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Abstract: This paper begins with a systematic study of abstract
noncommutative Fourier series on Γ\SE(2), where Γ is a discrete
co-compact subgroup of SE(2), the group of all handedness-preser-
ving isometries of the Euclidean plane. Let μ be the finite SE(2)-
invariant measure on the right coset space Γ\SE(2), normalized
with respect to Weil’s formula. The analytic aspects of the pro-
posed method works for any given (discrete) basis of the Hilbert
function space L2(Γ\SE(2), μ). The paper concludes with some
convolution results.
Keywords: Special Euclidean group, non-commutative Fourier
series, coset space, discrete subgroup, crystallographic subgroup.

1. Introduction

The special Euclidean group SE(2) is a noncompact non-Abelian finite di-
mensional real Lie group which describes rigid body motions on R2. The
group SE(2) is a building block in coherent states, quantum mechanics,
and geometric harmonic analysis [2, 28, 35, 37]. Over the last few decades,
various computational aspects of constructive approximation techniques us-
ing harmonic analysis of functions on the unimodular non-Abelian group
SE(2) have attracted considerable attention in postmodern applications, see
[1, 5, 7, 8, 9, 13, 21, 22, 32, 33, 46, 47].

The right coset space of discrete and co-compact subgroups in SE(2),
such as Z2\SE(2), appears as the configuration space in many recent applica-
tions in computational science and engineering including robotics, computer
vision, computational biology, mathematical crystallography, and material
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science [4, 6, 9, 10, 11, 12, 30, 40, 43, 44]. Invoking the algebraic structure
of SE(2), the subgroup Z2 is not normal in SE(2) and hence the right coset
space Z2\SE(2) is not a group. Therefore, the classical notion of noncom-
mutative Fourier transform and thus Fourier type expansion on this compact
3-dimensional manifold are meaningless. However, there are still both alge-
braic and geometric structures on it, namely the transitive right action of
the Lie group SE(2) on the manifold Z2\SE(2), which makes the right coset
space into a homogeneous space.

Homogeneous spaces can be viewed as group-like structures with applica-
tions in differential geometry, geometric analysis, mathematical physics, and
coherent state (covariant) transforms, see [14, 28, 38, 45]. The mathemati-
cal theory of abstract Fourier analysis on homogeneous spaces of compact
groups, including left coset spaces of compact groups, have been studied at
depth in [16, 17] and references therein. In addition, in the case of canonical
homogeneous spaces of semi-direct product groups with Abelian normal fac-
tor, an approach to the relative Fourier analysis is discussed in [18]. The later
theories strongly benefit from some assumptions about the group which do
not hold for SE(2) and hence a different approach is required for the right
coset space Z2\SE(2).

The present article focuses on constructive aspects of non-commutative
Fourier expansions on the right coset space Γ\SE(2), when Γ is a discrete co-
compact subgroup of SE(2). Our aim is to further develop a non-commutative
Fourier-type reconstruction on the homogeneous space Γ\SE(2), based on the
algebraic structure of the coset space, which has not been studied as exten-
sively as the Fourier expansions on the group SE(2). We shall also address
analytic aspects of the proposed expansion as a constructive approximation,
using tools from abstract harmonic analysis and representation theory.

This article which contains 4 sections, is organized as follows. Section 2
is devoted to fixing notation and gives a brief summary of noncommutative
Fourier analysis on the unimodular group SE(2) and classical analysis on
the right coset space Γ\SE(2). In Section 3, we present the general theory
of noncommutative Fourier series for a class of L2-functions defined on the
right coset space Γ\SE(2), for any given (discrete) basis of the Hilbert func-
tion space L2(Γ\SE(2), μ), where μ is the finite SE(2)-invariant measure on
Γ\SE(2), normalized with respect to Weil’s formula. As the main result we
present a constructive series which can be viewed as reconstruction formula
for a class of functions on the right coset space Γ\SE(2), using the non-
Abelian Fourier integral on SE(2). We then present the notion of convolution
of functions on SE(2) by functions on Γ\SE(2), also called as the canonical
module action of the Banach algebra L1(SE(2)) on the Banach function space
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L1(Γ\SE(2), μ). We shall also study different analytic aspects of noncommu-
tative Fourier series for approximating the convolution functions on the right
coset space Γ\SE(2). As applications for noncommutative Fourier series of
convolution functions, the paper is concluded by presenting Plancherel type
formulas for a class of L2-functions on the right coset space Γ\SE(2).

2. Preliminaries and notation

Throughout this section, we review some preliminaries and fix the notations.
For more details, we refer the reader to see [21, 22] and references therein.
The 2D special orthogonal group SO(2) is defined as

SO(2) := {R ∈ O(2) : det(R) = 1},

where O(2) is the orthogonal group in dimension 2. It is worthwhile to mention
that every R ∈ SO(2) can be parameterized via

Rθ :=
(

cos θ − sin θ
sin θ cos θ

)
,

for some θ ∈ (0, 2π].
The special Euclidean group in dimension 2, denoted by SE(2), is defined

as the semi-direct product of the Abelian group R2 (the Plane) with the
Abelian group SO(2), which is

SE(2) = R2 � SO(2).

The group element g ∈ SE(2) denoted by the ordered pair g = (x,R) with
x = (x1, x2)T ∈ R2 and R ∈ SO(2).

For every g = (x,R) and g′ = (x′,R′) the group law of SE(2) is given by

g ◦ g′ = (x + Rx′,RR′),

and
g−1 = (−RTx,RT ),

where RT = R−1.
In addition, the special Euclidean group SE(2) can be represented as the

set of homogeneous transformation matrices

(1) g(x1, x2, θ) :=

⎛⎜⎝ cos θ − sin θ x1
sin θ cos θ x2

0 0 1

⎞⎟⎠ ,
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with θ ∈ (0, 2π] and x1, x2 ∈ R, or

(2) g(a, φ, θ) :=

⎛⎜⎝ cos θ − sin θ a cosφ
sin θ cos θ a sinφ

0 0 1

⎞⎟⎠ ,

with θ, φ ∈ (0, 2π] and a ≥ 0.
The non-Abelian group SE(2) is unimodular and the normalized Haar

measure on SE(2) is given by

dg = 1
4π2 dx1dx2dθ = 1

4π2 adadφdθ.

The convolution integral of functions f1, f2 ∈ L1(SE(2)) is defined by

(f1 � f2)(g) =
∫
SE(2)

f1(h)f2(h−1 ◦ g)dh,

for g ∈ SE(2).
The Lie group SE(2) is solvable. Therefore, one can apply classical tech-

niques for characterizing unitary irreducible representations (dual space) of
solvable Lie groups, see [3, 23, 39, 41, 42]. The set of all unitary equivalence
classes of (continuous) irreducible unitary representations (dual space) of the
non-Abelian group SE(2), denoted by ŜE(2), which is also known as the
spectrum of SE(2), can be constructed as

(3) ŜE(2) = {χn : n ∈ Z} ∪ {Up : p > 0} .

For every integer n, the character (one-dimensional continuous unitary rep-
resentation) χn : SE(2) → T is defined by

(4) χn(g) := einθ,

where g = (x,Rθ) ∈ SE(2) and T := {z ∈ C : |z| = 1}.
For every p > 0, the irreducible unitary representation Up : SE(2) →

U(L2(S1)) is defined by g �→ Up(g), where the unitary linear operator Up(g) :
L2(S1) → L2(S1) is

(5) [Up(g)v](u) := e−ip〈u,x〉v(RT
θ u),

for g = (x,Rθ) ∈ SE(2), v ∈ L2(S1), and u ∈ S1 := {t ∈ R2 : ‖t‖2 = 1}.
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The operator-valued Fourier integral of f ∈ L1(SE(2)) is defined by the
following operator-valued integral

(6) f̂(p) :=
∫
SE(2)

f(g)Up(g−1)dg for p > 0,

where the operator-valued integral (6) is considered in the weak sense.
The corresponding Fourier convolution property for f1, f2 ∈ L1(SE(2)) is

given by

(7) ̂(f1 � f2)(p) = f̂2(p)f̂1(p),

for every p > 0.
For every q ≥ 1, suppose that Hq(0,∞) is the Banach space consisting of

all measurable fields of bounded linear operators F on (0,∞) with

‖F‖Hq(0,∞) :=
(∫ ∞

0
‖F (p)‖qqpdp

)1/q
< ∞,

where for a bounded linear operator T , the Schatten q-norm of T is ‖T‖q :=
tr[|T |q]1/q and |T | := (T ∗T )1/2, see [34].

The non-commutative Fourier Parseval/Plancherel formula on the uni-
modular group SE(2) is given by∫

SE(2)
|f(g)|2dg =

∫ ∞

0
‖f̂(p)‖2

2pdp,

and the non-Abelian Fourier reconstruction integral on SE(2) is

(8) f(g) =
∫ ∞

0
tr

[
f̂(p)Up(g)

]
pdp,

for every f ∈ L1 ∩ L2(SE(2)) and g ∈ SE(2), see [41]. It should be noted
that the set {χn : n ∈ Z} consists of all characters of SE(2), has no role in
the non-commutative Fourier integral reconstruction formula (8).

Let Γ be a discrete co-compact subgroup of SE(2) with the counting mea-
sure as the Haar measure. Consequentially, the right coset space Γ\SE(2) :=
{Γg : g ∈ SE(2)} is compact as a homogeneous space which the Lie group
SE(2) acts on from the right. Each discrete co-compact subgroup Γ of SE(2)
is isomorphic to a group of the form Z2 � P, where P is a finite subgroup
of SO(2). Such a Γ must necessarily belongs to one of the five handedness
preserving wallpaper groups.
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The classical aspects of abstract harmonic analysis on locally compact
homogeneous spaces studied in [14, 19, 24, 25, 38] and references therein. Sup-
pose Cc(SE(2)) is the space of all continuous functions on SE(2) with compact
supports. The function space C(Γ\SE(2)), that is the set of all continuous
functions on Γ\SE(2), consists of all functions f̃ , where f ∈ Cc(SE(2)) and

(9) f̃(Γg) :=
∑
γ∈Γ

f(γ ◦ g),

for all g ∈ SE(2).
Let μ be a Radon measure on the right coset space Γ\SE(2) and h ∈

SE(2). The right translation μh of μ is defined by μh(E) := μ(E ◦ h), for
all Borel subsets E of Γ\SE(2), where E ◦ h := {Γg ◦ h : Γg ∈ E}. The
measure μ is called SE(2)-invariant if μh = μ, for all h ∈ SE(2). Since SE(2)
is unimodular, Γ is discrete and Γ\SE(2) is compact, the right coset space
Γ\SE(2) has a finite SE(2)-invariant measure μ, which satisfies the following
Weil’s formula

(10)
∫

Γ\SE(2)
f̃(Γg)dμ(Γg) =

∫
SE(2)

f(g)dg,

and hence the linear map f �→ f̃ is norm-decreasing from L1(SE(2)) into
L1(Γ\SE(2), μ), that is

‖f̃‖L1(Γ\SE(2),μ) ≤ ‖f‖L1(SE(2)),

for all f ∈ L1(SE(2)).

3. Abstract noncommutative Fourier series on Γ\SE(2)

This section investigates the notion of noncommutative Fourier series for
square integrable functions on the right coset space of discrete and co-compact
subgroups in SE(2). Throughout this section we assume that Γ is a discrete
co-compact subgroup of SE(2) and μ is the finite SE(2)-invariant measure
on the right coset space Γ\SE(2) which is normalized with respect to Weil’s
formula (10).

First, we need some preliminary results concerning L2-function space on
the right coset space Γ\SE(2).

Proposition 3.1. Let f ∈ L1(SE(2)) with |̃f | ∈ L2(Γ\SE(2), μ). Then f ∈
L2(SE(2)) and

‖f‖L2(SE(2)) ≤ ‖|̃f |‖L2(Γ\SE(2),μ).
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Proof. Let f ∈ L1(SE(2)) such that |̃f | ∈ L2(Γ\SE(2), μ). We then claim
that f ∈ L2(SE(2)). To see this, we first note that

∑
γ∈Γ

|f(γ ◦ g)|2 ≤

⎛⎝∑
γ∈Γ

|f(γ ◦ g)|

⎞⎠2

,

for g ∈ SE(2). Then, using Weil’s formula, we get

‖f‖2
L2(SE(2)) =

∫
SE(2)

|f(g)|2dg

=
∫

Γ\SE(2)

∑
γ∈Γ

|f(γ ◦ g)|2dμ(Γg)

≤
∫

Γ\SE(2)

⎛⎝∑
γ∈Γ

|f(γ ◦ g)|

⎞⎠2

dμ(Γg)

=
∫

Γ\SE(2)

⎛⎝∑
γ∈Γ

|f |(γ ◦ g)

⎞⎠2

dμ(Γg)

=
∫

Γ\SE(2)
|̃f |(Γg)2dμ(Γg) = ‖|̃f |‖2

L2(Γ\SE(2),μ),

which implies that f ∈ L2(SE(2)).

Corollary 3.1. Let f ∈ L1(SE(2)) with |̃f | ∈ L2(Γ\SE(2), μ). Then f̃ ∈
L2(Γ\SE(2), μ) and

‖f̃‖L2(Γ\SE(2),μ) ≤ ‖|̃f |‖L2(Γ\SE(2),μ).

Proof. Let f ∈ L1(SE(2)) with |̃f | ∈ L2(Γ\SE(2), μ). Then, for g ∈ SE(2),
we have

|f̃(Γg)| =

∣∣∣∣∣∣
∑
γ∈Γ

f(γ ◦ g)

∣∣∣∣∣∣ ≤
∑
γ∈Γ

|f(γ ◦ g)| = |̃f |(Γg).

Hence, we get

‖f̃‖2
L2(Γ\SE(2),μ) =

∫
Γ\SE(2)

|f̃(Γg)|2dμ(Γg)

≤
∫

Γ\SE(2)
|̃f |(Γg)2dμ(Γg) = ‖|̃f |‖2

L2(Γ\SE(2),μ).
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Suppose that K is a subset of SE(2) and ϕ : Γ\SE(2) → C is a function
with ∫

K
|ϕ(Γg)|dg < ∞.

For p > 0, define the bounded linear operator Qϕ
K(p) : L2(S1) → L2(S1) by

(11) Qϕ
K(p) :=

∫
K
ϕ(Γg)Up(g)dg.

The operator-valued integral (11) is considered in the weak sense. In details,
for every u ∈ L2(S1), the function Qϕ

K(p)u is defined by explicit L2(S1)-inner
product with an arbitrary v ∈ L2(S1) which is given by

(12) 〈Qϕ
K(p)u, v〉 :=

∫
K
ϕ(Γg)〈Up(g)u, v〉dg.

Since g �→ 〈Up(g)u, v〉 is a bounded and continuous function on SE(2) and
g �→ ϕ(Γg) is integrable on K, the integral on the right side of (12) is the ordi-
nary integral of a function on K. Also, (u, v) �→ 〈Qϕ

K(p)u, v〉 is a sesquilinear
form on L2(S1). In addition, we have

|〈Qϕ
Ku, v〉| =

∣∣∣∣∫
K
ϕ(Γg)〈Up(g)u, v〉dg

∣∣∣∣ ≤ ∫
K
|ϕ(Γg)||〈Up(g)u, v〉|dg

≤
∫
K
|ϕ(Γg)|‖Up(g)u‖‖v‖dg = ‖u‖L2(S1)‖v‖L2(S1)

(∫
K
|ϕ(Γg)|dg

)
,

implying that (u, v) �→ 〈Qϕ
K(p)u, v〉 is a bounded sesquilinear form on the

Hilbert space L2(S1). Therefore, using Theorem 2.3.6. of [36], we conclude
that Qϕ

K(p) defines a bounded linear operator on the Hilbert space L2(S1)
with the operator norm

‖Qϕ
K(p)‖ ≤

∫
K
|ϕ(Γg)|dg.

Remark 3.1. Let p > 0. There are canonical feasible scenarios for well-
defined Qϕ

K(p).
(i) If K is compact then each ϕ ∈ C(Γ\SE(2)), defines the bounded linear
operator Qϕ

K(p) on L2(S1) with the operator norm

‖Qϕ
K(p)‖ ≤

∫
K
|ϕ(Γg)|dg.



Abstract noncommutative Fourier series on Γ\SE(2) 79

(ii) If Ω is a fundamental domain of Γ in SE(2) then every ϕ∈L1(Γ\SE(2), μ),
defines the bounded linear operator Qϕ

Ω(p) on L2(S1) with the operator norm

‖Qϕ
Ω(p)‖ ≤ ‖ϕ‖L1(Γ\SE(2),μ).

Theorem 3.1. Let Γ be a discrete co-compact subgroup of SE(2). Suppose
K ⊂ SE(2) is compact and ϕ ∈ C(Γ\SE(2)). Assume f ∈ Cc(SE(2)) is
supported in K with f̂ ∈ H1(0,∞). Then

(13) 〈f̃ , ϕ〉 =
∫ ∞

0
tr

[
f̂(p)Qϕ

K(p)
]
pdp,

where

Qϕ
K(p) :=

∫
K
ϕ(Γg)Up(g)dg,

for p > 0.

Proof. We have f ∈ L1 ∩L2(SE(2)) and f̃ ∈ C(Γ\SE(2)) ⊂ L2(Γ\SE(2), μ).
Invoking Equation (8), we have

(14) f(g) =
∫ ∞

0
tr[f̂(p)Up(g)]pdp,

for g ∈ SE(2). Therefore, using Weil’s formula and (14), we get

〈f̃ , ϕ〉 =
∫

Γ\SE(2)
f̃(Γg)ϕ(Γg)dμ(Γg) =

∫
SE(2)

f(g)ϕ(Γg)dg

=
∫
K
f(g)ϕ(Γg)dg =

∫
K

(∫ ∞

0
tr[f̂(p)Up(g)]pdp

)
ϕ(Γg)dg.

Since f̂ ∈ H1(0,∞), we conclude that∫
K

∫ ∞

0
|tr[f̂(p)Up(g)]||ϕ(Γg)|pdpdg ≤

∫
K

∫ ∞

0
‖f̂(p)Up(g)‖1|ϕ(Γg)|pdpdg

≤
∫
K

∫ ∞

0
‖f̂(p)‖1‖Up(g)‖|ϕ(Γg)|pdpdg

=
∫
K

∫ ∞

0
‖f̂(p)‖1|ϕ(Γg)|pdpdg

= ‖f̂‖H1(0,∞)

(∫
K
|ϕ(Γg)|dg

)
< ∞,
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which guarantees that∫
K

(∫ ∞

0
tr[f̂(p)Up(g)]pdp

)
ϕ(Γg)dg =

∫ ∞

0

(∫
K

tr[f̂(p)Up(g)]ϕ(Γg)dg
)
pdp.

Thus, we achieve

(15) 〈f̃ , ϕ〉 =
∫ ∞

0

(∫
K

tr[f̂(p)Up(g)]ϕ(Γg)dg
)
pdp.

Since f̂ ∈ H1(0,∞), we can also conclude that the bounded linear operator
f̂(p) has a finite trace-class norm for a.e. p > 0. Suppose that {em : m ∈ Z}
is an orthonormal basis for L2(S1). Then,∫

K

∑
m∈Z

|ϕ(Γg)||〈f̂(p)Up(g)em, em〉|dg

=
∫
K
|ϕ(Γg)|

(∑
m∈Z

|〈f̂(p)Up(g)em, em〉|
)
dg

≤
∫
K
|ϕ(Γg)|‖f̂(p)Up(g)‖1dg

≤ ‖f̂(p)‖1

(∫
K
|ϕ(Γg)|dg

)
< ∞,

for a.e. p > 0. Therefore, we obtain

tr
[
f̂(p)Qϕ

K(p)
]

=
∑
m∈Z

〈f̂(p)Qϕ
K(p)em, em〉

=
∑
m∈Z

〈Qϕ
K(p)em, f̂(p)∗em〉

=
∑
m∈Z

∫
K
ϕ(Γg)〈Up(g)em, f̂(p)∗em〉dg

=
∑
m∈Z

∫
K
ϕ(Γg)〈f̂(p)Up(g)em, em〉dg

=
∫
K

∑
m∈Z

ϕ(Γg)〈f̂(p)Up(g)em, em〉dg

=
∫
K
ϕ(Γg)

(∑
m∈Z

〈f̂(p)Up(g)em, em〉
)
dg

=
∫
K
ϕ(Γg)tr[f̂(p)Up(g)]dg,
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for a.e. p ∈ (0,∞). Then, using (15), we get

〈f̃ , ϕ〉 =
∫ ∞

0

(∫
K

tr[f̂(p)Up(g)]ϕ(Γg)dg
)
pdp =

∫ ∞

0
tr

[
f̂(p)Qϕ

K(p)
]
pdp.

We now present the following constructive noncommutative Fourier type
approximation for a class of L2-functions on the right coset space Γ\SE(2)
with respect to orthonormal bases of continuous functions.

Proposition 3.2. Let Γ be a discrete co-compact subgroup of SE(2) and
E(Γ) := {ψ� : Γ\SE(2) → C | 
 ∈ I} be a (discrete) orthonormal basis for
the Hilbert function space L2(Γ\SE(2), μ) with E(Γ) ⊂ C(Γ\SE(2)). Suppose
K ⊂ SE(2) is compact and f ∈ Cc(SE(2)) is supported in K with f̂ ∈
H1(0,∞). Then

(16) f̃ =
∑
�∈I

(∫ ∞

0
tr

[
f̂(p)Q�

K(p)
]
pdp

)
ψ�,

where
Q�

K(p) :=
∫
K
ψ�(Γg)Up(g)dg,

for p > 0 and 
 ∈ I.

Proof. Since {ψ� : 
 ∈ I} is an orthonormal basis for L2(Γ\SE(2), μ), we get

(17) f̃ =
∑
�∈I

〈f̃ , ψ�〉ψ�.

Since each ψ� is continuous, by applying Equation (13), we have

〈f̃ , ψ�〉 =
∫ ∞

0
tr

[
f̂(p)Q�

K(p)
]
pdp,

which implies that

f̃ =
∑
�∈I

〈f̃ , ψ�〉ψ� =
∑
�∈I

(∫ ∞

0
tr

[
f̂(p)Q�

K(p)
]
pdp

)
ψ�.

Remark 3.2. For instance if Γ := Z2, one of the classical ways to construct
an orthonormal basis for the Hilbert function space L2(Z2\SE(2), μ) is to
consider an orthonormal basis for L2(Ω) with Ω = [0, 1)2×[0, 2π). To this end,
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for each integral vector 
 = (k1, k2, k3)T ∈ Z3, define the function ψ� : Ω → C

by

(18) ψ�(x, y, θ) := exp (2πi(k1x + k2y)) exp(ik3θ),

for all (x, y, θ) ∈ Ω.

We can also conclude the following results for functions supported in a
fundamental domain of Γ in SE(2).

Proposition 3.3. Let Γ be a discrete co-compact subgroup of SE(2) and
ϕ ∈ L2(Γ\SE(2), μ). Suppose Ω is a fundamental domain of Γ in SE(2).
Assume f ∈ Cc(SE(2)) is supported in Ω with f̂ ∈ H1(0,∞). Then

(19) 〈f̃ , ϕ〉 =
∫ ∞

0
tr

[
f̂(p)Qϕ

Ω(p)
]
pdp,

where
Qϕ

Ω(p) :=
∫

Ω
ϕ(Γg)Up(g)dg,

for p > 0.

Proof. Suppose Ω is a fundamental domain of Γ in SE(2). Since ϕ ∈
L2(Γ\SE(2), μ) and hence ϕ ∈ L1(Γ\SE(2), μ), Q�

Ω(p) defines a bounded
linear operator on L2(S1), for every p > 0. Then, using a similar method as
we used in Theorem 3.1, we get

〈f̃ , ϕ〉 =
∫ ∞

0
tr

[
f̂(p)Qϕ

Ω(p)
]
pdp,

where
Qϕ

Ω(p) :=
∫

Ω
ϕ(Γg)Up(g)dg,

for p > 0.

We then present the following constructive noncommutative Fourier type
approximation for a class of L2-functions on the right coset space Γ\SE(2).

Theorem 3.2. Let Γ be a discrete co-compact subgroup of SE(2) and E(Γ) :=
{ψ� : Γ\SE(2) → C | 
 ∈ I} be a (discrete) orthonormal basis for the Hilbert
function space L2(Γ\SE(2), μ). Suppose Ω is a fundamental domain of Γ in
SE(2). Assume f ∈ Cc(SE(2)) is supported in Ω with f̂ ∈ H1(0,∞). Then

(20) f̃ =
∑
�∈I

(∫ ∞

0
tr

[
f̂(p)Q�

Ω(p)
]
pdp

)
ψ�,
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where
Q�

Ω(p) :=
∫

Ω
ψ�(Γg)Ug(p)dg,

for p > 0 and 
 ∈ I.

Proof. Suppose Ω is a fundamental domain of Γ in SE(2). Since each ψ� ∈
L2(Γ\SE(2), μ) and hence ψ� ∈ L1(Γ\SE(2), μ), Q�

Ω(p) defines a bounded
linear operator on L2(S1), for every p > 0. Let f ∈ Cc(SE(2)) be supported
in Ω with f̂ ∈ H1(0,∞). Since {ψ� : 
 ∈ I} is an orthonormal basis for
L2(Γ\SE(2), μ), we get

(21) f̃ =
∑
�∈I

〈f̃ , ψ�〉ψ�.

Applying Equation (19) we get

f̃ =
∑
�∈I

〈f̃ , ψ�〉ψ� =
∑
�∈I

(∫ ∞

0
tr

[
f̂(p)Q�

Ω(p)
]
pdp

)
ψ�.

Absolutely convergent Fourier series on Γ\SE(2) Let Γ be a discrete
co-compact subgroup of SE(2) and μ be the finite SE(2)-invariant measure
on the right coset space Γ\SE(2) which is normalized with respect to Weil’s
formula (10). Suppose E(Γ) := {ψ� : Γ\SE(2) → C | 
 ∈ I} is a (discrete)
orthonormal basis for the Hilbert function space L2(Γ\SE(2), μ) with E(Γ) ⊆
C(Γ\SE(2)). Let A(E) be the linear subspace of L2(Γ\SE(2), μ) given by

A(E) :=
{
ψ ∈ L2(Γ\SE(2), μ) :

∑
�∈I

|〈ψ, ψ�〉|‖ψ�‖sup < ∞
}
.

We then deduce the following observations concerning the function space
A(E).

Proposition 3.4. Let Γ be a discrete co-compact subgroup of SE(2) and
E(Γ) := {ψ� : Γ\SE(2) → C | 
 ∈ I} be a (discrete) orthonormal basis for the
Hilbert function space L2(Γ\SE(2), μ) with E(Γ) ⊂ C(Γ\SE(2)). Then,

1. The sequence {‖ψ�‖−1
sup : 
 ∈ I} is bounded.

2. For each sequence {a� : 
 ∈ I} ∈ �1(I), we have {‖ψ�‖−1
supa� : 
 ∈ I} ∈

�2(I).
3. For each complex valued sequence {a� : 
 ∈ I} ∈ �1(I), we have∑

�∈I
‖ψ�‖−1

supa�ψ� ∈ A(E).
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Proof. (1) Let 
 ∈ I be given. Since Γ\SE(2) is compact and hence has finite
volume, we get

‖ψ�‖2
L2(Γ\SE(2),μ) =

∫
L2(Γ\SE(2),μ)

|ψ�(Γg)|2dμ(Γg) ≤ ‖ψ�‖2
supμ(Γ\SE(2)).

Therefore, we have

‖ψ�‖−1
sup ≤ ‖ψ�‖−1

L2(Γ\SE(2),μ)

√
μ(Γ\SE(2)) = μ(Γ\SE(2))1/2.

(2) Suppose {a� : 
 ∈ I} ∈ �1(I) is given. Using boundedness of {‖ψ�‖−1
sup :


 ∈ I}, we get {‖ψ�‖−1
supa� : 
 ∈ I} ∈ �1(I). Since 
1(I) ⊆ 
2(I), we achieve

{‖ψ�‖−1
supa� : 
 ∈ I} ∈ �2(I).

(3) Suppose {a� : 
 ∈ I} ∈ �1(I) is given. Since {‖ψ�‖−1
supa� : 
 ∈ I} ∈ �2(I),

we have
∑

�∈I ‖ψ�‖−1
supa�ψ� ∈ L2(Γ\SE(2), μ). Let ψ :=

∑
�∈I ‖ψ�‖−1

supa�ψ� and

′ ∈ I. We then have 〈ψ, ψ�′〉 = ‖ψ�′‖−1

supa�′ . Therefore, we get

∑
�′∈I

|〈ψ, ψ�′〉|‖ψ�′‖sup =
∑
�′∈I

|a�′ | < ∞,

which implies that
∑

�∈I ‖ψ�‖−1
supa�ψ� ∈ A(E).

Theorem 3.3. Let Γ be a discrete co-compact subgroup of SE(2) and E(Γ) :=
{ψ� : Γ\SE(2) → C | 
 ∈ I} be a (discrete) orthonormal basis for the Hilbert
function space L2(Γ\SE(2), μ) with E(Γ) ⊂ C(Γ\SE(2)). Suppose ψ ∈ A(E)
is given. Then,

1. The series
∑

�∈I〈ψ, ψ�〉ψ� converges uniformly on Γ\SE(2).
2. For μ-a.e. Γg ∈ Γ\SE(2), we have

(22) ψ(Γg) =
∑
�∈I

〈ψ, ψ�〉ψ�(Γg).

3. If ψ is continuous then the reconstruction formula (22) holds pointwise.

Proof. (1) Invoking the Weierstrass M -test, the series
∑

�∈I〈ψ, ψ�〉ψ� con-
verges uniformly on Γ\SE(2).
(2) Using (1), the series

∑
�∈I〈ψ, ψ�〉ψ�(Γg) converges for each g ∈ SE(2),

denoted by ϕ(Γg). Then, ϕ : Γ\SE(2) → C given by Γg �→ ϕ(Γg) is a well-
defined complex valued bounded function. Since each ψ� is continuous, we de-
duce that ϕ is continuous as well. Thus, we conclude that ϕ ∈ L2(Γ\SE(2), μ).
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Suppose 
′ ∈ I is arbitrary. We then have

〈ϕ, ψ�′〉 =
∫

Γ\SE(2)
ϕ(Γg)ψ�′(Γg)dμ(Γg)

=
∫

Γ\SE(2)

(∑
�∈I

〈ψ, ψ�〉ψ�(Γg)
)
ψ�′(Γg)dμ(Γg)

=
∑
�∈I

〈ψ, ψ�〉
(∫

Γ\SE(2)
ψ�(Γg)ψ�′(Γg)dμ(Γg)

)
=

∑
�∈I

〈ψ, ψ�〉〈ψ�, ψ�′〉 =
∑
�∈I

〈ψ, ψ�〉δ�,�′ = 〈ψ, ψ�′〉,

which implies that ϕ = ψ in L2(Γ\SE(2), μ). This implies that Equation (22)
holds for μ-a.e. Γg ∈ Γ\SE(2).
(3) is straightforward from (2).

Theorem 3.4. Let Γ be a discrete co-compact subgroup of SE(2) and E(Γ) :=
{ψ� : Γ\SE(2) → C | 
 ∈ I} be a (discrete) orthonormal basis for the
Hilbert function space L2(Γ\SE(2), μ) with E(Γ) ⊂ C(Γ\SE(2)). Suppose
K ⊂ SE(2) is compact and f ∈ Cc(SE(2)) is supported in K such that
f̂ ∈ H1(0,∞) and f̃ ∈ A(E). Then, for every Γh ∈ Γ\SE(2), we have

(23) f̃(Γh) =
∑
�∈I

(∫ ∞

0
tr

[
f̂(p)Q�

K(p)
]
pdp

)
ψ�(Γh),

where

Q�
K(p) :=

∫
K
ψ�(Γg)Up(g)dg,

for p > 0 and 
 ∈ I.

Proof. Invoking Theorem 3.3(2), we get

(24) f̃(Γh) =
∑
�∈I

〈f̃ , ψ�〉ψ�(Γh),

for μ-a.e. Γh ∈ Γ\SE(2). Also, using Theorem 3.1, we have

(25) 〈f̃ , ψ�〉 =
∫ ∞

0
tr

[
f̂(p)Q�

K(p)
]
pdp,
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for all 
 ∈ I. Applying (25) in (24) we get

f̃(Γh) =
∑
�∈I

〈f̃ , ψ�〉ψ�(Γh)

=
∑
�∈I

(∫ ∞

0
tr

[
f̂(p)Q�

K(p)
]
pdp

)
ψ�(Γh),

for μ-a.e. Γh ∈ Γ\SE(2). Since f is continuous, f̃ is continuous and using
Theorem 3.3(3), we conclude that the function f̃ , satisfies Equation (26), for
all Γh ∈ Γ\SE(2).

Corollary 3.2. Let Γ be a discrete co-compact subgroup of SE(2) and E(Γ) :=
{ψ� : Γ\SE(2) → C | 
 ∈ I} be a (discrete) orthonormal basis for the Hilbert
function space L2(Γ\SE(2), μ) with E(Γ) ⊂ C(Γ\SE(2)). Suppose Ω is a
fundamental domain of Γ in SE(2). Assume f ∈ Cc(SE(2)) is supported in
Ω with f̂ ∈ H1(0,∞) and f̃ ∈ A(E). Then, for every h ∈ Ω, we have

(26) f(h) =
∑
�∈I

(∫ ∞

0
tr

[
f̂(p)Q�

Ω(p)
]
pdp

)
ψ�(Γh),

where

Q�
Ω(p) :=

∫
Ω
ψ�(Γg)Up(g)dg,

for p > 0 and 
 ∈ I.

4. Abstract noncommutative Fourier series of convolutions
on Γ\SE(2)

Throughout this section we still assume that Γ is a discrete co-compact sub-
group of SE(2) and μ is the finite SE(2)-invariant measure on the right coset
space Γ\SE(2) which is normalized with respect to Weil’s formula (10).

We then introduce the notion of convolution integral of functions on
SE(2) by functions on Γ\SE(2). Also, we shall study different aspects of
noncommutative Fourier series for approximating the convolution functions
on the right coset space Γ\SE(2), using the non-Abelian Fourier integral op-
erator on SE(2). As applications for noncommutative Fourier series of con-
volution functions, we discuss noncommutative Plancherel type formulas for
functions on the right coset space Γ\SE(2).
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Convolution of functions The structure of convolution function algebras
on left coset spaces of compact subgroups in locally compact groups intro-
duced in [20] and studied in details using an operator theoretic approach in
[15, 19]. This theory can be canonically reformulated for right coset spaces
of compact subgroups in locally compact groups and hence be employed for
convolution integrals on right coset space of compact subgroups in SE(2)
which is not the case for Γ\SE(2) if Γ is not a finite subgroup. We here ex-
tend convolution structure of functions for the case of the right coset space
of Γ\SE(2).

Let f ∈ L1(SE(2)) and ψ ∈ L1(Γ\SE(2), μ). Then, define the convolution
of f with ψ as the function ψ � f : Γ\SE(2) → C via

(27) (ψ � f)(Γg) :=
∫
SE(2)

ψ(Γh)f(h−1 ◦ g)dh,

for g ∈ SE(2).
For each γ ∈ Γ and g ∈ SE(2), we can write∫

SE(2)
ψ(Γh)f(h−1 ◦ γ ◦ g)dh =

∫
SE(2)

ψ(Γγ ◦ h)f((γ ◦ h)−1 ◦ γ ◦ g)d(γ ◦ h)

=
∫
SE(2)

ψ(Γh)f((γ ◦ h)−1 ◦ γ ◦ g)dh

=
∫
SE(2)

ψ(Γh)f(h−1 ◦ γ−1 ◦ γ ◦ g)dh

=
∫
SE(2)

ψ(Γh)f(h−1 ◦ g)dh,

hence we deduce that

Γg �→
∫
SE(2)

ψ(Γh)f(h−1 ◦ g)dh,

is well-defined as a function on the right coset space Γ\SE(2).
Next result shows that L1(Γ\SE(2), μ) equipped with the module action

of L1(SE(2)) given by (27) is a Banach module.

Theorem 4.1. Let f ∈ L1(SE(2)) and ψ ∈ L1(Γ\SE(2), μ). Then, ψ � f ∈
L1(Γ\SE(2), μ) with

‖ψ � f‖L1(Γ\SE(2),μ) ≤ ‖f‖L1(SE(2))‖ψ‖L1(Γ\SE(2),μ).
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Proof. Let f ∈ L1(SE(2)) and ψ ∈ L1(Γ\SE(2), μ). We then have

‖ψ � f‖L1(Γ\SE(2),μ)

=
∫

Γ\SE(2)

∣∣∣∣∣
∫
SE(2)

ψ(Γh)f(h−1 ◦ g)dh
∣∣∣∣∣ dμ(Γg)

≤
∫

Γ\SE(2)

∫
SE(2)

∣∣∣ψ(Γh)f(h−1 ◦ g)
∣∣∣ dhdμ(Γg)

=
∫

Γ\SE(2)

∫
SE(2)

|ψ(Γh)||f(h−1 ◦ g)|dhdμ(Γg)

=
∫

Γ\SE(2)

∫
SE(2)

|ψ(Γg ◦ h)||f((g ◦ h)−1 ◦ g)|d(g ◦ h)dμ(Γg)

=
∫

Γ\SE(2)

∫
SE(2)

|ψ(Γg ◦ h)||f(h−1)|dhdμ(Γg)

=
∫
SE(2)

(∫
Γ\SE(2)

|ψ(Γg ◦ h)|dμ(Γg)
)
|f(h−1)|dh

=
∫
SE(2)

(∫
Γ\SE(2)

|ψ(Γg)|dμ(Γg ◦ h−1)
)
|f(h−1)|dh

=
∫
SE(2)

(∫
Γ\SE(2)

|ψ(Γg)|dμ(Γg)
)
|f(h−1)|dh

= ‖ψ‖L1(Γ\SE(2),μ)

(∫
SE(2)

|f(h−1)|dh
)

= ‖f‖L1(SE(2))‖ψ‖L1(Γ\SE(2),μ).

Proposition 4.1. Let f ∈ L1(SE(2)) and ψ ∈ L1(Γ\SE(2), μ). Then

(28) (ψ � f)(Γg) =
∫

Γ\SE(2)
ψ(Γh)

⎛⎝∑
γ∈Γ

f(h−1 ◦ γ−1 ◦ g)

⎞⎠ dμ(Γh).

Proof. Let f ∈ L1(SE(2)) and ψ ∈ L1(Γ\SE(2), μ). Let g ∈ SE(2). Using
Weil’s formula, we obtain

(ψ � f)(Γg) =
∫
SE(2)

ψ(Γh)f(h−1g)dh

=
∫

Γ\SE(2)

⎛⎝∑
γ∈Γ

ψ(Γγ ◦ h)f((γ ◦ h)−1 ◦ g)

⎞⎠ dμ(Γh)
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=
∫

Γ\SE(2)

⎛⎝∑
γ∈Γ

ψ(Γh)f((γ ◦ h)−1 ◦ g)

⎞⎠ dμ(Γh)

=
∫

Γ\SE(2)
ψ(Γh)

⎛⎝∑
γ∈Γ

f(h−1 ◦ γ−1 ◦ g)

⎞⎠ dμ(Γh).

Theorem 4.2. Let f1, f2 ∈ L1(SE(2)) and g ∈ SE(2). Then

(29) ˜(f1 � f2)(Γg) = (f̃1 � f2)(Γg).

Proof. Let fk ∈ L1(SE(2)) with k ∈ {1, 2} and g ∈ SE(2). We then have

˜(f1 � f2)(Γg) =
∑
γ∈Γ

(f1 � f2)(γ ◦ g)

=
∑
γ∈Γ

(∫
SE(2)

f1(h)f2(h−1 ◦ γ ◦ g)dh
)

=
∑
γ∈Γ

(∫
SE(2)

f1(γ ◦ h)f2(h−1 ◦ g)dh
)

=
∫
SE(2)

⎛⎝∑
γ∈Γ

f1(γ ◦ h)

⎞⎠ f2(h−1 ◦ g)dh

=
∫
SE(2)

f̃1(Γh)f2(h−1 ◦ g)dh = (f̃1 � f2)(Γg).

We then present some constructive expansions for the coefficients of con-
volution of L1(SE(2)) on L1(Γ\SE(2), μ) in the L2-sense.

Theorem 4.3. Let Γ be a discrete co-compact subgroup of SE(2). Suppose
K ⊂ SE(2) is compact and ϕ ∈ C(Γ\SE(2)). Let fk ∈ Cc(SE(2)) with k ∈
{1, 2} be supported in Bk ⊂ SE(2) such that B1 ◦B2 ⊂ K. Then

(30) 〈f̃1 � f2, ϕ〉 =
∫ ∞

0
tr

[
f̂2(p)f̂1(p)Qϕ

K(p)
]
pdp,

where for p > 0 and 
 ∈ I we have

Qϕ
K(p) :=

∫
K
ϕ(Γg)Up(g)dg.
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Proof. Assume that f := f1 � f2. Then, f is supported in K. Since each
fk ∈ L1 ∩ L2(SE(2)), we conclude that every f̂k(p) has a finite Hilbert–
Schmidt norm, for a.e. p > 0. Hence,

‖f̂(p)‖1 = ‖f̂1 � f2(p)‖1 = ‖f̂2(p)f̂1(p)‖1 ≤ ‖f̂2(p)‖2‖f̂1(p)‖2 < ∞,

which guarantees that for a.e. p > 0 the bounded linear operator f̂(p) is of
trace-class. In addition, we obtain∫ ∞

0
‖f̂(p)‖1pdp ≤

∫ ∞

0
‖f̂2(p)‖2‖f̂1(p)‖2pdp

≤
(∫ ∞

0
‖f̂2(p)‖2

2pdp

)1/2 (∫ ∞

0
‖f̂1(p)‖2

2pdp

)1/2

= ‖f̂2‖H2(0,∞)‖f̂1‖H2(0,∞),

implying that f̂ ∈ H1(0,∞). Therefore, applying Theorem 3.1 for f , we get

〈f̃1 � f2, ϕ〉 = 〈f, ϕ〉

=
∫ ∞

0
tr

[
f̂(p)Qϕ

K(p)
]
pdp

=
∫ ∞

0
tr

[
f̂1 � f2(p)Qϕ

K(p)
]
pdp =

∫ ∞

0
tr

[
f̂2(p)f̂1(p)Qϕ

K(p)
]
pdp.

Next we conclude some reconstruction expansions including Fourier coef-
ficients for the convolution of L1(SE(2)) on L1(Γ\SE(2), μ) in the L2-sense.

Proposition 4.2. Let Γ be a discrete co-compact subgroup of SE(2) and
E(Γ) := {ψ� : Γ\SE(2) → C | 
 ∈ I} be a (discrete) orthonormal basis for
the Hilbert function space L2(Γ\SE(2), μ) with E(Γ) ⊂ C(Γ\SE(2)). Suppose
K ⊂ SE(2) is compact and fk ∈ Cc(SE(2)) with k ∈ {1, 2} are supported in
Bk ⊂ SE(2) such that B1 ◦B2 ⊂ K. Then

(31) f̃1 � f2 =
∑
�∈I

(∫ ∞

0
tr

[
f̂2(p)f̂1(p)Q�

K(p)
]
pdp

)
ψ�,

where for p > 0, and 
 ∈ I we have

Q�
K(p) :=

∫
K
ψ�(Γg)Up(g)dg.
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Proof. Suppose that f := f1 � f2. Then, f is supported in K. So, ψ := f̃ is in
L2(Γ\SE(2), μ) as well. Since {ψ� : 
 ∈ I} is an orthonormal basis, we get

(32) ψ =
∑
�∈I

〈ψ, ψ�〉ψ�.

Using Theorem 4.2, we have ψ = f̃1 � f2. Therefore, by applying Equation
(30) in (32), we get

f̃1 � f2 =
∑
�∈I

〈f̃1 � f2, ψ�〉ψ�

=
∑
�∈I

(∫ ∞

0
tr

[
f̂2(p)f̂1(p)Q�

K(p)
]
pdp

)
ψ�.

We then conclude the following results for functions supported in a fun-
damental domain of Γ in SE(2).

Proposition 4.3. Let Γ be a discrete co-compact subgroup of SE(2) and
ϕ ∈ L2(Γ\SE(2), μ). Suppose Ω is a fundamental domain of Γ in SE(2).
Let fk ∈ Cc(SE(2)) with k ∈ {1, 2} be supported in Bk ⊂ SE(2) such that
B1 ◦B2 ⊂ Ω. Then

(33) 〈f̃1 � f2, ϕ〉 =
∫ ∞

0
tr

[
f̂2(p)f̂1(p)Qϕ

Ω(p)
]
pdp,

where for p > 0 we have

Qϕ
Ω(p) :=

∫
Ω
ϕ(Γg)Up(g)dg.

Proof. Suppose that Ω is a fundamental domain of Γ in SE(2). Since ϕ ∈
L2(Γ\SE(2), μ) and hence ϕ ∈ L1(Γ\SE(2), μ), Qϕ

Ω(p) defines a bounded
linear operator on L2(S1), for every p > 0. Assume that f := f1 � f2. Then, f
is supported in Ω. Hence, using a similar method as we used in Theorem 4.3,
we get

〈f̃1 � f2, ϕ〉 =
∫ ∞

0
tr

[
f̂2(p)f̂1(p)Qϕ

Ω(p)
]
pdp.

Corollary 4.1. Let Γ be a discrete co-compact subgroup of SE(2) and E(Γ) :=
{ψ� : Γ\SE(2) → C | 
 ∈ I} be a (discrete) orthonormal basis for the Hilbert
function space L2(Γ\SE(2), μ). Suppose Ω is a fundamental domain of Γ in
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SE(2). Let fk ∈ Cc(SE(2)) with k ∈ {1, 2} be supported in Bk ⊂ SE(2) such
that B1 ◦B2 ⊂ Ω. Then

(34) f̃1 � f2 =
∑
�∈I

(∫ ∞

0
tr

[
f̂2(p)f̂1(p)Q�

Ω(p)
]
pdp

)
ψ�,

where for p > 0 and 
 ∈ I, we have

Q�
Ω(p) :=

∫
Ω
ψ�(Γg)Up(g)dg.

Absolutely convergent Fourier series of convolutions on Γ\SE(2)
We then deduce the following constructive expansions for the convolution of
L1(SE(2)) on L1(Γ\SE(2), μ) in the almost everywhere and pointwise senses.

Theorem 4.4. Let Γ be a discrete co-compact subgroup of SE(2) and E(Γ) :=
{ψ� : Γ\SE(2) → C | 
 ∈ I} be a (discrete) orthonormal basis for the
Hilbert function space L2(Γ\SE(2), μ) with E(Γ) ⊂ C(Γ\SE(2)). Suppose
K ⊂ SE(2) is compact. Let fk ∈ Cc(SE(2)) with k ∈ {1, 2} be supported in
Bk ⊂ SE(2) such that B1 ◦ B2 ⊂ K and f̃1 � f2 ∈ A(E). Then, for every
Γg ∈ Γ\SE(2), we have

(35) (f̃1 � f2)(Γg) =
∑
�∈I

(∫ ∞

0
tr

[
f̂2(p)f̂1(p)Q�

K(p)
]
pdp

)
ψ�(Γg),

where for p > 0 and 
 ∈ I, we have

Q�
K(p) :=

∫
K
ψ�(Γg)Up(g)dg.

Proof. Since f̃1 � f2 ∈ A(E), using Theorem 3.3(3), we have

(f̃1 � f2)(Γg) =
∑
�∈I

〈f̃1 � f2, ψ�〉ψ�(Γg),

for every Γg ∈ Γ\SE(2). Invoking Equation (30), we have

〈f̃1 � f2, ψ�〉 =
∫ ∞

0
tr

[
f̂2(p)f̂1(p)Q�

Ω(p)
]
pdp,

which completes the proof.
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Corollary 4.2. Let Γ be a discrete co-compact subgroup of SE(2) and E(Γ) :=
{ψ� : Γ\SE(2) → C | 
 ∈ I} be a (discrete) orthonormal basis for the Hilbert
function space L2(Γ\SE(2), μ) with E(Γ) ⊂ C(Γ\SE(2)). Suppose Ω is a
fundamental domain of Γ in SE(2). Let fk ∈ Cc(SE(2)) with k ∈ {1, 2} be
supported in Bk ⊂ SE(2) such that B1 ◦B2 ⊂ K and f̃1 � f2 ∈ A(E). Then,
for every h ∈ Ω, we have

(36) f1 � f2(h) =
∑
�∈I

(∫ ∞

0
tr

[
f̂2(p)f̂1(p)Q�

Ω(p)
]
pdp

)
ψ�(Γh),

where for p > 0 and 
 ∈ I, we have

Q�
Ω(p) :=

∫
Ω
ψ�(Γg)Up(g)dg.

Plancherel formula We then finish the paper by presenting Plancherel
type formulas according to the noncommutative Fourier series on Γ\SE(2).

The following result presents the canonical connection of L2-norms on the
right coset space Γ\SE(2) with convolution of functions.

Proposition 4.4. Let f ∈ L1(SE(2)) with |̃f | ∈ L2(Γ\SE(2), μ) be given.
Then,

‖f̃‖2
L2(Γ\SE(2),μ) = (f̃ � f∗)(Γ).

Proof. Since f̃ ∈ L2(Γ\SE(2), μ), using Weils formula, we obtain

‖f̃‖2
L2(Γ\SE(2),μ) =

∫
Γ\SE(2)

|f̃(Γh)|2dμ(Γh) =
∫

Γ\SE(2)
f̃(Γh)f̃(Γh)dμ(Γh)

=
∫

Γ\SE(2)

∑
γ∈Γ

f̃(Γγ ◦ h)f(γ ◦ h)dμ(Γh)

=
∫
SE(2)

f̃(Γh)f(h)dh

=
∫
SE(2)

f̃(Γh)f∗(h−1)dh = (f̃ � f∗)(Γ).

We then have the following general form of Plancherel formula associated
to the noncommutative Fourier series on Γ\SE(2).

Theorem 4.5. Let Γ be a discrete co-compact subgroup of SE(2) and E(Γ) :=
{ψ� : Γ\SE(2) → C | 
 ∈ I} be a (discrete) orthogonal basis for the Hilbert
function space L2(Γ\SE(2), μ) with E(Γ) ⊂ C(Γ\SE(2)). Suppose K ⊂ SE(2)
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is compact and f ∈ Cc(SE(2)) is supported in B ⊂ SE(2) with B ◦B−1 ⊂ K
and f̃ � f∗ ∈ A(E). Then

(37) ‖f̃‖2
L2(Γ\SE(2),μ) =

∑
�∈I

(∫ ∞

0
tr

[
|f̂(p)|2Q�

K(p)
]
pdp

)
ψ�(Γ),

where for p > 0 and 
 ∈ I, we have

Q�
K(p) :=

∫
K
ψ�(Γg)Up(g)dg.

Proof. Using Equation (35) and Proposition 4.4, we get

‖f̃‖2
L2(Γ\SE(2),μ) = (f̃ � f∗)(Γ)

=
∑
�∈I

(∫ ∞

0
tr

[
f̂∗(p)f̂(p)Q�

K(p)
]
pdp

)
ψ�(Γ)

=
∑
�∈I

(∫ ∞

0
tr

[
f̂(p)∗f̂(p)Q�

K(p)
]
pdp

)
ψ�(Γ)

=
∑
�∈I

(∫ ∞

0
tr

[
|f̂(p)|2Q�

K(p)
]
pdp

)
ψ�(Γ).

Corollary 4.3. Let Γ be a discrete co-compact subgroup of SE(2) and E(Γ) :=
{ψ� : Γ\SE(2) → C | 
 ∈ I} be a (discrete) orthogonal basis for the Hilbert
function space L2(Γ\SE(2), μ) with E(Γ) ⊂ C(Γ\SE(2)). Suppose Ω is a
fundamental domain for Γ in SE(2). Assume f ∈ Cc(SE(2)) is supported in
B ⊂ SE(2) with B ◦B−1 ⊂ Ω and f̃ � f∗ ∈ A(E). Then

(38) ‖f‖2
L2(SE(2)) =

∑
�∈I

(∫ ∞

0
tr

[
|f̂(p)|2Q�

Ω(p)
]
pdp

)
ψ�(Γ),

where for p > 0 and 
 ∈ I, we have

Q�
Ω(p) :=

∫
Ω
ψ�(Γg)Up(g)dg.

Concluding remarks. This paper has developed an abstract theory of
Fourier series on the compact space Γ\SE(2), where Γ is discrete and co-
compact. In recent years, Prof. Bernard Shiffman has worked on geometric
aspects of fundamental domains of related spaces. Moreover, substantial work
exists on harmonic analysis on spaces Γ\G when G is compact or semi-simple,
which is not the case for SE(2). This paper therefore provides an example
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for how to define Fourier series with useful convolution-theorem properties in
cases not handled by previous theory.

In some applications in mathematical crystallography and robotics, con-
volutions of continuous functions on the right coset space Γ\SE(2) appear. In
contrast to classical unimodular Fourier/Plancherel theory of the non-Abelian
group SE(2), where the spectrum of functions with compact support is nei-
ther compactly supported nor discrete, in this paper an alternative construc-
tive method is introduced in which noncommutative Fourier reconstruction
formulas with discrete spectrum are constructed.
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