Pure and Applied Mathematics Quarterly
Volume 18, Number 1, 177-209, 2022

Analytic and rational sections of relative semi-abelian
varieties
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Abstract: The hyperbolicity statements for subvarieties and com-
plement of hypersurfaces in abelian varieties admit arithmetic ana-
logues, due to Faltings, Ann. Math. 133 (1991) (and for the semi-
abelian case, Vojta, Invent. Math. 126 (1996); Amer. J. Math. 121
(1999)). In Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 29
(2018) by the second author, an analogy between the analytic and
arithmetic theories was shown to hold also at proof level, namely
in a proof of Raynaud’s theorem (Manin—-Mumford Conjecture).
The first aim of this paper is to extend to the relative setting the
above mentioned hyperbolicity results. We shall be concerned with
analytic sections of a relative (semi-)abelian scheme 7 — B over
an affine algebraic curve B. These sections form a group; while the
group of the rational sections (the Mordell-Weil group) has been
widely studied, little investigation has been pursued so far on the
group of the analytic sections. We take the opportunity of devel-
oping some basic structure of this apparently new theory, defining
a notion of height or order functions for the analytic sections, by
means of Nevanlinna theory.

Keywords: Legendre elliptic, semi-abelian scheme, Diophantine
geometry, Nevanlinna theory.

1. Introduction

Let A be an abelian variety and let f : C — A be an entire curve on it.
Then the Zariski-closure of its image is a translate of an abelian subvariety
of A (Bloch-Ochiai’s Theorem, cf., e.g., [18] §4.8), and the same holds for
semi-abelian varieties (cf. ibid.).
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In another direction, it is known by Siu—Yeung [22] that if D C A is an
ample divisor of an abelian variety, there is no non-constant entire curve on
A\ D. An analogous result holds for semi-abelian varieties by Noguchi [15] (cf.
also Noguchi-Winkelmann [18] Chap. 6). See a relevant Question 7.1 about
the topological closure of an entire curve.

These hyperbolicity statements for subvarieties and complements of hy-
persurfaces in abelian varieties admit arithmetic analogues, due to Faltings [8]
(and Vojta [23] for the semi-abelian case): the rational points on a subvariety
of an abelian variety are contained in a finite union of translates of abelian
subvarieties and the integral points on the complement of an ample divisor in
an abelian variety are finite in number. In [17], the second author observed
a direct relation between those analytic results and Diophantine properties
in a proof of M. Raynaud’s Theorem (Manin—-Mumford’s Conjecture), going
beyond formal analogies holding at the level of statements.

The first aim of this paper is to extend to the relative setting the
above (nowadays classical) analytic results; in our present situation, the single
abelian variety A will be replaced by an algebraic family &/ — B of abelian
varieties over an algebraic base B, and we shall be concerned with possibly
transcendental holomorphic sections B — /. These sections form a group,
which is the complex-analytic analogue of the group of rational sections; while
this last group, called the Mordell-Weil group of the abelian scheme &/ — B,
has been widely studied, little investigation has been pursued so far on the
group of analytic sections. In this work we take the opportunity of developing
some basic structure of this apparently new theory, defining e.g. a notion of
height for the transcendental sections, by means of Nevanlinna theory.

We start by noticing the following: Let 7 : & — B be a holomorphic
family of principally polarized abelian varieties over a base space B which
is algebraic. Then the family 7 : o/ — B is algebraic. This is a result by
Kobayashi—Ochiai [10], in the spirit of a ‘Big Picard Theorem’ Hence, the
initial datum will consist in an algebraic family, but we shall consider (possi-
bly) transcendental sections.

More precisely, our main concern will be addressed to the following three
problems below, motivated by the known results in the constant case: Let
m: o/ — B be an algebraic family of semi-abelian varieties. In this paper we
always assume the existence of a section B — &, namely the zero-section.
Then:

Problem 1.1. Let Z be a relatively big divisor on 27 over B. Then, every
holomorphic section o : B — &7 \ 7 (omitting 2) is rational.
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Problem 1.2. Let 0 : B — & be a transcendental holomorphic section, and
let X (o) be the Zariski-closure of o(B) in /. Then, X (o) contains a translate
of a relative non-trivial subgroup of o7 over B.

The conclusion that X (o) is itself a translate of a relative subgroup cannot
always hold (see §6.1 (a)). However, we may conjecture that this is the case
whenever the section satisfies a stronger condition, to be precisely formulated,
named strict transcendency (see Definition 6.7):

Problem 1.3. Let 0 : B — & be a strictly transcendental holomorphic
section, and let X (o) be the Zariski-closure of o(B) in /. Then, X (o) is a
translate of a relative subgroup of & over B.

We shall start from the concrete example of the Legendre elliptic scheme:
ZY? = X(X — Z)(X — \Z) C B x P?,

where X varies on the base B = P!\ {0,1,00} = C\ {0, 1}. For each A € B
the above curve &y, together with its distinguished point (0 : 1 : 0), is an
elliptic curve. Removing this point from each fiber, so removing a relatively
ample divisor, we obtain the affine variety of equation

y2 = {L'(.I' - 1)($ - )‘)7

still fibered over the curve B. As an example of a result in the direction of
Problem 1.1, we shall prove, by means of Yamanoi’s Second Main Theorem
[24], that any holomorphic section B 3 A — (x(A),y(A)) of this fibration is re-
duced to one of the three 2-torsion points with y(A\) = 0 (see Theorem 2.2); in
the course of the proof we show a rationality criterion of holomorphic sections
for a base-extended family of the Legendre elliptic scheme (see Theorem 2.4).

We will also see a similar property for hyperelliptic schemes of higher
genera by making use of an extension theorem of big Picard type due to
Noguchi [14].

A general result of that type for sections of a family of semi-abelian va-
rieties will be proved in Theorem 4.22, under the stronger hypothesis that
the family admits no bad reduction. Note that this hypothesis excludes the
non-isotrivial elliptic schemes.

To prove our main results, we will generalize the Nevanlinna theory of
holomorphic curves in semi-abelian varieties ([18]) to a relative setting, and
prove a Big Picard Theorem for a local smooth family; in this context, we
have an interesting problem when the family is singular over the special point.
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2. Sections of Legendre scheme and related examples

Let (X : Y : Z) € P?(C) denote a homogeneous coordinate system of P2(C).
We consider the simplest but fundamental Legendre scheme:

(2.1) B=C\{0,1},
E={\(X:Y:2)eBxP*C):Y*Z=X(X—-2)(X - )\2)},
T:E3N(X:Y:Z)— Xe B,

5)\277_1{)\}.
We set
P=0:0:1), ,=(1:0:1), Q=(0:1:0).

We can view £ as a hypersurface in B x P%(C); the natural projection 7 :
&€ — B together with the (zero) section B x {Q} gives it the structure of
an elliptic scheme over B. We call it the Legendre scheme. It admits three
sections of order 2, namely

B x {P}, Bx{P},
which are abbreviated as P;, P5, and their sum
Py:=(Pi+P):BoX—(A\(A:0:1)e&\Q,
where ) denotes also the section B x {Q}.
2.1. Examples

Before presenting a theorem in the particular case of the Legendre scheme, we
discuss examples of elliptic schemes and their sections. We keep the notation
given above.

2.1.1. Rational sections omitting a relatively ample divisor We
show in this sub-section that rational sections of abelian schemes can in-
deed omit relatively ample divisors in a non-trivial way. We first construct a
non-isotrivial algebraic family of abelian varieties over an algebraic variety.
Set

By=&\{Q} = {y? =2z — )@ - N} CC% A€ B,

B=J{\(@0) s (r,0) € B} C B x C?,
AeB



Analytic and rational sections of relative semi-abelian varieties 181

o= ) {\(2y),(wv): (u,v) €&} CBxP
(A (z.))eB

Now, let @ : &/ — B be the natural projection. In this example, there are
three sections coming from P;,1 < j < 3;i.e.,

(A (@,9)) € B— (A, (2,9),(0,0)) € o,
(A (z,9) € B — (A, (z,9),(1,0)) € o,
(A (@,9) € B— (A (z,9),(1,0)) € .

These omit a relatively ample divisor 2 defined by
2=Bx{Q}cC .
Other than these, we have

Tit=(\(z,y) € B— (\(x,y).(z,y) € &,
T(BYN2 = 0.

Note that 7 is “non-constant” (the definition is subtle). Note also that
by cutting B we can produce examples where the base is an affine curve, all
its points at infinity are points of bad reduction for the elliptic scheme and
some rational section omits the divisor at infinity. These examples include
the so-called Masser’s sections, e.g. the section A — ();,2,/2(2— X)) on a
(ramified) base change of the Legendre scheme.

2.1.2. Transcendental sections Given an elliptic curve £y in the Legen-
dre family, the elliptic exponential is well defined as a map Lie(€y) = C — &,.

As we shall explain in section 3.1, we can identify globally the line bundle of
the Lie algebras Lie(€y), for A € B with the trivial bundle B x C. Hence we
shall view the exponential map as a map

expy : C — &),
and set
git=(\(z,y) € B— (A (1,y),expy(p(x))) € & =7t} C &,

where () is any non-constant polynomial (or even, entire function) in (€
C). Then, o is a transcendental holomorphic section of w : &/ — B. In this
example, we have that o(B) N 2 # (.
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2.1.3. Local sections One may easily obtain at least locally a holomorphic
non-rational section in £ \ Q — B about the boundary points of B, to say,
A = 0. For example, let ¢(A) be a holomorphic function in a neighborhood of
0 such that ¢(0) # 0. With

X Y .
=7 Y=z in &\ Q,
we then set
A
We have
s _ 0(N) (o(N) P(N)
¥ _v( \2 _1) ( A2 _A)
_ s = A)(e(N) — N?)
A6 ’

Therefore, taking ¢ > 0 small enough, we have a one-valued branch

NN ERY _/\?2)@5()\) M p<a

y(A) =
Even if ¢(A) is a polynomial, y(\) is not rational, unless it vanishes identically.
2.2. Legendre scheme

Globally, we are going to prove:

Theorem 2.2. Let £ — B be as above in (2.1). Then there is no holomor-
phic section B — £\ Q other than P; (j =1,2,3).

We first prove the rationality of the sections, in general even after finite
base changes (extensions); this is the crucial part of the proof, which makes
use of a deep theorem of Yamanoi, and the result may have an interest of its
OWT.

Let ¢ : B — B be a finite base change (i.e., a finite proper rational
holomorphic map) and let

(2.3) 7:£E=Bxp&—B

be the lift of £/B. Then £/B carries the natural structure of a group scheme
induced from £/B with the zero section () induced by Q. In general, &€ — B
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may carry a non-torsion rational section and hence infinitely many rational
sections.

Theorem 2.4. Let 7 : £ — B be as above in (2.3) and let v : B — € be a
rational section ofé'~ — B. Then, a holomorphic section o : B — & is rational
if and only if the intersection o(B) N~(B) is finite.
Proof. Tt suffices to prove the “if” part. Replacing ¢ by ¢ —~, we may assume
that v = Q.

We set f(A) = AM(A—1) (A € B). By the embedding

A€ B = (N1/fN) € {(\p): fOu=1} C C?,

we identify B with the image, which is a closed affine algebraic curve in C2.
We consider B as a ramified cover of C via

1
mg:BA—z=\+——€C.
f)
We set 75 = mpog: B — C. Then, |2| = |75(¢)| is an exhaustion function on
B by which we define the order function 7}(r; x) of a meromorphic functions
on B, and the counting function N(r, e) of a divisor truncated at level k etc.
(cf. [11], [18] §3.3.3).

We compactify B < B (C PY(C)) with some PY(C) and may assume
that the polar divisor (@)« of ¢ belongs to the linear system |Oz(1)[. We set
X = Bx P}(C), which is provided with the first (resp. second) projection
p: X — B (resp. ¢ : X — P1(C)); now every section ¢ determines a
holomorphic map

g:B>(—((,x(Q)) € X.

Using the affine coordinate w of C C P'(C), we regard w = z({) as a
meromorphic function on B with poles at those ¢ € B such that o(¢) = Q(().

Then the section ¢ also provides a meromorphic function y({) on B satisfying

(2.5) (¥(0))? = 2(¢)((¢) = D(@(C) = ¢(C))-
We define the following effective divisor on X:
D={w=0}+{w=1}+{w =00} + {w—¢(¢) =0}.

Note that 75(¢) and p o g(¢) = ¢ are rational functions on B. So, the order
functions satisfy

Ty(r; L) = To(r) + O(logr),
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where L = p*Oz(1) ® ¢*Opi(c)(1) and Ty (r) = Ty(r; Opi(c)(1)). Then we
have by Yamanoi [24] Theorem 1.2 with similar notation that

T, (ri K 5(D)) < Ni(r, {2(¢) = 0}) + Ni(r, {w(¢) = 1})

+ Ni(r,{z(¢) = o0})
+ Ni(r, {2(C) = ¢(¢) = 0}) + €Ty (r; L) + O(log )],

where € is an arbitrary small positive number and the symbol || is used for
the standard sense in Nevanlinna theory, while the implicitly mentioned ex-
ceptional set depends on e.

By the First Main Theorem

N(r,{z(¢) = 0})
N(r,{z(¢) = 1})

T(r) + O(1),
T.(r)+ O(1).

I/\ I/\

Similarly, since {w — ¢(¢) = 0} is an element of |L|,
N(r,{x =X =0}) <T,(r; L)+ O(1) = T(r) + O(log ),
and since KX/é = ¢"Op1(c)(—2),

Ty(r; KX/B(D))) = 2T,(r) + O(logr).

By the assumption, {¢ € B: 0(¢) € Q} = {¢ € B : g(¢) = oo} is a finite set,
so that

N(r, {(¢) = oo}) = O(logr).
Since all zeros of z(¢), z(¢) — 1,2(¢) — #(¢) have order > 2, we have

(2= T ) < 3 (N(r, 2(¢) = 0) + N(r, {#(Q) = 1)
£ NG, {2(¢) ~ 6(Q) = 0)) + Oflog )|
< OT(r) + Oflog)|.

Therefore, by taking € < 1/2
(2. .(r) = Ollog )|

this implies the rationality of z(¢) and hence that of y((). O
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The next lemma finishes the proof of Theorem 2.2.

Lemma 2.7. The Legendre scheme admits no rational sections other than
P; (j =1,2,3) and Q; i.e. the Mordell-Weil group of € — B consists of the
2-torsion group.

Proof. The family of cubic curves £ = 7 1()\), A € B C P!(C), forms a
pencil having as base points the three points P, P, Q € P?(C). Let 0 : A €
B — (A (X(A) : Y(A: Z(N\) € Ex C € be a rational section. Let C' C P?(C)
denote the closure of the projection of its image o(B) in P?(C). Then, C
intersects each curve F in three fixed points P;, Py, () and possibly a fourth
moving point o(A) = (X(A) : Y(A) : Z(\)). We shall prove that this point
is of 2-torsion. Suppose that C' does not reduce to a point (i.e. o(\) is not
identically equal to @, nor P; nor P») and let F(X,Y,Z) = 0 be an equation
for C', where F' is a homogeneous form of degree d > 0. Set

f= % € C(P?*(C)).
Consider any value of A € B and view f as a rational function on &£,. The
support of the divisor (f) of f is then contained in {Q, Py, P2,0(\)}. Identi-
fying £, with its Jacobian Pic’(€y), we obtain that the sum of the elements
in (f), in the sense of the group law on £y, must vanish. It follows that o(\)
belongs to the group generated by Py, P, i.e. to the 2-torsion group. O

Remark 2.8. (i) We provide here an alternative proof of the vanishing of
the Mordell-Weil rank. Consider the surface S obtained by blowing-up
P2(C) over the base locus of the pencil of cubics £y, A € B, i.e. over
Py, Py, @ in the above notation. The surface S is endowed with a natural
projection @ : S — P(C), which is a well-defined morphism, whose
fibers are the curves &, for A € P'(C). By taking for the zero-section
the natural map inverting the w on the exceptional divisor over () one
obtains a structure of elliptic surface on S. Recall the Shioda—Tate
formula (cf. Shioda [20]) for the rank r of the Mordell-Weil group:

r=p—2-— Z (ny—1),

AEPL(C)

where p is the Picard number of S and for each point A € P1(C), n, is
the number of components of the fiber ! \. In our case p = 4 and the
only reducible fiber is the fiber of A = oo, which has three components.
It follows that » = 0, i.e. the Mordell-Weil group is torsion.
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(ii) In the quoted paper, Shioda proves more: the Mordell-Weil group of an
elliptic scheme obtained from the Legendre scheme by any unramified
base change is torsion. The interested reader is addressed to [5] for a
history, motivations and generalizations of this result, as well as different
approaches to its proof.

Related to the above problem, N. Katz asked in a conversation with U.
Zannier for the case of the hyperelliptic scheme of genus g > 1 of P% defined
by

(2.9) y? = ha)(z — N

in terms of an affine coordinate system (z,y) € C? C P?(C), where h is a
given polynomial with complex coefficients (i.e., independent of \) of degree
2g > 2 with simple roots, and B = C\ {h = 0}. Note that for each A € B
the equation defines a smooth affine curve with a single point at infinity. This
family is relevant to Katz’s work on monodromy.

In this context we can prove:

Theorem 2.10. Let & — B be the hyperelliptic scheme defined by complet-
ing the curves of equation (2.9) above. Let

giAeB = (M (N, y\) € 2

be an arbitrary holomorphic section. Then, o is a rational section such that
either y(A) =0 or y(\) = oo.

Proof. This is a case to which a big Picard theorem (a holomorphic exten-
sion theorem) obtained by Noguchi [14] is applicable, since 2" is a family of
compact curves of genus > 2; hence, Theorem (5.2) and Lemma (2.1) of [14]
imply that x(\) and y(\) are rational functions.

To conclude the proof, we need to prove an analogue of Lemma 2.7,
namely that:

Claim. The only rational points of Z~ over C(\) are those with y = 0.

The argument below is a variation on the elementary proof of “abc” over
function fields. We may suppose that h is monic and let &, ...,&; € C be its
distinct roots.

Let (u(A),v(N)) be a solution of (2.9) in rational functions, where v # 0.
This last condition implies that u,v are in fact both non-constant.
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Any pole on C of u or v must appear with even order 2e in u and order
(d+ 1)e in v for some integer e, and hence we may write

b(\)

W0y WY T

for complex polynomials a,b and g # 0, which are pairwise coprime. This
yields the equation

d
(2.11) b*(A) = (a( M) [T(a() = &a* (V).

i=1

Since a, q are coprime, the d factors in the product on the right are non-
zero and pairwise coprime, whereas the ged((a(\) — Ag2(N)), a(A) — &% (V)
divides A —¢&;. Hence, since the whole product is a (non-zero) square, we must
have

(2.12) a(N) =&\ = (A =& E),  i=1....d,

for p; € {0,1} and suitable non-zero polynomials ¢;(A). Note that the ¢;())
are pairwise coprime.

Let m = degu = max(dega,2degq) > 0. Note that each factor in the
product on the right of (2.11) (namely, each side of equation (2.12)) has
degree < m and at most one factor can have degree < m.

Suppose now that m is even. Then, since as remarked above all factors
but at most one have degree m, we should have u; = 0 for at least three
of the factors, corresponding say to i = «, 3,7. But this would give a ra-
tional parameterization of the elliptic curve y? = (z — &,)(x — &) (@ — &),
a contradiction.

Therefore m is odd, which forces m = dega > 2deggq, and in particular
all of the said factors have the same degree m, so pu; = 1 for all 7 in (2.12);
note that this implies in particular that A —¢&; divides a(\) — Ag?()\) for each i.

Now, since the degree of the whole product is 2degb, we must have
deg(a(\) — tg*()\)) even, which implies dega = 1 + 2degq = 1 + 2h, say.
It also follows that degc; = h.

Let now s; := (A —¢&;) (

hence,

(2.13) s; = s}, i=1,...,d

) We have that s; —s; = & —&; is constant;

We compute

szzg(( + 200 = &))g — 200 — &)eid) = ;gm,
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say, where ¢; are non-zero polynomials of degree < 2h (in fact = 2h, as
may be checked). From (2.13) we find ¢;¢; = c1¢1. But the ¢; are pairwise
coprime; hence H?:z ¢; divides ¢1. But ¢ is not zero, since s is not constant,
whence (d — 1)h < deg ¢1 < 2h, which implies A = 0. But then ¢ is constant
and dega = 1, giving a contradiction with the fact that all A — & divide
a(\) — tg*()\). This concludes the proof. O

3. Transcendence of sections and the logarithms
3.1. Elliptic schemes and the exponential map

Let B be a smooth affine algebraic curve over C, and 7 : £ — B be an elliptic
scheme. By this we mean that each fiber 7=1{t} = & with t € B is a smooth
elliptic curve; in other words, the bad reduction can arise only at the points
at infinity of a completion of B.

Every elliptic curve &, for t € B, has a Lie algebra Lie(&;), which is a one-
dimensional vector space. The union of these lines constitutes a line bundle
Lie(§) — B over B, which is holomorphically trivial by the Oka-Principle
(B is a one-dimensional Stein manifold; cf., e.g., [16] Theorem 5.5.3). The
exponential map Lie(&;) — & has a kernel Ay, which is a discrete group of
rank two. These groups together define a local system over B, i.e. a sheaf in
abelian groups A, which is locally isomorphic to the constant sheaf associated
to the group Z2.

Recalling that &; too has the structure of an abelian group, so that to the
family £ — B one can associated the group-sheaf of its holomorphic sections,
we have the short exact sequence

(3.1) 0—A—Lie(€) - & —0.

From another perspective, we can view A as a Riemann surface covering B,
Lie(€) as the total space of a line-bundle, i.e. an algebraic surface fibered over
B, and £ as an (open set of an) elliptic surface. Taking the long sequence in
cohomology from (3.1), we obtain

(3.2)

0 — I(B,A) = T'(B,Lie(§)) — I'(B, £) — HY(B, A) — HY(B, Lie(£)) = 0.

The last zero is due again to the fact that B is a one-dimensional Stein
manifold. Now, if the elliptic scheme & — B is not isotrivial, then no non-
zero period can be continuously defined in B; hence the term I'(B, A) also
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vanishes. We finally get

I'(B, &)

(3.3) exp(I'(B, Lie(£)))

~ HY(B, A).

The group I'(B, £) consists of the group of holomorphic sections: it properly
contains the Mordell-Weil group, formed by the rational sections. The latter
is a discrete group, since it injects into the discrete group H'(B, A) via the
above projection T'(B, ) — H'(B, A). In other words, no non-zero rational
section of an elliptic scheme can admit a logarithm, i.e. a lifting to Lie(E).

We shall see that a holomorphic section of an abelian scheme &/ — B in
general (and a semi-abelian scheme with an additional condition) admitting a
well-defined logarithm is transcendental or a constant section in its C(B)/C-
trace (see Theorems 3.13, 3.15).

N.B. From the above discussion, it follows that the group of holomorphic
sections of an elliptic scheme is an extension of a finitely generated group by
an infinite dimensional vector space.

3.2. Transcendency of sections

Let A be a semi-abelian variety over C of dimension n; it is the middle term
in the exact sequence:

(3.4) 0— Gl = A— A =0,

where Ay is an abelian variety. Let Lie(A) — A be the Lie algebra of A,
endowed with its exponential map; analytically,

(3.5) Lie(4) 2 C" — A = C"/T

for a discrete subgroup I' (semi-lattice) of C".
Let B be a smooth affine algebraic curve. We consider the relative setting
of (3.4) over B:

0 > G, > o 5 o = 0

(3.6) N o
B

Here we assume that m : @4 — B is smooth without degeneration and also
dm is everywhere non-zero; in this case, we say that 7 : &/ — B is smooth.
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After deleting possibly a finite number of points of B, we may reduce the
initial case to a smooth one.

As in (3.5) we have the relative Lie algebra over B and the corresponding
semi-abelian exponential

(3.7) w : Lie(&/) — .

For a point ¢t € B we have @, = 7~ '{t} = C"/T, where I'; is a semi-
lattice. Since, as above, the vector bundle Lie(e/) — B is analytically trivial
by Grauert’s Oka-Principle (B is a one-dimensional Stein manifold; cf., e.g.,
[9] Theorem 5.3.1), we can write

(3.8) w: Lie(#) 2 BxC" 3 (t,z) — [(t,z)] € C"/Ty = o C .

Let ¢ : B — & be a holomorphic section of 7 : &/ — B. If there is a
lifting & : B — Lie(«) in (3.7) with wod(t) = o(t) (t € B), we call & a
logarithm of o (over B).

As for the case of elliptic schemes, already analyzed, logarithms do not
always exist (cf. §3.1). The semi-lattices I'; define a local system over B, and
the existence of a logarithm for a section ¢ is obstructed by a cohomology class
in the corresponding first cohomology group of this local system (cf. (3.3)).

With reference to (3.6) we denote by ¢, the C(B)/C-trace of < with
the quotient morphism qg : <% — <% /%. We have

(39 0-5GL, 9 =Kerpoq — o -2 oy % /% — 0,
and hence the exact sequence
0-Gl s> -9 —0.

Thus, ¢4 gives rise to a semi-abelian scheme over B.

Note that ¥ is defined over C and %, is isomorphic, as a scheme over B,
to a product B x GG for an abelian variety Go; % — B is the “constant part”
of the abelian scheme 4 — B. We say that a holomorphic section o : B — &
is %y-valued constant if poo(B) C 4% = B x Gy and ¢ o o(t) = (t,z9) with
an element xg € Gy.

We consider G! 5 in (3.6). Since the only complex affine algebraic model
of G,, is C*, after a finite base change we have

(3.10) Gl 5= B x (C"),
0= Bx(C)V=4%—BxGy—0 (over B).

We keep this reduction and the notation henceforth.



Analytic and rational sections of relative semi-abelian varieties 191

Taking a smooth equivariant toroidal compactification 7" of (C*)!, we have
a fiber bundle

(3.11) o — o (= B).

We then have the space Q'(7,log0.7) of logarithmic 1-forms with 0.o7 =
o \ o/ and T(/,logd.e7) of logarithmic vector fields along the divisor 0.7

We consider the transcendency problem of a holomorphic section of &/ —
B with a logarithm. If & = B x A; (trivial family), then any constant section
of Bx Ay — B isrational and has a logarithm; this may happen in a subfamily
of ¥ — B of & — B, even if & — B is non iso-trivial.

It is also to be noticed that a holomorphic section defined in a neighbor-
hood of a point of B\ B may locally have a non-constant logarithm there.
But, globally we have:

Lemma 3.12. Let Ag be an abelian variety with an exponential map, exp :
C" — Ag. Let g : A* = {0 < |z| < 1} — Ay be a holomorphic map with
a logarithm f : A* — C™ such that g(z) = exp f(z). If g(z) is holomorphi-
cally extendable at 0 as a map into Ay, then so is f(z) as a vector-valued
holomorphic function.

In particular, if g : B — Ag is a rational map with a logarithm, then g is
constant.

Proof. Assume that g : A* — A is holomorphically extendable at 0. Then
f A" — C" is reduced to be bounded in a small punctured neighborhood of
0, and so Riemann’s extension implies that f is holomorphically extendable
at the puncture 0.

Let f be a logarithm of the rational section g : B — Ay and let B be a
smooth compactification of B. Since g extends to a holomorphic map B — Ay,
f extends holomorphically over B as a vector-valued holomorphic function.
Hence, f is constant and so is g. O

In view of Mordell-Weil over function fields (Lang-Néron) we have

Theorem 3.13. Let o4 — B be an abelian scheme and let %y be a C(B)/C-
trace of <. Let o : B — @ be a holomorphic section with a logarithm. Then
o 1s either 9y-valued constant or transcendental.

Proof. Let q : ot — <% (C(B))/% be the quotient map. Then goo is a ratio-
nal section of @% /%, over B with a logarithm. By Lang-Néron, 2% (C(B))/%
is finitely generated and hence discrete; in particular, no non-zero section
of 2 (C(B))/% is infinitely divisible. Now, if a rational section p : B —
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2 (C(B))/% admits a logarithm, this section is infinitely divisible in the
holomorphic sense, i.e. for every integer n there exists a holomorphic section
pn With n - p, = p. This last equation is an algebraic one, so every solution is
algebraic; since p,, is well-defined on the whole of B, being algebraic it must
be rational. It follows that p is infinitely divisible in the Mordell-Weil group,
and hence it is the 0-section.

Applying this fact to p = g o o we obtain that gooc =0s00: B = % =
B x Gy. We write

o(t) = (t,exp f(1)),
where exp : Lie(Gy) = C™ — Gy is an exponential map and f: B — C™ is
a vector-valued holomorphic function. By Lemma 3.12, f(¢) = ag € C™ and
o(t) = (t,zo) with zo = exp ao. O
To generalize the above results to semi-abelian varieties we need:

Lemma 3.14. Let g(z) be a holomorphic function on a punctured disk A* =
{z € C:0 < |z| <1}. If g(2) is not extendable at z = 0 as a holomorphic
function, then €9%) has an essential (isolated) singularity at 0.

Remark. In function theory, “etranscendental

while in numbers, e™ = —1.

= algebraic” does not happen,

Proof. We distinguish two cases, according to the type of singularity of g at 0:

(i) g has a pole at 0. Then in every punctured neighborhood of 0, the real
part Rg(z) of g(z) takes arbitrarily large positive numbers and arbitrarily
small negative numbers, so the function e9(*) tends to infinity on a sequence
converging to 0 and it also tends to 0 on another such sequence. This can
happen only if €9(*) has an essential singularity at 0.

(ii) g has an essential singularity at 0. Then the image by ¢ of any punc-
tured neighborhood of 0 is dense, so again g tends to two different values on
sequences converging to 0 (say it tends to 0 and to 1) so €9 has two limits
on different sequences. Thus, ¢9(*) has an essential (isolated) singularity at
0. O

Theorem 3.15. Let 7 : &/ — B be a smooth semi-abelian scheme and let 4
be as in (3.9). Assume that

glgBXGl

with a semi-abelian variety Gy over C. If a holomorphic section o : B — &
has a logarithm, then o is either transcendental or % -valued constant, i.e.,
o(t) = (t,z1) with an element x1 € Gy through % = B x Gj.

Proof. By Theorem 3.13 and Lemmata 3.12, 3.14. O
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4. Local smooth family

We would like to transpose the Nevanlinna theory for holomorphic curves into
semi-abelian varieties (cf. [13], [18] Chap. 6) to a relative setting.

4.1. Jet space of holomorphic local sections

Let A be the unit disk of the complex plane C with center 0 € C. Let t € A
be the natural complex coordinate. We consider a smooth family w: o — A
of semi-abelian varieties of dimension n with its zero section: A > t — 0; €
oy = Ht} t e A

Let o/ be a relative toroidal compactification of o (cf. (3.11)). Let

Jr( log 0.2/ denote the kth logarithmic jet space over .27 along 0.7, and
let

Tk - Jk(ﬁ_,logﬁd) — b(Zf_
be the natural projection.
Let Jp(«//A)(C Jp(<7)) denote the space of k-th jets of holomorphic
local sections f of 7 : &/ — A such that 7o f(t) =t.
In (3.8) we write x = (21, ..., %,) with the natural complex coordinates.
Then, n; := dz; (1 < j < n) give rise to elements of the space Q! (7, log 0.%7)
of logarithmic 1-forms and

(4.1) {dt,m, ... mn}

forms the frame over 7.
For a jet element jx(f) € Ji(&//A)su) (t € A) we set

(1.2) fonp = fldt, 1<j<n.
Then we have

(4.3) AHOE) = (FE): L fi@), -, (),
B2(£)@E) = (1 ()0, f (), £ (1)),

() = Grot (@0, [P @), ., fB (@),

In this way we have the trivializations

(4.4) Je(f JA) 2 o x {(1,0,...,0)} x C"* = o7 x C".
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Let

be the jet projection, which extends holomorphically to the relative logarith-
mic jet space Ji (o7 /A, log 0.47). We set the relative jet projection with respect
to the frame (4.1)

(4.5) INk = (Wk,fk) : Jk(ﬂf/A7log8£/) — A X an.
Note that I, is proper.
4.2. A relative exponential map

We keep the notation above. We consider the abelian integration

(4.6) xteegft%(/o 771,...,/0 nn)EC”.

We denote by I'; the semi-lattice generated by the periods of (4.6). We then
have a relative exponential map

expp @ Lie(@) 2 A x C" 3 (t,x) — (t,[z]) € {t} x C"/Ty = o C
moexpp(t,x) =t.
For an element w € C™ we have an action “w-” associated with (4.1) by

(4.7) w: (t[x]) € {t} x C"/Ty = o, — (t, [z + w]) € {t} x C"/T, = o,

4.3. Nevanlinna theory of holomorphic sections over the
punctured disk

The notation is kept. We follow [13].
Let A* = A\ {0} be the punctured disk. We consider a holomorphic

section
A — mo f(t)=t, t € A"

Let now w be a real (1,1)-form on ./ and let ro > 1 be any fixed real
number. For r > rg we define the order function of f with respect to w by

"d
(4.8) Ty(r;w) :/ —S/ [fw, r>rp.
T0 S {1/S<‘t‘<1/7‘0}
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Let wy be a hermitian metric form on <. Then there is a constant C' > 1
such that

(4.9) C'Ty(r;wo) < Ty(riw) < OTy(r;wo), 7 > 7.

The above C' depends on the choice of 1y > 0 in general.
It is noted:

Proposition 4.10. Let wy be a hermitian metric form on /. A holomorphic
section f : A* — of is holomorphically extendable at 0 as a map into o if
and only if

T .
(4.11) lim %)
r—00 IOg’I“

Let 2 be a relative effective divisor on 7 /A which is extendable to a
divisor 2 on & /A. We call such 2 a relative algebraic divisor on o /A.
Let £ = Z(2) denote the line bundle over &/ /A determined by 2 with a
section ¢ such that the divisor (o) defined by o satisfies (0) = 2. Let || - ||
be a hermitian metric in .%, and let wg be the Chern curvature form of
the hermitian metric. For a holomorphic section f : A* — & with f(A*) ¢
Supp Z, we define the counting functions of the pull-back divisor f*Z by

n(s, [*9) = Z deg. f*92, s> o,

1/s<|¢|<1/ro

N(r, f* ) = / Md

To

s, T >T7g.

Replacing deg, f*Z above by min{deg, f*?,k} (k € N), we have the corre-
sponding (truncated) counting functions denoted by

nk(saf*-@)v Nk(r7f*-@)'

We set T'(r) = {t = 1/(re’?) : 0 < 0 < 27} parameterized by , and the
proximity function

1 do
— log —— &
mytr2) = [ g o

We have:
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Theorem 4.12 (First Main Theorem (cf. [13] (1.4))). Let the notation be as
above. Then

(4.13)

Ty(risos) = N0, [*9) 4 my(r,9) = my(r0. 7) + (logr) || dFloglloo I

T

=N(r, D) +mys(r,2) + O(logr), r >,

where d° = (i/4m)(0 — 0).

Remark 4.14. (i) When f(I'(rg)) N Supp Z # 0, the last term of (4.13),

Jr(r) @ 10g [lo 0 f |2 should be taken as a principal-value integration.

We may also take o > 1 so that f(I'(rg)) N Supp Z = 0. Then the
integrand is smooth on I'(rg).

(ii) (Cf. (4.9)) If £ = £(2) is relatively big on &/ /A, then there is a
positive constant C' such that

C'Ty(r;wg) + O(logr) < Ty(r;wo) < CTy(r;wg) + O(logr).

Let f: A* — & be a holomorphic section and the frame (4.1) be given.
Recall we have defined the first derivatives fi(t) of f by (4.2), and hence

the k-th (k € N, positive integers) derivatives f](k) (t), which are holomorphic
functions on A*. We then have the “lemma on logarithmic derivatives™:

Lemma 4.15 ([12], [13]). Let the notation be as above. Then we have
df
log™ | f| 5= = Sy(r; >rg, keN

where S¢(r;wo) = O(log™ T(r;wo))+O(log r)||, called a small term in Nevan-
linna theory.

4.4. Relative second main theorem

Let & — A and &/ — A be a smooth family of semi-abelian varieties and its
relative toroidal compactification as above. We consider a relative algebraic
reduced divisor 2 on &7 /A; i.e., there is a relative reduced divisor 2 on &/
such that 2 = 2N.«7. We identify it with its support. For a given holomorphic
section f : A* — & we deal with a problem to obtain a “Second Main
Theorem” with respect to 9.

We refer to the relative Zariski topology on & in the sense that closed

subsets Z (C /) are analytic subsets of 7; hence, the fibers Z; (t € A)
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are algebraic subsets of .«7. Then, it induces the relative Zariski topology on
the open subset &7 of <. It is noticed that a relative Zariski-closed subset
Y of &7 is not merely an analytic subset of 7 but the fibers Y; (t € A) are
algebraic subsets of @%. We define similarly the relative Zariski topology on
the jet space Ji(/ /A, log d.e7) and its open subset Ji, (.7 /A): Here one notes
that the restrictions Ji (27 /A, log 0.7) |z (t € A) are affine fiber bundles over
o7, with some C” as fibers, which is compactified by P7(C).

Let f : A* — & be a holomorphic section. We denote by Xp(f)
(C Je(e /A log de?), k > 0) the relative Zariski-closure of the image of the
k-th jet lift Jo(f) : A* — Ju( JA) — Jp(o/ /A log 0.e7) of f. For k =0 we
set

(4.16) X(f) = Xo(f) €.
Definition 4.17. We say that f : A* — o7 is non-degenerate if X(f) = of;
otherwise, f is degenerate.

_If f: A" — &/ is non-degenerate, f is not extendable at 0 as a map into
.

To prepare some technical lemmata, we need to fix the frame (4.1).

Lemma 4.18. Assume that f : A* — o is non-degenerate. Then for all
sufficiently large k € N

L(Xk () N I(2] D) # Te(Xi(f)).
Proof. Cf. [13], [18] Lemma 6.3.2. O
As in the proof of [18] p. 227, we have:

Lemma 4.19. Assume that f : A* — & is non-degenerate. Then we have
mys(r; D) = Sg(r;wo), 1> r0.

Combining this with Theorem 4.12 we obtain

Theorem 4.20 (Second Main Theorem). Let 2 be a relatively algebraic big
reduced divisor on &/ /A and let f : A* — <7 be a non-degenerate holomorphic
section.

Then there is a relative compactification o/ |\ of & | A together with & =
L(9), independent of f, and a natural number k € N such that

Tf(riwe) = Ng(r, [* D) + Sf(riwe), 1> 1.
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Proof. Cf. [18] §6.4. O

Remark 4.21. (i) Note that the order function T7(r;we) depends on the
choice of the relative compactification .o/ /A.
(ii) The requirement on &7 above is such that for a general point t € A, 7
acts on .7 and Z; contains no fixed point ([18], Corollary 5.6.7); this is
an open property in the parameter ¢.

Theorem 4.22 (Big Picard). Let f : A* — &7 and Z be as in Theorem 4.20.
Then, f intersects 9 infinitely many times in an arbitrarily small (punctured)
netghborhood about 0.

Proof. Suppose that f(A*)N Z is finite. Since Z is a relatively algebraic big
reduced divisor on &7 /A, it follows from Theorem 4.20 that

Ty(r;wo) = Sy(r;we), > 10.

Then, it is immediate that T(r,wy) = O(logr)||. By Proposition 4.10 we
conclude that f is extendable at 0 as a map into 2, and hence f cannot be
non-degenerate. O

Remark 4.23. By Corvaja-Noguchi [3] Theorem 5.2, a non-degenerate entire
curve on a semi-abelian variety intersects an ample reduced divisor D so that
the points of the intersections on D is Zariski-dense in D. Together with the
smoothness assumption of & — A at 0, it is interesting to ask:

Question 4.24. Is f(A*) N 2 of Theorem 4.22 relative Zariski-dense in 27?7

Question 4.25. Is it possible to allow the above & — A of Theorems 4.20
and 4.22 to degenerate at 0 € A? (Cf. Problem 7.2.)

4.5. Remarks to the Zariski-local case

Let B be a smooth projective algebraic curve. Let 7 : & — Band 7 : &/ — B
be a smooth family of n-dimensional semi-abelian varieties over B and its
relative toroidal compactification as in §3.2.

We consider a transcendental holomorphic section

f:B— 4,

where B is an affine open set of B. Set S = B\ B. If f is transcendental,
then there is a point of S at which f is not extendable as a map into <.

To deal with the local Nevanlinna theory for such f as above obtained in
the previous subsections, we introduce a rational function 7 on B such that 7
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is holomorphic on a Zariski-open neighborhood B’ of S in B and has a zero of
order 1 at every point of S. Let B'(r() (r{, > 0) denote the union of connected
components of {x € B' : |7(x)| < 1/r{} containing the points of S. Taking
and fixing a large r{, we have

dr(x) # 0, x € B'(r().
For simplicity, we denote by B the Zariski-open set B N B’, and set
B(ry={zeB:1/r <|r(z)| <1/},

where 79 > 7{, is any fixed number.
We use 7 for the parameter ¢ of (4.1). For n; (1 < j < n) of (4.1) we
define also them by rational differentials on & with logarithmic poles on

0o = o \ o, so that
{d7'77717~~771n}

forms a holomorphic frame over .7/ | B/(r}), Where r( is replaced by a larger one
if necessary.

We then define the order functions, counting functions and proximity
functions as in the former subsections; e.g., the order function T4 (r;w) of f
with respect to a hermitian metric form w on . is defined by

" d
Tf(r;w):/ ?S B()f*w, r > 7.

Replacing the relative Zariski topology by the (ordinary) Zariski topology,
we apply the arguments given in the previous subsections for f : B — /. We
then obtain in particular the Second Main Theorem 4.20 for f: B — <.

5. About Problem 1.1

We deal with the semi-abelian case. Let B be a smooth projective algebraic
curve. Here we need a rather strong assumption such that &/ — B is smooth.

Theorem 5.1. Let o7 — B be a smooth family of semi-abelian varieties over
B, and let 2 be a relatively big reduced divisor on a relative compactification
o |B. Let B be any non-empty Zariski-open subset of B, and let f : B — of
be a holomorphic section. If f(B') N 2 is finite, then f is degenerate.

Proof. By the Second Main Theorem 4.20 and §4.5. O
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Remark 5.2. (i) We insist that in the above example, the fibration is smooth
on the projective curve, i.e. without bad reduction. Abelian schemes of that
kind can be obtained as jacobians of so-called Kodaira fibrations (see [2]);
examples with semi-abelian schemes arise e.g. from generalized jacobians of
logarithmic Kodaira fibrations (definition 5 in [2]).

(ii) In the theorem above, the family &/ — B may degenerate at a point
where f is already defined holomorphically as a map into /. What is essen-
tially excluded in the theorem is the case when the family @/ — B degenerates
at a possibly (essentially) singular point of f.

6. About Problem 1.2 and 1.3
6.1. On Problem 1.2

(a) Example. We first give the example mentioned after Problem 1.2. Let
C' be a smooth projective curve of genus g > 2, and let A be its Jacobian
variety with an embedding n : C' — A. Let exp4 : C?2 — A be an exponential
map. Take an affine line L C C? such that the image exp(L) is Zariski-dense
in A. Let ¢" C C be an affine open subset with a non-constant rational
holomorphic map ¢ : ¢’ — C = L. Let us set o/ := ' x A% with the first
projection &7 — C” to the base space C’. With 1(x) = exp 4(¢(z)) we have a
section

(6.1) o:xeC — (z,n(x),Y(z)) € A.

By definition (cf. [17]), a non-constant holomorphic map f from C’ into A is
strictly transcendental if for every abelian subvariety A; of A, the composed
map qa, o f : C" — A/A; with the quotient map g4, : A — A/A; is either
transcendental or constant.

Then, ¢ : C" — A is strictly transcendental due to [17]. Let G() C C'x A
denote the graph of n and set G'(n) = G(n) N (C" x A). Then, the Zariski-
closure X (o) (cf. (4.16)) of the image of o is given by

X(0)=G'(n) x A.

Thus, X (o) contains a translate of a subgroup, {w} x A with w € G'(n),
however it is not itself a translate of a subgroup.

(b) We use the notation defined in §3.2. Let 7 : &/ — B be an algebraic
family of semi-abelian varieties over an affine curve B and let &/ — B be
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the relative compactification over B. For a Zariski-closed subset X C &/ we
consider the the set-theoretic stabilizer group of X, which is

(6.2) Ufeed:a+ X=X} (Xi=XNa).

teB

It is a closed subset of &; each fiber over any point ¢t € B is an algebraic
subgroup of the fiber .@%; its dimension is upper semi-continuous, i.e. either
constant or admitting jumps at a finite set of points. Removing these points,
we let St(X) be the Zariski-closure of the set-theoretic stabilizer outside this
exceptional set. It is the total space of a group-scheme over B, so that we
have the quotients,

(6.3) X/S5t(X) C o |St(X).
We set the relative dimension of St(X) by
dimp St(X) = dim St(X) — dim B = dim St(X) — 1.
For a holomorphic section f : B — o/ we set (cf. (4.16) for X(f))
(6.4) SHX(f)) = SHX(f)Ne),  dimp S(X(f)) = dimp SLX(f)N).

Theorem 6.5. Let 7 : o — B be a smooth family of semi-abelian varieties
over B. Let f : B — & be a lranscendental holomorphic section over an
affine open subset B C B. Then dimp St(X(f)) > 0.

Proof. We take the restriction of the jet projection I, defined by (4.5) to
Xe(f)(C Je(/ /B, log 07))

]Nk’Xk(f) : Xk(f) — A X an.
Since I}, is proper, the image Yy, = I;,(X(f)) is an analytic subset of A x C¥
which is algebraic in C™*-factor. We fix arbitrarily a reference point ¢, €
A* such that ji(f)(to) is a non-singular point of Xy(f), and consider the
differential between the holomorphic tangent spaces
dlx]x, (1) TR t0) = TA X C™)p ()10 = C x C™
By (4.4) we have

T(Xk(£))ju(H)t0) € T(A)se X (T(,) x T(C™)); (1)(t9) = C x T(#,) x C™.
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With this product structure the kernel Ker dy,| X,.(f) satisfies
Wk = Ker dik’Xk(f) C T(JZ{to)f(to) = Cn,

where the other tangent components are 0. Since Wi D Wi 1, they stabilize
at some Wy, = Wy,11 = ---. If Wy, = {0}, we then deduce in the same way
as in [18] §6.2 that

Ty (r;wo) = S¢(r;wo),

so that f is extendable over B as a map into .&7; i.e., f is not transcendental.
Hence Wy, # {0}. Since a tangent vector v € Wy, is tangent to X (f) at f(to)
with infinite order, we see that v(€ Lie(<//B)) is tangent to X (f) N .o/ at all
points of X (f) N/ (cf. [18] §6.2). Thus, dimp St(X(f)) > 0. O

Corollary 6.6. Let f : B — & be as in Theorem 5.1 and let q : & —
o |St(X(f)) be the quotient map. Then the composite g := qo f : B —
o [St(X(f)) is rational.

6.2. On Problem 1.3

Now, let 7 : & — B be an abelian scheme defined over a smooth projective
algebraic curve B. Let B C B be an affine open subset. We consider a tran-
scendental holomorphic section f : B — 7. Let X (f) be the Zariski closure
of f(B) in o7 and let St(X (f)) be the stabilizer of X (f) defined by (6.4). Let
@ be an abelian subscheme of <7 over B and let gy : & — o /¥ be the quo-
tient morphism. We consider the induced composite map gy o f : B — &/ /9.
Then, as in Theorem 3.13 it makes sense to say whether g4 o f is a C(B)/C-
trace (of &7 /¥9) valued constant section or not. Following to the notion of
“strict transcendency” defined in [17], we give:

Definition 6.7. We say that a transcendental holomorphic section f: B —
o7 is strictly transcendental if for every abelian subscheme ¢ of o7 the induced
holomorphic section gy o f : B — 7 /¥ is either transcendental or a C(B)/C-
trace valued constant section.

Theorem 6.8. Assume that o/ — B is smooth. Let f : B — o/ be a strictly
transcendental holomorphic section. Then, after a finite base change, X (f) is
a translate of an abelian subscheme 4 of o/ by a rational section o : B —
X(f) such that ggo f : B — 7 /9 is a C(B)/C-trace valued constant section.

Proof. We set X = X(f) and ¢ = St(X). By the assumption and Corol-
lary 6.6

(6.9) ggof:B— A9
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is a C(B)/B-trace valued constant section. Thus for general ¢t € B except for
finitely many, the fibers satisfy

Xy =f(t) +%.

We take a finite base change B — B so that there is a rational section
& : B — X with the lift X of X. We denote by & (resp. ¢ ) the lift of &7
(resp. ¢). Thus, we have

X=5+9.
It follows that g, 05 : B — 7 /49 is the lift of the section (6.9) and hence a
C(B)/C-trace valued constant section. O

We would like to stress that we are assuming the smoothness of the family
m: o — B over B. It is interesting to ask:

Question 6.10. (i) Is it sufficient in Theorem 6.8 to assume the smoothness
condition for 2/ only over the affine open B?
(ii) How do we deal with the semi-abelian case?

7. Problems and remarks

(a) As mentioned in §1, the Zariski-closure of the image of an entire curve
f : C — Ain an abelian variety A is a translate of an algebraic subgroup.
It is still unknown what should be the topological closure in the sense of the
complex topology, of the image f(C). One might ask the following:

Question 7.1. Let f : C — A be an entire curve in a complex abelian
variety. Is it true that the topological closure of f(C) is a translate of a real
Lie subgroup of A(C)?

(b) Related to Question 4.25, one may raise:

Problem 7.2. Extend the results of §6.1 to the case where 7 : &/ — B
degenerates at finitely many points of B.

8. Heights—observations
Let B be an affine algebraic smooth curve. For the heights of an abelian or

elliptic scheme £ — B, we have to consider three different settings:

(i) The height of a family &€ — B.
(ii) The height of a fiber &, for each b € B.
(iii) The height of a section ¢ : B — £ of £ — B.
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(i) Height of elliptic schemes. Let £ — B be an elliptic scheme with
a smooth projective algebraic compactification B of B. The moduli space of
elliptic curves is an orbifold complex space H/T'(1) with A : H = {z € C :
Sz > 0} — H/T'(1). We have a holomorphic map ¢¢ : B — H/T'(1), which
has a local lift ¢ey : U — H from a neighborhood U of every point of B.
Since the Poincaré metric wp (or the Bergman metric in the case of Siegel
space) is invariant by I'(1), we have the pull-back ¢Fwp = gEEUwp. We define
the height of £ — B by

(8.1) WE/B) = [ drn € Ro.

Note that the integral is finite, because ¢cwp has at most the Poincaré
growth at every point of B\ B. Also, we have h(£/B) = 0 if and only if the
scheme £/B is isotrivial. After the normalization of the curvature of wp we
have (by Schwarz or by the comparison of Kobayashi hyperbolic metrics)

(8.2) WE/B) < 29(B) =2+ #(B\ B) = x(B),

where #(B \ B) denotes the cardinality, so x(B) is the Euler characteristic
of the affine curve B. The same holds for a family of principally polarized
abelian varieties, up to replacing the upper half plane by the Siegel space.

(ii) Height of &,. Consider a non-isotrivial elliptic scheme & — B;
identifying the Lie algebra Lie(€) with B x C, we can identify the period
lattice Ay over each point b with a lattice in C, and calculate its volume V' (b).
Then we can define the height of & to be

This function on B depends on the trivialization of the line bundle Lie(€). A
canonical choice can be done by considering first the Legendre scheme, whose
base is By = P!\ {0, 1,00}. There one disposes of a canonical choice for the
fundamental periods p1, p2, given by Gauss’ hypergeometric series defined in
the region of By where |A| <1 and |1 —A] < 1:

2 2
83  m)=rY (ﬂ/f) N p =iy (1/ 2) (1=
n>0 n>0

Then the volume of the lattice equals

i pi P\ ilpml? 3(7) - |pa|?
V(M) = = det = (T-7)=—F5—.
(A) = 5 de <p2 m) 5 (T—7)
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Here 7 = 7(\) = p2/p1. Recall that the A function is expressed in terms of 7
as

AN=16¢g—128¢> + ..., for g = ™.

Now, given any non-isotrivial elliptic scheme, we can suppose, after suitable
base extension, that the 2-torsion is rational. Letting B be the new base, the
elliptic scheme can be viewed as a pull-back of the Legendre scheme via a
finite map B — By. The height of the fiber is then calculated by looking at
the fibers over Bj.

(iii) Height of a section ¢ : B — £. We follow [7], where we gave a
closed integral formula for the height of sections. Given an elliptic scheme
m: & — B, and a simply connected open set U C B, we consider a basis
p1, p2 of the period lattice: we can view them as sections of the line bundle
Lie(&) over U; each point of £ over some point of U admits a logarithm,
defined up to integral multiples of pi, ps. This logarithm can be expressed
as a linear combination with real coefficients of pq, p2. We then obtain real
valued functions 31, 82 on m~1(U), which are locally well-defined, and globally
defined only up to addition of integer numbers. The differentials d3;, df, are
well defined on the whole of 7~1(U). Finally, the exterior product

W = dﬂl A d,BQ

is well-defined on the whole of £. Note that its integral on each fiber equals 1.
Now, for a rational section o : B — £ we define its height to be

(8.4) i) = /B oW,

Clearly, it vanishes if and only if a non-trivial linear combination of 3y, 35 is
constant. By a theorem of Manin (see [6] for a modern presentation and [1]
for generalizations), this happens if and only if ¢ is torsion, or the scheme is
isotrivial and the section is constant.

In [7], §3 and §4, the following properties have been established

(i) The differential 2-form w is the only closed 2-form on the total space
€ such that [2]*w =4 - w, where [2] : &€ — £ is the multiplication-by-2
morphism.

(ii) It is also the only 2-form on £ whose integral on each fiber equals 1,
and such that [2]*w =4 - w.

(iii) The height h(c) coincides with the normalized Néron-tate height as
defined e.g. in chap. VI of Silverman’s book [21]:

h(o) = lim (no-0)

n—00 n2 ’
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where the numerator denotes the intersection product (on a smooth
projective model of £) between the closure of the image of the section
no : B — £ and the zero section.

(iv) The height is also expressible as the limit

lim t{be B|no(b) = O}.

n—00 n2

(v) In the case of the Legendre scheme, the differential form w can be
expressed as

w = dd°(R(znr(2)),

where A € B is the coordinate on the base, z is the coordinate in the Lie
algebra C of &, and the function (A, z) — n)(2) is defined as follows:
(1) for each A € B, the function z — ny(z) is R-linear; (2) for each A
with |A] < 1,|A — 1] < 1, so that p1(X), pa(N) are well defined by (8.3),
ma(p1(A)) and na(p2(A)) are the semi-periods of £y; (3) the holomorphic
functions A — na(pi(N)) are analytically continued along paths on B
(see again chap. VI of [21]).

Whenever o : B — £ is a holomorphic section in general, the integral (8.4)
does not necessarily converge. In [5], §3.2, we gave another integral formula
for h(c), this time in terms of the ‘modular logarithm’, defined therein.

In order to extend the notion of normalized (Néron) height to transcen-
dental sections, we follow the same pattern as in §4.5: Let us choose a rational
function £ on B such that £ is holomorphic on B and has a pole at every point
of B \ B, where B is a smooth compactification of B. Then, the modulus
|€| : B — R is a non-negative exhaustion function such that dd®log|{| = 0
on {x € B : {(x) # 0}. Setting B(r) = {z € B : |{(x)] < r} for r > 0, we
define the height (characteristic) function by

Ty (r) :/ ﬁ/ orw.
0 S JB(s)

In view of Theorem 2.4 and property (iv) of the normalized height, when-
ever the section o is transcendental, the integral (8.4) diverges. Vice-versa,
whenever the height function satisfies T, () = O(logr), then the integral (8.4)
converges, and again by combining Theorem 2.4 with property (iv) one can
deduce that o is rational.
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