semi-
hyperbolicity for polynomial maps of C (see the Appendix of [5]). An impor-
tant motivation for us was the work of Carleson, Jones and Yoccoz [8], who
showed that semi-hyperbolicity was equivalent to a number of geometric and
potential-theoretic properties.

A map will be said to be quasi-hyperbolic if it is both quasi-expanding and
quasi-contracting. Although there is no explicit requirement of transversality
between stable and unstable directions, the stable and unstable manifolds
exhibit a weak sort of transversality, as formulated in Proposition 3.6. Quasi-
hyperbolic maps share many properties with hyperbolic ones, and we use this
to apply hyperbolic methods in more general contexts. In the non-hyperbolic
case, the canonical metric ‖ ‖# may not be equivalent to the Euclidean metric
on C

2. However there is a useful filtration of J∗ by a finite number of sets
J∗
ms,mu , each of which carries a metric ‖ ‖#,ms,mu . This metric ‖ ‖#,ms,mu

x is
locally equivalent to the Euclidean metric for x ∈ Jms,mu , but it may blow
up as x approaches a stratum with larger values of (ms,mu). For maximal
values of (ms,mu), J∗

ms,mu is compact and a uniformly hyperbolic set.
In Theorem 1 we represent unstable manifolds as injective holomorphic

mappings ξux : C → C
2, and we write W u

x := ξux(C), with Wu := {W u
x : x ∈

J∗}. By part (ii) of Theorem 1, {W u
q : q ∈ S} extends continuously to Wu.

Let us recall the unstable set

W
u
x := {z ∈ C

2 : lim
n→∞

dist(f−n(x), f−n(z)) = 0}

which, dynamically, is the attracting basin of x for the inverse map f−1. We
refer to W u

x as an unstable manifold although we only know that W u
x ⊂ W

u
x

(Proposition 2.5); we do not know whether these two sets always coincide.

Theorem 1. Suppose that f is quasi-expanding. With the notation above, we
have

(i) For each x ∈ J∗, there is an injective holomorphic immersion ξux : C →
J+ ⊂ C

2 such that W u
x ⊂ W

u
x.

(ii) There exists r̂ > 0 such that if 0 < r < r̂, then W u
x,r is a (closed)

subvariety of B(x, r). If x ∈ J∗, then for all but finitely many values
of r < r̂, the dependence of the closures on y, i.e. J∗ � y 	→ W s

y,r, is
continuous at x in the Hausdorff topology.

If f is quasi-hyperbolic, then Theorem 1 holds also for ξsx and W s
x . We

write Ws/u for the families of the stable/unstable manifolds. These sta-
ble/unstable manifolds are smooth, so it makes sense to say that they have
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transverse or tangential intersection. With this, we may characterize uniform
hyperbolicity.

Theorem 2. Suppose that f is quasi-hyperbolic. Then f is uniformly hyper-
bolic on J if and only if there is no tangency between Ws and Wu.

Theorem 2 was proved earlier in [6] for real Hénon maps of maximal
entropy. For such maps we have J ⊂ R

2, and by [5] such maps are quasi
hyperbolic. One purpose of the present paper is to extend the work of [6]
from the context of real, maximal entropy to the more general setting of
quasi hyperbolicity.

Theorem 1 will be a consequence of Theorems 1.5, 3.5 and Proposition 2.5.
Theorem 2 will be proved in §5.

1. Invariant families of parametrized curves

[5] gives several distinct but equivalent ways of defining quasi-expansion. One
of these is the Proper, Bounded Area Condition, which makes no explicit ref-
erence to expansion. There are also a number of other definitions which use
the pluri-complex Green function G+, which is characterized by the proper-
ties:

(i) G+ is continuous on C
2, G+ = 0 on K+, and G+ > 0 on C

2 −K+,
(ii) G+ is pluri-subharmonic on C

2, and pluri-harmonic on C
2 −K+,

(iii) G+(z) ≤ log(||z||+1)+O(1), and lim supz→∞G+(z)/ log(||z||+1) = 1.

A convenient formula (see [15], [12], [3]) is that G+ is the super-exponential
rate of escape of orbits to infinity: G+(z) = limn→∞(deg(f))−n log(||fn(z)||+
1).

One of the equivalent definitions of quasi-expansion concerns the existence
of a large normal family of entire curves imbedded in J−. We will use this as
our definition and derive a number of its properties.

Definition 1.1. Let f be a Hénon map and X ⊂ J be an invariant set, so
that J∗ ⊂ X. Suppose that through every x ∈ X passes an unstable manifold
W u

x , which is the image of an injective holomorphic immersion ψx : C → J−.
Assume further that ψx satisfies the normalization conditions

(1.1) ψx(0) = x, max
|ζ|≤1

G+ ◦ ψx(ζ) = 1.
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We say that f is quasi-expanding on X1 if the three following conditions are
satisfied:

Invariance: f(W u
x ) = W u

f(x), for every x ∈ X;
Disjointness: W u

x and W u
y are either equal or disjoint, for every x, y ∈

X;
Normality: The family Ψ = {ψx : x ∈ X} is normal.

We say that f is quasi-contracting on X if f−1 is quasi-expanding on X. A
map f is quasi-hyperbolic if it is both quasi-expanding and quasi-contracting.

We note that if ψx satisfies (1.1), then so does the “rotated” parametriza-
tion ψx(eiaζ) for any a ∈ R. Normality of Ψ does not depend on the choice
of rotation.

We give the two principal examples of invariant sets X, which exist for
all Hénon maps. In Example 1 below, the curves are the unstable manifolds
of saddle points. For Example 2 all the curves are the same unstable manifold
W u

q but the parameterizations are different.

Example 1 (Saddle points). We let X := S be the set of periodic points of
saddle type. Suppose that fN (p) = p, and the multipliers of DfN at p are
νs, νu ∈ C with |νs| < 1 < |νu|. For each p ∈ S, there is an uniformization
ξp : C → W u

p such that ξp(0) = p, and fN (ξp(ζ)) = ξp(νuζ). Here W u
p denotes

the standard unstable manifold through the saddle point p. We may change
the parametrization so that ψp(ζ) := ξp(αζ) satisfies (1.1). It follows that
ΨS := {ψp : p ∈ S} satisfies the invariance and disjointness conditions in the
definition of quasi-expansion.

Example 2 (Recentered unstable manifold). Let q denote any saddle fixed
point, and let ξq : C → W u

q be an uniformization of the unstable manifold
through q. By [2], W u

q ∩W s
q is a dense subset of J∗, and we choose X ⊂ W u

q ∩J
such that J∗ ⊂ X. For y ∈ X, let ζy ∈ C be such that ξq(ζy) = y. We may
“re-center” the parametrization of this curve to the point y, i.e., we choose
α ∈ C so that ψy(ζ) := ξq(αζ + ζy) satisfies (1.1). Thus ΨqR := {ψy : y ∈ X}
satisfies the invariance and disjointness conditions in the definition of quasi-
expansion.

If f is quasi-expanding on X we let Ψ̂ denote the set of normal limits of
sequences in Ψ, and for x ∈ X we set Ψ̂x := {ψ ∈ Ψ̂ : ψ(0) = x}. There are

1Our definition of quasi expansion is slightly different from [5] because of the
introduction of the set X, which allows us to deal more flexibly with the possibility
that J∗ �= J .
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quasi-expanding maps f for which ψ ∈ Ψ̂ may fail to be 1-to-1, and there
may be ζ0 where ψ′(ζ0) = 0. Thus the elements of Ψ̂x may not be essentially
unique modulo rotation of parameters.

Given ψ ∈ Ψ̂, we define

Ord(ψ) = min{k ∈ N>0 |ψ(k)(0) �= 0}.

The following definition will be relevant in section 5.

Definition 1.2. Let f be quasi-expanding on X and consider a sequence of
points xk ∈ X converging to x ∈ X. We say that the sequence xk converges to
x with m-folding along the unstable direction if ψxk

→ ψ ∈ Ψ̂ and ord(ψ) = m.
If f is quasi-contracting on X we define an analogous notions of conver-

gence with m-folding along the stable direction.

Proposition 1.3. If f is quasi-expanding, then Ψ̂ satisfies (1.1) and the
following disjointness condition

(1.2) If ψ1, ψ2 ∈ Ψ̂, then either ψ1(C) = ψ2(C), or ψ1(C) ∩ ψ2(C) = ∅

Proof. It is evident that (1.1) must hold. If (1.2) fails, there are ζ1, ζ2 ∈ C

and ψ1, ψ2 ∈ Ψ̂ such that ψ1(ζ1) = ψ2(ζ2), but ψ1(C) �= ψ2(C). Thus x̃ :=
ψ1(ζ1) = ψ2(ζ2) is an isolated point of ψ1(C)∩ψ2(C). On the other hand, ψ1 is
the locally uniform limit of ψ1,j ∈ Ψ (and similarly for ψ2). By the continuity
of complex intersections, there is an intersection point of ψ1,j(C)∩ψ2(C) near
x̃ when j is sufficiently large. Now if we choose k sufficiently large, there is an
intersection point of ψ1,j(C)∩ψ2,k(C) near x̃. This contradicts disjointness in
the definition of quasi-expansion.

Given ψ1, ψ2 ∈ Ψ̂x we have ψ1(0) = ψ2(0) = x, and therefore ψ1(C) =
ψ2(C). This allows us to define an unstable manifold through every point of
X.

Definition 1.4. Let f be quasi-expanding on X. Given x ∈ X we define
W u

x := ψ(C), where ψ is any element of Ψ̂x.

Since the sets W u
x are uniform limits of disjoint disks, we have the follow-

ing consequence of [16, Proposition 12].

Theorem 1.5 (Lyubich–Peters). The set W u
x ⊂ J− is biholomorphic to C.

Proof. Every ψ ∈ Ψ̂x is the locally uniform limit of a sequence of maps whose
images lie in J−, therefore W u

x = ψ(C) ⊂ J−. The map ψ is not constant



Hyperbolicity and Quasi-hyperbolicity in Poly. Diffeomorphisms of C2 11

by (1.1), therefore by [16, Proposition 12] W u
x has no singular points. In

particular W u
x is a Riemann surface.

Every ψ ∈ Ψ̂s
x is finite-to-one, see for instance [14, Lemma 3.3]. Therefore

W u
x is simply connected. By Liouville theorem the set W u

x ⊂ C
2 is not bi-

holomorphic to the unit disk nor the Riemann sphere. We conclude that W u
x

is biholomorphic to C.

For x ∈ X and r > 0 we let B(x, r) ⊂ C
2 denote the ball of radius

r, centered at x. For ψ ∈ Ψ̂x, we let Dψ = Dψ(r) denote the connected
component of the open set ψ−1(B(x, r)) containing the origin. By (1.1), ψ is
non-constant, and we can choose r > 0 small enough that ψ : Dψ → B(x, r)
is proper, which corresponds to the property that dist(ψ, x) = r > 0 on ∂Dψ.
We may choose a uniform r that works for all x ∈ J∗. By the Maximum
Principle, Dψ is a topological disk, so by the Riemann Mapping Theorem it
is conformally equivalent to the unit disk. For x ∈ X and ψ ∈ Ψ̂x, the fact
that ψ is non constant means that there is an integer m ≥ 1 and 	a ∈ C

2 such
that ψ(ζ) = x+	aζm + · · · , where the dots indicate higher powers of ζ. Thus
there are r, ρ > 0 such that dist(ψ(ζ), x) ≥ r for all |ζ| = ρ. This means that
Dψ ⊂ {|ζ| < ρ}. Since |ψ′| is bounded by some number M on |ζ| ≤ ρ, we
know that {|ζ| < r/M} ⊂ Dψ. By the compactness of Ψ̂, we have:

Proposition 1.6. For sufficiently small r > 0, there are 0 < ρ1 < ρ2 such
that

(1.3) {|ζ| < ρ1} ⊂ Dψ ⊂ {|ζ| < ρ2} ∀ψ ∈ Ψ̂.

By inner radius ρin := ρin(r) and outer radius ρout := ρout(r) we will de-
note the maximal/minimal values such that (1.3) holds. From Proposition 1.6,
is evident that both of these radii are monotone increasing in r and tend to
zero as r → 0.

The converse of the previous Proposition is also valid

Proposition 1.7. Given ρ > 0, there exist 0 < r1 < r2 such that

Dψ(r1) ⊂ {|ζ| < ρ} ⊂ Dψ(r2). ∀ψ ∈ Ψ̂.

Proof. By quasi-expansion there exists M > 0 so that supζ∈{|ζ|<ρ} ‖ψ′(ζ)‖ <

M uniformly on Ψ̂. The second inclusion follows by taking r2 = Mρ. It is not
hard to show that for ψ ∈ Ψ̂ there exists r > 0 so that Dψ(r) ⊂ {|ζ| < ρ}.
The existence of r1 follows from compactness of Ψ̂.
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2. Expanded metric

Let f be quasi-hyperbolic on X. If x ∈ X, then f(ψx) differs from ψf(x) by a
linear reparametrization, so there exists λx ∈ C such that

(2.1) f(ψx(ζ)) = ψf(x)(λxζ).

The second condition in (1.1) may be interpreted as saying that the disk
{|ζ| < 1} is the largest disk centered at the origin and contained in the
set {G+ ◦ ψx < 1} ⊂ C. Under f (equivalently Lλx(ζ) = λx ζ) this unit
disk is taken to the disk {|ζ| < |λx|} ⊂ C. A basic property of G+ is that
G+ ◦ f = deg(f)G+, and deg(f) ≥ 2. Since {|ζ| < |λx|} is then the largest
disk inside {G+ < deg(f)}, it follows that |λx| > 1.

We define three rate of growth functions:

mψ(r) := max
|ζ|≤r

G+(ψ(ζ)), m(r) := inf
ψ∈Ψ̂

mψ(r), M(r) := sup
ψ∈Ψ̂

mψ(r)

With this notation, we see that for x ∈ X, the value of |λx| is defined by the
condition mψf(x)(|λx|) = d.

Proposition 2.1. If f is quasi-expanding, then the following hold:

(i) M(r) < ∞ for all r < ∞.
(ii) m(r) > 0 for all r > 0.
(iii) Let κ be such that M(κ) = deg(f). Then κ > 1, and |λx| ≥ κ for all

x ∈ X.
(iv) There exists K ≥ κ so that |λx| ≤ K for all x ∈ X.

Proof. Properties (i–iii) are proved in [5]. Property (iv) is shown in [14, Corol-
lary 2.8].

In fact, each of the conditions (i–iii) is equivalent to normality of Ψ (see
[5]).

Given a quasi-expanding map, it is possible to define (intrinsic) metrics
and distances on each unstable manifold W u

x . With respect to these quantities,
the map f expands uniformly. These definitions are given in term of the
injective immersions ψx, but do not depend on the particular choice of ψx

(recall that ψx is uniquely determined up to rotations).
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Expanding metric: For each x ∈ X, we define Eu
x to be the 1-dimensional

subspace of Tx(C2) spanned by ψ′
x(0), or equivalently the tangent space of

W u
x at the point x. We let | · |e denote the Euclidean norm and define a new

norm on Eu
x :

‖v‖#
x := |v|e

|ψ′
x(0)|e

, v ∈ Eu
x .

With this definition, the (operator) norm of ψ′
x(0) is 1. By applying the chain

rule on f ◦ ψx, we find that the operator norm of the restriction of Dxf to
Eu

x with respect to the metric ‖ · ‖#
x is given by

‖Dxf‖#
x =

‖Dxf(v)‖#
f(x)

‖v‖#
x

= |λx|, for v ∈ Eu
x

Expanding distance: For each x ∈ X, we define distux : W u
x ×W u

x → R+,
by pulling back the euclidean distance of C via (ψu

x)−1. We have that

distuf(x) (f(y1), f(y2)) = |λx| distux(y1, y2), for y1, y2 ∈ W u
x

If x, y ∈ X are so that W u
y = W u

x , then the holomorphic maps ψu
x and ψu

y

coincide up to an affine transformation. Therefore distuy = c distux for some
real number c > 0.

Lemma 2.2. Suppose that W u
x = W u

y for some x, y ∈ X. Given a ∈ C
∗ and

b ∈ C so that ψy(ζ) = ψx(aζ + b), we have that

||a| − 1| ≤ |b| = distux(x, y).

If c > 0 is so that distuy = c distux, then |c−1 − 1| ≤ distux(x, y).

Proof. The first normalization condition in (1.1) implies y = ψy(0) = ψx(b),
showing that |b| = distux(x, y). By the second condition in (1.1), there exists
|ζy| = 1, so that

1 = G+ ◦ ψy(ζy) = G+ ◦ ψx(aζy + b),

proving that |aζy + b| ≥ 1, and therefore that |a| ≥ 1− |b|. Similarly we may
find |ζx| = 1 so that

1 = G+ ◦ ψx(ζx) = G+ ◦ ψy

(
ζx − b

a

)
,

proving that
∣∣∣ ζx−b

a

∣∣∣ ≥ 1, and therefore |a| ≤ 1 + |b|. It is not difficult to show
that c = |a|−1, concluding the proof of the lemma.
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Properties (iii–iv) of Proposition 2.1 give the following

Proposition 2.3. Let f be quasi-expanding. Then there exists 1 < κ ≤ K so
that for every x ∈ X we have

κ ≤ ‖Dxf‖#
x ≤ K,

and

κ distux(y1, y2) ≤ distuf(x)(f(y1), f(y2)) ≤ K distux(y1, y2) for y1, y2 ∈ W u
x ,

Let r > 0 be sufficiently small, and write ρin, ρout for the inner and
outer radii given by Proposition 1.6. As in the introduction, W u

x,r denotes
the connected component of W u

x ∩ B(x, r) containing a given x ∈ X. Given
ψ ∈ Ψ̂x we have W u

x,r = ψ(Dψ). We denote the family of these disks by
Wu

r := {W u
x,r : x ∈ X}.

Proposition 2.4. If f is quasi-expanding, then for sufficiently large N , f−N

maps Wu
r inside itself. That is, for each x ∈ X, f−N (W u

x,r) ⊂ W u
f−N (x),r.

Further, if y ∈ W u
x,r, then dist(f−n(x), f−n(y)) → 0 like a constant times

κ−n as n → +∞.

Proof. Let κ is as in Proposition 2.1, and let N be large enough that ρ1κ
N >

ρ2. Thus

f−NW u
x,r ⊂ ψf−N (x)(|ζ| < κ−Nρout) ⊂ ψf−N (x)(Df−N (x)) = W u

f−N (x),r

For the last assertion, by the normality of Ψ we have |ψ′(ζ)| ≤ C for all ψ ∈ Ψ
and |ζ| ≤ ρout. Now for any two points of W u

x , we may write them as y′ =
ψx(ζ ′) and y′′ = ψx(ζ). The distance between the ζ-coordinates of f−n(y′)
and f−n(y′′) is κ−n|ζ ′ − ζ ′′|. Thus we conclude that dist(f−n(y′), f−n(y′′)) ≤
ρoutκ−nC, which proves the last assertion.

Proposition 2.5. If f is quasi-expanding, then for all x ∈ X, the set W u
x =⋃

n≥0 f
nW u

f−n(x),r is a manifold consisting of unstable points, i.e. W u
x ⊂ W

u
x.

Proof. Given x ∈ X we choose a sequence ψn ∈ Ψ̂s
fn(x). Then W u

f−n(x),r ⊃
ψn(|ζ| < ρin). By quasi-contraction, we have that fn(W s

f−n(x),r) ⊃ ψ0(|ζ| <
κnρin). It follows that

W u
x = ψ0(C) =

⋃
n≥0

fnW u
f−n(x),r.

Proposition 2.4 shows that W u
x,r, and thus W u

x , is contained in W
u
x.
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Knowing that W u
x ⊂ W

u
x, we can show that the family of curves Wu =

{W u
x : x ∈ X} satisfies the three condition of quasi-expansion. This can be

done as in section 3 of [14]2. This shows the following

Theorem 2.6. Let X ⊂ J be an f -invariant set so that J∗ ⊂ X. Then f is
quasi-expanding on X if and only if f is quasi-expanding on X.

Remark 2.7. If f is quasi-expanding on the closed and invariant set X, then
by [14, Theorem 3.5] the unstable manifolds are uniquely determined. More
precisely, given two families of unstable manifolds Wu,1 and Wu,2 for which
f is quasi-expanding on X, then W u,1

x = W u,2
x for every x ∈ X.

We conclude this section with a uniform Lyapunov stability condition
within leaves of Wu.

Proposition 2.8. If f is quasi-expanding, and if ε > 0 is given, then there
exists δ > 0 such that if x, y ∈ X, dist(x, y) < δ, and y ∈ W u

x,r, then
dist(f−n(x), f−n(y)) < ε for all n ≥ 0.

Proof. Let κ as in Proposition 2.1. By [5, Theorem 3.2], the inner/outer radii
in (1.3) have a ratio a := ρout/ρin which is determined by the local area
bound of Wu. The sets W u

x,r, and thus the area bound, are unchanged if we
replace f by fn. Thus we may assume that κ > a. We let M denote the
supremum of the euclidean norm ‖Df−1(x)‖ for x in an ε neighborhood of
X. Now let us choose δ such that ρout(δ) < ρin(ε/Mn). It follows that the
image f−n(W u

x,δ) ⊂ W u
f−n(x),δ since

|λxλf−1(x) · · ·λf−n+1(x)|Dψx(δ) ⊂ κ−nDψx ⊂ Dψf−n(x)
(δ)

By the choice of M , we see that f−j(W u
x,δ) ⊂ W u

f−j(x),ε for 0 < j < n.

3. Motion of local manifolds

Let f be quasi-expanding on an invariant set X. By Theorem 2.6 we may
assume that X is compact. Throughout this section we will assume that r̂

is small enough for Proposition 1.6. Recall that for every r ≤ r̂ and ψ ∈
Ψ̂x the map ψ : Dψ(r) → W u

x,r is proper. Let ρin/out := ρin/out(r̂) as in
Proposition 1.6.

2In that paper it is assumed that the set X ⊂ J∗, but the proof also works in
our case.
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Proposition 3.1. There exists C < ∞ such that for all x ∈ X and balls
B(x, r) ⊂ B(x, r̂), the number of connected components of W u

x,r̂ ∩ B(x, r) is
less than C.

Proof. Let Ω := {ζ ∈ Dψ(r̂) : ψx(ζ) ∈ B(x, r)}, so the components of Ω are
the pre-images of the components of W u

x,r ∩ B(x, ρ). It follows that σ(ζ) :=
dist2(ψx(ζ), x) gives a proper map σ : Ω → [0, ρ2). Since ψx is holomorphic,
it follows from the maximum principle that all components of Ω are simply
connected. Thus the number of connected components is bounded by the total
number of critical points of σ (counted with multiplicity) inside Ω ⊂ Dψ(r̂) ⊂
{|ζ| < ρout}. The number of critical points is bounded since Ψ is a normal
family.

We define Ŵ u
x,r :=

⋂
ε>0 W

u
x,r+ε ∩ B(x, r). We note that Ŵ u

x,r will consist
of W u

x,r, together with possibly a finite number of connected components of
W u

x ∩B(x, r) which become “joined” to W u
x,r at critical points inside B(x, r+ε)

for every ε > 0.
Recall that the Hausdorff distance between two compact sets X, Y ⊂ C

2

is given by dH(X, Y ) = max{∂H(X, Y ), ∂H(Y,X)}, where

∂H(X, Y ) = sup
x∈X

inf
y∈Y

dist(x, y).

Proposition 3.2. Let xk ∈ X be a sequence converging to x ∈ X, and rk > 0
be a sequence converging to r ∈ (0, r̂). Then

lim
k→∞

∂H
(
W u

x,r,W
u
xk,rk

)
= 0 and lim

k→∞
∂H

(
W u

xk,rk
, Ŵ u

x,r

)
= 0

Proof. It is sufficient to consider sequences for which rk ∈ (0, r̂), and for
which ψxk

converges locally uniformly to some ψ ∈ Ψ̂x.
Part 1 (limk→∞ ∂H

(
W u

x,r,W
u
xk,rk

)
= 0). The map s 	→ W u

x,s is always
continuous in a left neighborhood of the point r. Given ε > 0, we choose
0 < δ < ε so that ∂H(W u

x,r,W
u
x,r−3δ) < ε. For k sufficiently large, we have

rk ≥ r− δ, which implies that ∂H(W u
xk,r−δ,W

u
xk,rk

) = 0. Part 1 follows by the
triangle inequality, once we show that for k large

(3.1) ∂H(W u
x,r−3δ,W

u
xk,r−δ) < δ.

By Proposition 1.6, the set D := Dψ(r− 3δ) is contained in {|ζ| < ρout},
thus it is relatively compact. For k large we have supζ∈D dist(ψ(ζ), ψk(ζ)) < δ,
and therefore ∂H(W u

x,r−3δ, ψk(D)) < δ. For k large we have B(x, r − 3δ) ⊂
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B(xk, r − 2δ), showing that ψxk
(D) lies within the ball B(xk, r − δ). This

implies that ψxk
(D) ⊂ W u

xk,r−δ, and therefore we obtain (3.1).
Part 2 (limk→∞ ∂H

(
W u

xk,rk
, Ŵ u

x,r

)
= 0). Let yk ∈ W u

xk,rk
be a point

lying at the furthest distance from the set Ŵ u
x,r, and let ζk = ψ−1

xk
(yk). Since

Ŵ u
x,r ⊂ W u

x,r̂, by Proposition 1.6 we have |ζk| < ρout. By taking a subsequence
if necessary, we may therefore assume that ζk converges to a point ζ∞. By
local uniform convergence, the sequence yk = ψxk

(ζk) converges to the point
y = ψ(ζ∞) ∈ W u

x . Part 2 follows once we show that y ∈ Ŵ u
x,r.

The norm of the derivative ‖ψ′‖ is uniformly bounded from above on
the disk {|ζ| < ρout} for all ψ ∈ Ψ̂. Therefore for every δ > 0 sufficiently
small, and k large so that ζk and ζ∞ are close enough, we may assume that
ψxk

([ζk, ζ∞]) ⊂ B(xk, r+δ). It follows that ψxk
(ζ∞) ∈ W u

xk,r+δ, or equivalently
that ζ∞ ∈ Dψxk

(r + δ).
Let γk : [0, 1] → Dψxk

(r+ δ) be a continuous curve connecting the point 0
to ζ∞. Assume that k is sufficiently large so that sup|ζ|<ρout dist(ψ(ζ), ψxk

(ζ))<
δ. Then the curve ψ ◦γk lies within the ball B(x, r+2δ). This curve connects
the points x = ψ ◦ γk(0) and y = ψ ◦ γk(1), and remains inside the unsta-
ble manifold W u

x . Therefore y ∈ W u
x,r+2δ for every δ > 0. This implies that

y ∈ Ŵ u
x,r, concluding the proof of the Proposition.

Definition 3.3. We say that 0 < r < r̂ is a regular radius for x ∈ X if W u
x,r

intersects ∂B(x, r) transversally.

Proposition 3.4. Given x ∈ X, there are only finitely many values r which
are less than r̂ and which are not regular for x.

Proof. Since W u
x is the image of ψx, having a tangential intersection between

ψx(C) and ∂B(x, r) at a point ψx(ζx), ζx ∈ Dψ(r̂) means that ζx is a critical
point for the map ζ 	→ dist2(ψx(ζ), x). Since this distance map is the square
of the modulus of a holomorphic mapping, there can be only finitely many
critical points in a compact region. The (finitely many) critical values of this
function correspond to the squares of the values of r which are not regular.

Theorem 3.5. Let f be quasi-expanding on the compact invariant set X, and
let r < r̂. The map ψ : Dψ(r) → B(x, r) is a proper imbedding. Further, W u

x,r

has the following properties:

(i) W u
x,r is a nonsingular subvariety of B(x, r).

(ii) The family Wu
r has uniformly bounded area: supx∈X Area(W u

x,r) < ∞.
(iii) If r is a regular radius for x, then the function (y, s) 	→ W u

y,s is contin-
uous in the Hausdorff topology at (x, r).
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Proof. Item (i) is a consequence of Theorem 1.5. Item (ii) is an easy conse-
quence of the normality of Ψ. If r is regular for x then the map s 	→ W u

x,s

is continuous with respect to the Hausdorff distance at r. Therefore we have
that Ŵ u

x,r = W u
x,r. Point (iii) is a consequence of Proposition 3.2.

Next we observe that if f is quasi-hyperbolic, the local disks W s
x,r and

W u
x,r have a weak sort of transversality, in the sense that if two centers are

close, then the local stable/unstable disks themselves must intersect.

Proposition 3.6. Let f be quasi-hyperbolic on X, and r < r̂. Then for
r1 < r there exists r0 > 0 with the following property. If B0 ⊂ B1 ⊂ C

2

are concentric balls such that Bj has radius rj, then for x′, x′′ ∈ B0 ∩X, the
intersection W s

x′,r ∩W u
x′′,r ∩B1 is nonempty.

Proof. By Theorem 3.5 we know that if we fix x and change r slightly, X �
y 	→ W

s/u
y,r is continuous at x with respect to the Hausdorff topology. For

r0 > 0 sufficiently small, we have B(x′, r1) ⊂ B(x′′, r) for all x′, x′′ ∈ B0.
Thus for x ∈ B0, W s/u

x,r ∩B1 are closed subvarieties of B1. Since these varieties
do not actually coincide in a neighborhood of x, W u

x,r ∩ W s
x,r = {x} in a

neighborhood of x. The intersection of complex varieties has the following
continuity property: For any r1 > 0, we may choose r0 > 0 sufficiently small
that for x′, x′′ ∈ B0, W u

x′,r ∩W s
x′′,r ∩B1 �= ∅.

We conclude this section with a result that is proved much along the lines
of Theorem 9.6 of [2]:

Theorem 3.7. Let f be quasi-hyperbolic, and let T1, T2 ⊂ J∗ be closed, in-
variant subsets. Then

⋃
x∈T1 W

s
x ∩J∗ and (

⋃
x∈T1 W

s
x)∩ (

⋃
y∈T2 W

u
y ) are dense

subsets of J∗.

4. Projection maps

Let f be quasi-expanding on X. Given x ∈ X we define Px : C → C as

Px(ζ) := 1
|ψ′

x(0)|e
〈ψx(ζ) − ψx(0), ψ′

x(0)〉,

which gives the coordinate of the projection of ψx(ζ) to the tangent line at x.
Note that P ′

x(0) = |ψ′
x(0)|e. Given a sequence xn ∈ X, by normality

of the family Ψ, up to taking a subsequence if necessary, we may assume
that ψxn → ψ ∈ Ψ̂ locally uniformly and ψ′

xn
(0)

|ψ′
xn

(0)|e → v. It follows that Pψxn

converges locally uniformly to the function

(4.1) P (ζ) = 〈ψ(ζ) − ψ(0), v〉.
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Therefore P = {Px : x ∈ X} is a normal family. We will write P̂ for the
family of all possible normal limit of sequences in P.

Lemma 4.1. Let f be quasi-expanding on X. Then every P ∈ P̂ is not
constant.

Proof. The map f−1 can be written, up to a conjugation, as a finite compo-
sition of maps of the form gi(x, y) = (y, pi(y) − aix), where |ai| �= 0 and pi a
polynomial of degree at least 2.

If R is sufficiently large, then gi(V −
R ) ⊂ V −

R , for all gi, where V −
R is as

in [3, Lemma 2.5]. Therefore if g1(z) ∈ V −
R , we must have z ∈ U−. It is not

hard to show that every complex plane contains a point z so that g1(z) ∈ V −
R .

Therefore K− does not contain any complex plane.
Every P ∈ P̂ has the form (4.1). If P were constant than the set ψ(C) ⊂

J− would be a complex plane contained in K−, giving a contradiction.

Given a closed (and therefore compact) set T ⊂ X and x ∈ T we define

ΨT := {ψx : x ∈ T},
Ψ̂T := {ψ ∈ Ψ̂ : ψ is a normal limit of a sequence in T},

Ψ̂x,T := {ψ ∈ Ψ̂T : ψ(0) = x}.

Furthermore we write

(4.2) τT (x) := max
ψ∈Ψ̂x,T

Ord(ψ), νT := max
x∈T

τT (x).

Lemma 4.2. Let f be quasi-expanding on X. Let T ⊂ X be a closed set so
that νT = 1. Then there exists ρ > 0 so that Px is injective on {|ζ| < ρ} for
every x ∈ X.

Proof. The family PT = {Px : x ∈ X} is normal. Since P ′
x(0) = |ψ′

x(0)|e,
and since νT = 1, the value of P ′

x(0) is uniformly bounded away from 0. Using
normality, we may find ρ, ε > 0 so that P ′

x({|ζ| < ρ}) ⊂ {Re z > ε} for every
x ∈ T . Given ζ1, ζ2 ∈ {|ζ| < ρ} it follows that

|Px(ζ1) − Px(ζ2)| = |ζ1 − ζ2|
∣∣∣∣
∫ 1

0
P ′
x(t(ζ1 − ζ2) + ζ2) dt

∣∣∣∣
≥ ε|ζ1 − ζ2|,

proving that Px is injective.
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We define the unstable disk of size ρ > 0 through x ∈ X as

Du
x,ρ : = {z ∈ W u

x | distux(z, x) < ρ}
= ψu

x({|ζ| < ρ}).

Both sets W u
x,r and Du

x,ρ define a neighborhood of x ∈ X, which is relatively
compact in W u

x . This two notions are equivalent by Propositions 1.6 and 1.7.
Note that the map Px is injective on the disk {|ζ| < ρ} if and only if the

set Du
x,ρ is a graph over Eu

x , the complex plane spanned by ψ′
x(0).

p

Du
x,ε

Du
x,ρ

Eu
x

δ

p

δ

Du
x,ε

Du
x,ρ

Eu
x

Figure 1: In the first picture Px is injective on {|ζ| < ρ}, in the second it is
not.

Lemma 4.3. Let f be quasi-expanding on X. Let T ⊂ X be a closed set so
that Px is injective on {|ζ| < ρ} for every x ∈ T . Then for every 0 < ε < ρ
we can find δ > 0 so that

(4.3) Du
x,ρ ∩B(x, δ) ⊂ Du

x,ε, ∀x ∈ T.
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Proof. For every x ∈ T , the map Px has no critical points in {|ζ| < ρ}.
Suppose that there exists a sequence xn ∈ T such that P ′

xn
(0) → 0. By

taking a subsequence of xn if necessary, we may assume that ψxn → ψ and
that Pxn → P locally uniformly. Since P ′(0) = 0, for every n sufficiently
large the map Pxn has a critical point inside {|ζ| < ε′}, contradicting the
assumptions of the lemma. Therefore there exists M > 0 so that |P ′

x(0)| > M
for every x ∈ T .

For x ∈ T the function Px is univalent in {|ζ| < ε}. If we write δ = M
4 ε,

by Köbe Quarter Theorem, we conclude that

{|ζ| < δ} ⊂ Px({|ζ| < ε}), ∀x ∈ T.

Let x ∈ T and y ∈ Du
x,ρ ∩ B(x, δ). Notice that |Px(ζ)| < dist(ψ(ζ), x),

therefore if ζy = ψ−1
x (y) ∈ {|ζ| < ρ}, then |Px(ζy)| < δ. Since Px is injective

on {|ζ| < ρ}, we must have |ζy| < ε, and therefore y ∈ Du
x,ε.

5. Characterization of hyperbolicity
This section is devoted to a proof of Theorem 2. If a map f is uniformly
hyperbolic on J , then there are no tangencies in J = J∗. We will therefore
assume that f is quasi-hyperbolic on J∗ but not uniformly hyperbolic on J
and prove that there must be tangencies in J∗. In this section we will use the
subscripts s/u in order to distinguish between quasi-contraction and quasi-
expansion. The proof of the following fact is essentially contained in [5].

Proposition 5.1. Let f be quasi-hyperbolic on X. Given a compact and f -
invariant set T ⊂ X, let τ s/tT be as in (4.2). Then f is uniformly hyperbolic
on T if and only if νsT = νuT = 1.

By [10] the map f is not uniformly-hyperbolic on J∗, otherwise we would
have J = J∗. By the proposition above we either have νs := νsJ∗ > 1 or
νu := νuJ∗ > 1. By replacing f with f−1 if necessary, we may always assume
that νu > 1.

We define the compact and invariant set

J := {x ∈ J∗ : τu(x) = νu} = {x ∈ J∗ : τu(x) is maximal}.

We claim that νuJ = 1. If instead νuJ > 1, we could find a sequence xk ∈
J which converges to a point x ∈ J with νuJ -folding along the unstable
direction. For every xk we can then find a sequence xk,n which converges to
xk with νu-folding along the unstable direction. This implies that

τu(x) ≥ νsJ ν
u > νu

contradicting the maximality of νu.
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Depending on the value of νsJ , we distinguish between two different cases

Hyperbolic case (νsJ = 1). In this case by Proposition 5.1 the set J
is uniformly hyperbolic.
Non-hyperbolic case (νsJ > 1). In this case the set J ′ := {x ∈
J | τ sJ (x) = νsJ } is uniformly hyperbolic although J itself is not.

Our proof of Theorem 2 is easier in the non-hyperbolic case, so we will
handle it first.

5.1. Proof of Theorem 2 in the non-hyperbolic case

Given y ∈ J ′, by uniform hyperbolicity of J ′ the manifolds W u
y and W s

y

intersect transversally at y. We choose new coordinates in a neighborhood
N ∼= D2 of y, so that W s

y,N = D × {0} and W u
y,N = {0} × D. Here W

s/u
x,N

denotes the connected component of W s/u
x ∩N containing x ∈ X ∩N .

Let xk ∈ J be a sequence converging to y ∈ J ′ with νsJ -folding along the
stable direction. Since νuJ = 1, the sequence xk converges to y with 1-folding
along the unstable direction. Write π1, π2 : N → D for the projections on the
first and second coordinates of N .

If N is sufficiently small and k is sufficiently large, then the projection π2 :
W u

xk,N → D is a degree 1 covering map, while the projection π1 : W s
xk,N → D

is a degree νsJ branched covering map. Indeed, should there be no such N
then one could find a subsequence of xk with strictly higher order of folding
in one of the directions, giving a contradiction. We conclude that W s

xk,N and
W u

xk,N intersect in exactly νsJ points counted with multiplicity.
Since νuJ = 1, by Lemma 4.2 there exists ρ0 > 0 so that P u

x is injective
on {|ζ| < ρ0} for all x ∈ J . By choosing 0 < ρ < ρ0 small and by taking a
subsequence of xk if necessary, we may assume that D

s/u
xk,ρ ⊂ W

s/u
xk,N . Recall

that Ds/u
xk,ρ = ψ

s/u
xk (|ζ| < ρ).

Given ρ > 0, we may take k sufficiently large the set Ds
xk,ρ

∩Du
xk,ρ

contains
(at least) νsJ points counted with multiplicity. If 0 < ρ < ρ0 is sufficiently
small we conclude that

Ds
xk,ρ

∩Du
xk,ρ

= W s
xk,N ∩W u

xk,N .

This also shows that points in W s
xk,N ∩W u

xk,N get uniformly close to xk with
respect to the intrinsic distances dists/uxk

. We obtain the following
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y
xk

xk,2

Wu
xk,N

W s
xk,N

N

Figure 2: The intersection between W s
xk,N and W u

xk,N .

Lemma 5.2. Let y ∈ J and ρ < ρ0 sufficiently small. Then there exists a
sequence xk ∈ J converging to y with νsJ -folding along the stable direction,
so that Ds

xk,ρ
∩Du

xk,ρ
contains νsJ points counted with multiplicity, and so that

(5.1) lim
k→∞

dists/uxk

(
xk, D

s
xk,ρ

∩Du
xk,ρ

)
= 0.

The following proposition implies Theorem 2 in the non-hyperbolic case.

Proposition 5.3. The poin xk is a tangency of order νsJ for every k suffi-
ciently large.

Proof. It suffices to show that when k is sufficiently large the set Ds
xk,ρ

∩Du
xk,ρ

contains a unique point. Suppose that this is not the case. Up to taking a
subsequence if necessary, we may than assume that for every k there ex-
ists x̃k ∈ Ds

xk,ρ
∩ Du

xk,ρ
which is not xk. By Proposition 2.3 the value of

distufn(xk)(fn(xk), fn(x̃k)) increases exponentially in n. Therefore for each k
there exists a unique nk so that

fn(x̃k) ∈ Du
fn(xk)),ρ ∀n ≤ nk

fnk+1(x̃k) �∈ Du
fnk+1(xk),ρ.

By (5.1) we have limk→∞ distuxk
(xk, x̃k) = 0. Therefore the sequence nk is

divergent.
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Let ε ∈ (0, ρ) small enough so that f(Du
x,ε) ⊂ Du

f(x),ρ for every x ∈ J∗,
and let δ > 0 as in Lemma 4.3.

As a consequence of Propositions 1.6 and 2.3, there exists nδ > 0 so that

fn(Ds
x,ρ) ⊂ W s

fn(x),δ ⊂ B(fn(x), δ), ∀n ≥ nδ, x ∈ J∗.

Choose k sufficiently large so that nk ≥ nδ. By invariance of J and (4.3) we
conclude that

fnk(x̃k) ∈ Du
fnk (xk),ρ ∩B(fnk(xk), δ) ⊂ Du

ε (fnk(xk)).

By the definition of ε > 0 it follows that fnk+1(x̃k) ∈ Du
fnk+1,ρ

. This contra-
dicts the definition of nk, showing that tangencies exist.

5.2. Proof of Theorem 2 in the hyperbolic case

In the non-hyperbolic case we were able to find tangencies inside J , using
that Du

x,ρ are graphs over the unstable direction. When J is hyperbolic, we
will find our tangencies inside J∗ \ J . But now by Lemma 4.2 there exists
ρ0 > 0 such that P s/u

x is injective on {|ζ| < ρ0} for every x ∈ J .
We will use the following analogue of Lemma 5.2 for the hyperbolic case.

Lemma 5.4. Let y ∈ J and ρ < ρ0 sufficiently small. Then there exists a
sequence xk ∈ J∗∩W s

y which converges to y with νu-folding along the unstable
direction, so that limk→∞ distsy(y, xk) = 0, so that Ds

xk,ρ
∩Du

xk,ρ
contains νu

points counted with multiplicity, and so that

lim
k→∞

dists/uxk

(
xk, D

s
xk,ρ

∩Du
xk,ρ

)
= 0.

Proof. Choose a sequence xk ∈ J∗ which converges to y ∈ J with νu-folding
along the unstable direction.

Similarly to the non-hyperbolic case, we can find a neighborhood N of y
so that when k is sufficiently large W s

y,N ∩W u
xk,N contains νu points counted

with multiplicity. Given k large, we choose x̃k ∈ W s
y,N ∩ W u

xk,N . As in the
previous section, we may show that the points in the sequence x̃k get close to
y and xk with respect to the intrinsic distances distsy and distuxk

as k → ∞.
This shows that limk→∞ distsy(y, x̃k) = 0.

For every k we have ψu
x̃k

(ζ) = ψu
xk

(akζ+bk). Since distuxk
(xk, x̃k) converges

to zero, by Lemma 2.2 we conclude that |ak| → 1 and that bk → 0. This shows
that the sequences ψu

x̃k
and ψu

xk
have the same normal limit, and thus that x̃k



Hyperbolicity and Quasi-hyperbolicity in Poly. Diffeomorphisms of C2 25

converges to y with νu-folding along the unstable direction. Furthermore we
have

W s
x̃k,N = W s

y,N and W u
x̃k,N = W u

xk,N ,

showing that the set W s
x̃k,N

∩W u
x̃k,N

consists of νu points counted with multi-
plicity. Following the strategy used in the non-hyperbolic case, it is not hard
to prove that the sequence x̃k satisfies the conclusions of the Lemma.

In the remainder of this section we will assume that f has no tangencies
on J∗, which in the end will lead to a contradiction. Let y ∈ J and 0 < ρ < ρ0
small, and choose a sequence xk as in the previous lemma. The absence of tan-
gencies implies that the set Ds

xk,ρ
∩Du

xk,ρ
consists of νu distinct points, which

we will denote as {xk, xk,2, . . . , xk,νu}. By changing their order if necessary,
we may assume that there exists a sequence mk, so that limk→∞mk = ∞ and
so that

f−n(xk,i) ∈ Ds
f−n(xk),ρ ∀n ≤ mk, ∀i = 2, . . . , νu

f−mk−1(xk,2) �∈ Ds
f−mk−1(xk),ρ.

For every couple of positive integers (k, n) we write ψk,n = ψs
f−n(xk) and

Pk,n = P s
f−n(xk). Note that if for some large k the map Pk,mk

were injective,
then the strategy of Proposition 5.3 would work, giving existence of tangen-
cies. Since we are under the assumption that tangencies do not exist, it follows
that

Lemma 5.5. If k is sufficiently large, the map Pk,mk
is not injective on

{|ζ| < ρ}.

After taking a subsequence of xk if necessary, we may assume that all
maps Pk,mk

are not injective on {|ζ| < ρ}. Since limk→∞ distsy(y, xk) = 0, by
Lemma 2.2, we have that distsxk

= ck distsy, with ck → 1. It follows that when
k is sufficiently large Ds

xk,ρ
⊂ Ds

y,ρ0 , proving that the map Pk,0 is injective on
{|ζ| < ρ}.

Therefore we may find a positive integer 0 ≤ nk < mk so that

Pk,n is injective on {|ζ| < ρ} for all n ≤ nk,

Pk,nk+1 is not injective on {|ζ| < ρ}.

The sequence xk converges to y with respect to the intrinsic distance distsy.
Therefore for every n ≥ 0 we have Ds

f−n(xk),ρ ⊂ Ds
f−n(y),ρ0

for every k suffi-
ciently large. Therefore the sequence nk diverges.
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By taking a subsequence of xk if necessary, we may assume that for every
integer i the sequence ψk,nk+i converges locally uniformly to ψi ∈ Ψ̂s and
Pk,nk+i converges locally uniformly to Pi ∈ P̂s. Furthermore we have

Pi(ζ) = 〈ψi(ζ) − ψi(0), vi〉,

for some unit vector vi.
As shown in [14, Lemma 3.2], for every integer i there exists λi ∈ C so

that

(5.2) f−i ◦ ψ0(ζ) = ψi(λi ζ).

Furthermore if κ > 1 is as in Proposition 2.1 for the map f−1, then we have
|λi| ≥ κi when i > 0 and |λi| ≤ κi when i < 0.

Lemma 5.6. The maps ψi : C → C
2 are injective holomorphic immersions.

Proof. Suppose that the map ψ0 has a critical point at ζ0. Let κ > 1 as above
and choose a positive integer N so that κ−Nζ0 ∈ {|ζ| < ρ}. By (5.2) we have

fNψ0(ζ) = ψ−N (λ−N ζ)

with |λ−N | ≤ κ−N . We conclude that the map ψ−N has a critical point at
ζ−N = λ−Nζ0 ∈ {|ζ| < ρ}. It is clear that P ′

−N (ζ−N ) = 0.
By Lemma 4.1 the map P−N is not constant, therefore ζ−N is an isolated

critical point. By Rouché Theorem, we deduce that when k is sufficiently
large Pk,nk−N also has a critical point close to ζ−N and inside {|ζ| < ρ},
contradicting the fact that Pk,n is injective on this disk for n ≤ nk.

Write y0 = ψ0(0). Then by [14, Corollary 3.1], we have that ψ0 = ψy0 ◦ h
for some polynomial h. Since ψ0 has no critical point on all C we conclude
that h is an affine map proving that ψ0 is an holomorphic immersion. By (5.2),
given an integer i we have ψi(ζ) = f−iψ0

(
ζ λ−1

i

)
, proving that every ψi is an

injective holomorphic immersion.

If yi = ψi(0), as a consequence of Proposition 1.3, we must have that ψi

and ψyi are equal up to a rotation. It is also not hard to show that

Pi(ζ) = 1
|ψ′

i(0)|e
〈ψi(ζ) − ψi(0), ψ′

i(0)〉

Since nk < mk, given κ > 1 as in Proposition 2.3 for the map f−1, we
have that

f−nk{xk, xk,2, . . . , xk,νu} ⊂ Du
f−nk (xk),κ−nk ρ ∩Ds

f−nk (xk),ρ.
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Recall that ψ0 = limk→∞ ψs
f−nk (xk). Lemma 5.6 implies that the sequence

f−nk(xk) converges to y0 = ψ0(0) with 1-folding along the stable direction.
Every intersection point f−nk(xk,i) gets uniformly close to f−nk(xk) with re-
spect to the intrinsic metric distuf−nk (xk). Therefore by continuity of transverse
intersection either y0 is a tangency point, which is not possible by the no tan-
gencies assumption, or the sequence f−nk(xk) converges to y0 with νu-folding
along the unstable direction, which implies that y0 ∈ J . Since the latter must
be the case we deduce that f−1(y0) = ψ1(0) ∈ J .

Since f−1(y0) ∈ J we conclude that P1 is injective on {|ζ| < ρ0} and
that Pk,nk+1 converges locally uniformly to this function. It follows that for k
sufficiently large, the function Pk,nk+1 is injective on {|ζ| < ρ}, contradicting
the definition of nk, and therefore the assumption that there are no tangencies
in J∗. This concludes the proof of the Theorem.

6. Consequences of Theorem 2

In this section we will assume that f is quasi-hyperbolic on J∗. Given ms,mu ≥
1 we define

J∗
ms,mu := {x ∈ J∗ : τ s(x) = ms, τu(x) = mu}.

Proposition 6.1. If a point x ∈ J∗
ms,mu and W u

x and W s
x are tangent to

order k then the forward limit set of x is contained in J∗
p,q with p ≥ ms

and q ≥ (k + 1)mu the backward limit set of x is contained in J∗
p′,q′ with

p′ ≥ (k + 1)ms and q′ ≥ mu.

Proof. We prove the first statement. The second statement follows by con-
sidering f−1. Consider the case when ms = mu = 1. Since W u

x and W s
x are

tangent to order k we can assume that for some c �= 0, ψs
x(ζ) = ψu

x(cζ) + · · ·
where the dots represent terms or order greater than k. Write fn(ψs

x(ζ)) =
ψs
fn(x)(λnζ) and fn(ψu

x(ζ)) = ψu
fn(x)(μnζ). For some κ > 1 we have λn ≥ κn

and μn ≤ κ−n.
Now fn(ψs

x(ζ)) = fn(ψu
x(cζ)) up to terms of order greater than k. Write

ψs
fn(x)(ζ) = fn(x)+	a1,nζ+	a2,nζ

2+· · · and ψu
fn(x)(ζ) = fn(x)+	b1,nζ+	b2,nζ

2+
· · · . Then we have ψs

fn(x)(λnζ) is equal to ψu
fn(x)(cμnζ) up to order k so by

comparing coefficients we get 	aj,nλj
n = 	bj,nc

jμj
n for j = 1, . . . , k. By normality,

|bj,n| is bounded by a constant depending on j but not n so |	aj,n| ≤ Cjκ
−2n|cj |.

We conclude that for j = 1, . . . , k, |	aj,n| → 0 as n → ∞. In particular if x′ is in
the forward limit set of x then taking ψ ∈ Ψ̂u

x′ to be a convergent subsequence
of ψu

fn(x) the coefficients of ψ(ζ) vanish for j = 1, . . . , k.
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If there is a map ψ0 ∈ Ψ̂u
x which vanishes to order � then ψ can be written

as the composition of the map ψu
x and a map α of order �. Arguing as above

we can find a sequence ψn ∈ Ψ̂u
fn(x) whose limit vanish to order at least

(k + 1)�.

Corollary 6.2. There is a bound on the order of tangency between stable and
unstable manifolds.

Proof. In [5] it is shown that the set J∗
ms,mu is empty for ms and mu large.

Corollary 6.3. If q is a point of tangency between stable and unstable man-
ifolds, then q is wandering, i.e., it is not contained in either its forward or
backward limit set.

Proof. We have q ∈ J∗
ms,mu for some ms and mu. By Proposition 6.1, every

point of the forward or backward limit set of a point of tangency is contained
in J∗

ns,nu , with either ns > ms or nu > mu, or both.

Theorem 6.4. If f is quasi-hyperbolic on J∗, then the condition that J+ is
laminated in a neighborhood of J∗ is equivalent to the condition that J− is
laminated a neighborhood of J∗; and either condition is equivalent to hyper-
bolicity on J .

Proof. If f is quasi-hyperbolic on J∗ but not hyperbolic on J , then by Theo-
rem 2 there is a tangency of order k ≥ 2. Therefore by Proposition 6.1 both
J∗
js,k

and J∗
k,ju

are non-empty for some js, ju ≥ 1. It follows that the disks of
W s

x,r (as well as the disks of W u
x,r) exhibit local folding at some points of J∗

max.
If p is a saddle point, then the stable manifold W s

p is dense in J+, and each
disk W s

x,r is either disjoint from or contained in W s
p . If J+ is laminated, then

the disks W s
x,r are subsets of global leaves of the lamination. In conclusion,

if f is not uniformly hyperbolic, then the W s
x,r exhibit local folding at some

point x0, and so J+ is not laminated in a neighborhood of x0.

Let L be a Riemann Surface injectively immersed in C
2. Given x ∈ L

we write Lx,ε for the connected component of L ∩B(x, ε) containing x. Here
the connected component is taken with respect to the intrinsic topology of L.
Given another Riemann surface S ⊂ C

2 and x ∈ L ∩ S, we say that L and S
are locally equal at x if Lx,ε = Sx,ε for some ε > 0. If L and S are not locally
equal at x, then there exists ε > 0 so that Lx,ε ∩ Sx,ε = {x}.

Finally, we recapture an earlier result from §2 of [1]. The following theorem
provides a characterization of hyperbolicity that does not assume a priori that
f is quasi-hyperbolic, and it removes the transversality hypothesis from [5,
Theorem 8.3]:
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Theorem 6.5. A Hénon map f is uniformly hyperbolic on J if and only if
J+ and J− are Riemann surface laminations in a neighborhood of J∗.

Proof. By the previous theorem, it suffices to show that if J± are laminated
in a neighborhood of J∗, then f is quasi-hyperbolic on J∗. We will write
Ls
x ∈ L+ and Lu

x ∈ L− for the stable and unstable leaves of the lamination
through a point x ∈ J∗.

Assume that S ⊂ K+ is a Riemann surface containing x ∈ J∗. We claim
that Ls

x and S are locally equal at x. By Slodkowski [17] there exists an open
neighborhood U � x so that L+|U extends to a lamination L∗ of U . Every
leaf of L∗ is either contained in K+ or in U+. Assume that Ls

x and S are
not locally equal at x. Then for y ∈ U close to x, the leaf of L∗ through
y intersects S, and therefore is contained in K+. We conclude that a ball
centered at x is contained in K+, which is not possible since x ∈ J∗.

If p is a saddle then Ls
p ⊂ W s

p and Lu
p ⊂ W u

p . In particular the stable and
unstable manifolds satisfy the proper bounded area condition of [5]. By [5,
Corollary 3.5] the map f is quasi-expanding provided that for every δ > 0
there exists η > 0 so that

sup
Wu

p,δ

G+ > η for every saddle p ∈ S.

A similar statement holds for quasi-contraction. If the condition above is not
satisfied then, since the leaves of the lamination change continuously, the leaf
Lu
x ∈ L− is locally contained in K+ for some x ∈ J∗. In particular the stable

and unstable leaves Ls/u
x are locally equal at x. The theorem follows once we

show that this cannot occur.
The laminations L± are locally invariant, meaning that for x ∈ J∗ the

images of Ls/u
x under the map f are locally equal to L

s/u
f(x) at f(x). This holds

for saddle points, and thus it holds everywhere in J∗ by continuity of the
lamination. It follows that L± extend to laminations of J±. Indeed given a
point y ∈ J+, by the Ergodic Closing Lemma of [9] every cluster value of
the sequence of Cesarò averages νn = n−1 ∑

n δfn(y) is supported on J∗. In
particular there exists a subsequence nk so that fnk(y) → J∗. By pulling back
the lamination L+ along the orbit of y, we obtain a local lamination near y.
The invariance of L+ guarantees that the lamination near y is locally unique.
We can glue together these local laminations to obtain a global lamination of
J+. We will keep denoting the global laminations of J± as L±.

Suppose that Ls
x and Lu

x are locally equal at x ∈ J . If Ls
x �⊂ Lu

x, we write
V for the connected component of int(Ls

x ∩ Lu
x) containing x, and we choose

y ∈ ∂V . It is important to remark that the topology we consider here is the
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intrinsic topology of the Riemann surface Ls
x. Since y ∈ J , stable and unstable

leaves are defined at y, and we have Ls
y = Ls

x. Choose a neighborhood U � y
such that L−|U is homeomorphic to the trivial lamination of S × D. Let V ′

be the connected component of V ∩ U so that y ∈ ∂V ′. The set V ′ ⊂ J− is a
Riemann surface, thus V ′ is contained in a single leaf of the lamination L−|U .
In particular V ′ ⊂ Lu

y , and therefore Lu
y = Lu

x.
It follows that the local intersection between Ls

x and Lu
x at y always con-

tains more than one point, and therefore that Ls
x and Lu

x are locally equal at
y. This contradicts the fact that y ∈ ∂V . We conclude that Ls

x ⊂ Lu
x, and

similarly that Lu
x ⊂ Ls

x, which implies that Ls
x = Lu

x. Given y0 ∈ Ls
x we have

y0 ∈ J+. By the maximum principle, the point y0 is not a local maximum
of the map y 	→ dist(y, 0) on the manifold Ls

y0 . Since the leaves of L+ move
continuously, there exists a point y′ ∈ Ls

x with dist(y′, 0) > dist(y0, 0). This
shows that Ls

x is not bounded, contradicting the fact that Ls
x = Lu

x ⊂ J ,
and thus showing that Ls

x and Lu
x cannot be locally equal at any point of J ,

concluding the proof of the theorem.
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