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Abstract: This is a survey on the Fano schemes of linear spaces,
conics, rational curves, and curves of higher genera in smooth pro-
jective hypersurfaces, complete intersections, Fano threefolds, on
the related Abel–Jacobi mappings, etc.
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Introduction

A classical problem of enumerative geometry asks to count curves with given
numerical invariants in a smooth complete intersection variety X in Pn. This
includes the study of various Fano schemes of X, that is, the components of
the Hilbert schemes of curves with given numerical invariants, in particular,
the Fano schemes of lines and conics. The present paper is a survey on this
problem. We concentrate mainly on concrete numerical results. A special at-
tention is paid to the case of surfaces and threefolds. We discuss the lines and
conics in Fano threefolds, which are not necessarily complete intersections.
The latter involves the Abel–Jacobi mapping, the related cylinder homomor-
phism, and Torelli type theorems. To keep a reasonable volume, we do not
outline proofs, and restrict the exposition to smooth projective varieties. We
are working over the complex number field unless otherwise is stated, while
many results remain valid over any algebraically closed field of characteris-
tic zero. In the majority of cases, the names of the authors of cited results
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appear only in the list of references. Together with the best known result,
we often mention its predecessors; we apologize for possible confusions. We
hope to provide the reader with a brief introduction to several chapters of
this beautiful subject and a practical guide on the extended bibliography.

Several important topics remain outside our survey, such as, e.g.: ratio-
nal curves in Kähler varieties [90], in Moishezon varieties, see, e.g., [422],
in hyperkähler varieties, see, e.g., [4], in fibered varieties, see, e.g., [5, 6],
pseudo-holomorphic curves in symplectic manifolds, see, e.g., [13, 227, 259,
245, 386, 387], minimal rational curves and the varieties of minimal rational
tangents, see, e.g., [7, 8, 265, 267–270, 562], (minimal) rational and elliptic
curves in flag varieties, Schubert varieties, Bott–Samuelson varieties, etc., see,
e.g., [77, 134, 271, 341, 423, 432, 435, 436, 561], varieties covered by lines and
conic-connected varieties, see, e.g., [292–294, 379, 380], Prym varieties, see,
e.g., [33, 34, 155, 190, 199, 208, 209, 302, 414, 453, 454, 530, 565, 566], etc. We
avoid the vast domain of Mirror Symmetry and the Gromov–Witten invari-
ants, see, e.g., [12, 49, 152, 251–254, 328, 329, 363, 385, 450]. Among the topics
missing in this survey, one should mention as well the results inspired by the
Manin conjectures on the asymptotic of rational points and rational curves on
Fano varieties [374, 375], see, e.g., [26, 27, 72–74, 317, 352, 432, 435, 436, 438–
440, 484, 485, 520–522] and the literature therein.

1. Counting lines on surfaces

Cayley and Salmon [84, 483] and also Clebsch [122] discovered that any
smooth complex cubic surface in P3 contains exactly 27 lines. See, e.g., [249]
for a historical summary, [186, 468] for the modern treatment, [31, 32, 85,
205, 312, 373, 424, 489, 509] for the count of lines on cubic surfaces over R

and in characteristic p > 0, [240] and [388] for the monodromy of lines in
families of cubic surfaces and [111] for lines on singular cubic surfaces.

In the case of quartic surfaces in P3 the following is known.

Theorem 1.1. (a) The maximal number of lines on a smooth quartic in P3

is 64. This maximum is achieved by the F. Schur quartic. Any smooth
quartic with 64 lines is isomorphic to the F. Schur quartic [173, 459,
488, 490].

(b) In the projective space |OP3(4)| parameterizing the quartics in P3, the
subvariety of quartics containing a line has codimension one and degree
320. The general point of this subvariety represents a quartic surface
with a unique line [376, 385].
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The first claim in (a) is due to B. Segre [490], but his proof contains a
mistake. In [173] and [459] there are two different proofs based on the ideas
of B. Segre.

In the case of quintics we have the following weaker results. We let Σ(d, n)
stand for the projective space |OPn(d)| = P(n+d

n )−1 parameterizing the degree d
effective divisors on Pn. The general point of Σ(d, n) corresponds to a smooth
hypersurface of degree d in Pn.

Theorem 1.2. (a) A smooth quintic surface in P3 contains at most 127
lines [461].

(b) The variety of quintic surfaces in P3 containing a line is irreducible of
degree 1990 and of codimension 2 in Σ(5, 3). The general point of this
variety corresponds to a quintic surface with a unique line [372, 376].

The exact upper bound for the number of lines in a smooth quintic is
unknown. The Fermat quintic and the Barth quintic contain exactly 75 lines
each.

For higher degree surfaces in P3 the following is known (cf. Theorem 1.1.b).

Theorem 1.3. (a) A smooth surface of degree d ≥ 3 in P3 contains at
most 11d2 − 32d + 24 lines [30].1

(b) The surfaces of degree d in P3 containing a line are parameterized by
an irreducible subvariety in Σ(d, 3) of codimension d− 3 and degree

(1) 1
24

(
d + 1

4

)
(3d4 + 6d3 + 17d2 + 22d + 24) .

The general such surface contains a unique line [372, 376].

Once again, for d ≥ 5 the exact upper bound in (a) is unknown. The
Fermat surface of degree d contains exactly 3d2 lines. As for (b), there are
analogous formulas for the degrees of the loci of degree d surfaces in P3 passing
through a given line and containing an extra line, and, respectively, containing
three lines in general position; see [372, Prop. 3.3 and 6.4.1]. The latter locus
is of codimension 3d+ 3− 12 = 3d− 9 in Σ(d, 3). For d = 3 its degree equals
720, in agreement with the combinatorics of triplets of skew lines contained
in a smooth cubic surface.

1This improves the former upper bound 11d2 − 28d + 12 [490].
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2. The numerology of Fano schemes

Given a variety X ⊂ Pn the Fano scheme Fh(X) is the scheme of h-planes
contained in X. Recall that a hypersurface is very general if it belongs to the
complement of countably many proper subvarieties in the space of hypersur-
faces of a given degree. For the Fano schemes of lines on hypersurfaces one
has the following results.

Theorem 2.1. For a smooth hypersurface X of degree d in Pn, where n ≥ 3,
the following holds.

(a) ([23, 42, 44, 47, 342, 343, 356], [321, Ch. V, 2.9, 4.3, 4.5])
– If d ≤ 2n− 3 then the Fano scheme of lines F1(X) is nonempty;
– if d < n then X is covered by lines. The latter holds also for non-

smooth hypersurfaces;
– F1(X) is smooth of the expected dimension δ = 2n−3−d if either

X is general, or d ≤ min{8, n} and δ ≥ 0;
– F1(X) is irreducible if d ≤ (n+1)/2 and X is not a smooth quadric

in P3; it is connected if d ≤ 2n− 5.
(b) – If

(d+1
2
)
≤ n then F1(X) is rationally connected and is a Fano

variety for X general [321, Exerc. V.4.7].
– If

(d+2
2
)
≥ 3n and X is very general then F1(X) contains no ra-

tional curve [474, Thm. 3.3].
(c) Any hypersurface of degree d = 2n−3 in Pn contains a line. The number

of lines in a general such hypersurface is2

d · d!
n−3∑
k=0

(2k)!
k!(k + 1)!

∑
I⊂{1,...,n−2}, |I|=n−2−k

∏
i∈I

(d− 2i)2

i(d− i) .

For instance, a general quintic threefold in P4 contains exactly 2875
lines [234].

The De Jong–Debarre Conjecture [159] states that dim(F1(X)) = δ for
any smooth hypersurface in Pn of degree d ≤ n. The upper bound n is optimal;
indeed, for any d > n, there exists a smooth hypersurface X of degree d in
Pn with dim(F1(X)) > δ [47, Cor. 3.2]. For instance, the Fano variety of lines
on a Fermat hypersurface of degree d ≥ n in Pn is of dimension n − 3 [158,
Ch. 2, p. 50] (see also [519]), which is larger than δ when d > n. On the

2See also [543] for another expression of this number.
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Fermat quintic threefold X5 in P4 there are 50 one-parameter families of lines
[1], cf. (c). Whereas for n = 4, d = 3, the Fano variety of lines F1(X3) on the
cubic Fermat threefold X3 = {x3

1 + x3
2 + x3

3 + x3
4 + x3

5 = 0} in P4 is a smooth
surface (and so, dim(F1(X3)) = δ = 2) carrying 30 smooth elliptic Fermat
cubic curves [478].

For varieties with too many lines we have the following classification re-
sults, see [87, Thm. 4.2].

Theorem 2.2 ([477, 491]). Let X ⊂ Pn be a k-dimensional subvariety of
codimension at least 3. Then dim(F1(X)) ≤ 2k − 2. Furthermore,

• if dim(F1(X)) = 2k − 2 then X = Pk;
• if dim(F1(X)) = 2k − 3 then X is either a quadric or a 1-parameter

family of Pk−1;
• if dim(F1(X)) = 2k−4 then X is either a 1-parameter family of (k−1)-

dimensional quadrics, a 2-parameter family of Pk−2, or the intersection
of 6−k hyperplanes with the Grassmannian Gr(2, 5) ⊂ P9 in its Plücker
embedding.

For lines in an arbitrary subvariety in Pn one has the following fact.

Theorem 2.3 ([345, Thm. 1]; see [394] for m = 3). Let X be a projective
variety of dimension m in Pn. Assume X is covered by lines and through a
general point of X pass a finite number of lines. Then there are at most m!
lines passing through a general point of X.

Notice that a line osculating to order m+1 at a general point of X must be
contained in X [339]. The bound m! in the theorem is optimal; it is achieved
for a smooth hypersurface of degree m in Pm+1. A similar uniform bound is
known for higher degree curves.

Theorem 2.4 ([266, Thm. 2]). Let X be an irreducible projective variety of
dimension m in Pn, and x ∈ X be a general point. Let Curvesd(X, x) stand
for the space of curves of degree d lying on X and passing through x. Then
the number of components of Curvesd(X, x) is bounded above by

(
(2m + 2)((2md)m − 1)

2m + 1

)(2m+2)(4d2−4d+2)

.

The exceptional locus in this theorem has codimension at least two in X
[266, Thm. 3].

For the Fano schemes of h-planes in hypersurfaces we have the following
facts.
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Theorem 2.5. If X is a smooth hypersurface of degree d in Pn where n ≥ 3
then:

• Fh(X) is irreducible of the expected dimension δ = (h+1)(n−h)−
(d+h

h

)
provided

2
(
d + h− 1

h

)
≤ n− h;

• for 2h ≥ max{(n− 1)/2, n + 2 − d} one has [41]

dim(Fh(X)) ≤
{

(m− h)(h + 1) if n = 2m + 1
(m− h− 1)(h + 1) if n = 2m ;

• if n is odd and d > 2 then there are at most finitely many (n − 1)/2-
planes contained in X. If n is even and d > 3 then there is at most a
one-parameter family of (n/2 − 1)-planes in X [41];

• assume X is general,
(d+h

h

)
≤ (n − h)(h + 1), and d �= 2 or n ≥

2h + 1. Then there are explicit formulas for the degree of Fh(X) [169,
Ex. 14.7.13], [251, Thm. 1.1], [377, Thms. 3.5.18, 4.3].3

If X is a complete intersection of type (that is, of multidegree) d =
(d1, . . . , ds) then the expected dimension of Fh(X) is

(2) δ = δ(d, n, h) = (n− h)(h + 1) −
s∑

i=1

(
di + h

h

)
.

In particular, the expected dimension of F1(X) is

δ = 2(n− 1) − (d + s) where d =
s∑

i=1
di.

Let also
δ− = min{δ, n− 2h− s}.

For (a) and (b) of the following theorem see [69, 169, 345, 444] and the
references therein.

Theorem 2.6. For a complete intersection X ⊂ Pn of type d = (d1, . . . , ds)
the following holds.

3In the case of equality Fh(X) is zero-dimensional and deg(Fh(X)) is the number
of h-planes in X.
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(a) If δ− < 0 then Fh(X) = ∅ for a general X.
(b) If δ− ≥ 0 then Fh(X) has dimension δ, is smooth for a general X, and

is irreducible if δ− > 0.
(c) If δ− ≥ 0 and δ ≥ n − h − s then through any point x ∈ X passes an

h-plane contained in X [397].
(d) For any smooth Fano complete intersection X ⊂ Pn of type d =

(d1, . . . , ds) with s ≥ 2 and d =
∑s

i=1 di ≤ s + 5, F1(X) has the ex-
pected dimension δ = 2n− d− s− 2 [87].

See also [96, 287–289, 291] for the Fano schemes of toric varieties and of
complete intersections in toric varieties and [348, 349] for applications to the
machine learning.

Theorem 2.7 ([25, 397]; see [377] for s = 1). Let Σ(d, n) be the scheme which
parameterizes the complete intersections of type d = (d1, . . . , ds) in Pn, and
let Σ(d, n, h) be the subvariety of Σ(d, n) of points which correspond to the
complete intersections which carry h-planes. Then

dim Σ(d, n) =
s∑

j=1

(
dj + n

dj

)
.

If γ(d, n, h) := −δ(d, n, h) > 0 then Σ(d, n, h) is a nonempty, irreducible and
rational subvariety of codimension γ(d, n, h) in Σ(d, n). The general point
of Σ(d, n, h) corresponds to a complete intersection which contains a unique
linear subspace of dimension h and has singular locus of dimension max{−1,
2h+ s−n− 1} along its unique h-dimensional linear subspace (in particular,
it is smooth provided n ≥ 2h + s).

To determine the degree of Σ(d, n, h) we propose the following receipt.

Theorem 2.8 ([121, Cor. 2.2]). Let X be a general complete intersection of
type (d1, . . . , ds−1) in Pn verifying

dim(Fh(X)) > 0 and dim(Σ(dm, X)) > γ(d, n, h) � 0

where
Σ(dm, X) = |OX(dm)| .

Let Σ(ds, X, h) be the set of points in Σ(ds, X) which correspond to complete
intersections of type d = (d1, . . . , ds) contained in X and containing a lin-
ear subspace of dimension h. Then the degree deg(Σ(dm, X, h)) equals the
coefficient of the monomial xn0xn−1

1 · · · xn−h
h in the product of the following

polynomials in x0, . . . , xh:
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• the product Qh,d =
∏s−1

i=1 Qh,di of the polynomials

Qh,di =
∏

v0+...+vh=di

(v0x0 + · · · + vhxh) ;

• the homogeneous component of degree

ρ :=
(
ds + h

h

)
− γ(d, n, h) = dim(Fh(X))

of the polynomial
∏

v0+...+vh=dm

(1 + v0x0 + . . . + vhxh) ;

• the Vandermonde polynomial V (x0, . . . , xh).

The general point of Σ(dm, X, h) corresponds to a complete intersection of
type d = (d1, . . . , ds) which contains a unique subspace of dimension h.

Notice that our assumptions hold automatically if γ(d, n, h) is sufficiently
small, e.g., if γ(d, n, h) = 1.

3. Geometry of the Fano scheme

In this section we consider the complete intersections of type d = (d1, . . . , ds)
in Pn whose Fano schemes have positive expected dimension δ = δ(d, n, h) >
0, see (2). We assume di ≥ 2, i = 1, . . . , s. If also n ≥ 2h + s + 1 then by
Theorem 2.7(b), for a general complete intersection X of type d in Pn, the
Fano variety Fh(X) of linear subspaces of dimension h contained in X is a
smooth, irreducible variety of dimension δ(d, n, h).

Theorem 3.1 ([169, Thm. 4.3]). In the notation and assumptions as before,
the degree of the Fano scheme Fh(X) under the Plücker embedding equals the
coefficient of the monomial xn0xn−1

1 · · · xn−h
h of the product Qh,d · eδ · V where

• V stands for the Vandermonde polynomial V (x) =
∏

0≤i<j≤h(xi − xj);
• e(x) := x0 + · · · + xh and δ = δ(d, n, h);
• Qh,d is the product

∏s
i=1 Qh,di of the polynomials

Qh,di =
∏

v0+...+vh=di

(v0x0 + · · · + vhxh) .
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Remark 3.2. An alternative expression for deg(Fh(X)) based on the Bott
residue formula can be found in [121, Formula (4)], [250, Thm. 1.1], and [252,
Thm. 2]; cf. also [211, Ex. 14.7.13], [376], and [377, Sect. 3.5].

There are formulas expressing certain numerical invariants of Fh(X) other
than the degree. If δ(d, n, h) = 1 then Fh(X) is a smooth curve; its genus was
computed in [252]. In the case where Fh(X) is a surface, that is, δ(d, n, h) = 2,
the Chern numbers of this surface and its holomorphic Euler characteris-
tic χ(OFh(X)) were computed in [121]. Actually, [121] contains formulas for
c1(Fh(X)) and c2(Fh(X)) in the general case provided δ(d, n, h) > 0. Ap-
plying these formulas to the case where the Fano scheme is a surface one
can deduce the classically known values and new ones, as in the following
examples.

Examples 3.3. • In the case of the Fano surface F = F1(X) of lines on
the general cubic threefold X in P4 one has [3, 362], [121, Ex. 4.1]

deg(F ) = 45, e(F ) = c2(F ) = 27, c1(F )2 = K2
F = 45, χ(OF ) = 6.

• For the Fano surface F = F1(X) of lines on a general quintic fourfold
X in P5 one gets [121, Ex. 4.2]

deg(F ) = 6125, e(F ) = c2(F ) = 309375,
c21(F ) = K2

F = 496125, and χ(OF ) = 67125 .

• For the Fano surface F = F1(X) of lines on the intersection X of two
general quadrics in P5 one has [121, Ex. 4.3]

deg(F ) = 32, e(F ) = c2(F ) = 0
and K2

F = c1(F )2 = 0 .

In fact, F is an abelian surface [469].
• Finally, for the Fano scheme F = F2(X) of planes on a general cubic

fivefold X in P6 one gets [121, Ex. 4.4]

deg(F ) = 2835, e(F ) = c2(F ) = 1304,
K2

F = c1(F )2 = 25515 and χ(OF ) = 3213 .

For the Picard numbers of the Fano schemes of complete intersections one
has the following result.
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Theorem 3.4 ([304, Thm. 03]; cf. also [169]). Let X be a very general com-
plete intersection of type d = (d1, . . . , ds) in Pn. Assume δ(d, n, h) ≥ 2. Then
ρ(Fh(X)) = 1 except in the following cases:

• X is a quadric in P2h+1, h ≥ 1. Then Fh(X) consists of two isomorphic
smooth disjoint components. The Picard number of each component is
1;

• X is a quadric in P2h+3, h ≥ 1. Then ρ(Fh(X)) = 2;
• X is a complete intersection of two quadrics in P2h+4, h ≥ 1. Then
ρ(Fh(X)) = 2h + 6.

The assumption ‘very general’ of this theorem cannot be replaced by ‘gen-
eral’; one can find corresponding examples in [304]. See also [233, Chapter 22]
for the Fano varieties of smooth quadrics. For instance, the Fano variety of
lines on a smooth three-dimensional quadric is isomorphic to P3 [233, Exer-
cice 22.6].

Next we turn to the irregular Fano schemes of general complete intersec-
tions.

Theorem 3.5 ([121, Thm. 5.1]). Let X be a general complete intersection
of type d = (d1, . . . , ds) in Pn. Suppose that the Fano scheme F = Fh(X) of
h-planes in X, h ≥ 1, is irreducible of dimension δ ≥ 2. Then F is irregular
if and only if one of the following holds:

(i) F = F1(X) is the variety of lines on a general cubic threefold X in P4

(dim(F ) = 2);
(ii) F = F2(X) is the variety of planes on a general cubic fivefold X in P6

(dim(F ) = 2);
(iii) F = Fh(X) is the variety of h-planes on the intersection X of two

general quadrics in P2h+3, h ∈ N (dim(F ) = h + 1).

Remark 3.6. 1. The Fano surface of lines F = F1(X) on a smooth cubic
threefold X ⊂ P4 in (i) was studied by Fano [201] who found, in particular,
that q(F ) = 5. Using Example 3.3 we deduce pg(F ) = 10; cf. also [34, Thm. 4],
[66, 129, 218, 362, 481, 534, 535], [469, Sect. 4.3]. There is an isomorphism
Alb(F ) 	 J(X) where J(X) is the intermediate Jacobian, see [129] and Sec-
tion 5. The latter holds as well for F = F2(X) where X ⊂ P6 is a smooth
cubic fivefold as in (ii) [135], cf. Example 3.3. Thus, q(F ) > 0 in (i) and (ii).

Consider further the Fano scheme F = Fh(X) of h-planes on a smooth
intersection X of two quadrics in P2h+3 as in (iii). By a theorem of M. Reid
[469, Thm. 4.8] (see also [181, Thm. 2], [538]) F is isomorphic to the Jacobian
J(C) of a hyperelliptic curve C of genus g(C) = h + 1 (of an elliptic curve if
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h = 0). Hence, one has q(F ) = dim(F ) = h + 1 > 0 for h ≥ 0. There is an
isomorphism F 	 J(X) where J(X) is the intermediate Jacobian of X [189].

2. The complete intersections in (i)–(iii) are Fano varieties. The ones in (i)
are Fano threefolds of index 2 with a very ample generator of the Picard group.
The Fano threefolds of index 1 with a very ample anticanonical divisor which
are complete intersections are the varieties V 3

2g−2 ⊂ Pg+1 of genera g = 3, 4, 5,
that is (see [297, Ch. IV, Prop. 1.4]; cf. Section 5):

• g = 3: the smooth quartics V 3
4 in P4;

• g = 4: the smooth intersections V 3
6 of a quadric and a cubic in P5;

• g = 5: the smooth intersections V 3
8 of three quadrics in P6.

The Fano scheme of lines F = F1 of a general Fano threefold V 3
2g−2 is a smooth

curve of a positive genus g(F ) > 0. In fact, g(F ) = 801 for g = 3, g(F ) = 271
for g = 4, and g(F ) = 129 for g = 5 [381], [252, Ex. 1–3], [301, Thm. 4.2.7].
For X = V 3

2g−2 with g ∈ {3, 4, 5}, the Abel–Jacobi map J(F ) → J(X) to the
intermediate Jacobian is an epimorphism, see [297] and [536, Lect. 4, Sect. 1,
Ex. 1 and Sect. 3].

3. Besides the Fano threefolds V 3
2g−2, there are other complete intersec-

tions whose Fano scheme of lines is a curve of positive genus. This holds for
instance for the general hypersurface of degree 2r−4 in Pr, r ≥ 4, and for the
general complete intersections of types d = (n−3, n−2) and d = (n−4, n−4)
in Pn where n ≥ 5 and n ≥ 6, respectively [252, Ex. 1–3]. One can find in
[252] a formula for the genus of F in these cases.

4. Let X be a smooth intersection of two quadrics in P2k+2. Then the Fano
scheme Fk(X) is reduced and finite of cardinality 22k+2 [469, Ch. 2], whereas
Fk−1(X) is a rational Fano variety of dimension 2k and index 1, whose Picard
number is ρ = 2k + 4, see [9, 94], and the references therein.

5. It is shown in [102, 455] that the component of the Hilbert scheme whose
general point is a pair of transversal linear subspaces in Pn of given dimensions
a, b, is a Mori dream space; its effective and nef cones are described, and it is
determined as to when such a component is Fano.

4. Counting conics in complete intersection

A conic in Pn is a curve whose Hilbert polynomial is 2t + 1. Any conic C is
contained in a unique plane and is either a smooth (reduced) plane conic, or a
pair of distinct lines, or a double line (see, e.g., [174, Lem. 2.2.6]). Thus, a pair
of skew lines does not fit in our terminology. Likewise, the general member
of the Hilbert scheme Hilb3(Pn) of curves in Pn whose Hilbert polynomial is
3t + 1 is a twisted cubic.
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Any smooth cubic surface S in P3 contains exactly 27 pencils of conics,
and any smooth conic in S belongs to a unique such pencil. Hence the variety
of conics in S is reducible and consists of 27 P1-components.

By contrast, the number of conics on a general quartic surface in P3 is
finite. Furthermore, one has

Theorem 4.1 ([29]). There exist smooth quartic surfaces in P3 which contain
432 smooth conics; 16 of these conics are mutually disjoint.

According to [419], 16 is the maximal number of disjoint rational curves
on a quartic surface. In [24] and [198] one can find constructions of two smooth
quartic surfaces in P3 carrying 352 and 320 smooth conics, respectively. The
maximal number of conics lying in a smooth quartic in P3 is unknown. How-
ever, given any smooth quartic surface S, a general pencil of quartic surfaces
through S contains exactly 5016 surfaces with a conic, counting things with
multiplicities, see Theorem 4.2. Let Σc(d, 3) be the variety of those degree d

surfaces in P3 which contain conics. Then a general point of Σc(4, 3) corre-
sponds to a smooth quartic surface carrying exactly two (coplanar) conics,
and so, deg(Σc(4, 3)) = 5016/2 = 2508.

For higher degree surfaces in P3 the following holds.

Theorem 4.2 ([376]; see also [372, Prop. 7.1]). • For d ≥ 4, Σc(d, 3) is
an irreducible subvariety of codimension 2d−7 in Σ(d, 3). In particular,
Σc(4, 3) is a hypersurface of degree 2508 in Σ(4, 3).4

• For d ≥ 5, a general point of Σc(d, 3) corresponds to a surface which
contains a unique (smooth) conic, and one has

deg(Σc(d, 3)) = 1
967680

(
d

4

)
(d2 − d + 8)(d2 − d + 6)(207d8 − 288d7

+498d6 + 5068d5 − 15693d4 + 31732d3 − 37332d2 + 9280d− 47040).

For higher dimensional hypersurfaces we have the following results.

Theorem 4.3. (a) Let X be a hypersurface of degree n in Pn, n ≥ 2. Then
X is covered by a family of conics. For the general such X, the number
of conics in X passing through a general point equals

(2n)!
2n+1 − (n!)2

2
4Cf. [385].
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[68, Prop. 3.2], see also [356, Thm. 0.1], [518] (n = 4), [139, Thm. 2]
(n = 5). For n ≥ 4 and a general X, the variety R2(X) of smooth
conics in X is smooth, irreducible, of dimension n− 2.

(b) For the general hypersurface X of degree d in Pn, where n ≥ 3, R2(X)
is smooth of the expected dimension μ(d, n) := 3n − 2d − 2 provided
μ(d, n) ≥ 0, and is empty otherwise. It is irreducible provided μ(d, n) ≥
1 and X is not a smooth cubic surface in P3 [213, Thm. 1.1].

(c) If X is general and d ≥ 3n−1 then X contains no reducible conic [474,
Thm. 3.4].

(d) Let further X be an arbitrary smooth hypersurface of degree d in Pn.

– Assume n ≥ 6 and d ≤ 6 (so, X is Fano). Let R �= ∅ be an irre-
ducible component of R2(X) such that the plane spanned by a gen-
eral conic in R is not contained in X. Then dim(R) = μ(d, n) =
3n− 2d− 2 [214].

– Let X be a smooth quartic threefold in P4 (n = d = 4). Then
dimR ≥ μ(4, 4) = 2 for any irreducible component R of R2(X).
Through a general point of X passes 972 conics [138, 295, 518].

For instance, for a general sextic hypersurface X in P5 (n = 5, d = 6 and
X is Calabi–Yau) the Fano scheme Fc(X) of conics in X is a smooth projective
curve whose general point corresponds to a smooth conic [89, Prop. 1.3–1.4].
By (b), for a general Fano hypersurface X in Pn (that is, d ≤ n) R2(X) is
smooth, irreducible, of dimension μ(d, n) ≥ 1 if n ≥ 4.

For conics in Fano complete intersections we have the following facts.

Theorem 4.4 ([501, Lem. 1]). Let X ⊂ Pn be the general complete inter-
section of dimension ≥ 3. Then the Fano scheme of conics in X is a smooth
projective variety.

Theorem 4.5 ([36, 68]). Consider a smooth complete intersection X ⊂ Pn

of type d = (d1, . . . , ds). Assume

(3) 2
s∑

i=1
di = n− s + 1 .

Then the following holds.

• X is a Fano variety with Picard number one of index ι(X) = n−s+1
2 .

The anticanonical degree of a conic in X equals n− s + 1.
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• For a general X the family of conics in X is a nonempty, smooth and
irreducible component of the Chow scheme of X5 of dimension 2(n −
s− 1).

• Let e(X) (e0(X), respectively) be the number of conics passing through
a general pair of points of X (passing through a general point x ∈ X

and having a given general tangent direction at x, respectively). Then
for a general X these conics are smooth and one has

e0(X) = e(X) =
s∏

i=1
(di − 1)!di! .

See [36] for formulas for the numbers of lines and conics in X meeting three
general linear subspaces in Pr of suitable dimensions; cf. also [362] and [510]
in the case of lines, [45, Cor. 1.5] and [541]. See [70] for the variety of lines
in P3 tangent to four given quadric surfaces. See also [428] for a study on the
Kontsevich moduli spaces M0,2(X, 2) of conics through a pair of points in a
smooth complete intersection X (see the definition below).

Set

ε(d, n) = 2d + 2 − 3n = −μ(d, n) .

Consider the subvariety Σc(d, r) of Σ(d, r) whose points correspond to hyper-
surfaces containing plane conics.

Theorem 4.6 ([121, Thms. 6.1, 6.6]). Assume d ≥ 2, n ≥ 3 and ε(d, n) ≥ 0.
Then the following holds.

(a) Σc(d, n) is irreducible of codimension ε(d, n) in Σ(d, n).
(b) If ε(d, n) > 0 and (d, n) �= (4, 3) then the hypersurface corresponding to

the general point of Σc(d, n) contains a unique conic and this conic is
smooth. In the case (d, n) = (4, 3) it contains exactly two distinct conics
and these conics are smooth and coplanar.

(c) If ε(d, n) > 0 and (d, n) �= (4, 3) then one has

deg(Σc(d, n)) = − 5
32

(
n + 1

3

)
η(1, 1, 1) ,

where η is the homogeneous form of degree 3n− 1 in the formal power

5The latter holds as well if the equality in (3) is replaced by the inequality “≤”
[68, Cor. 2.1].
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series decomposition of
⎛
⎝ ∏

|v|=d

(1 + 〈v,x〉)

⎞
⎠ ·

⎛
⎝ ∏

|v|=d−2
(1 + 〈v,x〉)

⎞
⎠

−1

with x = (x1, x2, x3), v = (v1, v2, v3) ∈ (Z≥0)3, and |v| = v1 + v2 + v3.

The latter formulas are obtained by applying Bott’s residue formula; see,
e.g., [71, 76, 193, 251, 389] for generalities.

Recall the definition of the Kontsevich moduli spaces of stable maps [328].
Let X be a smooth projective variety in Pn. The Kontsevich moduli space
Mg,r(X, e) parameterizes the isomorphism classes of corteges (C, f, x1, · · · ,
xr) where

• C is a proper, connected, nodal curve of arithmetic genus g;
• f : C → X is a morphism whose image is a curve of degree e in Pn;
• (x1, · · · , xr) is an ordered collection of distinct smooth points of C;
• the cortege (C, f, x1, · · · , xr) admits only finitely many automorphisms.

In general, Mg,r(X, e) is a proper Deligne–Mumford stack. The underlying
variety of Mg,r(X, e) is projective but does not need to be smooth or irre-
ducible. However, M0,0(X, e) is a compactification of the variety Re(X) of
smooth rational curves in X of degree e.

Recall that a curve C 	 P1 in a smooth projective variety X of dimension
m is called free if NC/X 	 O(a1)⊕ . . .⊕O(am−1) where ai ≥ 0 ∀i. Statement
(a) of the next theorem follows from Theorem 4.3(b).

Theorem 4.7.

(a) Let X be a smooth hypersurface in Pn of degree d < n.
– If X is general then M0,0(X, 2) is irreducible and of the expected

dimension μ(d, n) = 3n− 2d− 2 [174, 2.3.4].
– If X is arbitrary (but smooth) then there is a unique component

of M0,0(X, 2) which contains a conic passing through the general
point of X. Moreover, if the dimension of the variety of non-free
lines on X is at most n − 3 then there is a unique component of
R2(X) whose general point corresponds to a smooth conic through
the general point of X [174, 2.3.6].

(b) Let X be the Fermat hypersurface in Pn of degree d. Then the moduli
space M0,0(X, e) is irreducible of the expected dimension e(n+1−d)+
(n− 4) in the following cases:
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– e ≥ 2 and ed ≤ n + 1;
– e ≥ 3 and ed ≤ n− 1.

It is irreducible as well if e = 3 and 3d ≤ n+5 [174, 2.4.4–2.4.6, 2.4.23,
2.4.30, 2.4.36].

5. Lines and conics on Fano threefolds and the Abel–Jacobi
mapping

5.1. The Fano–Iskovskikh classification

The content of this section is partially borrowed from [301, Sect. 4.1] and
[336, Sect. 2]. Let X be a smooth Fano threefold, that is, a smooth threefold
with an ample anticanonical divisor −KX . One attributes to X the following
integers:

• the genus6

g(X) = (−KX)3/2 + 1 = dim | −KX | − 1 ≥ 2 ;

• the index ι(X), that is, the maximal natural number in {1, . . . , 4} such
that −KX = ι(X)H for an ample divisor H on X;

• the Picard rank ρ(X) such that Pic(X) 	 Zρ(X);
• the degree d(X) = H3;
• the Matsusaka constant m0 = m0(X), that is, the minimal integer such

that m0H is very ample.

One has g(X) = ι(X)3d(X)/2 + 1. Hence d(X) = 2g(X) − 2 if and only if
ι(X) = 1.

The Fano–Iskovskikh classification of the Fano threefolds with Picard rank
ρ(X) = 1 yields

Theorem 5.1 ([297], [301, Sect. 4.1]). Let X be a smooth Fano threefold of
genus g with ρ(X) = 1. Then one of the following (i)–(iii) holds.

(i) The anticanonical divisor is very ample, and the linear system | −KX |
defines an embedding ϕ of X onto a projectively normal threefold ϕ(X)
of degree 2g − 2 in Pg+1 with one of the following:
(i3) g = 3 and ϕ(X) ⊂ P4 is a smooth quartic threefold;

6The genus g(X) is equal to the genus g of a general curve section of the anti-
canonical model of X.
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(i4) g = 4 and ϕ(X) ⊂ P5 is complete intersection of a quadric and a
cubic hypersurfaces;

(i5) g = 5 and ϕ(X) ⊂ P6 is complete intersection of three quadric
hypersurfaces;

(ig) g ≥ 6 and ϕ(X) ⊂ Pg+1 is an intersection of quadric hypersur-
faces.

(ii) g = 2 and X is a sextic double solid, that is, | −KX | defines a double
cover X → P3 ramified along a smooth surface S ⊂ P3 of degree 6;

(iii) g = 3 and |−KX | defines a double cover X → Q over a smooth quadric
threefold Q ⊂ P4 ramified along a smooth surface S ⊂ Q of degree 8.

The table of numerical data of the Fano threefolds with ρ(X) = 1 can
be found in [301, Sect. 12.2]. These threefolds form 17 deformation families.
According to the index, these are:

• ι = 1: 10 families with genera varying from 2 to 12 excluding 11;
• ι = 2: 5 families of del Pezzo threefolds with anticanonical degree
−K3

X = 8d, d = 1, 2, 3, 4, 5;
• ι = 3: the smooth quadric Q in P4 with anticanonical degree 54;
• ι = 4: P3 with anticanonical degree 64.

The families of Fano threefolds V 3
2g−2 ⊂ Pg+1 with ρ = 1 and ι = 1 are

classified according to the genus g as follows.

• g = 2, 3, 4, 5: the Fano threefolds listed in (i3)–(i5), (ii), and (iii);
• g = 6: the smooth intersections Gr(2; 5) ∩ P7 ∩Q of the Grassmannian

Gr(2; 5) with a linear subspace P7 and a quadric Q in P9, and
• g = 6: the Gushel threefolds of genus 6, that is, the double covers of the

del Pezzo threefold Y = Gr(2; 5) ∩ P6 ⊂ P9 of degree 5 branched along
a smooth quadric section Q ∩ Y ;

• g = 7: the smooth linear sections OGr+(5; 10) ∩ P8 of a connected
component OGr+(5; 10) of the orthogonal Lagrangian Grassmannian in
P15;

• g = 8: the smooth linear sections Gr(2; 6) ∩ P9 of the Grassmannian
Gr(2; 6) ⊂ P14;

• g = 9: the smooth linear sections LGr(3; 6) ∩ P10 of the symplectic
Lagrangian Grassmannian LGr(3; 6) ⊂ P13;

• g = 10: the smooth linear sections Ω5 ∩ P11 of the homogeneous G2-
fivefold Ω5 ⊂ P13 (an adjoint orbit of the group G2);

• g = 12: the smooth zero loci of triplets of sections of the rank 3 vector
bundle Λ2E∨, where E is the universal bundle over the Grassmannian
Gr(3; 7).
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Initially, the Fano threefolds V 3
2g−2 with g = 7, 9, 12 were obtained from

simpler ones via certain birational transformations (elementary Sarkisov
links); see, e.g., [301, Prop. 3.4.1, 4.4.1, Thm. 4.3.3, 4.4.11], [516]. We use
above the Mukai description [408–411] of the V 3

2g−2 with g = 7, . . . , 10 as
linear sections Xn

2g−2 ∩ Pg+1 of certain special Grassmannians Xn
2g−2 = G/P ,

which are flag varieties embedded in Pg+n−2.
Notice that the family of Gushel threefolds of genus 6 (called also special

Gushel–Mukai threefolds) is a flat specialization of the family Gr(2; 5)∩P7∩Q
of general Gushel–Mukai threefolds. Thus, the Fano threefolds of genus 6 form
one deformation family of Gushel–Mukai threefolds. The same holds for the
Fano threefolds of genus 3; indeed, the family of smooth quartic threefolds in
P4 specializes to the double covers X → Q ramified along Q ∩ Y , where Y is
a quartic in P4.

The families of Fano threefolds with ρ = 1 and ι = 2 are classified ac-
cording to the anticanonical degree −K3

X ∈ {8d, d = 1, 2, 3, 4, 5} as follows
(Fujita [210]; see [301, Thm. 3.3.1]).

• d = 1: the smooth hypersurfaces of degree 6 in the weighted projective
space P(3, 2, 1, 1, 1). Another realization: the Veronese double cones,
that is, the double covers X → V where V ⊂ P6 is the cone over the
second Veronese surface in P5, branched at the vertex v of V and along
a smooth intersection of V with a cubic hypersurface which does not
pass through v [295, 525], see also [225, 226, 269];

• d = 2: the quartic double solids, that is, the double covers X → P3

branched along a smooth quartic surface S ⊂ P3;
• d = 3: the smooth cubic threefolds X ⊂ P4;
• d = 4: the smooth complete intersections of two quadrics in P5;
• d = 5: the smooth linear sections Gr(2; 5) ∩ P6 of the Grassmannian

Gr(2; 5) ⊂ P9.

5.2. Lines and conics on Fano threefolds

Let X be a Fano variety of index ι(X), and let H = KX/ι(X) ∈ Pic(X). The
lines and conics on X are the irreducible curves C in X satisfying C ·H = 1
and C ·H = 2, respectively. One considers the Fano schemes F1(X) of lines
and Fc(X) of conics in X meaning actually the unions of the components of
the Hilbert schemes of X whose general points correspond to lines and conics
on X, respectively.

In the case where −KX is very ample, e.g., if ρ(X) = ι(X) = 1, the lines
and conics on X are sent to the usual lines and conics under the anticanonical
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embedding X ↪→ P2g(X)−2. Otherwise, consider, for instance, a double solid,
that is, a double cover π : X → P3 branched along a smooth surface S ⊂ P3 of
degree 4 (degree 6, respectively) which does not contain any line (any conic,
respectively). An irreducible curve C on X is a line (a conic, respectively) if
and only if C ′ = π(C) is a bitangent line of S in P3 (a conic in P3 with only
even local intersection indices with S, respectively). In these cases π∗(C ′) =
C+ i(C) has two irreducible components, where i is the involution associated
to π.

The following theorem summarizes results from [95, 138, 135, 277, 297,
355, 365, 507, 516, 518].

Theorem 5.2. Let X be a Fano threefold with ρ(X) = 1 of index ι(X) = 1
and genus g = g(X). Then the following holds.

• Every line on X meets l(g) lines counting things with multiplicities,
where

– l(2) = 625;
– l(3) = 81 if X of genus g = 3 is a double cover of a quadric

Q ⊂ P4;
– l(4) = 31;
– l(5) = 17;
– l(6) = 11;
– l(8) = 6 provided X of genus g = 8 is general [58, 381].

• If −KX is very ample and g ≥ 3 then F1(X) is of pure dimension 1; it
is smooth, reduced and irreducible for a general X. Through a point of
X passes at most a finite number of lines if g = 3 and X is a general
quartic surface in P4, at most 6 lines if g = 4, and at most 4 lines if
g ≥ 5 [301, 4.2.2, 4.2.7].

• Assume −KX is very ample and g ≥ 5. Then Fc(X) is two-dimensional.
Furthermore, through almost any point of X (any point if g ≥ 10) passes
at most a finite number of conics. A general conic in X meets at most
a finite number of lines if g ≥ 5; the latter is true for any conic if g ≥ 9
[301, 4.2.5–4.2.6].

Notice that there are smooth quartic threefolds in P4 (for instance, the
Fermat quartic) which contain cones over curves. However, through a general
point of any smooth quartic in P4 passes exactly 972 conics [138, 295]. See
also [301, 4.2.7] for the genera of the curve F1(X) for a general X as in the
theorem.

The following two theorems summarize the results of [3, 75, 181, 215, 278,
280, 297, 336, 381, 451, 518].
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Theorem 5.3 ([336, Thm. 1.1.1]). Let X be a smooth Fano threefold with
ρ(X) = 1 of index ι = 2 and degree d = d(X) ≥ 3. Then the Fano scheme of
lines F1(X) is a smooth irreducible surface. In particular,

• d = 3: F1(X) is a minimal surface of general type with irregularity 5,
geometric genus 10 and canonical degree K2

F1(X) = 45;
• d = 4: F1(X) is an abelian surface;
• d = 5: F1(X) 	 P2.

Theorem 5.4 ([336, Thm. 1.1.1]). Let X be a smooth Fano threefold with
ρ(X) = 1 of index 1 and genus g = g(X) ≥ 7. Then the Fano scheme of
conics Fc(X) is a smooth irreducible surface. More precisely,

• g = 7: Fc(X) is symmetric square of a smooth curve of genus 7;
• g = 8: Fc(X) is a minimal surface of general type with irregularity 5,

geometric genus 10 and canonical degree K2
Fc(X) = 45;

• g = 9: Fc(X) is a ruled surface isomorphic to the projectivization of a
simple rank 2 vector bundle on a smooth curve of genus 3;

• g = 10: Fc(X) is an abelian surface;
• g = 12: Fc(X) 	 P2.

There exists the following duality between the Fano threefolds of indices
1 and 2 based on the Mukai construction [409, 410].

Theorem 5.5 ([337]; see also [336, Appendix B]). For any smooth Fano
threefold X with ρ(X) = 1, ι(X) = 1, and g(X) ∈ {8, 10, 12} there is a smooth
Fano threefold Y with ρ(Y ) = 1, ι(Y ) = 2 and d(Y ) = g(X)/2 − 1 such that
F1(X) 	 Fc(Y ) (and the derived categories of X and Y are equivalent).

Notice [286] that there is no nonconstant morphism from a Fano threefold
with ρ = 1 of index 1 to a Fano threefold with ρ = 1 of index 2. This was
conjectured by Th. Peternell [437]; the proof exploits the Fano schemes of
lines and conics on these threefolds, in particular, the subfamilies of reducible
conics and the families of lines on a tangent scroll to a curve contained in
these threefolds.

The following theorem covers some results of [101, 200, 215, 277, 484, 515].

Theorem 5.6 ([114]). Consider the quintic Fano variety Y m
5 of dimension

m, where 2 ≤ m ≤ 6, and of index m− 1, which is the general linear section
of the Grassmannian Gr(2, 5) under its Plücker embedding in P9. Then for
any d ∈ {1, 2, 3} the moduli space Rd(Y m

5 ) of smooth rational curves of degree
d on Y m

5 is rational. For m = 4, 5 the Hilbert scheme Hilb2(Y m
5 ) of conics on
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Y m
5 is smooth and irreducible. In particular,

Hilb1(Y 3
5 ) = P2, Hilb2(Y 3

5 ) = P4, Hilb3(Y 3
5 ) = Gr(2, 5)

and
Hilb1(Y 6

5 ) = R1(Y 6
5 ) = Gr(1, 3, 5)

are flag varieties.

For the Fano schemes of lines and conics on del Pezzo threefolds, Fano
fourfolds, and some other higher dimensional Fano varieties see, e.g., [40, 164,
187, 189, 247, 311, 370, 384, 449]; see also [514] for polarized Fano varieties
covered by linear spaces.

Let G be simple linear algebraic group, P ⊂ G be a parabolic subgroup.
Consider the flag variety X = G/P along with its minimal homogeneous
embedding in a projective space. Then the Fano schemes Fk(X) of linear
subspaces in X are disjoint unions of flag varieties [134, 341, Sec. 4.2–4.3];
see also [378].

5.3. The Abel–Jacobi mapping

Recall [129] that the intermediate Jacobian

J(X) = H2,1(X)∗/(H3(X,Z) modulo torsion)

of a smooth Fano threefold X is a principally polarized abelian variety. Using a
fine structure of the intermediate Jacobian one can detect the non-rationality
of X; see, e.g., [39, 129, 216, 323, 448, 552, 567], cf. also [11, 99, 446, 479].
Given a variety F we let A(F ) be the Albanese variety of F . For a Fano scheme
F (X) of a Fano threefold X the Abel–Jacobi mapping A(F (X)) → J(X) is
defined via the cylinder homomorphism H1(F (X),Z) → H3(X,Z), see the
next section. For the Fano threefolds X one considers the Fano surface of
lines F (X) = F1(X) if ι(X) = 2 and of conics F (X) = Fc(X) if ι(X) = 1.
For certain Fano threefolds X, the Abel–Jacobi mapping is known to be either
an isomorphism or an isogeny, hence q(F ) = h2,1(X). We summarize these
results in the following theorem. See Table 12.2 in [301] for the values of
h2,1(X).

Theorem 5.7 ([301, §8.2]). Consider a Fano threefold X with ρ(X) = 1 of
genus g = g(X), degree d = d(X) and index ι = ι(X) ∈ {1, 2}.

• ι = 2: Assume ι = 2 and let F = F1(X) be the Fano scheme of lines on
X. Then the following holds.
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d = 5: A(F ) and J(X) are both trivial [297].
d = 2, 3, 4: F is a smooth irreducible surface, the Abel–Jacobi map-
ping A(F ) → J(X) is an isomorphism and X is uniquely deter-
mined by F in the following cases:

d = 2: X → P3 is a quartic double solid whose branching
surface S ⊂ P3 has no line. One has q(F ) = 10 [297, Ch. III,
Sect. 1], [123, 128, 523, 524, 563, 564];
d = 3: X is a smooth cubic threefold in P4. One has q(F ) = 5
[129];
d = 4: X is a smooth complete intersection of two quadrics
in P5. One has q(F ) = 2, F ∼= J(X) is an abelian surface
[181, 189, 469, 538].

d = 1: Let X → V be a double Veronese cone branched along a
smooth surface W ⊂ V cut out by a cubic hypersurface in P6, and
let F0 be the Hilbert scheme of conics in V 3-tangent to W . Then F

and F0 are smooth irreducible surfaces, there is a branched double
covering π : F → F0, the Fano scheme F(X) is not reduced and
consists of F and the embedded ramification curve of π, the Abel–
Jacobi mapping yields an isogeny A(F )/π∗A(F0) → J(X) where
dim J(X) = h2,1(X) = 21 and X → V is uniquely determined by
the pair (F, π) [525].

• ι = 1: Assume ι = 1 and let F = Fc(X) be the Fano scheme of conics
on X. Then the following holds.

g = 2, 3, 4, 5: F is a smooth irreducible surface and the Abel–Jacobi
mapping A(F ) → J(X) is an isomorphism in the following cases:

g = 2: X → P3 is the general sextic double solid. One has
q(F ) = 52 [95, Thm. 3.3];
g = 3: X is the general quartic threefold in P4. One has q(F ) =
30 [138, Prop. 3.6], [355, Prop. 1], [518];
g = 3: X → Q is the general double cover of a smooth quadric
Q ⊂ P4 branched along a smooth surface S ⊂ Q of degree 8.
One has q(F ) = 30 [331];
g = 4: X is the general complete intersection of a quadric and
a cubic hypersurfaces in P5. One has q(F ) = 20, c1(F )2 =
23355, c2(F ) = 11961, pa(F ) = 2942 [281, Cor. 18, Thm. 20],
[381];
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g = 5: X is the general complete intersection of three quadrics
in P6 [34, 441, 563]. One has q(F ) = 14 and X is uniquely
determined by F [33, 156, 209, 350], [538, §5].

g = 6: F is irreducible for any smooth X = Gr(2; 5)∩P7 ∩Q ⊂ P9

[163, Cor. 8.3]. For the general such X, the Abel–Jacobi mapping
A(F ) → J(X) is an isogeny, q(F ) = 10, the image of F in J(X) is
algebraically equivalent to 2Θ8/8! where Θ ⊂ J(X) is a Poincaré
divisor, and X is uniquely determined by F [365, Thms. 0.15, 0.16,
0.18], [274];

– Consider a special Gushel threefold π : X → Y of genus 6. Suppose
X is general, that is, X is the double cover of a quintic threefold
Y = Gr(2; 5) ∩ P6 in P9 branched along a quadric section Y ∩ Q
where P6 ⊂ P9 and Q are general. Then one has F = F ′∪F ′′ where
F ′ = π∗(F1(Y )) is rational and F ′′ is a non-normal irreducible
surface with q(F ′′) = 10. For the normalization F̃ ′′ of F ′′ the Abel–
Jacobi mapping A(F̃ ′′) → J(X) is an isomorphism [276, 277].
g ≥ 7: F is a smooth irreducible surface with q(F ) = h2,1(X), cf.
Theorem 5.4 and [301, 12.2].

Similar results were established in [162, 164, 207, 228, 382, 452, 526, 527,
536, 548, 565] for various, possibly singular, Fano threefolds with ρ = 1 and
for various families of curves. See also, e.g., [16, 57, 58, 135, 188, 189, 223,
310, 334, 350, 370, 371, 390, 391, 421, 441, 449, 538, 547], [301, Thm. 8.2.1]
and Theorem 5.12 below for some variations and higher dimensional analogs.
The classification results for Fano threefolds with ρ ≥ 2 can be found in [403];
a part of this classification for ρ = 2 is compressed in [275] using the Mori
theory.

The classical Torelli theorem says that any smooth projective curve is
uniquely determined by its polarized Jacobian variety; see, e.g., [263, Ch. 5,
Thm. 4.1]. There are different Torelli type theorems for higher dimensional
varieties. For instance, for the smooth cubic hypersurfaces of dimension at
least three the following holds.

Theorem 5.8 ([40, 98, 129, 242, 366, 536, 547], [263, Ch. 3, Prop. 2.10,
Ch. 3, Prop. 2.10 and Thm. 4.3]). Assume X,X ′ ⊂ Pn, n ≥ 4, are smooth
cubic hypersurfaces, and let F = F1(X) and F ′ = F1(X ′) be their Fano
varieties of lines endowed with the natural Plücker polarizations OF (1) and
OF ′(1), respectively. Then X ∼= X ′ if and only if (F,OF (1)) ∼= (F ′,OF ′(1))
as polarized varieties. For n �= 5 this is equivalent to F ∼= F ′ as unpolarized
varieties.
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5.4. The cylinder homomorphism

The results of the previous subsection are ultimately related to the studies of
various cylinder homomorphisms.

Definition 5.9. Let X ⊂ Pn be a projective variety of dimension m, and let
π : C → S be a family of irreducible curves in X over an irreducible base S.
Then the cylinder homomorphism associated with C is defined as follows:

ΨC : Hm−2(S,Z) → Hm(X,Z), γ �→
⋃
s∈γ

Cs

where γ is a topological (m− 2)-cycle in S and Cs = π−1(s). We let

ΨC,Q : Hm−2(S,Q) → Hm(X,Q)

be the induced homomorphism.

For instance, if S = F1(X) then π : C → S is the universal family of lines
in X, and if S = Fc(X) then π : C → S is the universal family of conics in X,
etc. Choosing for S the Fano scheme of lines F1(X) and letting Ψ1,Ψ1,Q be
the associated cylinder homomorphisms we have the following.

Theorem 5.10 ([500]). Let X be a hypersurface in Pn of degree d. Assume
n ≥ 4, d ≤ n − 1, and either X is general or d = 3 and X is smooth. Then
the following holds.

Even n: Ψ1 is an isomorphism modulo torsion;
Odd n: dim(ker(Ψ1,Q)) ≤ n−3

4 and Ψ1 is surjective for d ≤ n+5
2 .

In particular [40, 129],

d ≤ 4: Ψ1 is an isomorphism modulo torsion for n = 5;
d = 3: Ψ1 is surjective and Ψ1 is an isomorphism modulo torsion for
even n;
d = 3: Ψ1 is an isomorphism for n = 4, 5.

Recall [374, Sect. 1], [501] that a smooth complete intersection X ⊂ Pn

of multidegree (d1, . . . , ds) is a Fano variety of index ι if and only if ι :=
n + 1 −∑s

i=1 di > 0.

Theorem 5.11. Let X ⊂ Pn be a smooth Fano complete intersection. Then
the following holds.

• X is covered by conics [139, 140, 356];
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• X is covered by lines provided ι(X) ≥ 2 [536, Lect. 4, Proof of Lemma
1];

• the lines in X sweep out a hypersurface provided ι(X) = 1 [500].

The following theorem comprises certain results of [357, 358] for the case
of Fano complete intersections of index 1.

Theorem 5.12 ([501]). Let X be a general Fano complete intersection in Pn

of dimension k ≥ 3. Then

• both Ψ1,Q and Ψc,Q are surjective;
• if k = 2s− 1 is odd then the Abel–Jacobi mappings

Js−1(F1(X)) → Js(X) = J(X) and Js−1(Fc(X)) → Js(X) = J(X)

are surjective.

See, e.g., [58, 315, 314, 357–359, 427, 506, 552] and the literature therein
for the cylinder mappings on cycles of other intermediate dimensions. See also
[50] on the intermediate Jacobians of conic bundles. See, e.g., [165–168] for
the Gushel–Mukai varieties and their intermediate Jacobians.

6. Counting rational curves

6.1. Varieties of rational curves in hypersurfaces

Given a hypersurface X of degree d in Pn, we let Re(X) be the space of smooth
rational curves of degree e in Pn lying in X. This is an open subscheme of
the Hilbert scheme Hilbet+1(X). The number

(4) μe = μe(d, n) = (n + 1 − d)e + n− 4

is called the expected dimension of Re(X). Notice that

μ2 = μ2(d, n) = −ε(d, n) = 3n− 2d− 2 .

Theorem 6.1. Let X be the general hypersurface of degree d ≥ 2 in Pn where
n ≥ 3. Then the following holds.

(a) Re = ∅ if μe < 0 and e ≤ d + 1 [213, Thm. 1.1].
(b) – Re(X) is smooth of dimension μe if μe ≥ 0 and either e ≤ 3 or

2e ≤ d + 3;
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– Re(X) is an integral locally complete intersection scheme of di-
mension μe if d ≤ n−2 [45, 476], [213, Thm. 1.1], [237, Thm. 1.1],
see also [82, 239, 511, 512];

– Re(X) is irreducible, generically smooth and of dimension μe if
n ≥ 4, d ≤ n− 1, and e ≤ d− 1 [237], [466, Thm. 26], [533].

(c) If 2d ≤ n + 1 then through any point of X passes a family of degree
e rational curves of dimension e(n + 1 − d) − 2 ≥ ed. In particular,
through any point of X passes a 2(n− d)-dimensional family of smooth
conics [237].

(d) Let R be a sweeping component of Re(X), that is, the corresponding
rational curves sweep out an open subset of X. If (n+1)/2 ≤ d ≤ n−3,
then R is not uniruled [43, Thm. 1.1].

(e) For any n ≥ 4, d ≤ n and e ≤ 2n−2 there exists on X a rational curve
of degree e with balanced normal bundle [146], [466, Thm. 24].

Notice that the dimension of Re(X) can be strictly larger than μe for
particular smooth hypersurfaces X. For instance [545], the family of lines
on the Fermat quartic in P4 is two-dimensional, while the general quartic in
P4 carries a one-parameter family of lines. See further examples in [214, Ex.
3.17–3.18]. See also [45, 148] for results on the Gromov–Witten invariants.

Concerning arbitrary smooth hypersurfaces, we have the following results.

Theorem 6.2. Let X be a hypersurface of degree d in Pn.

(a) If X is smooth along C for some C ∈ Re(X) then dimC Re(X) ≥ μe =
χ(NC/X) [214, Rem. 3.2], [321, II, Thm. 1.2].

(b) For any smooth hypersurface X ⊂ Pn of degree d where either d = 3 and
n ≥ 5, or d ≥ 4 and n ≥ 2d−1(5d− 4), the scheme Re(X) is irreducible
of the expected dimension μe [82, 148].

(c) Assume X is smooth and d+2k−n ≥ 3. Then the quadrics of dimension
k sweep out a subvariety of dimension at most n− k − 1 in X [41].7

(d) Assume d = n ≥ 5. Then there is a countable set of closed codimen-
sion two subvarieties of X such that the image of any generically finite
regular morphism from a del Pezzo surface to X is contained in one of
these [48, Thm. 1.4].

In [512] one can find restrictions under which the Kontsevich moduli space
M0,0(X, e) is of general type. See also [429] for studies on the Kontsevich

7In particular, for d ≥ n + 1 the conics contained in X do not cover X. The
latter can be shown directly.
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moduli spaces of rational curves through marked points in a Fano complete
intersection variety.

Recall that a projective variety X is rationally connected if each pair of
closed points of X is contained in a rational curve, see [158, 321]. Any Fano
variety X is rationally connected and covered by the rational curves of degree
≤ dim(X) + 1. These curves generate the Mori cone of effective 1-cycles on
X [86, 325, 398], [321, Sect. IV.3, Cor. IV.1.15]. See also [171] for criteria of
simple rational connectedness.

The following results concern rational curves and rational surfaces in
smooth complete intersection Fano varieties. It is known that a general such
variety of sufficiently small multidegree is unirational [11, 321, 322, 324, 431,
554].

Theorem 6.3. Let X ⊂ Pn be a smooth complete intersection of type d =
(d1, . . . , ds). Then the following holds.

(a) X is rationally connected if and only if
∑s

i=1 di ≤ n, that is, X is a
Fano variety [171].

(b) Assume ωX 	 OX(−1) that is,
∑s

i=1 di = n. Let S be a smooth vari-
ety of dimension 2 ≤ dim(S) ≤ dim(X) − 2 with ω∨

S nef. Consider a
generically finite morphism f : S → X. In the case ωS 	 OS assume
further that f(S) ⊂ Pn is linearly non-degenerate. Suppose f extends
to a morphism F : S → X, where S → B is a deformation family con-
taining S as a fiber. Then the image F (S) is contained in a subvariety
of codimension at least two in X [521, Thm. 1.1].

Statement (b) generalizes Theorem 6.2(d). See also [541, 542] for count of
rational and elliptic curves on rational surfaces and in projective spaces, [494,
495] for count of rational curves in Fano threefolds and Fermat hypersurfaces
and [574] for count of rational curves in del Pezzo manifolds.

6.2. Twisted cubics in complete intersections

The next results concern enumeration of twisted cubics on Fano complete
intersections.

Theorem 6.4. (a) Let Σtc(d, 3) ⊂ Σ(d, 3) be the locus of degree d surfaces
in P3 which contain twisted cubic curves. There is an explicit expression
of the degree of Σtc(d, 3) as a polynomial in d of degree 24 [372, §8].

(b) Let X ⊂ Pn be a smooth complete intersection of type (d1, . . . , ds) where

s∑
i=1

(di − 1) = n− s

3 + 1 .
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Then the number of twisted cubics in X passing through three general
points in X equals

s∏
i=1

((di − 1)!)2di! .

In particular, through three general points of a smooth cubic threefold
X ⊂ P4 pass exactly 24 twisted cubics in X [36].

See also [443], the survey article [442] and the references therein. See,
e.g., [63, 171, 244, 262, 263, 327, 333, 338, 353, 354, 360, 482, 493] for twisted
cubics on cubic fourfolds and related hyper-Kähler varieties.

7. Hypersurfaces with few rational curves

7.1. Rational curves on K3 surfaces

Recall the following theorem.

Theorem 7.1 ([400]). Let d > 0 and g ≥ 0 be integers. There is a smooth
curve C of degree d and genus g lying in a smooth quartic surface X in P3 if
and only if either g = d2/8 + 1 or g < d2/8 and (d, g) �= (5, 3).

For surfaces in P3 containing smooth elliptic quartic curves, there are the
following facts.

Theorem 7.2. Let Σell,4(d, 3) be the locus of surfaces of degree d in P3 con-
taining an elliptic quartic curve. Then the following holds.

(a) Σell,4(4, 3) is a hypersurface in Σ(4, 3) of degree 38475 [153, §3.2].
(b) There is an explicit expression of deg(Σell,4(d, 3)) for d ≥ 5 as a poly-

nomial in d of degree 32 obtained via Bott’s residue formula [153, §4.3].

Recall (see, e.g., [356]) that a smooth hypersurface X in Pn of degree
d ≥ n+ 1 cannot be covered by rational curves. This concerns, in particular,
smooth quartic surfaces in P3, and holds, more generally, for any K3 surface.
Nonetheless, a projective K3 surface carries infinitely many rational curves,
see (a) in the next theorem. This generalizes a previous partial result due to
Bogomolov, Mumford, Mori–Mukai [402], see also [21, 22, 60–62, 106, 243,
361, 405].

Theorem 7.3. Let X be a projective K3 surface over an algebraically closed
field. Then the following holds.

(a) X contains infinitely many rational curves [108, 517]; cf. also [109].
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(b) Consider the subset Sg of the moduli scheme of the K3 surfaces of genus
g which parameterizes the surfaces X such that the union of rational
curves on X is dense in the Hausdorff topology. Then Sg is of the second
Baire category [110].

(c) Any rational curve on a general K3 surface X of genus g ≥ 2 is nodal.
(d) Given d ∈ N, for any h > 84d2 and for any K3 surface X of degree h

over a field k of characteristic p �= 2, 3 the number of rational curves in
X of degree at most d does not exceed 24. This upper bound is exact for
any d ≥ 3 [396, 461].

Similar results hold also for the Enriques surfaces, see [463] and the ref-
erences therein.

See [260, 261] for a discussion related to (b). The generality assumption
in (c) is essential; indeed, there are smooth quartic surfaces in P3 which
contain the rational 3-cuspidal plane quartic [106, 107]. As for the count of
curves on a K3 surface in terms of the Gromov–Witten invariant, see, e.g.,
[37, 351, 385, 568, 569].

Notice that there are complex analytic K3 surfaces with no algebraic
curve. However, any K3 surface S carries a transcendental entire curve, that
is, the image of a nonconstant holomorphic map C → S [88].

7.2. Rational curves in hypersurfaces

The next theorem deals with hypersurfaces which contain few rational curves.

Theorem 7.4. Let X be a hypersurface of degree d in Pn. Then the following
holds.

(a) For n ≥ 3 and 2(d+ 1) ≥ 3(n+ 1) any rational curve in a very general
X is contained in the maximal subvariety L(X) of X swept out by lines
in X [474, Cor. 3.2].

(b) In the range n ≥ 7 and d ∈ [ 3n+1
2 , 2n− 3] the general X contains lines

but no other rational curves [474, Thm. 1.3]. This is true as well for
n = 6 and d = 2n − 3 [425], but fails for a general quintic threefold in
P4.

(c) For n = 5 and d ≥ 2n − 3 the general X contains just a finite number
of rational curves of any given degree (that is, X does not contain any
one-parameter family of rational curves) [550].

(d) If X is very general, n ≥ 4, and d ≥ 2n−2 then X contains no rational
curve [550].
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Notice that (d) fails for n = 3. Indeed, by Theorem 7.3(a) any smooth
quartic surface in P3 contains a sequence of rational curves of growing degrees.
Statement (c) is a strengthening of the previous results in [122, 194, 195]. The
validity of an analog of (c) for n = 4 and e ≥ 13 is still open; this is the famous
Clemens Conjecture.

7.3. Clemens’ conjecture

This conjecture [122] suggests that a general quintic threefold in P4 contains a
positive finite number of smooth rational curves of any given degree, and the
scheme of such curves is reduced. The next theorem gives a brief summary of
some results on Clemens’ Conjecture.

Theorem 7.5. (a) The Clemens Conjecture holds for curves of degree ≤ 12
[20, 149, 150, 307, 313].

(b) For any d ≥ 1 a general quintic threefold in P4 contains a smooth
rational curve C of degree d [313].

(c) Any smooth rational curve C in a general quintic threefold X in P4 is
embedded with normal bundle OP1(−1)⊕OP1(−1). Any singular rational
curve in X is a plane 6-nodal quintic [149, 150, 307, 313, 419].

(d) The number of smooth rational curves of degree 1, 2, 3, 4, ...10 in a gen-
eral quintic threefold in P4 is, respectively,

2875, 609250, 317206375, 242467530000, . . . ,
704288164978454686113488249750,

where the number 2875 of lines is due to Schubert [486]; see [442], [55,
§10.6] and the references therein.

For instance [313, 505], a general hypersurface of degree d > 3
2n− 1 in Pn

does not contain any smooth conic; however, a general quintic threefold in P4

does.
For any natural number d ≥ 1 there is a Mirror Symmetry prediction for

the number of smooth rational curves of degree d in a general quintic threefold
in P4. Actually, these virtual numbers count pseudoholomorphic curves in a
general almost complex symplectic deformation of the quintic threefold via
quantum cohomology, see, e.g., [55, 328, 329, 386].

The same methods work for certain smooth Calabi–Yau complete inter-
sections (CICY, for short). Besides the quintic threefolds in P4, there are
exactly 4 types of smooth CICY threefolds of type, respectively, (3, 3) and
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(2, 4) in P5, (2, 2, 3) in P6, and (2, 2, 2, 2) in P7. The Mirror Symmetry predic-
tion for the number of smooth rational curves of degree d ≤ 10 in a general
CICY threefold can be found in [363]. For d ≤ 6 this prediction gives the
correct number of curves, see [253, 362]. The next theorem addresses rational
and elliptic curves in general Calabi–Yau complete intersection threefolds.

Theorem 7.6 ([197, 316, 319]). Let X be a general CICY threefold. Then
for g = 0, 1, 2, 3 there is an integer dg ≥ 0, where d0 = 0, such that, for any
d > dg, X contains an isolated smooth curve of degree d and genus g.

In [316], some of these results are claimed to hold for any smooth CICY
threefolds. However, there is a gap in the proof in [316]; see [319]. Similar
facts hold for certain higher genera curves under more severe restrictions, see
[319, Thm. 1.2].

The following theorem gives a short account of sporadic results for curves
in hypersurfaces.

Theorem 7.7.

• A very general hypersurface of degree d � 2n−1 in Pn does not contain
any smooth elliptic curve [555]; cf. [125].

• The degree of an elliptic curve on a very general heptic hypersurface X
in P4 is a multiple of 7 [204].

• Let X be the general heptic hypersurface in P5. Then X does not contain
any rational curve of degree d ∈ {2, . . . , 16} [151, 406, 504], any smooth
elliptic curve of degree e ≤ 14, and any smooth curve C of degree e ≤ 16
and genus 1 ≤ g ≤ 3 provided the dimension of the linear span of C is
not equal to 3 [18].

• A general hypersurface of degree 54 in P30 does not contain any rational
quartic curve [556].

The second statement goes in the direction of the conjecture of Griffiths
and Harris [224] which says that for a very general hypersurface of degree
d ≥ 6 in Pn and for any curve C in H one has d| deg(C). This is true for
n = 3 due to the Noether–Lefschetz theorem; see [19] for further results. See
also the survey article [248] on the role of the Calabi–Yau, in particular, CICY
varieties in physics.

8. Counting curves of higher genera and hyperbolicity

It is worthwhile to compare previous results with the following finiteness
theorems related to Kobayashi hyperbolicity and the Green–Griffiths–Lang
Conjecture (see below).
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Theorem 8.1.

(a) Consider a projective variety X ⊂ Pn. If X is Kobayashi hyperbolic then
there exists ε > 0 such that for any curve C of geometric genus g in X
one has [177]

(5) 2g − 2 ≥ ε deg(C) .

Consequently, the curves of a given geometric genus in X form a
bounded family.

(b) A general hypersurface X in Pn of degree d ≥ 16(2n− 3)5(10n− 11) is
Kobayashi hyperbolic [53, 79, 178, 179, 392, 475, 508]. The latter holds
for n = 3 starting with d = 18 [434] and for n = 4 starting with d = 593
[185].

A weaker form of (5) called algebraic hyperbolicity implies the absence of
rational and elliptic curves; see, e.g., [105, 112, 145, 232]. See also [40, 154] for
logarithmic versions of (b). There are examples of smooth hyperbolic surfaces
in P3 of any given degree d ≥ 6 [120, 192, 496, 498, 499, 575] and of hyperbolic
hypersurfaces in Pn of degree d ∼ n2/4 [264, 497].

In the direction of algebraic hyperbolicity of general hypersurfaces, the
following holds.

Theorem 8.2 ([426]). For n ≥ 6 and for a very general hypersurface X in
Pn of degree d ≥ 2n− 2 any subvariety Y ⊂ X is of general type.

Cf. also [570–572].

Theorem 8.3.

(a) The number of rational and elliptic curves on a minimal smooth surface
of general type with c21 > c2 is bounded above by an effective function of
c1 and c2 [59, 182, 396], [346, Thm. 10.1].

(b) Let X be a very general surface of degree d ≥ 5 in P3. Then for any
curve C of geometric genus g on X one has

(6) 2g − 2 ≥ max
{
d2 − 3d− 6,

(
d + 1

d
− 5

)
deg(C)

}
.

In particular, for d = 5 one has

2g − 2 ≥ max
{
4, 1

5 deg(C)
}
,
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which yields g ≥ 3. The absolute lower bound 2g − 2 ≥ d2 − 3d − 6 is
sharp; for d ≥ 6 it is achieved by the tritangent hyperplane sections only
[112, 145, 570].

Cf. also [367, 368, 568] for (a), [145, 232] for (b).
For elliptic curves on general K3 surfaces and Fano schemes of lines on

general cubic fourfolds, the following hold.

Theorem 8.4 ([417]).

(a) Let X be a very general K3 surface with primitive curve class β ∈
H2(X,Z) of self-intersection 〈β, β〉 = 2h−2, h ∈ Z≥0. Then the moduli
space of elliptic curves on X from the class β is a smooth curve. The
number nβ,j of such curves with fixed general j-invariant depends only
on h. It admits an expression in terms of two particular Gromov–Witten
invariants which can be computed explicitly for any given value of h.

(b) A general Fano variety of lines on a cubic fourfold in P5 contains pre-
cisely 3780 elliptic curves of minimal degree and of fixed general j-
invariant.

Notice that there are exactly 6383765416 elliptic quartics meeting 16 gen-
eral lines in P3 [15].

For higher genera curves on K3 surfaces, we have the following theorem.

Theorem 8.5 ([420, Cor. 2]). A generic projective K3 surface contains in-
finitely many g-dimensional families of irreducible immersed curves of geo-
metric genus g for any positive integer g.

For the genera of curves on smooth surfaces in P3 the following is known.

Theorem 8.6. For d � 4 let Gaps(d) be the set of all the non-negative
integers which cannot be realized as geometric genera of irreducible curves on
a very general surface of degree d in P3. Then Gaps(d) is the union of finitely
many disjoint and separated integer intervals Gapsj(d), j = 0, 1, . . .. One has:

• Gaps(5) = {0, 1, 2} [570];
• Gaps0(d) =

[
0, d(d−3)

2 − 3
]

for all d � 5 [570];

• Gaps1(d) =
[
d2−3d+4

2 , d2 − 2d− 9
]

for all d � 6 [116].

In the other direction, for the existence of subvarieties with a given geo-
metric genus, we have the following result.

Theorem 8.7 ([103] for s = 1, [117, Thm. 0.1]). Let X be a smooth irreducible
projective variety of dimension n > 1, let L be a very ample divisor on X and
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let s ∈ {1, . . . , n−1}. Then there is an integer pX,L,s (depending on X, L and
s) such that for any p � pX,L,s one can find an irreducible subvariety Y of X of
dimension s with at most ordinary points of multiplicity s+1 as singularities
such that pg(Y ) = p. Moreover, one can choose Y to be a complete intersection
Y = D1 ∩ . . .∩Dn−s, where Di ∈ |L| for i = 1, . . . , n− s− 1 are smooth and
transversal and Dn−s ∈ |mL| for some m � 1 is such that Y has ordinary
singularities of multiplicity s + 1.

Corollary 8.8. (a) For any integer d ≥ 4 there exists an integer c(d) such
that, for any smooth surface S in P3 of degree d and any integer g ≥ c(d), S
carries an irreducible reduced nodal curve of geometric genus g whose nodes
can be prescribed generically on S [103], [117, Cor. 3.1].

(b) For any positive integer d and for any non-negative integer g, there
is a smooth surface S in P3 of degree d and an irreducible nodal curve C on
S with geometric genus g [117, Thm. 3.3].

Recall the famous

Green–Griffiths–Lang Conjecture ([221, 345]). Let X be a projective va-
riety of general type. Then there exists a proper closed subset Y ⊂ X which
contains any subvariety Z ⊂ X not of general type and the image of any
nonconstant entire curve C → X.

The conjecture is fixed in the particular case of general projective hyper-
surfaces.

Theorem 8.9 ([52, 53, 67, 178, 184, 508]). For a generic projective hyper-
surface X ⊂ Pn, n ≥ 2, of degree d ≥ 16(n− 1)5(5n− 1) there exists a proper
subvariety Y ⊂ X which contains the image of any nonconstant entire curve
C → X, hence also any rational or elliptic curve on X and the images of
abelian varieties.

There are the following related conjectures.

Conjecture (C. Ciliberto, F. Flamini, and M. Zaidenberg [118]). There exists
a strictly growing function ϕ : N → N such that the number of curves of
geometric genus g � ϕ(d) in any smooth surface S of degree d � 5 in P3 is
finite and bounded by a function of d.

Conjecture (C. Voisin [551]). Let X ⊂ Pn be a very general hypersurface of
degree d � n + 2. Then the degrees of rational curves in X are bounded.

Conjecture (P. Autissier, A. Chambert-Loir, and C. Gasbarri [14]). Let X
be a smooth projective variety of general type with canonical line bundle KX .
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Then there exist real numbers A and B and a proper Zariski closed subset
Z ⊂ X such that for any curve C of geometric genus g in X not contained
in Z, one has degC(KX) � A(2g − 2) + B.
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