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Abstract: Let (M,ω, J) be a Kähler manifold and K = Ham(M,ω)
its group of Hamiltonian symplectomorphisms. Complexifications
of K have been introduced by Semmes and then Donaldson which
are not groups, only “formal Lie group” in a precise sense. How-
ever, it still makes sense to talk about the exponential map in the
complexification. In this note we give a geometric construction of
the exponential map (for small time), in case the initial data are
real-analytic. (A more general analytic description has been given
by Semmes.) The construction is motivated by, but does not use,
semiclassical analysis and quantum coherent states. We use this
geometric construction to solve the equations of motion in sev-
eral basic examples and recapture a case already considered in the
physics community where the quantum analogue of our system is
explicitly solvable, showing a potential relation to non-Hermitian
quantum mechanics. Finally, in the case of geodesics in the space of
Kähler metrics on a Kähler manifold originally studied variously
by Mabuchi, Semmes and Donaldson, we derive an infinitesimal
obstruction to the completeness of Mabuchi geodesic rays in the
space of smooth Kähler metrics.
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1. Introduction

A real Lie algebra can be easily complexified by tensoring it with the complex
numbers over the field of real numbers, and extending the Lie bracket bilin-
early. Complexifying a Lie group is a much more subtle problem, for which a
solution does not always exist. All compact Lie groups admit a complexifica-
tion, but the proof of that is not trivial (see, for example [21], §106).

In this paper we present a geometric construction of the exponential map
for the formal complexification of the group of Hamiltonian diffeomorphisms
of a Kähler manifold. As noted, an earlier analytic version was presented by
Semmes in [18].

1.1. The complexification of the group of Hamiltonian
symplectomorphisms

Let (M,ω, J) be a compact and connected Kähler manifold, and let K denote
the group Ham(M,ω) of Hamiltonian symplectomorphisms of (M,ω), with
Lie algebra C∞(M,R)/R. K is known to be “morally” an infinite-dimensional
analogue of a compact group, and one can wonder whether it has a complex-
ification. From a physical point of view this would correspond to finding a
sensible way to associate a dynamical system to a complex-valued Hamilto-
nian, h : M → C, in a manner that extends the notion of Hamilton flow in
case h is real-valued.

In [6, 7] Donaldson discusses a model for the complexification of K, first
discussed by Semmes in [18] (see also Mabuchi’s work, [14]), which we now
describe. Let Diff0(M) be the space of diffeomorphisms φ : M → M that
are isotopic to the identity, and for such a φ let Jφ := dφ ◦ J ◦ dφ−1 be
the push-forward by φ of the complex structure J . Then the model of the
complexification of K is

(1.1) G =
{
φ ∈ Diff0(M) | ω and Jφ are compatible

}
,

where compatibility means that ω is of Jφ-type (1, 1) and also gφ(u, v) :=
ω(u, Jφ(v)) defines a positive definite metric on M . (Note that G is not closed
under composition.) Note that the condition for φ ∈ Diff0 to be in G is
equivalent to:

(1.2) φ∗ω is compatible with J.

To explain in what sense (1.1) can be called a complexificaton of K, we
first explain in what sense G is a “formal Lie group”. We begin by identifying
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the tangent vectors to G, in the following Lemma, which is implicit in the
work of Semmes and Donaldson, but that we include for completeness (all
the proofs are deferred to §3):

Lemma 1.1. Let (−ε, ε) � t �→ φt ∈ G be a smooth curve in G (meaning
that (−ε, ε) × M � (t, p) �→ φt(p) ∈ M is smooth), let φ = φ0 and ∀p ∈
M φ̇(p) = d

dtφt(p)|t=0 ∈ Tφ(p)M . Then there exists h ∈ C∞(M,C), unique up
to an additive constant, such that the field

φ̇ ◦ φ−1 ∈ X(M)

is given by

(1.3) φ̇ ◦ φ−1 = Ξ�h + Jφ(Ξ�h) =: Θh,φ,

where for any f ∈ C∞(M,R) Ξf denotes the Hamilton field of f with respect
to ω (ιΞf

ω = −df), and �h,	h denote the real and complex parts of the
complex valued function h.

Thinking, formally1, that φ̇ ◦φ−1 ∈ TφG is an arbitrary tangent vector to
G at φ, the relation (1.3) induces a trivialization

(1.4) TG ∼= G × C∞(M,C)/C,

namely (φ, φ̇ ◦ φ−1) �→ (φ, [h]), which is to be thought of as the trivialization
of the tangent bundle of a Lie group by left translations. Continuing with this
analogy, any h ∈ C∞(M,C) defines a “left-invariant” vector field h� on G by:

(1.5) h�
φ = Θh,φ.

In [7] §4 Donaldson justifies that the map

(1.6) C∞(M,C) � h �→ h� ∈ X(G)

is a Lie algebra morphism, intertwining the Poisson bracket (extended bilin-
early to complex-valued functions) to the Lie bracket of vector fields on G.
The structure on G that we just described makes it a “formal Lie group” with
Lie algebra C∞(M,C), mod constants.

The sense in which G is a complexification of K is as follows. First, note
that K ⊂ G (this is clear from (1.2)), and C∞(M,C)/C is the complexification

1Although we won’t do so here, this may be made rigorous using the language
of diffeologies; see [11] for a general introduction to this formalism.



36 Reebhu Bhattacharyya et al.

of the Lie algebra C∞(M,R)/R. Moreover, for real Hamiltonians h, h�
φ = Ξh

is the standard Hamilton field of h, independently of φ, and h� is tangent
to K. These properties would characterize the complexification of a compact
group in finite dimensions.

1.2. The exponential map and quantum mechanics

Continuing with the analogy with Lie groups, we define

Definition 1.2. Given h ∈ C∞(M,C), by its exponential we will mean the
integral curve of the field h� starting at φ = Id|M the identity.

In concrete terms, the exponential of h is the smooth curve t �→ φt ∈ G
such that φ0 = Id|M and

(1.7) φ̇t ◦ φ−1
t = Ξ�h + Jt(Ξ�h),

where J0 = J and

(1.8) J̇t = −LΞ�h+Jt(Ξ�h)Jt.

These equations and their initial conditions guarantee that Jt = Jφt . Given
a solution of (1.8), equation (1.7) is a system of time-dependent first order
ODEs, solved for the time derivatives.

Let us analyze in more detail equation (1.8). Using the fact that the
Lie derivative is a derivation, one obtains the very general identity: ∀X, Y ∈
X(M) and any J ∈ End(TM) endomorphism of the tangent bundle,
(LXJ)Y = [X, JY ] − J [X, Y ]. Therefore, equation (1.8) is equivalent to

(1.9) ∀Y ∈ X(M) J̇t(Y ) = [JY,Θt] − J [Y,Θt],

where

(1.10) Θt := Ξ�h + Jt(Ξ�h)

is the right-hand side of (1.7). From these expressions it is clear that (1.8) is
a self-standing PDE (it is not coupled to (1.7)), quadratic in the components
of J in local coordinates, which we write in detail in (3.17). Note that if one
is only interested in writing (1.7), one only needs to know the field Jt(Ξ�h),
which satisfies:

(1.11) d

dt
Jt(Ξ�h) = [JtΞ�h,Ξ�h] + Jt[Ξ�h,Ξ�h] + Jt[JtΞ�h,Ξ�h].
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As a separate motivation for equations (1.7, 1.8), we conjecture that they
are related to non-Hermitian quantum mechanics in a way that we will now
describe.

Suppose that the cohomology class [ω]/2π is integral, so that there exists
a holomorphic Hermitian line bundle π : L → M whose curvature is −2π i ω.
More generally, we consider the tensor powers Lk → M of L. According to
geometric quantization, the space Hk of holomorphic sections of Lk, with its
natural Hermitian inner product, is a quantization of M with k = 1/� playing
the role of the inverse of Planck’s constant. Denote by Pk : L2(Lk) → Hk the
Bergman (orthogonal) projector. The Schwartz kernel of Pk is a section Pk ∈
H0(M ×M,Lk � L−k). Given p ∈ M , choose a non-zero vector ep ∈ π−1(p)
and let ψk

p = Pk(·, p)(ep) ∈ Hk (ψk
p is defined up to a multiplicative constant

depending on the choice of ep.) The sequence (ψk
p) is called the standard

coherent state centered at p. The well-known semiclassical estimates on the
Bergman kernel, [1], imply that the functions |ψk

p |2 (the so-called Husimi
functions) concentrate in a neighborhood of size O(1/

√
k) of p as k → ∞.

Now let h ∈ C∞(M,C), and form the (sequence of) Berezin–Toeplitz
operators

(1.12) Opk(h) : Hk → Hk, Opk(h)(ψ) := Pk(hψ).

One can then pose the initial value problem for Schrödinger’s equation

(1.13) i
d

dt
ψ = kOpk(h)(ψ), ψ|t=0 = ψ(k)

p .

The solution clearly exists for each k, as Hk is finite-dimensional.
Conjecture: The solution to (1.13) at time t, after L2 normalization, con-

centrates as k → ∞ on the trajectory φt(p) where φt is a solution of (1.7, 1.8).
When h is real-valued, this has been known for a long time in the setting

when M is a cotangent bundle, see for example the book [5]. In the current
setting, still with h real, the conjecture follows fairly easily from the techniques
in [3] or [4]. The conjecture has been verified algebraically by Graefe and
Schubert [9] in case M = Cn and h : R2n → C is a quadratic form, in which
case the exact solution to (1.13) is known. Numerical calculations of Wasim
Rehman [15] in the example (4.34) support the conjecture, see figure 2. We
hope to return to this conjecture in the future.

1.3. Description of our results

In this paper we present a geometric construction of solutions to the equa-
tions (1.7) and (1.8) when all the data are real-analytic, see Theorem 2.2. Our
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approach is to complexify the manifold M (regarded as a real-analytic man-
ifold), which Semmes had already considered in [18] and [19], and consider
holomorphic Hamiltonian flows on its complexification. As we will see, the
complexification X of M comes with a natural projection Π : X → M whose
fibers are the leaves of a holomorphic foliation F with Lagrangian fibers. To
construct the exponential of h ∈ Cω(M,C), we first holomorphically extend
h to H : U → C, where U is a neighborhood of M in X. We then take the
Hamilton flow Φ of H on X, and use the leaves of Ft = Φt(F) to project
trajectories of Φ back to M . We will refer to this as the “foliation method”
for tracing out the motion φt on M , i.e. solving equations (1.7) and (1.8).
This method was also found and used independently by Graefe and Schubert
in [8], for quadratic Hamiltonians in Euclidean space.

We mention the work of other authors on the problem of exponentiating
real-valued Hamiltonians but with complex time. Hall and Kirwin [10], devel-
oping an earlier observation of Thiemann [20], use imaginary time dynamics
to alter the complex structure on the classical phase space T ∗M , generalizing
Grauert tube constructions. Kirwin, Mourão, and Nunes [12] used complexi-
fied dynamics, especially on toric varieties, to study the relation between real
and complex polarizations in geometric quantization.

The paper is organized as follows. Details of the geometric construction
are presented in the next section. In §3 we write (1.8) in local coordinates,
for explicit comparison with the physics literature, and provide the proofs
of the basic results. The foliation method allows one to find the solutions to
(1.7, 1.8) in several examples, some of which we discuss in §4. In §4.1 we
check the motivating classical case of a compact group action on a compact
Kähler manifold, as in [9], e.g., while in §4.2 we treat the case of M = Cn,
connecting with the work [8] of Graefe and Schubert. §4.3 treats a geometri-
cally global, yet tractable, case, the coadjoint orbits of compact groups and
their complexifications. In §4.4 we specialize this discussion to the simplest
case, M = CP1, which provides examples solvable on a compact manifold.
Wasim Rehman has recently made numerical calculations of the quantum
side of examples of non-Hermitian evolution on CP1, and his pictures, an
example of which is included in §4.4, appear consistent with the conjecture
discussed above. Finally, in §5 we consider the case when h is purely imag-
inary. We confirm that the exponential map produces Mabuchi geodesics in
the space of Kähler potentials, a much studied topic, and then motivated by
the Hamiltonian dynamics in the complexification, we derive an infinitesimal
obstruction to the extension of a Mabuchi geodesic from studying the flow
at a critical point of the function h. Since this obstruction is infinitesimal, it
holds true for C∞ solutions of the geodesic equations.
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2. The main construction and theorem

2.1. Complexifying a complex manifold

We begin by recalling a result attributed to Bruhat and Whitney, [2]: If M
is a real-analytic manifold, then there exists a complex manifold X, of twice
the dimension of M , together with an embedding ι : M ↪→ X and an anti-
holomorphic involution τ : X → X whose fixed point set is precisely ι(M).
In the present context we will need the following version of this result:

Proposition 2.1. Let (M,J, ω) be a real analytic Kähler manifold of real
dimension 2n. There exists a holomorphic complex symplectic manifold (X, I)
of complex dimension 2n and an inclusion ι : M ↪→ X such that ι∗Ω = ω,
and with the following additional structure:

1. An anti-holomorphic involution τ : X → X whose fixed point set is the
image of ι and such that τ ∗Ω = Ω.

2. A holomorphic projection Π : X → M , Π ◦ ι = IdM , whose fibers are
holomorphic Lagrangian submanifolds.

The local existence is simple: We take X to be a neighborhood of the
diagonal in M×M , with the complex structure I = (J,−J). Ω is the analytic
extension of ω and τ(z, w) = (w, z). Finally, the projection is simply Π(z, w) =
z.

We note that there often exist natural complexifications that make our
results below much more global in some cases. For example, if M is a generic
coadjoint orbit of a compact simply connected Lie group G0 (one through
the interior of a Weyl chamber) then, one can take for X the orbit of the
complexification, G, of G0 through the same element (see §4 for details).

The fibers of Π are the leaves of a holomorphic foliation F of X that plays
a central role in what follows.

2.2. Main results

Given a function h : M → C whose real and imaginary parts are real analytic,
there is a holomorphic extension H : X → C perhaps only defined near
ι(M), but we will not make a notational distinction between X and such a
neighborhood, as our results are mainly local in time. Denote by Φt : X → X
the Hamilton flow of �H with respect to the real part of Ω. We denote by
Ft the image of the foliation F under Φt (so that F0 = F). We assume that
there exists an open interval E ⊂ R containing the origin such that for all
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Figure 1: In this figure M is represented by the horizontal segment. Under
Φt the fibers of the foliation F0 are transformed into the fibers of Ft, and
y = φt(x).

t ∈ E, the leaves of Ft are the fibers of a projection Πt : X → M . We will
denote

Fx
t := Π−1

t (x)

the fiber of Ft over x.

Theorem 2.2. Let E ⊂ R be an open set as above. Let φt : M → M be
defined by

(2.1) φt := Πt ◦ Φt ◦ ι.

Then, ∀t ∈ E there is a complex structure Jt : TM → TM such that Jt◦dΠt =
dΠt ◦ I, and Jt and φt satisfy (1.7) and (1.8).

We now explain the geometry behind the construction of φt summarized
by (2.1). To find the image of x ∈ M under φt, one flows the leaf Fx

0 = Π−1(x)
of the foliation F = F0 by Φt, and intersects the image leaf with M . In other
words, (2.1) can be stated equivalently as:

(2.2) {φt(x)} = Φt

(
Π−1(x)

)
∩M.

The definition of φ is summarized in figure 1, where Fy
t := Π−1

t (y).
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Equivalently still, ∀x, y ∈ M

(2.3) y = φt(x) ⇔ ∃w ∈ Π−1(x) y = Φt(x).

The following can be thought of as a means to computing φt by using a
fixed projection:

Corollary 2.3. Let Π be as in proposition 2.1, and let

(2.4) ft = Π ◦ Φt ◦ ι : M → M.

Then if f−t is invertible,

(2.5) φt = (f−t)−1,

and if φt is a one-parameter subgroup of diffeomorphisms one has ft = φt.
Moreover, if ωt is the symplectic form defined by

(2.6) ω = f∗
t ωt,

then

(2.7) ḟt ◦ f−1
t = Ξωt

�h◦f−1
t

+ J
(
Ξωt

�h◦f−1
t

)
,

where Ξωt

�h◦f−1
t

denotes the Hamilton vector field of �h with respect to ωt, etc.

Going back to the discussion of the quantum propagation of coherent
states, each leaf of the foliation F0 corresponds to a coherent state centered at
a point on the leaf, that is, an element in the Hilbert space that semiclassically
concentrates at the intersection of the leaf with M (after normalization). The
fact that Π is holomorphic says the coherent states are associated to the
metric of (M,J, ω). On the quantum side, the evolution of a coherent state
remains a coherent state, whose Lagrangian is simply the image of the one at
time t = 0 by the complexified classical flow. As explained above, our maps
{φt} simply follow the evolution of the real center.

3. Proofs and calculations

In this section we present most of the proofs of the main results, as well as
making the equations derived above as explicit as possible in local coordinates
for comparison with the physics literature.



42 Reebhu Bhattacharyya et al.

3.1. Proofs

We gather here the short proofs of most the previous statements.
For completeness, we begin with a proof of Lemma 1.1:

Proof. Let φt be any smooth curve in G, and consider ωt := φ∗
tω. Let Θ =

φ̇t ◦ φ−1
t |t=0. Since ωt is compatible with J , ω̇ = LΘω = d(ιΘω) is of type

(1, 1). Therefore, if we write ιΘω = η + η, where η is of type (1, 0), we must
have ∂η = 0. By the topological assumptions we are making on M , there
exists h ∈ C∞(M,C), unique up to a constant, such that η = ∂h. Writing
that ιΘω = ∂h + ∂h in terms of real and imaginary parts of h yields the
result.

Next we establish some lemmas needed in the proof of Theorem 2.2. Let
ξ denote the infinitesimal generator of Φt, that is

∀x ∈ X ξx = d

dt
Φt(x)|t=0 ∈ TxX.

The following is easy to check in a local trivialization of the foliation of X by
fibers of Πt:

Lemma 3.1. Let E be the interval in Theorem 2.2, fix t ∈ E and x ∈ M .
Let y = φt(x) and let ξ denote the infinitesimal generator of the flow Φ. Then
φ̇t(x) ∈ TyM is

(3.1) φ̇t(x) = d (Πt)y (ξy).

Proof. Introduce coordinates (u, v) in a neighborhood U ⊂ X centered at y
so that U ∩M is defined by v = 0 and the projection Πt is just Πt(u, v) = u.
Note that, since Φ is a one-parameter local subgroup of diffeomorphisms, for
s small enough

φt+s(x) = Πt+s ◦ Φs(y).

For s near zero denote, the map Φs in coordinates by

Φs(u, v) = (U(s, u, v), V (s, u, v))

(in a smaller neighborhood of y). For each s the image of the v-axis under Φs

locally parametrize the fiber Fy
t+s, namely

v �→ (U(s, 0, v), V (s, 0, v)).
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Therefore we can write φt+s(x) = U(s, 0, v(s)), where v(s) is defined implicitly
by V (s, 0, v(s)) = 0 and v(0) = 0. It follows that

φ̇t(x) = U̇(0, 0, 0) + ∂U

∂v
(0, 0, 0) · v̇(0).

However Φ0 is the identity, so that U(0, u, v) = u and, therefore, ∂U
∂v (0, 0, 0) =

0.

To proceed further we will need some notation. We regard X as a real
manifold of real dimension 4n with an integrable complex structure I : TX →
TX. Let us write

Ω = ω1 + iω2

for the real and imaginary parts of Ω. Thus the ωj are real symplectic forms
on X and M is ω1-symplectic and ω2-Lagrangian. Let us write

(3.2) H = F + iG

for the real and imaginary parts of H. Recall that, by definition, ξ is the
Hamilton field of F with respect to ω1.

Lemma 3.2. ΞΩ
2H = ξ − iI(ξ) is the holomorphic vector field on X asso-

ciated to the Hamiltonian 2H with respect to the form Ω. Therefore Φt is a
holomorphic automorphism of (X,Ω).

Proof. We first note that, since Ω is of type (2, 0),

(3.3) ω1�Iξ = −ω2�ξ and ω2�Iξ = ω1�ξ.

From this it follows easily that Ω�(ξ − iI(ξ)) = 2dH. For the final statement
just use that Ω and H are holomorphic.

For future reference we note the relations

(3.4) ω1�ξ = d�H and ω1�I(ξ) = −d	H

that follow from (3.3).

Lemma 3.3. Suppose that h := ι∗H is real. Then ξ is tangent to M , and its
restriction to M is the Hamilton field of h with respect to ω.

Proof. If h is real then τ ∗H = H (by uniqueness of analytic continuation of h),
so �H is τ -invariant. Since τ ∗Ω = Ω, ω1 is also τ -invariant, and therefore τ
maps ξ to itself and so ξ has to be tangent to the fixed-point set of τ . For the
second part just note that ω = ι∗ω1.
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Proof of Theorem 2.2. We take one point at a time:
(1) Since the fibers of Πt are the leaves of a holomorphic foliation, there is

a well-defined complex structure in the abstract normal bundle to the fibers.
The inclusion ι : M ↪→ X realizes M as a cross-section to the foliation and
identifies TM with the normal bundle to the foliation along M . Therefore, it
inherits a complex structure that makes Πt holomorphic.

(2) This follows from the interpretation of the structures Jt as arising from
the normal bundle structures together with the fact that Φt is holomorphic,
or can be checked directly as follows. Let v ∈ TxM , then I(v) = J0(v) + w,
where w ∈ TxFx

0 . Since dΦt is holomorphic, one has

IdΦt(v) = dΦt(J0(v)) + dΦt(w).

But dΦt(w) ∈ TFt since Φt maps fibers of F0 to fibers of Ft. Therefore, the
previous relation implies that

d(Πt)(dΦt(J0(v))) = d(Πt)(IdΦt(v)) = Jtd(Πt)(dΦt(v)),

which precisely says that φt is holomorphic.
(3) Omitting the subscript t for simplicity, by Lemma 3.1 we need to show

that
dΠx(ξ) = Ξ�h + ∇	h

where:

1. Ξ�h is the Hamilton field of the real part of h with respect to ω, and
2. ∇	h is the gradient of the imaginary part of h with respect to the

metric (ω, J).

By the previous lemma, if h is real, dΠ(ξx) = ξx and there is nothing more
to prove. Suppose now that h is purely imaginary. By the second relation in
(3.4), I(ξ) is the Hamilton field of −G (see 3.2), and by the lemma 3.3 I(ξ) is
tangent to M and its restriction to M is the Hamilton field of ih = ι∗(−G+iF )
with respect to ω. Therefore, in this case, we can write

(3.5) − Ξ�H = dΠ(I(ξ)) = J dΠ(ξ),

and it suffices to apply J to both sides to get the result. The general case
follows by R-linearity of the composition h �→ H �→ ξ, where the first arrow
is analytic continuation. This concludes the proof of Theorem 2.2.
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Proof of Corollary 2.3. It is not hard to check that ∀x, y ∈ M and ∀t ∈ R

such that Φ±t exist,
y = φt(x) ⇔ f−t(y) = x,

from which it follows that ft = (φ−t)−1.
We wish to compute ḟt ◦ φ−t. Differentiating with respect to time the

identity ft ◦ φ−t(x) = x, we get

ḟt ◦ φ−t(x) = d(ft)(φ̇−t(x)) = d(ft) [Ξω
�h + J−t(Ξω

�h)]φ−t(x)

Now it is not hard to check that d(ft) [Ξω
�h] = Ξωt

�h◦f−1
t

and that dft ◦ J−t =
J0 ◦ dft (using that φ−t : (M,J0) → (M,J−t) is holomorphic). Therefore,

ḟt ◦ φ−t(x) =
[
Ξωt

�h◦f−1
t

+ J0(Ξωt

�h◦f−1
t

)
]
f−1
t (x)

.

3.2. Computations in coordinates

Our goal in this section is to write down the equations (1.7, 1.8) in Darboux
coordinates, as explicitly as possible.

Let φt : M → M be the exponential of h = F + iG : M → C, i.e. φ̇t ◦φ−1
t

is given by (1.7) where Jt satisfies (1.8). Introduce Darboux coordinates

(p, q) = (p1, . . . , pn, q1, . . . qn) = (x1, . . . , x2n)

on an open set of M , so that ω =
∑

j dpj ∧ dqj . If we use ∇◦ to denote the
gradient with respect to the flat metric in these coordinates, the field Θt of
(1.10) is

(3.6) Θt = Ω∇◦F + Jt Ω∇◦G

where Ω =
(

0 −I
I 0

)
and Jt = Jt(p, q) is the matrix of Jt : T(p,q)M → T(p,q)M

in the basis {∂/∂xj}. The equations of motion (1.7) are then

(3.7)
(
ṗ
q̇

)
= Ω∇◦F + Jt Ω∇◦G,

where the right-hand side is evaluated at (p(t), q(t)).
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The equation for J̇t, namely J̇t = −LΘtJt, more complicated. Let the com-
ponents of Θt be Θt = 〈Θ1

t , . . . ,Θ2n
t 〉 = ΞF + JtΞG, write φt = (φ1

t , · · · , φ2n
t )

the flow in coordinates, and let

(3.8) Kt =
(
∂φi

t

∂xj

)
|x=x0

denote the Jacobian of φt. Then that φt : (M,J) → (M,Jt) is holomorphic
becomes:

(3.9) ∀x0 = (q0, p0) Kt J0(x0) = Jt(φt(x0))Kt.

From this, it follows that

(3.10) d

dt
Jt(φt(x0)) = [K̇tK

−1
t , Jt(φt(x0))]

(matrix commutator). To compute K̇t we use the equations of motion:

∂2φi
t

∂t∂xj
= ∂

∂xj
Θi

t(φt(x)) =
∑
k

∂Θi
t

∂xk
(φt(x)) ∂φ

k
t

∂xj
(x),

which says that

(3.11) K̇t = Θ′
t(φt(x0))Kt, where Θ′

t =
(
∂Θi

t

∂xj

)
is the Jacobian matrix of the field Θt regarded as a map Θt : R2n → R2n at
φt(x0). Thus we obtain that K̇tK

−1
t = Θ′

t, which then leads to:

(3.12) d

dt
Jt(φt(x0)) = [Θ′

t(φt(x0)) , Jt(φt(x0))].

However

d

dt
Jt(φt(x0)) = J̇t(φt(x0)) +

2n∑
k=1

Θk
t (φt(x0))

∂Jt
xk

(φt(x0)).

We obtain:

Lemma 3.4. At each x ∈ M in the coordinate patch

(3.13) J̇t(x) = [Θ′
t(x) , Jt(x)] −

2n∑
k=1

Θk
t (x) ∂Jt

xk
(x).



The exponential of the complexification of Ham 47

There’s a faster derivation of this: For any torsion free connection on a
manifold M and any endomorphism J of TM and any X, Y ∈ X(M),

(3.14) (LXJ)(Y ) = (∇XJ) (Y ) + J (∇YX) −∇JYX.

We can apply this to ∇ = ∇◦ the flat connection on R2n and Y a coordinate
field to get that the right-hand side of the above formula is −LΘJ .

So far we have not used the expression (3.6) for Θ. From it we obtain

(3.15) Θ′
t = ΩF ′′ + Jt ΩG′′ +

(∑2n
k=1

∂Υik

∂xj
γk
)

where we have introduced the notations

F ′′ =
(
Fpp Fpq

Fqp Fqq

)
with Fpq =

(
∂2F

∂pj∂qi

)
,

where i is the row index, etc., and

Jt(x) =
(
Υij(t, x)

)
, (γ1, . . . , γ2n) = (−Gq1 , · · · ,−Gqn , Gp1 , · · · , Gpn).

We have proved:

Proposition 3.5. Let Γ be the matrix

(3.16) Γ =
(∑2n

k=1
∂Υik

∂xj
γk
)
.

Under the evolution of the complex-valued Hamiltonian h = F + iG : M → C,
the complex structure evolves according to the equation

(3.17) J̇t = [ΩF ′′ + JtΩG′′ + Γ , Jt] −
2n∑
k=1

Θk
t (x) ∂Jt

xk
(x).

In case M = R2n and F, G are quadratic forms, Jt is independent of the
x variables, and (3.17) simplifies to

(3.18) J̇t = [ΩF ′′ + JtΩG′′ , Jt],

which is in exact agreement with equation (48) in [8] (though the latter is
written in terms of the metric G = ΩJt).

4. Examples

Here we present examples of complexifications and of exponentials.
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4.1. Compact group actions

Suppose G is a compact Lie group acting on M in a Hamiltonian fashion
and preserving J . Then, the action extends to a holomorphic action to the
complexification GC (cf. [9], §4). The extended action is as follows: If a, b :
C∞(M) → R are two components of the moment map of the G action, then
the infinitesimal action corresponding to a+ ib is the vector field Ξω

a +J(Ξω
b ).

The corresponding one-parameter group of diffeomorphisms, ϕt : M → M ,
satisfies (2) and (3) of Theorem 2.2, with Jt = J0 for all t. By the uniqueness
part of the previous remark, we must have ϕt = φt. In other words, our
construction is an extension of the process of complexifying the action of a
compact group of symmetries of (M,ω, J).

4.2. The case M = Cn

We consider R2n with the standard symplectic structure and complex coor-
dinates ζj = 1√

2(qj + ipj), so the symplectic structure is

(4.1) ω =
n∑

j=1
dpj ∧ dqj = −i

n∑
j=1

dζj ∧ dζ̄j .

Given h : R2n → R, its Hamilton field Ξh is defined by the condition
ω(·,Ξh) = dh. This gives the usual equations of motion q̇j = hpj , ṗj = −hqj .
One can check that in complex coordinates Hamilton’s equations are

(4.2) ζ̇j = −i
∂h

∂ζ̄j

and its complex conjugate (which is redundant).
We complexify Cn by the anti-diagonal embedding ι : Cn ↪→ Cn × Cn,

ζ �→ (ζ, ζ̄). The initial projection Π : Cn × C → Cn is just projection onto
first factor. We denote by (z, w) complex variables on C2n. The symplectic
form ω extends analytically to the complex symplectic form

Ω = −i
n∑

j=1
dzj ∧ dwj .

If H : C2n → C is holomorphic, the associated Hamiltonian equations are:

(4.3) żj = −iHwj , ẇj = iHzj .
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We now explain how to implement our scheme for constructing the expo-
nential of Cω(R2n,C), where R2n ∼= Cn as above. Let h : R2n → C be such
that there is a holomorphic H : Cn × Cn → C such that

h = H ◦ ι.

Assume that Hamilton’s equations for H can be integrated (take t to be real,
for simplicity), to yield a flow

Φt : C2n → C
2n.

For each ζ ∈ Cn, let
F ζ = {(ζ, w) | w ∈ C

n}
be the fiber over ζ of the projection Π. Then φt(ζ) ∈ Cn is defined by the
condition

(4.4) {(φt(ζ), φt(ζ))} ∈ Φt(F ζ).

Now we proceed to examples, where we take n = 1.

4.2.1. The imaginary harmonic oscillator This is h = i
2(q2+p2) = iζζ̄,

so that H = izw. Then the equations are ż = z, ẇ = −w, so

Φt(z, w) = (etz, e−tw).

We must implement (4.4) to find φt. In this case, this is trivial because Hamil-
ton’s equations separate:

{(etζ, e−tw) | w ∈ C} ∩ real locus = {(etζ, etζ)}.

Therefore, in this case φt(ζ) = etζ, which is the gradient flow of 	(h), in
agreement with §3.1.

4.2.2. A quadratic, non-Hermitian example Let us take next an ex-
ample that Graefe and Schubert also discuss in [8], namely

h = i

2q
2 = i

4(ζ + ζ̄)2.

The analytic continuation of this Hamiltonian is just

H = i

4(z + w)2,
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and the equations of motion in the complexification are

ż = −iHw = 1
2(z + w), ẇ = iHz = −1

2(z + w).

It is clear that z + w is constant in time, and therefore the flow in the com-
plexification is

(4.5) Ψt(z, w) =
(
t

2(z + w) + z,− t

2(z + w) + w

)
.

To find the induced map φt : R2 → R2, we are to proceed as follows. Fix
ζ ∈ C, and flow-out under Φt the complex line

(4.6) F ζ = {(ζ, w) ; w ∈ C}.

The result is

(4.7) F ζ
t =

{(
t

2(ζ + w) + ζ,− t

2(ζ + w) + w

)
; w ∈ C

}
.

The points of intersection of this complex line with the real locus are given
by the solutions to the equation in w

(4.8) − t

2(ζ̄ + w̄) + w̄ = t

2(ζ + w) + ζ,

or equivalently

(4.9) w̄ − ζ = t (�(ζ) + �(w)) .

Let us write ζ = a + ib, w = α + iβ. The equation becomes the system

(4.10) α− a = t(α + a), β = b.

Assuming t �= 1 the solution is, w = 1+t
1−ta + ib, which after some calculations

yields

(4.11) φt(a + ib) = a

1 − t
+ ib.

As t → 1 from the right, the image point tends to infinity.
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4.2.3. The generic element of the “maximal torus” Let us now take
h = ϕ(|ζ|2) with ϕ : R → C having an analytic extension F : C → C. Then

H(z, w) = F (zw),

and Hamilton’s equations are

ż = −izF ′(zw), ẇ = iwF ′(zw).

Clearly, the function zw is a constant of motion, and we can integrate:

z(t) = e−itF ′(ζw0)ζ, w(t) = eitF
′(ζw0)w0.

Therefore φt(ζ) = e−itF ′(ζw)ζ where w solves

(4.12) eitF
′(ζw)w =

(
e−itF ′(ζw)ζ

)
.

This is a transcendental equation. However, we can easily prove:

Lemma 4.1. Fix H as above. Then φt commutes with the (usual) harmonic
oscillator.

Proof. Fix ζ ∈ C, w solving (4.12), and s ∈ R. Let ζs = e−isζ and ws = eisw.
Then

eitF
′(ζsws)ws = eis eitF

′(ζw)w = eis
(
e−itF ′(ζw)ζ

)
=

=
(
e−itF ′(ζw)e−isζ

)
=
(
e−itF ′(ζsws)ζs

)
,

which shows that φt(ζs) = e−itF ′(ζw)ζs = e−isφt(ζ).

4.3. Coadjoint orbits

We start by detailing the remark after Proposition 2.1 above for the case of
M a coadjoint orbit of a compact Lie group G0. For clarity, we restrict to the
case of G0 semi-simple. Let g∗0 denote the dual of the Lie algebra g0 of G0,
and let λ ∈ g∗0. We identify g∗0 with g0 via the Killing form B. Thus there is
a unique vector ξλ ∈ g0 such that < λ, η >= B(ξλ, η), for all η ∈ g0. The
Kostant–Kirilov G0-invariant symplectic form on the orbit G0 · λ := Oλ is
defined at λ ∈ Oλ via

ωKK(ξ̃, η̃) := λ([ξ, η]) = B(ξλ, [ξ, η]),
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for all ξ, η ∈ g0, where ξ̃ is the vector field on Oλ induced by ξ ∈ g0, etc.
We will drop the subscript on the symplectic form. Let H0 ⊂ G0 be the
isotropy group of λ, i.e., the centralizer of ξλ and let G, resp. H be the
complexifications of G0, resp., H0. Note that any maximal torus T0 in H0 has
ξλ in its Lie algebra t0, and that T0 is a maximal torus in G0. Let Δλ,+ be a
set of positive roots for g for which −iα(ξλ) ≥ 0, for all α ∈ Δλ,+ (i.e., for
which λ is in the closure of the corresponding Weyl chamber). Note that

h = h0 ⊗ C = t ⊕ ⊕{α |<α,ξλ>=0}gα.

Define the nilpotent algebra

nλ+ = ⊕{α | −i<α,ξλ>>0}gα,

let N be the corresponding unipotent group in G, and P = HN denote the
associated parabolic subgroup of G. The coadjoint orbit Oλ = G0/H0 = G/P
has an induced complex structure from the second presentation. Two such
structures coming from different sets of positive roots for g are equivalent,
by an isomorphism induced by the element of the Weyl group which relates
these two sets of positive roots and fixes λ. Thus there is an invariant Kähler
metric on Oλ such that the corresponding Kähler form is the Kostant–Kirilov
form.

Now the complex orbit Oλ,C = G · λ ⊂ g∗ is a holomorphic symplectic
manifold with symplectic form ωC given by the Kostant–Kirilov prescription
above, which is the complexification of the real symplectic form (Oλ, ω). The
conjugation τ of g∗ fixing g∗0 fixes Oλ and τ ∗ωC = ω̄C. To complete the
verification of the criteria (1) and (2) of Proposition 2.1 above for Oλ,C, note
that since H ⊂ P , the foliation of G by left P -cosets is preserved under right
multiplication by elements of H, and hence descends to give a foliation F
of Oλ,C which is invariant under the action of G. The leaves of this foliation
are biholomorphic to P/H ∼= N+ ∼= Cd, where “∼=” denotes isomorphism as
algebraic varieties. That the leaves of this foliation are Lagrangian for ωC

amounts to the fact that B(ξλ, [ξ, η]) = 0, which is because ad(ξλ) ◦ ad(ζ) is
nilpotent on g for any ζ ∈ n+; for example, ζ = [ξ, η], for ξ, η ∈ n+. Finally,
we have a canonical holomorphic G-equivariant mapping

Π : Oλ,C → Oλ,

given by
Oλ,C � gH → gP ∈ G/P = Oλ,

whose fibers are obviously the leaves of the foliation F .
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Proposition 4.2. Keeping the previous notation, let ξ ∈ g and let hξ : O →
C be the induced Hamiltonian. Let ft, φt : Oλ → Oλ be constructed as in §1,
using the complexification Oλ,C above. Then ft = φt, and they coincide with
the action of exp(tξ) ∈ G on Oλ (in particular they exist for all t ∈ R).

Proof. By definition ft = Π ◦ Φt ◦ ι, where Φt is the action of exp(tξ) on
OC. Since the projection Π is covariant with respect to the action of G, we
get that ft agrees with the action of exp(tξ) on O. It therefore exists for all
time, and it is a one-parameter group. As already remarked, this implies that
φt = ft.

4.4. The case M = P1

We now specialize the discussion of coadjoint orbits to the case of SU(2).

4.4.1. Generalities We take the (skew-Hermitian) Pauli matrices as a ba-
sis of the Lie algebra,

(4.13) σ1 = 1
2

(
0 i
i 0

)
, σ2 = 1

2

(
0 −1
1 0

)
, σ3 = 1

2

(
i 0
0 −i

)

(so that [σ1, σ2] = σ3, etc.). Give su(2) the invariant inner product such that
the σj are orthogonal and have length 1, namely

(4.14) ∀α, β ∈ su(2) (α, β) = −2 Tr(αβ) = 2 Tr(αβ∗),

where β∗ = β
T , and use it to identify adjoint and coadjoint orbits. We will

consider
O = adjoint orbit of σ3 ∼= CP

1.

We let xk denote the k-th coordinate:

xk(α) = (α, σk).

Explicitly, if

(4.15) α = i

2

(
a z
z −a

)
∈ su(2)

with a ∈ R, z ∈ C, then

x1(α) = �z, x2(α) = 	z, x3(α) = a

and O is the unit sphere,
∑

x2
j = 1.
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To complexify O we introduce SL(2,C) and its Lie algebra. We take the
basis (4.13) as a basis over C of sl(2,C). The quadratic form −2 Tr(αβ) is
G = SL(2,C) invariant and non-degenerate, so that we can continue to use
it to identify adjoint and coadjoint orbits.

The SL(2,C) orbit through σ3, OC, is the complexification of the previous
orbit. Let us denote a general element of sl(2,C) by

(4.16) m = i

2

(
a b
c −a

)
, a, b, c ∈ C.

Comparing with (4.15), we see that the real locus is a ∈ R and c = b̄. The
coordinate functions xj extend holomorphically to the functions

(4.17) Z1(m) = b + c

2 , Z2(m) = b− c

2i , Z3(m) = a.

The equation of the complex orbit, OC, is

1 =
∑
j

Z2
j = bc + a2 = 4 det(m),

or det(m) = 1
4 , which corresponds to m having the eigenvalues ± i

2 .
The isotropy group of σ3 in SL(2,C) is

H = T =
{(

t 0
0 t−1

)
, t ∈ C

∗
}
,

while H0 = T0 =
{(

eiθ 0
0 e−iθ

)
, θ ∈ R

}
. The unipotent group in SL(2,C)

corresponding to σ3 is

(4.18) N =
{(

1 n
0 1

)
; n ∈ C

}
,

and the parabolic subgroup P = TN is

(4.19) P =
{(

t n
0 t−1

)
; n ∈ C, t ∈ C

∗
}
.

If we now let

(4.20) A =
{(

a 0
0 a−1

)
; a > 0

}
,
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then we have T = T0A (polar decomposition of complex numbers) as well as
the Iwasawa (or QR) decomposition (G = SL(2,C), G0 = SU(2))

(4.21) G = G0AN

and, therefore, G/P ∼= G0/T0. More specifically, we have the commuting di-
agram of diffeomorphisms

(4.22)
G/P → G0/T0

↘ ↓
O

where the top arrow is gP �→ kT0 (g = kan the Iwasawa decomposition of g),
the vertical arrow is kT0 �→ k · σ3.

According to the general discussion of orbits, the projection Π : OC → O
corresponds to the projection G/T → G/P given by gT �→ gP . This shows
that

Π−1(σ3) = {gT ; g ∈ AN}.
It is easy to see that this is the orbit of N through σ3, or, equivalently:

(4.23) Π−1(σ3) =
{

1
2

(
i n
0 −i

)
; n ∈ C

}
.

This line is one of the two lines which are the intersection of the plane X3 = 1
with the quadric. By equivariance, we can conclude:

Lemma 4.3. For λ ∈ O, let �λ : OC → C be the function �λ(m) = 〈m,λ〉.
Then the fiber Π−1(λ) is one of the two lines whose union is �−1

λ (1).

4.4.2. An alternate model There is an alternate model for the pair
(O, OC) in which the fibers of the projection Π : OC → O are easier to
describe. Let us define

(4.24) M := {(� , �⊥) ; � ⊂ C
2 1-dimensional subspace } ∼= P

1

where P1 is the complex projective line, and

(4.25) X := {(�+, �−) ∈ P
1 × P

1 ; �+ ∩ �− = 0} ∼=
(
P

1 × P
1
)
\ PΔ,

where PΔ is the diagonal. We can identify OC
∼= X by

(4.26) OC � A �→ (�+ , �−) ∈ X, �± = ± i

2 eigenspace of A.

Under this identification O ⊂ OC gets identified with M ⊂ X.
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Lemma 4.4. Under the identification (4.26), the projection Π : OC → O is
simply

Π : X → M Π(�+, �−) = (�+ , �⊥+).

Therefore, a leaf of the foliation of OC consists of all elements in OC with a
common i/2 eigenspace.

Proof. By (4.23), the leaf through σ3 consists of the elements in OC having
e1 := 〈1, 0〉 as an i/2 eigenvector. Therefore, in our new model Π : X → M

Π−1(Ce1, Ce2) = {(Ce1, m) ; e1 �∈ m}.

The statement follows by SL(2,C) equivariance of the projection.

For future reference, let us now use this lemma to find the leaf of the
foliation of OC consisting of all matrices having the vector 〈1, κ〉, κ ∈ C, as
an i/2 eigenvector. If κ = 0 the leaf is just the leaf over σ3, that is (4.23). If
κ �= 0, one can easily check that

i

2

(
a b
c −a

) (
1
κ

)
= i

2

(
1
κ

)
⇔

{
b = 1−a

κ

c = κ(1 + a).

Therefore, the leaf in question is

(4.27) Lκ :=

⎧⎪⎨⎪⎩ i

2

⎛⎜⎝ a 1−a
κ

κ(1 + a) −a

⎞⎟⎠ ; a ∈ C

⎫⎪⎬⎪⎭ .

For each κ, a ∈ C parametrizes the leaf Lκ.
A calculation shows that the intersection of Lκ with the real locus O is

the matrix

(4.28) Aκ := i

2(1 + |κ|2)

⎛⎜⎝1 − |κ|2 2κ

2κ |κ|2 − 1

⎞⎟⎠ .

We see that A1 = σ1, A−i = σ2 and A0 = σ3. In fact the only point in O
which is not of the form Aκ for some κ ∈ C is (−σ3) (the only element in O
having 〈0, 1〉 as i/2 eigenvector). In fact, we can take κ as a (stereographic)
coordinate on O \ {−σ3}, centered at σ3.
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4.4.3. An example of dynamics We will now use the calculations above
to find the trajectory of Aκ under the Hamiltonian i

2x
2
3. Recall (4.17), the

holomorphic extension of x3 : M → R is

X3

[
i

2

(
a b
c −a

)]
= a.

The Hamilton flow Ψ of X3 is conjugation by exp(tσ3), that is

Ψt

[
i

2

(
a b
c −a

)]
= i

2

(
eit/2 0
0 e−it/2

)(
a b
c −a

)(
e−it/2 0

0 eit/2

)

= i

2

(
a eitb

e−itc −a

)
.

To find the Hamilton flow Φ of i
2X

2
3 on OC we simply replace t by itX3 = ita,

using the fact that the Hamilton field of i
2X

2
3 is itX3 times the Hamilton field

of X3. We obtain

(4.29) Φt

[
i

2

(
a b
c −a

)]
= i

2

(
a e−tab

etac −a

)
.

Let φt : M → M be the exponential of i
2x

2
3. To find φt(Aκ) with κ �= 0 we

look for the element � ∈ Lκ such that Φt(�) ∈ M , and then φt(Aκ) = Φ(�).
Let � be as in the right-hand side of (4.27), so that

(4.30) Φt(�) = i

2

⎛⎜⎝ a e−ta 1−a
κ

eta κ(1 + a) −a

⎞⎟⎠ .

For this matrix to be in M , i.e., for it to be skew-Hermitian, we need:

(4.31) a ∈ R and eta κ(i + 2a) = e−ta
1 − a

κ
= e−ta 1 − a

κ
.

This is equivalent to

(4.32) e−2ta = |κ|2 1 + a

1 − a

with a ∈ R. If t = 0 the solution is a(0) = 1−|κ|2
1+|κ|2 .
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Lemma 4.5. If κ = 0 or |κ| = 1, Aκ is a fixed point of the exponential
of i

2x
2
3. If κ �= 0, the exponential of i

2x
2
3 with initial condition Aκ exists for

all time. More specifically, ∀t (4.32) has a unique (real) solution a(t) which
depends smoothly on t, and

(4.33) φt(Aκ) = i

2

⎛⎜⎝ a(t) e−ta(t) 1−a(t)
κ

eta(t) κ(1 + a(t)) −a(t)

⎞⎟⎠ .

In terms of the coordinate κ, φt is given by

(4.34) κ �→ κ(t) = eta(t)κ

Proof. The function

a �→ |κ|2 1 + a

1 − a

is strictly increasing on [−1 , 1) and maps this interval onto [0,+∞). On the
other hand, for any t ∈ R the function a �→ e−2ta is positive, monotone
and bounded on [−1 , 1]. Therefore (4.32) has a unique solution in (−1, 1).
Smoothness follows from the implicit function theorem: a(t) is implicitly de-
fined by the equation F (t, a) = 0, where

(4.35) F (t, a) = r2 1 + a

1 − a
− e−2ta

with r = |κ|. A calculation shows that, on F = 0

∂F

∂a
= 2 r2

1 − a

[ 1
1 − a

+ t(1 + a)
]

where we have used the equation F = 0 in the form e−2ta = r2 1+a
1−a . Therefore

∂F

∂a
= 0 ⇔ t = 1

a2 − 1 ,

and therefore ∂F
∂a �= 0 for a ∈ (−1, 1).

The final expression (4.34) follows by comparing (4.30) with (4.28).

The previous lemma says that the trajectories of the exponential of i
2x

2
3

exist for all time and are smooth. However, it is not true that, for all t,
φt : O → O is a diffeomorphism. We will show this in the next section where
we prove that in certain circumstances (that include the present example), the
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complex structures Jt must degenerate. We can also argue as follows. Regard
a, solving (4.32), as a function of t and of r = |κ|. By implicit differentiation
with respect to r this time, one finds that

(4.36) r

( 1
1 − a2 + t

)
∂a

∂r
= −1.

This equation cannot be satisfied if t = 1
a2−1 . For such values of t, t ∈

(−∞,−1], and, in fact, φt is a diffeomorphism for t ∈ (−1,∞).
We finally remark that, contrary to the example discussed in §4.2.2 where

M = C, for M = O it is not possible to have that Φt acts as holomorphic
diffeomorphisms of the complexification for all time, and have a leaf of Ft not
intersect the real locus. This is for topological reasons, as we now explain.
First, note that the complexification X = OC is an affine quadric in C3. Each
leaf of the foliation F0 is a ruling complex line � of OC, which closes up to a
projective line �̄ ⊂ OC ⊂ P3. Suppose that, for some t ∈ C Φt(�), which is a
leaf of Ft, does not intersect M = S2. Then

Φ−1
t (S2) ∩ � = ∅.

Having compactified in P3, we have homology classes [S2] ∈ H2(OC,OC \
OC;Z) and [�̄] ∈ H2(OC,OC \ OC;Z) and, calculating intersection products,
we get

[S2] · [Φt�̄] = [Φ−1
t (S2)] · [�̄] = ±1,

the sign depending on the choice of orientation on S2. This contradicts Φt(�)∩
S2 = ∅.

This argument is valid also for the complexifications of any coadjoint orbit
of a compact group as described in §4.3.

4.4.4. The quantum version of the previous example We now turn
to the quantum version of the dynamics of the Hamiltonian h = i

2x
2
3 on

O ∼= CP1, and the conjecture of §1.2.
To CP1 we associate the sequence of finite-dimensional Hilbert spaces

Hk = H0(Lk) where L → CP1 is the hyperplane bundle. Here 1/k = � is
Planck’s costant. The norm of Hk is

∀ψ ∈ Hk ‖ψ‖2 =
∫
CP1

|ψ|2k dV,

where dV is Liouville measure and | · |k is the Hermitian norm in Lk. The
natural action of SU(2) on L → CP1 induces the irreducible unitary represen-
tation of SU(2) of dimension k + 1, which complexifies to a representation of
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SL(2,C). Specifically, Hk is naturally the space of homogeneous polynomials
of degree k int two complex variables, and an orthonormal basis of Hk is

(4.37) |n〉 = 1
π

√
k + 1

2

√√√√(k
n

)
zn1 zk−n

2 , 0 ≤ n ≤ k.

The (Hermitian) angular momentum operators corresponding to the Pauli
matrices (4.13) are

(4.38)

L̂1 = 1
2

(
z1

∂
∂z2

+ z2
∂
∂z1

)
,

L̂2 = − i
2

(
z1

∂
∂z2

− z2
∂
∂z1

)
,

L̂3 = 1
2

(
z1

∂
∂z1

− z2
∂
∂z2

)
,

and (4.37) are eigenvectors of the operator L̂3, with corresponding eigenvalues
n− k

2 . The raising operator is

J+ = J1 − iJ2 = z1
∂

∂z2
,

which is the infinitesimal representation of
(

0 1
0 0

)
∈ sl(2,C) (the genera-

tor of the Lie algebra of N), and the associated highest weight vectors are
multiples of |k〉.

Identifying CP1 ∼= S2, we define the coherent state map (which is the
Veronese embedding)

(4.39) Vk : S2 → PHk

by mapping the north pole to the line C|k〉 and imposing that V be equivariant
with respect to SU(2). In the physics literature, a non-zero element ψp,k ∈
Vk(p), p ∈ S2 is called a (standard) SU(2) coherent state centered at p.

Let us now return to the example of the Hamiltonian h = i
2x

2
3 above,

which we quantize to be the (sequence of) operators

ĥ : Hk → Hk, ĥ = i

2k L̂2
3.
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Figure 2: Plot of the Husimi function |ψ̃k(t)|2, where ψ̃k(t) is the nor-
malized solution to (4.40) with initial condition a coherent state at p =
(
√

2/4, 0,
√

2/4). The asterix is the location of φt(p). t ∼= 0.6597 and k = 20.

The Schrödinger equation is equivalent to

(4.40) ∂

∂t
ψk = 1

2 L̂2
3ψk.

The conjecture of §1.2 in this case is the statement that the solution of (4.40)
with initial condition a coherent state ψp,k concentrates (after normalization)
as k → ∞ at the point φt(p) described by Lemma 4.5. Numerical computa-
tions by Wasim Rehman [15] support this conjecture, see figure 2.

5. Geodesics and infinitesimal obstructions

In this section we first check that our trajectories from the exponential map
described here agree, for purely imaginary Hamiltonians, with the the geo-
desics of Mabuchi in the space of Kähler metrics with a given Kähler class.
We close by finding an infinitesimal obstruction to the completeness of such
geodesics.

5.1. Relation with geodesics in the space of Kähler potentials

To compare with previous work on Mabuchi geodesics, we emphasize here
the model of the infinitesimal complexification of K, the Hamiltonian group
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of M , based on the map ft (2.4) and its basic equations (2.6) and (2.7) and
relation to φt (2.5). Thus, as in equation (1.2), we may identify

(5.1) G =
{
f ∈ Diff0(M) | f∗ω and J are compatible

}
.

More explicitly, we can view

(5.2) G =
{
(f, ωa) | f ∈ Diff0(M), a ∈ H, f∗ωa = ω

}
,

where the space

(5.3) H := {a : M → R | ωa := ω + i∂̄∂a > 0}/R

is the space of Kähler potentials for Kähler metrics on M with fundamental
class [ω]. A slightly more explicit version of the exponential equation (2.7) is
now given by

(5.4) ∀t, ḟt ◦ f−1
t = Ξωat

�h◦f−1
t

+ J
(
Ξωat

�h◦f−1
t

)
,

i.e., ωt = ωat . H has a natural Riemannian metric, due to Mabuchi [14], given
by

‖δa‖2
z =

∫
M

|δa|2dμa

where dμa = ωn
a/n! The geodesic equation turns out to be

(5.5) ä = −1
2 |∇

aȧ|2a,

as in, e.g., [7], equation (12).
Let (ft, at) be the exponential of a purely-imaginary Hamiltonian, h = iH,

H : M → R. Differentiating the pull-back relation in (5.2), equivalently (2.6),
we get

0 = f∗
t [ω̇at + LVtωat ] = f∗

t [i∂̄∂ȧt + LVtωat ] = f∗
t [i∂̄∂ȧt + d(iVtωat)],

where Vt = ḟt◦f−1
t , and the L derivative is in the M variables only. Meanwhile
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(5.4) yields, for purely imaginary h,

d(iVtωat) = d(d(H ◦ f−1
t ) ◦ J)

= d(∂(H ◦ f−1
t ) ◦ J + ∂̄(H ◦ f−1

t ) ◦ J)

= d(i∂(H ◦ f−1
t ) − i∂̄(H ◦ f−1

t ))

= 2i∂̄∂H ◦ f−1
t .

Thus, we get
∂̄∂(ȧt − 2H ◦ f−1

t ) = 0.

Since M is compact,

(5.6) ȧt − 2H ◦ f−1
t = c(t),

a constant on M , depending on t. Since at is only well-defined up to the
addition of a constant, without loss of generality we note the following lemma.

Lemma 5.1. There is a choice of constant C(t) such that, replacing at by
at + C(t) gives at normalized to have

(5.7) f∗
t ȧt ≡ 2H.

Proof. To get an equation for C(t) we set

(at + C)′ = ȧt + C ′(t) = 2H ◦ f−1
t + c(t) + C ′(t),

so we simply want C(t) = −
∫ t
0 c(s) ds.

Differentiating (5.7) with respect to time gives

0 = d

dt
f∗
t ȧt = f∗

t [ät + d(ȧt)(Vt)],

that is,
(5.8)

ät = −d(ȧt)(Vt) = −d(ȧt)(∇t(H ◦ f−1
t ) = −d(ȧt)(∇t 1

2 ȧt) = −1
2 |∇

tȧt|2t .

We conclude:
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Corollary 5.2. Let ft be the exponential of a purely-imaginary Hamiltonian,
h = iH, H : M → R. Then the curve of potentials at of the metrics (ωt, J),
normalized as in lemma 5.1, is the Mabuchi geodesic on H with initial con-
ditions

a0 = 0, ȧ0 = 2H.

Note: The factor of two in the equation ȧ0 = 2H can be gotten rid of
by letting

ωa = ω0 + 2i∂̄∂a.

5.2. Infinitesimal obstruction to continuing a Mabuchi geodesic

In this section, we examine further the obstructions to continuation of the
flows associated to complex Hamiltonians, especially purely imaginary Hamil-
tonians because of their relationship to Mabuchi geodesics in H given by φt

generated by a purely imaginary Hamiltonian iH,H real valued and Cω on M .
In Donaldson’s analysis [6], complete Mabuchi geodesic rays were proposed
as a way to prove the uniqueness of constant scalar curvature Kähler metrics.
Counterexamples to the extendability of these geodesics were found [13] using
geometric constraints associated with such continuations. We point out here
that there are infinitesimal obstructions to this continuation centered at one
point coming from the infinitesimal dynamics at a critical point of H. This
obstruction appears to be new. We do not know its full interpretation, say,
with respect to the Semmes–Donaldson method of construction via the ho-
mogeneous complex Monge–Ampère equation (see [18], [19] or [6]). For real
analytic H, this is readily understood in terms of the Hamiltonian dynamics
of its holomorphic extension at the critical point of H. Since the obstruc-
tion is infinitesimal, real analyticity of H proves to be immaterial, and the
obstruction applies to smooth solutions of the geodesic equation.

We work with ft as in corollary (5.4). We elaborate here on its relation
to the corresponding solution of the geodesic equation. A Mabuchi geodesic
is defined on the interval (t0, t1), t0 < 0 < t1, if and only if the corresponding
solution a = a(t) to (5.8) is defined, smooth and positive in the sense of (5.3)
on that t-interval.

Lemma 5.3. The Mabuchi geodesic a(t) is defined on the interval (t0, t1)
if and only if ft satisfying (2.7) with H = ȧ(0) exists and is invertible for
t ∈ (t0, t1).
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Proof. One simply refers to equation (2.7), which in the present context
(Hamiltonian iH,H real) becomes:

(5.9) ḟt ◦ f−1
t = J0

(
Ξωt

H◦f−1
t

)
.

If the geodesic exists on (t0, t1), then (5.9) gives an ODE for ft where the
right hand side of the equation is already defined for t ∈ (t0, t1), since ωt =
ωa(t) depends only on fixed data and a(t). Since M is assumed compact, this
equation is solvable by simple integration. Similarly, one can, by integration,
reverse the argument that leads to (2.7) back to its source, namely f∗

t ωt = ω0.
This implies ft is a local diffeomorphism. Since (t0, t1) is connected, and M

is compact and connected, then ft is a global diffeomorphism for t ∈ (t0, t1)
since it is so for t = 0 ∈ (t0, t1).

We will show that there are bounds to the domain of existence of ft, or
its invertibility. We first need a lemma. Suppose ft is defined and smooth on
the interval (t0, t1).

Lemma 5.4. Let H be a smooth real valued function on M with critical point
x0 ∈ M , and let ft be the solution of (2.7) for Hamiltonian h = iH. Then
ft(x0) = x0 for all t ∈ (t0, t1).

Proof. Consider again equation (5.9). Let V be any smooth vectorfield in a
neighborhood of ft(x0). Then

ωt(V, J0 · Ξωt

H◦f−1
t

) = −d(H ◦ f−1
t )(J0 · V ) = dH(x0)(Df−1

t (J0 · V )) = 0,

since dH(x0) = 0. Since we assume ωt is non-degenerate and V is arbitrary,
we conclude ḟt ≡ 0 on the interval (t0, t1).

Now set A = A(t) = Dft(x0) : Tx0M → Tx0M , and let V be a vectorfield
in a neighborhood of x0. Take the Lie derivative with respect to V on both
sides of (5.9) and evaluate at x0. On the left hand side one obtains Ȧ·A−1(V ).
On the right, we first rewrite Ξωt

H◦f−1
t

as ψ−1
t · d(H ◦ f−1

t ), where ψt : Tx0M →
T ∗
x0M is the contraction isomorphism corresponding to ωt. Taking LV gives

LV (J0 · Ξωt

H◦f−1
t

) = LV (J0 · ψ−1
t · d(H ◦ f−1

t ))

= J0 · ψ−1
t · LV (d(H ◦ f−1

t )),
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when evaluated at x0. Recalling that f∗
t ωt = ω0 from (2.6), we can write at

x0

(5.10) ψt = (At)−1 · ψ0 · A.

Finally, we have

LV (d(H ◦ f−1
f )) = d(LV (H ◦ f−1

t )) =
= (A−1)t · Hess(H) · A−1(V )

at x0, where Hess(H) is the Hessian of H at x0 viewed as a linear transfor-
mation from Tx0M to T ∗

x0M . Altogether now we see

LV (J0
(
Ξωt

H◦f−1
t

)
) = J0 · A · ψ−1

0 · At · (A−1)t · Hess(H) · A−1(V ) =

= J0 · A · ψ−1
0 · Hess(H) · A−1(V )

at x0. Thus, we have a differential equation for A:

(5.11) Ȧ = J0 · A · ψ−1
0 · Hess(H).

This has the solution, for initial value A(0) = A0,

A(t) =
∑
n=0

tn

n! J
n
0 · A0 · (ψ−1

0 · Hess(H))n,

valid for all t ∈ R. In our case, A0 = I, and the solution is

(5.12) A(t) = cos(t ψ−1
0 · Hess(H)) + J0 · sin(t ψ−1

0 · Hess(H)).

We want to analyze the solutions A(t) of (5.12). Since the relation of
Hess(H) to J0 on Tx0M can be somewhat arbitrary, we make some simplifying
assumptions to extract some consequences of (5.12). We use the metric on
Tx0M given by ω0 and J0 to view Hess(H) as a self-adjoint endomorphism of
Tx0M , and we assume the existence of a two-dimensional subspace V ⊂ Tx0M
which is invariant under both J0 and Hess(H). It is easy to check then that
V and V ⊥ are invariant by J0,Hess(H) and ψ−1

x0 , and therefore by A(t), for
all t.

Proposition 5.5. Let H and J0 satisfy the assumptions above. If Hess(H)
restricted to V has rank 1, then A(t) restricted to V becomes singular at time
t = −1/λ, where λ is the non-zero eigenvalue of Hess(H) on V .
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Proof. In the two dimensional space V we can find an orthonormal basis
{v1, v2} in which the endomorphisms J0 and Hess(H) have the standard forms

J0 =

⎡⎢⎣ 0 −1

1 0

⎤⎥⎦ , Hess(H) =

⎡⎢⎣ λ 0

0 0

⎤⎥⎦ ,
where λ �= 0. Note that with the normalizations made ψ−1

x0 is represented by

the matrix

⎡⎢⎣ 0 1

−1 0

⎤⎥⎦, so that

ψ−1
x0 · Hess(H) =

⎡⎢⎣ 0 0

−λ 0

⎤⎥⎦ .
Hence

cos(tψ−1
x0 · Hess(H)) =

⎡⎢⎣ 1 0

0 1

⎤⎥⎦ , sin(tψ−1
x0 Hess(H)) =

⎡⎢⎣ 0 0

−tλ 0

⎤⎥⎦ ,
and so

detA(t) = det

⎡⎢⎣ 1 + tλ 0

0 1

⎤⎥⎦ = 1 + tλ.

Theorem 5.6. Let H be as above. Then the Mabuchi geodesic with initial
conditions a(0) = 0, ȧ(0) = 2H cannot extend past t = − 1

λ .

Proof. Indeed, this follows directly from lemma 5.3 and the proposition.

Note that this is in agreement with the example h = i
2x

2
3, or H = 1

2x
2
3

in section 4.4.3, where the relevant critical points of H are along the equator
{x3 = 0}.
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