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Bergman bundles and applications to the geometry
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Abstract: We introduce the concept of Bergman bundle attached
to a hermitian manifold X, assuming the manifold X to be com-
pact – although the results are local for a large part. The Bergman
bundle is some sort of infinite dimensional very ample Hilbert bun-
dle whose fibers are isomorphic to the standard L2 Hardy space
on the complex unit ball; however the bundle is locally trivial only
in the real analytic category, and its complex structure is strongly
twisted. We compute the Chern curvature of the Bergman bundle,
and show that it is strictly positive. As a potential application, we
investigate a long standing and still unsolved conjecture of Siu on
the invariance of plurigenera in the general situation of polarized
families of compact Kähler manifolds.
Keywords: Bergman metric, Hardy space, Stein manifold, Grau-
ert tubular neighborhood, Hermitian metric, Hilbert bundle, very
ample vector bundle, compact Kähler manifold, invariance of pluri-
genera.

0. Introduction

Projective varieties are characterized, almost by definition, by the existence
of an ample line bundle. By the Kodaira embedding theorem [10], they are
also characterized among compact complex manifolds by the existence of a
positively curved holomorphic line bundle, or equivalently, of a Hodge metric,
namely a Kähler metric with rational cohomology class. On the other hand,
general compact Kähler manifolds, and especially general complex tori, fail
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to have a positive line bundle. Still, compact Kähler manifolds possess topo-
logical complex line bundles of positive curvature, that are in some sense
arbitrary close to being holomorphic, see e.g. [11] and [18]. It may neverthe-
less come as a surprise that every compact complex manifold carries some
sort of very ample holomorphic vector bundle, at least if one accepts certain
Hilbert bundles of infinite dimension. Motivated by geometric quantization,
Lempert and Szőke [12] have introduced and discussed a more general concept
of “field of Hilbert spaces” which is similar in spirit.

0.1 Theorem. Every compact complex manifold X carries a locally tri-
vial real analytic Hilbert bundle Bε → X of infinite dimension, defined for
0 < ε ≤ ε0, equipped with an integrable (0, 1)-connection ∂ = ∇0,1 (in a
generalized sense), that is a closed densely defined operator in the space of
L2 sections, in such a way that the sheaf Bε = OL2(Bε) of ∂-closed locally
L2 sections is “very ample” in the following sense.

(a) Hq(X,Bε ⊗O F) = 0 for every (finite rank) coherent sheaf F on X and
every q ≥ 1.

(b) Global sections of the Hilbert space H = H0(X,Bε) provide an embed-
ding of X into a certain Grassmannian of closed subspaces of infinite
codimension in H.

(c) The bundle Bε carries a natural Hilbert metric h such that the
curvature tensor iΘBε,h is Nakano positive (and even Nakano positive
unbounded!).

Parts (a) and (b) are proved by considering the (pre)sheaf structure of Bε,
and observing that there is a related L2 Dolbeault complex on which Hörman-
der’s L2 estimates [8] can be applied. The case of Stein manifolds is sufficient,
and the corresponding Hilbert bundle Bε is not involved in the arguments.
Technically, the proof is given in Proposition 2.5 and Remark 2.6. Part (c)
deals with the geometry of Bε, and is treated in section 3.

We start by explaining a little bit more the relationship between the
“Hilbert bundles” involved here, and the more familiar concept of locally
trivial holomorphic Hilbert bundle: such a bundle E → X is required to be
trivial on sufficiently small open sets V ⊂ X, and such that E|V � V × H

where H is a complex Hilbert space. The gluing transition automorphism
with another local trivialization E|V ′ � V ′ × H should then be of the form
(z, ξ) 	→ (z, g(z) · ξ) where g is a holomorphic map from V ∩ V ′ to the open
set GL(H) of invertible continuous operators in End(H). Smooth and real
analytic locally trivial Hilbert bundles can be defined in a similar manner
by requiring g to be in C∞, resp. in Cω. A smooth hermitian structure on
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E is a smooth family of hermitian metrics h(z) on the fibers, given in the
trivializations by smooth maps hV ∈ C∞(V,Herm+(H)), where Herm+(H)
is the set of positive definite (coercive) hermitian forms on H. The usual
formalism of Chern connections still applies: one gets a unique connection
∇h = ∇1,0

h + ∇0,1
h acting on C∞(X,E) in such a way that h is ∇h paral-

lel and ∇0,1
h = ∂; moreover, the kernel of ∇0,1

h coincides with the sheaf of
holomorphic sections OX(E). This connection is given by exactly the same
formulas as in the finite dimensional case, namely ∇1,0

h � h−1
V ◦ ∂ ◦ hV over V ,

with a curvature tensor ∇2
h = ΘE,h given by ΘE,h � ∂(h−1

V ∂hV ) (if one views
hV (z) as an endomorphism of H); locally, ΘE,h can thus be seen as a smooth
(1, 1)-form with values in the space of continuous endomorphisms End(H).
In general, if E is a smooth Hilbert bundle (defined as above, but with gluing
automorphisms g ∈ C∞(V,GL(H))), a smooth (0, 1)-connection ∇0,1

A is an
order 1 linear differential operator that is locally of the form ∂ + AV where
AV ∈ C∞(V,Λ0,1T ∗

X ⊗End(H)). It is said to be integrable if (∇0,1
A )2 = 0, i.e.

∂AV +AV ∧AV = 0 on each trivializing chart V . The following equivalence of
categories is well known, and follows e.g. from Malgrange [13, chap. X, The-
orem 1], although the statement is expressed there in more concrete terms.

0.2 Theorem (Malgrange [13]). The category of holomorphic vector bundles
on X is equivalent to the category of smooth bundles equipped with smooth
integrable (0, 1)-connections ∇0,1

A , the holomorphic structure being obtained
by taking the kernel sheaf of ∇0,1

A .

Notice that the usual finite dimensional proofs apply essentially unchanged
to the case of locally trivial Hilbert bundles. For instance, one can adapt
Malgrange’s inductive proof [13] based on the Cauchy formula in one vari-
able (for holomorphic functions with values in a Banach space, depending
smoothly on some other parameters), or use a Nash–Moser process along
with the Bochner–Martinelli kernel (see e.g. [23]), or an infinite dimensional
version of Hörmander’s L2 estimates (the latter do not depend on the rank
of bundles and are thus valid for Hilbert bundles equipped with integrable
smooth (0, 1)-connections; the solution of minimal L2 norm can be used to
find local ∇0,1

A -closed sections generating fibers of the bundle). The result is
also valid for the category of real analytic Hilbert bundles, assuming E and
∇0,1

A to be real analytic; the resulting holomorphic structure on E is then
compatible with the originally given real analytic structure. Now, when X is
compact hermitian, the standard L2 techniques of PDE theory lead to con-
sidering the space L2(X,E) of L2 sections. A smooth (0, 1)-connection then
gives rise to a closed densely defined operator

(0.3) ∇0,1
A : L2(X,E) −→ L2(X,Λ0,1T ∗

X ⊗ E)
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that is never continuous. In our situation, the bundles come in a natural
way as a family of smooth (and even real analytic) Hilbert bundles Eε,
0 < ε ≤ ε0, associated with a family Hε of Hilbert spaces which form a
“scale”, in the sense that there are continuous injections with dense image
Hε′ ↪→ Hε, 0 < ε < ε′ ≤ ε0. The transition automorphisms defining the Eε’s
are supposed to come from invertible automorphisms of H>0 =

⋃
ε>0 Hε pre-

serving each Hε (here H>0 is just an inductive limit of Hilbert spaces). Then
it makes sense to consider generalized (0, 1)-connections that are locally of
the form

(0.4) ∇0,1
A � ∂ + AV , AV ∈ C∞(Λ0,1T ∗

X ⊗ End(H>0)),

where we actually have AV |Hε′ ∈ C∞(Λ0,1T ∗
X ⊗ Hom(Hε′ ,Hε)) for all

0 < ε < ε′ ≤ ε0. By our assumptions, such connections still induce densely
defined operators on each of the spaces L2(X,Eε), and we declare them to
be integrable when (∇0,1

A )2 = 0. The usual algebraic formalism for extending
the connection to higher degree forms and calculating the curvature tensor
still applies in this setting.

However, it may happen, and this will be the case for the Chern connec-
tion matrices of our bundles Bε of Theorem 0.1, that the AV do not induce
continuous endomorphisms of Hε (for any value of ε > 0), although the kernel
of ∇0,1 in L2(X,Bε) looks very much like a space of holomorphic sections.
In this context, the associated curvature tensor ΘEε,h need not either take
values in the continous endomorphisms. Then Malgrange’s theorem implies
that such bundles do not correspond to locally trivial holomorphic bundles
as defined above, even under the integrability assumption. At the end of Sec-
tion 3 we will briefly discuss in which sense Bε can still be considered to be
some sort of infinite dimensional complex space, in a way that the projection
map Bε → X becomes holomorphic.

The construction of Bε is made by embedding X diagonally in X×X and
taking a Stein tubular neighborhood Uε of the diagonal, according to a well
known technique of Grauert [6]. When Uε is chosen to be a geodesic neigh-
borhood with respect to some real analytic hermitian metric, one can arrange
that the first projection p : Uε → X is a real analytic bundle whose fibers
are biholomorphic to hermitian balls. One then takes Bε to be a “Bergman
bundle”, consisting of holomorphic n-forms f(z, w) dw1 ∧ . . . ∧ dwn that are
L2 on the fibers p−1(z) � B(0, ε). The fact that Uε is Stein and real analyti-
cally locally trivial over X then implies Theorem 0.1, using the corresponding
Bergman type Dolbeault complex.

In [1], given a holomorphic fibration π : X → Y and a positive hermi-
tian holomorphic line bundle L → X, Berndtsson has introduced a formally
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similar L2 bundle Y � t 	→ A2
t , whose fibers consist of sections of the adjoint

bundle KX/Y ⊗ L on the fibers Xt = π−1(t) of π, equipped with the cor-
responding Bergman metric. In the situation considered by Berndtsson, the
major application is the case when π is proper, so that A2

t is finite dimen-
sional, and is the holomorphic bundle associated with the direct image sheaf
π∗(OX(KX/Y ⊗ L)). The main result of [1] is a calculation of the curvature,
and a proof that the direct image is a Nakano positive vector bundle. On
the other hand, when π : X → Y is non proper, and especially when (Xt)
is a smooth family of smoothly bounded Stein domains, the corresponding
spaces A2

t are infinite dimensional Hilbert spaces. The curvature of the corre-
sponding Hilbert bundle has been obtained by Wang Xu [22] in this general
setting. Our curvature calculations can be seen as the very special case where
the fibers are smoothly varying hermitian balls and the centers vary anti-
holomorphically. The calculation can then be made in a very explicit way, by
first considering the model case of balls of constant radius in C

n, and then
by using an osculation and suitable Taylor expansions, in the case of varying
hermitian metrics (a similar osculating technique has been used in [24] for
the study of Bargmann–Fock spaces). As a consequence, we get

0.5 Proposition. The curvature tensor of (Bε, h) admits an asymptotic ex-
pansion

〈(ΘBε,h ξ)(v, Jv), ξ〉h =
+∞∑
p=0

ε−2+pQp(z, ξ ⊗ v),

where, in suitable normal coordinates, the leading term Q0(z, ξ ⊗ v) is ex-
actly equal to the curvature tensor of the Bergman bundle associated with the
translation invariant tubular neighborhood

Uε = {(z, w) ∈ C
n × C

n ; |z − w| < ε},

in the “model case” X = C
n. That term Q0 is an unbounded quadratic her-

mitian form.

The potential geometric applications we have in mind are for instance
the study of Siu’s conjecture on the Kähler invariance of plurigenera (see
4.1 below), where the algebraic proof ([20], [17]) uses an auxiliary ample line
bundle A. In the Kähler case at least, one possible idea would be to replace
A by the infinite dimensional Bergman bundle Bε. The proof works to some
extent, but some crucial additional estimates seem to be missing to get the
conclusion, see §4. Another question where Bergman bundles could potentially
be useful is the conjecture on transcendental Morse inequalities for real (1, 1)-
cohomology classes α in the Bott–Chern cohomology group H1,1

BC(X,C). In
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that situation, multiples kα can be approximated by a sequence of integral
classes αk corresponding to topological line bundles Lk → X that are closer
and closer to being holomorphic, see e.g. [11]. However, on the Stein tubular
neighborhood Uε, the pull-back p∗Lk can be given a structure of a genuine
holomorphic line bundle with curvature form very close to k p∗α. Our hope
is that an appropriate Bergman theory of “Hilbert dimension” (say, in the
spirit of Atiyah’s L2 index theory) can be used to recover the expected Morse
inequalities. There seem to be still considerable difficulties in this direction,
and we wish to leave this question for future research.

The author addresses warm thanks to the referees for a number of use-
ful suggestions and observations that led to substantial improvements of the
original presentation.

1. Exponential map and tubular neighborhoods

Let X be a compact n-dimensional complex manifold and Y ⊂ X a smooth
totally real submanifold, i.e. such that TY ∩ JTY = {0} for the complex
structure J on X. By a well known result of Grauert [6], such a Y always
admits a fundamental system of Stein tubular neighborhoods U ⊂ X (this
would be even true when X is noncompact, but we only need the compact
case here). In fact, if (Ωα) is a finite covering of X such that Y ∩ Ωα is a
smooth complete intersection {z ∈ Ωα ; xα,j(z) = 0}, 1 ≤ j ≤ q (where
q = codimR Y ≥ n), then one can take U = Uε = {ϕ(z) < ε} where

(1.1) ϕ(z) =
∑
α

θα(z)
∑

1≤j≤q

(xα,j(z))2 ≥ 0

where (θα) is a partition of unity subordinate to (Ωα). The reason is that ϕ
is strictly plurisubharmonic near Y , as

i∂∂ϕ|Y = 2i
∑
α

θα(z)
∑

1≤j≤q

∂xα,j ∧ ∂xα,j

and (∂xα,j)j has rank n at every point of Y , by the assumption that Y is
totally real.

Now, let X be the complex conjugate manifold associated with the in-
tegrable almost complex structure (X,−J) (in other words, OX = OX); we
denote by x 	→ x the identity map Id : X → X to stress that it is conjugate
holomorphic. The underlying real analytic manifold XR can be embedded di-
agonally in X ×X by the diagonal map δ : x 	→ (x, x), and the image δ(XR)
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is a totally real submanifold of X × X. In fact, if (zα,j)1≤j≤n is a holomor-
phic coordinate system relative to a finite open covering (Ωα) of X, then the
zα,j define holomorphic coordinates on X relative to Ωα, and the “diagonal”
δ(XR) is the totally real submanifold of pairs (z, w) such that wα,j = zα,j for
all α, j. In that case, we can take Stein tubular neighborhoods of the form
Uε = {ϕ < ε} where

(1.2) ϕ(z, w) =
∑
α

θα(z)θα(w)
∑

1≤j≤q

|wα,j − zα,j |2.

Here, the strict plurisubharmonicity of ϕ near δ(XR) is obvious from the fact
that

|wα,j − zα,j |2 = |zα,j |2 + |wα,j |2 − 2 Re(zα,jwα,j).

For ε > 0 small, the first projection pr1 : Uε → X gives a complex fibration
whose fibers are C∞-diffeomorphic to balls, but they need not be biholomor-
phic to complex balls in general. In order to achieve this property, we proceed
in the following way. Pick a real analytic hermitian metric γ on X ; take e.g.
the (1, 1)-part γ = g(1,1) = 1

2(g + J∗g) of the Riemannian metric obtained as
the pull-back g = δ∗(

∑
j idfj ∧ df j), where the (fj)1≤j≤N provide a holomor-

phic immersion of the Stein neighborhood Uε into C
N . Let exp : TX → X,

(z, ξ) 	→ expz(ξ) be the exponential map associated with the metric γ, in
such a way that R � t 	→ expz(tξ) are geodesics D

dt(
du
dt ) = 0 for the the Chern

connection D on TX (see e.g. [4, (2.6)]). Then exp is real analytic, and we
have Taylor expansions

expz(ξ) =
∑

α,β∈Nn

aαβ(z)ξαξβ, ξ ∈ TX,z

with real analytic coefficients aαβ , where expz(ξ) = z + ξ + O(|ξ|2) in local
coordinates. The real analyticity means that these expansions are convergent
on a neighborhood |ξ|γ < ε0 of the zero section of TX . We define the fiber-
holomorphic part of the exponential map to be

(1.3) exph : TX → X, (z, ξ) 	→ exphz(ξ) =
∑
α∈Nn

aα0(z)ξα.

It is uniquely defined, is convergent on the same tubular neighborhood
{|ξ|γ < ε0}, has the property that ξ 	→ exphz(ξ) is holomorphic for z ∈ X
fixed, and satisfies again exphz(ξ) = z + ξ + O(ξ2) in coordinates. By the
implicit function, theorem, the map (z, ξ) 	→ (z, exphz(ξ)) is a real analytic
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diffeomorphism from a neighborhood of the zero section of TX onto a neigh-
borhood V of the diagonal in X ×X. Therefore, we get an inverse real ana-
lytic mapping X × X ⊃ V → TX , which we denote by (z, w) 	→ (z, ξ),
ξ = loghz(w), such that w 	→ loghz(w) is holomorphic on V ∩ ({z}×X), and
loghz(w) = w − z + O((w − z)2) in coordinates. The tubular neighborhood

Uγ,ε = {(z, w) ∈ X ×X ; | loghz(w)|γ < ε}

is Stein for ε > 0 small; in fact, if p ∈ X and (z1, . . . , zn) is a holomorphic co-
ordinate system centered at p such that γp = i

∑
dzj∧dzj , then | loghz(w)|2γ =

|w− z|2 +O(|w− z|3), hence i∂∂| loghz(w)|2γ > 0 at (p, p) ∈ X ×X. By con-
struction, the fiber pr−1

1 (z) of pr1 : Uγ,ε → X is biholomorphic to the ε-ball
of the complex vector space TX,z equipped with the hermitian metric γz. In
this way, we get a locally trivial real analytic bundle pr1 : Uγ,ε whose fibers
are complex balls; it is important to notice, however, that this ball bundle
need not – and in fact, will never – be holomorphically locally trivial.

2. Bergman bundles and Bergman Dolbeault complex

Let X be a n-dimensional compact complex manifold equipped with a real
analytic hermitian metric γ, Uε = Uγ,ε ⊂ X ×X the ball bundle considered
in §1 and

p = (pr1)|Uε
: Uε → X, p = (pr2)|Uε

: Uε → X

the natural projections. We introduce what we call the “Bergman direct image
sheaf”

(2.1) Bε = pL
2

∗ (p∗O(KX)).

By definition, its space of sections Bε(V ) over an open subset V ⊂ X consists
of holomorphic sections f of p∗O(KX) on p−1(V ) that are in L2(p−1(K)) for
all compact subsets K � V , i.e.

(2.2)
∫
p−1(K)

in
2
f ∧ f ∧ γn < +∞, ∀K � V.

Then Bε is clearly a sheaf of infinite dimensional Fréchet OX -modules. In
the case of finitely generated sheaves over OX , there is a well known equiv-
alence of categories between holomorphic vector bundles G over X and lo-
cally free OX -modules G. As is well known, the correspondence is given by
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G 	→ G := OX(G) = sheaf of germs of holomorphic sections of G, and the
converse functor is G 	→ G, where G is the holomorphic vector bundle whose
fibers are Gz = Gz/mzGz = Gz ⊗OX,z OX,z/mz where mz ⊂ OX,z is the maxi-
mal ideal. In the case of Bε, we cannot take exactly the same route, mostly
because the desired “holomorphic Hilbert bundle” Bε will not even be locally
trivial in the complex analytic sense. Instead, we define directly the fibers
Bε,z as the set of holomorphic sections f of KX on the fibers Uε,z = p−1(z),
such that ∫

Uε,z

in
2
f ∧ f < +∞.(2.2z)

Since Uε,z is biholomorphic to the unit ball Bn ⊂ C
n, the fiber Bε,z is isomor-

phic to the Hilbert space H2(Bn) of L2 holomorphic n-forms on Bn. In fact,
if we use orthonormal coordinates (w1, . . . , wn) provided by exph acting on
the hermitian space (TX,z, γz) and centered at z, we get a biholomorphism
Bn → p−1(z) given by the homothety ηε : w 	→ εw, and a corresponding
isomorphism

Bε,z −→ H2(Bn), f 	−→ g = η∗εf, i.e. with I = {1, . . . , n},(2.3)
fI(w) dw1 ∧ . . . ∧ dwn 	−→ εn fI(εw) dw1 ∧ . . . ∧ dwn, w ∈ Bn,(2.3′)

‖g‖2 =
∫
Bn

2−nin
2
g ∧ g, g = g(w) dw1 ∧ . . . ∧ dwn ∈ H2(Bn).(2.3′′)

As Uε → X is real analytically locally trivial over X, it follows immediately
that Bε → X is also a locally trivial real analytic Hilbert bundle of typical
fiber H2(Bn), with the natural Hilbert metric obtained by declaring (2.3)
to be an isometry. Since Aut(Bn) is a real Lie group, the gauge group of
Bε → X can be reduced to real analytic sections of Aut(Bn) and we have
a well defined class of real analytic connections on Bε. In this context, one
should pay attention to the fact that a section f in Bε(V ) does not necessarily
restrict to L2 holomorphic sections fUε,z ∈ Bε,z for all z ∈ V , although this is
certainly true for almost all z ∈ V by the Fubini theorem; this phenomenon
can already be seen through the fact that one does not have a continuous
restriction morphism ρn : H2(Bn) → H2(Bn−1) to the hyperplane zn = 0. In
fact, the function (1− z1)−α is in H2(Bn) if and only if α < (n+1)/2, so that
(1− z1)−n/2 is outside of the domain of ρn. As a consequence, the morphism
Bε,z → Bε,z (stalk of sheaf to vector bundle fiber) only has a dense domain
of definition, containing e.g. Bε′,z for any ε′ > ε. This is a familiar situation
in Von Neumann’s theory of operators.
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We now introduce a natural “Bergman version” of the Dolbeault complex,
by introducing a sheaf Fq

ε over X of (n, q)-forms which can be written locally
over small open sets V ⊂ X as

(2.4) f(z, w) =
∑
|J |=q

fJ(z, w) dw1 ∧ . . .∧dwn∧dzJ , (z, w) ∈ Uε∩ (V ×X),

where the fJ(z, w) are L2
loc smooth functions on Uε ∩ (V × X) such that

fJ(z, w) is holomorphic in w (i.e. ∂wf = 0) and both f and ∂f = ∂zf are in
L2(p−1(K)) for all compact subsets K � V (here ∂ operators are of course
taken in the sense of distributions). By construction, we get a complex of
sheaves (F•

ε , ∂) and the kernel Ker ∂ : F0
ε → F1

ε coincides with Bε. In that
sense, if we define OL2(Bε) to be the sheaf of L2

loc sections f of Bε such that
∂f = 0 in the sense of distributions, then we exactly have OL2(Bε) = Bε as
a sheaf. For z ∈ V , the restriction map Bε(V ) = OL2(Bε)(V ) → Bε,z is an
unbounded closed operator with dense domain, and the kernel is the closure
of mzBε(V ), which need not be closed. If one insists on getting continuous
fiber restrictions, one could consider the subsheaf

OCk(Bε)(V ) := OL2(Bε)(V ) ∩ Ck(Bε)(V )

where Ck(Bε) is the sheaf of sections f such that ∇�f is continuous in the
Hilbert bundle topology for all real analytic connections ∇ on Bε and all
� = 0, 1, . . . , k. For these subsheaves (and any k ≥ 0), we do get continuous
fiber restrictions OCk(Bε)(V ) → Bε,z for z ∈ V . In the same way, we could
introduce the Dolbeault complex F•

ε ∩ C∞ and check that it is a resolution
of O ∩ C∞(Bε), but we will not need this refinement. However, a useful ob-
servation is that the closed and densely defined operator OL2(Bε)(V ) → Bε,z

is surjective, in fact it is even true that H0(X,OL2(Bε)) → Bε,z is surjec-
tive by the Ohsawa–Takegoshi extension theorem [16] applied on the Stein
manifold Uε. We are going to see that Bε can somehow be seen as an infi-
nite dimensional very ample sheaf. This is already illustrated by the following
result.

2.5 Proposition. Assume here that ε > 0 is taken so small that ψ(z, w) :=
| loghz(w)|2 is strictly plurisubharmonic up to the boundary on the compact
set U ε ⊂ X × X. Then the complex of sheaves (F•

ε , ∂) is a resolution of Bε

by soft sheaves over X (actually, by C∞
X -modules), and for every holomorphic

vector bundle E → X and every q ≥ 1 we have

Hq(X,Bε ⊗ O(E)) = Hq(Γ(X,F•
ε ⊗ O(E)), ∂

)
= 0.
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Moreover the fibers Bε,z ⊗ Ez are always generated by global sections of
H0(X,Bε ⊗ O(E)), in the sense that H0(X,Bε ⊗ O(E)) → Bε,z ⊗ Ez is a
closed and densely defined operator with surjective image.

Proof. By construction, we can equip Uε with the the associated Kähler met-
ric ω = i∂∂ψ which is smooth and strictly positive on U ε. We can then take
an arbitrary smooth hermitian metric hE on E and multiply it by e−Cψ,
C � 1, to obtain a bundle with arbitrarily large positive curvature tensor.
The exactness of F•

ε and cohomology vanishing then follow from the standard
Hörmander L2 estimates applied either locally on p−1(V ) for small Stein open
sets V ⊂ X, or globally on Uε. The global generation of fibers is again a con-
sequence of the Ohsawa–Takegoshi L2 extension theorem.

2.6 Remark. The same result holds for an arbitrary coherent sheaf E instead
of a locally free sheaf O(E), the reason being that p∗E admits a resolution
by (finite dimensional) locally free sheaves O⊕N

Uε′
on a Stein neighborhood Uε′

of U ε.

2.7 Remark. A strange consequence of these results is that we get some
sort of “holomorphic embedding” of an arbitrary complex manifold X into a
“Hilbert Grassmannian”, mapping every point z ∈ X to the closed subspace
Sz in the Hilbert space H = Bε(X), consisting of sections f ∈ H such that
f(z) = 0 in Bε,z, i.e. f|p−1(z) = 0. However, the fact that the restriction
morphisms f 	→ f|p−1(z) are not continuous in L2 norm implies that the map
z 	→ Sz is not even continuous in the strong topology, i.e. the metric topology
for which the distance of two fibers Sz1 , Sz2 is the Hausdorff distance of their
unit balls in the L2 norm of Bε(X).

3. Curvature tensor of Bergman bundles

3.1. Calculation in the model case (Cn, std)

In the model situation X = C
n with its standard hermitian metric, we con-

sider the tubular neighborhood

(3.1) Uε := {(z, w) ∈ C
n × C

n ; |w − z| < ε}

and the projections

p = (pr1)|Uε
: Uε → X = C

n, (z, w) 	→ z,

p = (pr2)|Uε
: Uε → X = C

n, (z, w) 	→ w.
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If one insists on working on a compact complex manifold, the geometry is
locally identical to that of a complex torus X = C

n/Λ equipped with a
constant hermitian metric γ.

3.2 Remark. We check here that the Bergman bundle Bε is not holomor-
phically locally trivial, even in the above situation where we have invariance
by translation. However, in the category of real analytic bundles, there is a
global trivialization of Bε → C

n given by the map

τ : Bε
�−→C

n ×H2(Bn), Bε,z � fz 	−→ τ(f) = (z, gz),

where gz(w) := fz(εw + z), w ∈ Bn, in other words, for any open set V ⊂ C
n

and any k ∈ N ∪ {∞, ω}, we have isomorphisms

Ck(V,Bε) → Ck(V,H2(Bn)), f 	→ g, g(z, w) = f(z, εw + z),

where f, g are Ck in (z, w), holomorphic in w, and the derivatives z 	→
Dα

z g(z, •), |α| ≤ k, define continuous maps V → H2(Bn). The complex struc-
tures of these bundles are defined by the (0, 1)-connections ∂z of the associated
Dolbeault complexes, but obviously ∂zf and ∂zg do not match. In fact, if we
write

g(z, w) = u(z, w) dw1 ∧ . . . ∧ dwn ∈ C∞(V,H2(Bn)) = C∞(V ) ⊗̂H2(Bn)

where ⊗̂ is the ε or π-topological tensor product in the sense of [7], we get

f(z, w) = g(z, (w − z)/ε) = ε−nu(z, (w−z)/ε) dw1 ∧ . . . ∧ dwn,

∂zf(z, w) =

ε−n
(
∂zu(z, (w−z)/ε) − ε−1 ∑

1≤j≤n

∂u

∂wj
(z, (w−z)/ε) dzj

)
∧ dw1 ∧ . . . ∧ dwn.

Therefore the trivialization τ∗ : f 	→ u yields at the level of ∂-connections an
identification

τ∗ : ∂zf
�	−→ ∂zu + Au

where the “connection matrix” A ∈ Γ(V,Λ0,1T ∗
X ⊗C End(H2(Bn))) is the

constant unbounded Hilbert space operator A(z) = A given by

A : H2(Bn) → Λ0,1T ∗
X ⊗C H2(Bn), u 	→ Au = −ε−1 ∑

1≤j≤n

∂u

∂wj
dzj .
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We see that the holomorphic structure of Bε is given by a (0, 1)-connection
that differs by the matrix A from the trivial (0, 1)-connection, and as A
is unbounded, there is no way we can make it trivial by a real analytic
gauge change with values in Lie algebra of continuous endomorphisms of
H2(Bn).

We are now going to compute the curvature tensor of the Bergman bundle
Bε. For the sake of simplicity, we identify here H2(Bn) to the Hardy space of
L2 holomorphic functions via u 	→ g = u(w) dw1∧. . .∧dwn. After rescaling, we
can also assume ε = 1, and at least in a first step, we perform our calculations
on B1 rather than Bε. Let us write wα =

∏
1≤j≤n w

αj

j for a multiindex α =
(α1, . . . , αn) ∈ N

n, and denote by λ the Lebesgue measure on C
n. A well

known calculation gives∫
Bn

|wα|2dλ(w) = πnα1! . . . αn!
(|α| + n)! , |α| = α1 + · · · + αn.

In fact, by using polar coordinates wj = rje
iθj and writing tj = r2

j , we get∫
Bn

|wα|2dλ(w) = (2π)n
∫
r2
1+···+r2

n<1
r2α r1dr1 . . . rndrn = πnI(α)

with

I(α) = πn
∫
t1+···+tn<1

tα dt1 . . . dtn.

Now, an induction on n together with the Fubini formula gives

I(α) =
∫ 1

0
tαn
n dtn

∫
t1+···+tn−1<1−tn

(t′)α′
dt1 . . . dtn−1

= I(α′)
∫ 1

0
(1 − tn)α1+···+αn−1+n−1tαn

n dtn

where t′ = (t1, . . . , tn−1) and α′ = (α1, . . . , αn−1). As∫ 1

0
xa(1 − x)bdt = a! b!

(a + b + 1)! ,

we get inductively

I(α) = (|α′| + n− 1)!αn!
(|α| + n)! I(α′) ⇒ I(α) = α1! . . . αn!

(|α| + n)! .



224 Jean-Pierre Demailly

Such formulas were already used by Shiffman and Zelditch [21] in their study
of zeros of random sections of positive line bundles. They imply that a Hilbert
(orthonormal) basis of O ∩ L2(Bn) � H2(Bn) is

(3.3) eα(w) = π−n/2

√
(|α| + n)!
α1! . . . αn! w

α.

As a consequence, and quite classically, the Bergman kernel of the unit ball
Bn ⊂ C

n is

Kn(w) =
∑
α∈Nn

|eα(w)|2 = π−n
∑
α∈Nn

(|α| + n)!
α1! . . . αn! |w

α|2 = n!π−n(1 − |w|2)−n−1.

(3.4)

If we come back to Uε for ε > 0 not necessarily equal to 1 (and do not omit
any more the trivial n-form dw1 ∧ . . . ∧ dwn), we have to use a rescaling
(z, w) 	→ (ε−1z, ε−1w). This gives for the Hilbert bundle Bε a real analytic
orthonormal frame

(3.5) eα(z, w) = π−n/2ε−|α|−n

√
(|α| + n)!
α1! ... αn! (w − z)α dw1 ∧ . . . ∧ dwn

A germ of holomorphic section σ ∈ OL2(Bε) near z = 0 (say) is thus given by
a convergent power series

σ(z, w) =
∑
α∈Nn

ξα(z) eα(z, w)

such that the functions ξα are real analytic on a neighborhood of 0 and satisfy
the following two conditions:

|σ(z)|2h :=
∑
α∈Nn

|ξα(z)|2 converges in L2 near 0,(3.6)

∂zkσ(z, w) =
∑
α∈Nn

∂zkξα(z) eα(z, w) + ξα(z) ∂zkeα(z, w) ≡ 0.(3.7)

Let ck = (0, . . . , 1, . . . , 0) be the canonical basis of the Z-module Z
n. A strai-

ghtforward calculation from (3.5) yields

∂zkeα(z, w) = −ε−1
√
αk(|α| + n) eα−ck(z, w).

We have the slight problem that the coefficients are unbounded as |α| → +∞,
and therefore the two terms occurring in (3.7) need not form convergent series
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when taken separately. However if we take σ ∈ OL2(Bε′) in a slightly bigger
tubular neighborhood (ε′>ε), the L2 condition implies that

∑
α(ε′′/ε)2|α||ξα|2

is uniformly convergent for every ε′′ ∈ ]ε, ε′[ , and this is more than enough
to ensure convergence, since the growth of α 	→

√
αk(|α| + n) is at most

linear; we can even iterate as many derivatives as we want. For a smooth
section σ ∈ C∞(Bε′), the coefficients ξα are smooth, with

∑
(ε′/ε)2|α||∂β

z ∂
γ
zξα|2

convergent for all β, γ, and we get

∂zkσ(z, w) =
∑
α∈Nn

∂zkξα(z) eα(z, w) + ξα(z) ∂zkeα(z, w)

=
∑
α∈Nn

∂zkξα(z) eα(z, w) − ε−1
√
αk(|α| + n) ξα(z) eα−ck(z, w)

=
∑
α∈Nn

(
∂zkξα(z) − ε−1

√
(αk + 1)(|α| + n + 1) ξα+ck(z)

)
eα(z, w),

after replacing α by α + ck in the terms containing ε−1. The (0, 1)-part
∇0,1

h of the Chern connection ∇h of (Bε, h) with respect to the orthonormal
frame (eα) is thus given by

(3.8) ∇0,1
h σ =

∑
α∈Nn

(
∂ξα −

∑
k

ε−1
√

(αk + 1)(|α| + n + 1) ξα+ck dzk
)
⊗ eα.

The (1, 0)-part can be derived from the identity

∂|σ|2h = 〈∇1,0
h σ, σ〉h + 〈σ,∇0,1

h σ〉h.

However

∂zj |σ|2h = ∂zj
∑
α∈Nn

ξαξα =
∑
α∈Nn

(∂zjξα) ξα + ξα (∂zjξα )

=
∑
α∈Nn

(
∂zjξα + ε−1

√
αj(|α| + n) ξα−cj

)
ξα

+
∑
α∈Nn

ξα
(
∂zjξα − ε−1

√
(αj + 1)(|α| + n + 1) ξα+cj

)
.

For σ ∈ C∞(Bε′), it follows from there that

(3.9) ∇1,0
h σ =

∑
α∈Nn

(
∂ξα + ε−1 ∑

j

√
αj(|α| + n) ξα−cjdzj

)
⊗ eα.
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Finally, to find the curvature tensor of (Bε, h), we only have to compute
the (1, 1)-form (∇1,0

h ∇0,1
h + ∇0,1

h ∇1,0
h )σ and take the terms that contain no

differentiation at all, especially in view of the usual identity ∂∂ + ∂∂ = 0 and
the fact that we also have here (∇1,0

h )2 = 0, (∇0,1
h )2 = 0. As (α−cj)k = αk−δjk

and (α + ck)j = αj + δjk, we are left with

(
∇1,0

h ∇0,1
h + ∇0,1

h ∇1,0
h

)
σ

= − ε−2 ∑
α∈Nn

∑
j,k

√
αj(|α|+n)

√
(αk−δjk+1)(|α|+n) ξα−cj+ck dzj ∧ dzk ⊗ eα

+ ε−2 ∑
α∈Nn

∑
j,k

√
(αj+δjk)(|α|+n+1) ×√

(αk+1)(|α|+n+1) ξα−cj+ck dzj ∧ dzk ⊗ eα

= − ε−2 ∑
α∈Nn

∑
j,k

√
(αj−δjk)(αk−δjk) (|α| + n− 1) ξα−cj dzj ∧ dzk ⊗ eα−ck

+ ε−2 ∑
α∈Nn

∑
j,k

√
αjαk (|α| + n) ξα−cj dzj ∧ dzk ⊗ eα−ck .

= ε−2 ∑
α∈Nn

∑
j,k

√
αjαk ξα−cj dzj ∧ dzk ⊗ eα−ck

+ ε−2 ∑
α∈Nn

∑
j

(|α| + n− 1) ξα−cj dzj ∧ dzj ⊗ eα−cj ,

where the last summation comes from the subtraction of the diagonal terms
j = k. By changing α into α+ cj in that summation, we obtain the following
expression of the curvature tensor of (Bε, h).

3.10 Theorem. The curvature tensor of the Bergman bundle (Bε, h) is
given by

〈ΘBε,hσ(v, Jv), σ〉h = ε−2 ∑
α∈Nn

(∣∣∣∣∑
j

√
αj ξα−cjvj

∣∣∣∣2 +
∑
j

(|α| + n) |ξα|2|vj |2
)

for every σ =
∑

α ξαeα ∈ Bε′, ε′>ε, and every tangent vector v =
∑

vj ∂/∂zj.

The above curvature hermitian tensor is positive definite, and even posi-
tive definite unbounded if we view it as a hermitian form on TX ⊗Bε rather
than on TX ⊗ Bε′ . This is not so surprising since the connection matrix was
already an unbounded operator. Philosophically, the very ampleness of the
sheaf Bε was also a strong indication that the curvature of the corresponding
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vector bundle Bε should have been positive. Observe that we have in fact

ε−2 ∑
α∈Nn

∑
j

(|α| + n) |ξα|2|vj |2

≤ 〈ΘBε,hσ(v, Jv), σ〉h ≤ 2ε−2 ∑
α∈Nn

∑
j

(|α| + n) |ξα|2|vj |2,(3.11)

thanks to the Cauchy–Schwarz inequality

∑
α∈Nn

∣∣∣∣∑
j

√
αj ξα−cjvj

∣∣∣∣2
≤

∑
�

|v�|2
∑
α∈Nn

∑
j

αj |ξα−cj |2 =
∑
�

|v�|2
∑
j

∑
α∈Nn

αj |ξα−cj |2

=
∑
�

|v�|2
∑
j

∑
α∈Nn

(αj + 1)|ξα|2 =
∑
�

|v�|2
∑
α∈Nn

(|α| + n)|ξα|2.

3.2. Curvature of Bergman bundles on compact hermitian
manifolds

We consider here the general situation of a compact hermitian manifold (X, γ)
described in §1, where γ is real analytic and exph is the associated partially
holomorphic exponential map. Fix a point x0 ∈ X, and use a holomorphic
system of coordinates (z1, . . . , zn) centered at x0, provided by

exphx0 : TX,x0 ⊃ V → X.

If we take γx0 orthonormal coordinates on TX,x0 , then by construction the fiber
of p : Uε → X over x0 is the standard ε-ball in the coordinates (wj) = (zj).
Let TX → V × Cn be the trivialization of TX in the coordinates (zj), and

X ×X → TX , (z, w) 	→ ξ = loghz(w)

the expression of logh near (x0, x0), that is, near (z, w) = (0, 0). By our choice
of coordinates, we have logh0(w) = w and of course loghz(z) = 0, hence we
get a real analytic expansion of the form

loghz(w) = w − z +
∑

zjaj(w− z) +
∑

zja
′
j(w− z)

+
∑

zjzkbjk(w− z) +
∑

zjzkb
′
jk(w− z) +

∑
zjzkcjk(w− z) + O(|z|3)

with holomorphic coefficients aj , a′j , bjk, b′jk, cjk vanishing at 0. In fact by
[4], we always have da′j(0) = 0, and if γ is Kähler, the equality daj(0) = 0
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also holds; we will not use these properties here. In coordinates, we then have
locally near (0, 0) ∈ C

n × C
n

Uε,z =
{
(z, w) ∈ C

n × C
n ; |Ψz(w)| < ε

}
where Ψz(w) = loghz(w) has a similar expansion

Ψz(w) = w − z +
∑

zjaj(w− z) +
∑

zja
′
j(w− z)(3.12)

+
∑

zjzkbjk(w− z) +
∑

zjzkb
′
jk(w− z) +

∑
zjzkcjk(w− z) + O(|z|3)

(when going from logh to Ψ, the coefficients aj , a′j and bj , b′j get twisted, but
we do not care and keep the same notation for Ψ, as we will not refer to logh
any more). In this situation, the Hilbert bundle Bε has a real analytic normal
frame given by ẽα = Ψ∗eα where

(3.13) eα(w) = π−n/2ε−|α|−n

√
(|α| + n)!
α1! ... αn! wα dw1 ∧ . . . ∧ dwn

and the pull-back Ψ∗eα is taken with respect to w 	→ Ψz(w) (z being consid-
ered as a parameter). For a local section σ =

∑
α ξαẽα ∈ C∞(Bε′), ε > ε, we

can write

∂zkσ(z, w) =
∑
α∈Nn

∂zkξα(z) ẽα(z, w) + ξα(z) ∂zk ẽα(z, w).

Near z = 0, by taking the derivative of Ψ∗eα(z, w), we find

∂zk ẽα(z, w) = −ε−1
√
αk(|α| + n) ẽα−ck(z, w)

+ ε−1 ∑
m

√
αm(|α| + n)

(
a′k,m(w− z) +

∑
j

zjcjk,m(w− z)
)
ẽα−cm(z, w)

+
∑
m

(
∂a′k,m
∂wm

(w− z) +
∑
j

zj
∂cjk,m
∂wm

(w− z)
)
ẽα(z, w) + O(z, |z|2),

where the last sum comes from the expansion of dw1 ∧ . . . ∧ dwn, and a′k,m,
cjk,m are the m-th components of a′k and cjk. This gives two additional terms
in comparison to the translation invariant case, but these terms are “small”
in the sense that the first one vanishes at (z, w) = (0, 0) and the second
one does not involve ε−1. If ∇0,1

h,0 is the ∂-connection associated with the
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standard tubular neighborhood |w− z| < ε, we thus find in terms of the local
trivialization σ � ξ =

∑
ξαε̃α an expression of the form

∇0,1
h σ � ∇0,1

h,0ξ + A0,1ξ,

where

A0,1
(∑

α

ξαẽα

)
=

∑
α∈Nn

∑
k

ξα

(
ε−1 ∑

m

√
αm(|α| + n)

(
a′k,m(w) +

∑
j

zjcjk,m(w)
)
dzk ⊗ ẽα−cm

+
∑
m

(
∂a′k,m
∂wm

(w) +
∑
j

zj
∂cjk,m
∂wm

(w)
)
dzk ⊗ ẽα

)
+ O(z, |z|2).

The corresponding (1, 0)-parts satisfy

∇1,0
h σ � ∇1,0

h,0ξ + A1,0ξ, A1,0 = −(A0,1)∗,

and the corresponding curvature tensors are related by

(3.14) Θβε,h = Θβε,h,0 + ∂A0,1 + ∂A1,0 + A1,0 ∧ A0,1 + A0,1 ∧ A1,0.

At z = 0 we have

A0,1ξ =
∑
α∈Nn

∑
k

ξα

(
ε−1 ∑

m

√
αm(|α| + n) a′k,m(w) dzk ⊗ ẽα−cm

+
∑
m

∂a′k,m
∂wm

(w) dzk ⊗ ẽα

)
,

∂A0,1ξ =
∑
α∈Nn

∑
k

ξα

(
ε−1 ∑

j,m

√
αm(|α| + n) cjk,m(w) dzj ∧ dzk ⊗ ẽα−cm

+
∑
j,m

∂cjk,m
∂wm

(w) dzj ∧ dzk ⊗ ẽα

)
,

and A1,0, ∂A1,0 are, up to the sign, the adjoint endomorphisms of A0,1 and
∂A0,1. The unboundedness comes from the fact that we have unbounded
factors

√
(αm + 1)(|α| + n + 1) ; it is worth noticing that multiplication by

a holomorphic factor u(w) is a continuous operator on the fibers Bε,z, whose
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norm remains bounded as ε → 0. In this setting, it can be seen that the
only term in (3.14) that is (a priori) not small with respect to the main term
ΘBε,h,0 is the term involving ε−2 in A1,0∧A0,1+A0,1∧A1,0, and that the other
terms appearing in the quadratic form 〈ΘBε,hξ, ξ〉 are O(ε−1 ∑(|α|+n)|ξα|2)
or smaller. In order to check this, we expand cjk,m(w) into a power series∑

μ cjk,m,μ gμ(w) where

gμ(w) = s−1
μ wμ, with sμ = sup

|w|≤1
|wμ| =

∏
1≤j≤n

(
μj

|μ|

)μj/2
=

∏
μ
μj/2
j

|μ||μ|/2 ,

(3.15)

so that sup|w|≤ε |gμ(w)| = ε|μ|. We get from the term 〈∂A0,1ξ, ξ〉 a summation

Σ(ξ) = ε−1 ∑
j,k,m

∑
α∈Nn

√
αm(|α| + n)

∑
μ∈Nn

cjk,m,μ dzj ∧ dzk ⊗ 〈ξα gμẽα, ξ〉.

At z = 0, gμẽα = gμeα is proportional to eα+μ, and by (3.15) and the definition
of the L2 norm, we have ‖gμẽα‖ ≤ ε|μ| and |〈ξα gμẽα, ξ〉| ≤ ε|μ| |ξα||ξα+μ|. We
infer ∣∣Σ(ξ)

∣∣ ≤ ε−1 ∑
j,k,m

∑
α∈Nn

√
αm(|α| + n)

∑
μ∈Nn

|cjk,m,μ| ε|μ| |ξα||ξα+μ|.

Let r be the infimum of the radius of convergence of w 	→ Ψz(w) over all
z ∈ X. Then for ε < r and r′ ∈ ]ε, r[, we have a uniform bound |cjk,m,μ| ≤
C(1/r′)|μ|, hence

∣∣Σ(ξ)
∣∣ ≤ C ′ε−1 ∑

α∈Nn

∑
μ∈Nn

( ε

r′

)|μ|√
αm(|α| + n) |ξα||ξα+μ|.

If we write√
αm(|α| + n) |ξα||ξα+μ| ≤

1
2(|α| + n)

(
|ξα|2 + |ξα+μ|2

)
≤ 1

2
(
(|α| + n)|ξα|2 + (|α + μ| + n)|ξα+μ|2

)
,

the above bound implies

∣∣Σ(ξ)
∣∣ ≤ C ′ε−1(1 − ε/r′)−n

∑
α∈Nn

(|α| + n)|ξα|2 = O

(
ε−1 ∑

α∈Nn

(|α| + n)|ξα|2
)
.
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We now come to the more annoying term A1,0∧A0,1+A0,1∧A1,0, and especially
to the part containing ε−2 (the other parts can be treated as above or are
smaller). We compute explicitly that term by expanding a′k,m(w) into a power
series

∑
μ a

′
k,m,μ gμ(w) as above. Let us write gm(w) = s−1

μ wμ. As a′k,m(0) = 0,
the relevant term in A0,1 is

ε−1 ∑
k,m

∑
μ∈Nn�{0}

a′k,m,μs
−1
μ dzk ⊗W μDm

where Dm and W μ =W μ1
1 . . .W μn

n are operators on the Hilbert space H2(Bε,0),
defined by

Dmẽα =
√
αm(|α| + n) ẽα−cm , Wm(f) = wmf.

The corresponding term in A1,0 is the opposite of the adjoint, namely

−ε−1 ∑
j,�

∑
λ∈Nn�{0}

a′k,�,λs
−1
λ dzj ⊗D∗

�W
∗λ

and the annoying term in A1,0 ∧ A0,1 + A0,1 ∧ A1,0 is

Q = − ε−2 ∑
j,k,�,m

∑
λ,μ∈Nn�{0}

a′k,�,λs
−1
λ a′k,m,μs

−1
μ dzj ∧ dzk ⊗(3.16)

(
D∗

�W
∗λW μDm −W μDmD

∗
�W

∗λ
)
.

We have here ‖W μ‖ ≤ sμ ε|μ| (as W μ is the multiplication by wμ = sμ gμ(w),
and |gμ| ≤ ε|μ| on Bε,0). The operators D∗

� and Dm are unbounded, but the
important point is that their commutators have substantially better continu-
ity than what could be expected a priori. We have for instance

Dmẽα =
√
αm(|α| + n) ẽα−cm , D∗

� (ẽα) =
√

(α� + 1)(|α| + n + 1) ẽα+c� ,

[D∗
� , Dm](ẽα) =

(√
(α� + 1 − δ�m)αm (|α| + n)

−
√

(α� + 1)(αm + δ�m) (|α| + n + 1)
)
ẽα+c�−cm

and the coefficient between braces is controlled by 2(|α| + n), as one sees
by considering separately the two cases � �= m, where we get −

√
(α� + 1)αm,

and � = m, where we get α�(|α| + n) − (α� + 1)(|α| + n + 1). Therefore
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‖[D∗
� , Dm](ẽα)‖ ≤ 2(|α| + n). We obtain similarly

Wm(ẽα) = ε

√
αm + 1

|α| + n + 1 ẽα+cm , W ∗
� (ẽα) = ε

√
α�

|α| + n
ẽα−c� ,

[W ∗
� ,Wm](ẽα) = ε2

(√
(α� + δ�m)(αm + 1)

|α| + n + 1

−
√
α�(αm + 1 − δ�m)

|α| + n

)
ẽα−c�+cm ,

and it is easy to see that the coefficient between large braces is bounded for
� �= m by

√
α�(αm + 1)/((|α|+ n)(|α|+ n+ 1)) ≤ (|α|+ n)−1, and for � = m

we have as well∣∣∣∣(α� + 1)(|α| + n) − α�(|α| + n + 1)
(|α| + n)(|α| + n + 1)

∣∣∣∣ ≤ (|α| + n)−1.

Therefore ‖[W ∗
� ,Wm](ẽα)‖ ≤ ε2(|α| + n)−1. Finally

[W ∗
� , Dm](ẽα) = ε

(√
(α� − δ�m)αm(|α| + n)

|α| + n− 1

−
√

α�(αm − δ�m)(|α| + n− 1)
|α| + n

)
ẽα−c�−cm

with a coefficient between braces less than 1, thus ‖[W ∗
� , Dm](ẽα)‖ ≤ ε. By ad-

junction, the same is true for [D∗
� ,Wm], and we can summarize our estimates

as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

‖W μ‖ ≤ sμε
|μ|, ‖W ∗λ‖ ≤ sλε

|λ|,

‖D∗
� (ẽα)‖ ≤ |α| + n + 1, ‖Dm(ẽα)‖ ≤ |α| + n,

‖[D∗
� , Dm](ẽα)‖ ≤ 2(|α| + n), ‖[W ∗

� ,Wm](ẽα)‖ ≤ (|α| + n)−1,

‖[W ∗
� , Dm](ẽα)‖ ≤ ε, ‖[D∗

� ,Wm](ẽα)‖ ≤ ε

(3.17)

Now, we observe that both D∗
�W

∗λW μDm(ẽα) and W μDmD
∗
�W

∗λ(ẽα) are
multiples of ẽα+c�−cm−λ+μ. By considering the second product W μDmD

∗
�W

∗λ

and permuting successively its factors DmD
∗
� , DmW

∗λ, W μD∗
� , W μW ∗λ, the

difference with D∗
�W

∗λW μDm is expressed as a sum of 1 + |λ| + |μ| + |λ||μ|
terms involving commutators. We derive from our estimates (3.17) precise
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bounds for the image of ẽα by the commutators. For instance, when we arrive
at D∗

�W
μW ∗λDm and permute W μW ∗λ, we go through intermediate steps

D�W
∗λ′

W μ′
WkW

∗
j W

μ′′
W ∗λ′′

Dm with λ = λ′ + λ′′ + cj , μ = μ′ + μ′′ + ck,
|λ| = |λ′|+ |λ′′|+1, |μ| = |μ′|+ |μ′′|+1, and have to evaluate the commutators

D�W
∗λ′

W μ′ [W ∗
j ,Wk]W μ′′

W ∗λ′′
Dm(ẽα).

By (3.17), the norm of these |λ||μ| terms is bounded by
(
(|α| − |λ| + |μ| − 1)+ + n + 1

)
sλ′ε|λ

′|sμ′ε|μ
′| ×(

(|α| − |λ′′| + |μ′′|)+ + n
)−1

sμ′′ε|μ
′′|sλ′′ε|λ

′′|(|α| + n)

≤ sλ′sλ′′sμ′sμ′′ ε|λ|+|μ| ((|α| − |λ| + |μ| − 1)+ + n + 1)(|α| + n)
(|α| − |λ|)+ + n

.(3.18)

The remaining commutators are easier, they lead to bounds⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sλsμ ε|λ|+|μ| 2((|α| − |λ|)+ + n) (once),

sλ′sλ′′sμ ε|λ|+|μ| (|α| − |λ| − 1)+ + n + 1 (|λ| times),

sλsμ′sμ′′ ε|λ|+|μ| (|α| + n) (|μ| times).

(3.19)

In the final estimates, we will have to bound some combinatorial factors of
the form

(3.20) sλ′sλ′′

sλ

sμ′sμ′′

sμ
(worst case),

and we want the ratios sλ′sλ′′/sλ to be as small as possible (clearly they are
at least equal to 1). For this, we try to keep the proportions λ′

j/|λ′|, λ′′
j /|λ′′|

as close as possible to λj/|λ| by selecting carefully which factor W ∗
� (and

Wm) we exchange at each step. After a permutation of the coordinates, we
may assume than λn ≥ maxj<n λj , hence λn ≥ 1

n |λ|. If t′ = |λ′|/|λ| and
t′′ = |λ′′|/|λ| = 1 − t′ − 1/|λ|, we take λ′

j = �t′λj�, λ′′
j = �t′′λj� for j ≤ n− 1

and compensate by taking ad hoc values of λ′
n, λ′′

n and c� = λ − (λ′ + λ′′).
Then t′λj − 1 < λ′

j ≤ t′λj for j < n and

λ′
n = |λ′| −

∑
j<n

λ′
j

⎧⎨⎩< t′|λ| −∑
j<n t

′λj + n− 1 = t′λn + n− 1,

≥ t′|λ| −∑
j<n t

′λj = t′λn.
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Therefore

λ′
j

|λ′| ≤
λj

|λ| for j < n,
λ′
n

|λ′| ≤
t′λn + n− 1

t′|λ| = λn

|λ|

(
1 + n− 1

t′λn

)
if λn > 0.

These inequalities imply respectively

(
λ′
j

|λ′|

)λ′
j/2

≤
(
λj

|λ|

)(t′λj−1)/2
,

(
λ′
n

|λ′|

)λ′
n/2

≤
(
λn

|λ|

)t′λn/2(
1 + n− 1

t′λn

)(t′λn+n−1)/2
.

In the last inequality we have t′λn ≥ 1
|λ|λn ≥ 1

n unless λ′ = 0. Thus, if λ′ �= 0,
we get

(
1 + n− 1

t′λn

)(t′λn+n−1)/2
≤ exp

(1
2
n− 1
t′λn

(t′λn + n− 1)
)

≤ exp
(1

2
(
n− 1 + n(n− 1)2

))
,

and by taking the product over all j ∈ {1, . . . , n} we find

sλ′ ≤ en
3/2 ∏

j≤n

(
λj

|λ|

)t′λj/2 ∏
j<n

( |λ|
λj

)1/2
≤ en

3/2 (σλ)t
′ |λ|(n−1)/2

(notice that for λj = 0 we also have λ′
j = 0, and the corresponding factors

are then equal to 1). Notice also that

(sλ)−1/|λ| =
∏
j≤n

( |λ|
λj

)λj/2|λ|
≤

∏
j≤n

|λ|λj/2|λ| = |λ|1/2.

For λ′, λ′′ �= 0, this implies

(3.21) sλ′sλ′′ ≤ en
3(sλ)t

′+t′′ |λ|n−1 = en
3(sλ)1−1/|λ| |λ|n−1 ≤ en

3
sλ |λ|n,

and our combinatorial factor (3.20) is less than e2n3 |λ|n|μ|n. When λ′ = 0 or
λ′′ = 0 (say λ′′ = 0), we have λ′ = λ− cj for some j and sλ′′ = 1, thus

sλ′sλ′′ = sλ′ = sλ

( |λ|
|λ| − 1

)(|λ|−1)/2
|λ|1/2 (λj − 1)(λj−1)/2

λ
λj/2
j

≤ e1/2 sλ |λ|1/2
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and inequality (3.21) still holds. We now put all our bounds together. For all
r′ < r = radius of convergence of w 	→ Ψz(w), the coefficients a′k,�,λ satisfy
|a′k,�,λ| ≤ C0(1/r′)|λ| with C0 = C0(r′) > 0, and for every ξ =

∑
α ξαẽα,

(3.16)–(3.21) imply a bound of the form

∣∣〈Q(ξ), ξ〉
∣∣ ≤ ε−2 ∑

α∈Nn

∑
λ,μ∈Nn�{0}

C1
( ε

r′

)|λ|+|μ|
(2 + |λ| + |μ| + |λ||μ|) ×

|λ|n|μ|n ((|α| − |λ| + |μ| − 1)+ + n + 1)(|α| + n)
(|α| − |λ|)+ + n

|ξα||ξα−λ+μ|.

Here |λ|+ |μ| ≥ 2, and for δ > 0 arbitrary, there exists C2 = C2(δ) such that

(2 + |λ| + |μ| + |λ||μ|) |λ|n|μ|n ≤ C2 (1 + δ)|λ|+|μ|−2,

thus

∣∣〈Q(ξ), ξ〉
∣∣ ≤ C1C2

r′2

∑
α∈Nn

∑
λ,μ∈Nn�{0}

((1 + δ)ε
r′

)|λ|+|μ|−2
×

((|α| − |λ| + |μ|)+ + n)(|α| + n)
(|α| − |λ|)+ + n

|ξα||ξα−λ+μ|.

Now, we split the summation with respect to (λ, μ) between the two subsets
|λ| + |μ| ≤ (|α| + n)/2 and |λ| + |μ| > (|α| + n)/2. We find respectively

((|α| − |λ| + |μ|)+ + n)(|α| + n)
(|α| − |λ|)+ + n

≤

⎧⎨⎩
√

6
√
|α| + n)((|α| − |λ| + |μ|)+ + n)

6
n(|λ| + |μ|)2.

In the first case, we use the inequality

2
√
|α| + n)((|α| − |λ| + |μ|)+ + n) |ξα||ξα−λ+μ|

≤ (|α| + n)|ξα|2 + (|α| − |λ| + |μ|)+ + n)|ξα−λ+μ|2,

and in the second case we content ourselves with the simpler bound

2|ξα||ξα−λ+μ| ≤ |ξα|2 + |ξα−λ+μ|2.

For ε ∈ ]0, r[, the series

∑
λ,μ∈Nn�{0}

((1 + δ)ε
r′

)|λ|+|μ|−2
and

∑
λ,μ∈Nn�{0}

((1 + δ)ε
r′

)|λ|+|μ|−2
(|λ|+ |μ|)2
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can be made convergent by choosing r′ = (r+ε)/2 ∈ ]ε, r[ and 1+δ =
√
r′/ε,

thus there exists a positive continuous and increasing function ε 	→ C(ε) on
]0, r[ such that∣∣〈Q(ξ), ξ〉

∣∣ ≤ C(ε)
∑
α∈Nn

(|α| + n)|ξα|2 for all ξ ∈ Bε,

which is what we wanted. This bound, together with Theorem 3.10 and the
estimates from the preliminary discussion yield the following result.

3.22 Theorem. Let (X, γ) be a compact hermitian manifold equipped with
a real analytic metric, and let r we the supremum of the radii r′ of the ball
bundles {‖ζ‖γ < r′} on which the related exponential map

exph = exphγ : {‖ζ‖γ < r′} ⊂ TX → X ×X

defines a real analytic diffeomorphism (z, ζ) 	→ (z, exphz(ζ)). Then, for all
ε < r, the curvature tensor of the Bergman bundle (Bε, h) satisfies an estimate

〈(ΘBε,h ξ)(v, Jv), ξ〉h

= ε−2 ∑
α∈Nn

(∣∣∣∣∑
j

√
αj ξα−cjvj

∣∣∣∣2 + (1 + O(ε))
∑
j

(|α| + n) |ξα|2|vj |2
)

for every ξ =
∑

α ξαeα ∈ Bε′, ε′>ε, and every tangent vector v =
∑

vj ∂/∂zj,
where O(ε) = ε C(ε) for a continuous increasing function ε 	→ C(ε) on
]0, r[. In particular ΘBε,h is positive definite (and even coercive unbounded)
for ε < ε0 small enough.

3.23 Remark. Under our real analyticity assumptions, the proof makes clear
that there exists an asymptotic expansion

〈(ΘBε,h ξ)(v, Jv), ξ〉h =
+∞∑
p=0

ε−2+pQp(z, ξ ⊗ v),

where

Q0(z, ξ ⊗ v)=Q0(ξ ⊗ v)=
∑
α∈Nn

(∣∣∣∣∑
j

√
αj ξα−cjvj

∣∣∣∣2+
∑
j

(|α| + n) |ξα|2|vj |2
)

corresponds to the model case X = C
n. The terms Qj can be derived from

the Taylor expansion of exph associated with the metric γ, and they a pri-
ori depend on the coefficients of the torsion and curvature tensor and their
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derivatives. In the Kähler case, cf. for instance [3, (8.5)], one has exphz(ξ) =
z + ξ + O(zξ2) and one can check from the above calculations that Q1 = 0.
It would be interesting to identify more precisely Q1 and Q2 in general. It
is very likely that Q1 involves the torsion form dω and that Q2 is strongly
related to the curvature tensor of (TX , ω).

3.24 Remark. Although we have already observed that Bε cannot be a
locally trivial holomorphic Hilbert bundle, as follows from Remark 3.2 and the
discussion made in the introduction, one can still endow the total space of Bε

and of its Hilbert dual B∨
ε with some sort of weird infinite dimensional complex

space structure, for which the projections π : Bε → X and π∨ : B∨
ε → X are

holomorphic. Let us start with B∨
ε . This space has a lot of global “holomorphic

functions”, that actually separate all points of B∨
ε except those of the zero

section. In fact, every global holomorphic function F ∈ Bε′(X), ε′ > ε, gives
rise to a function �F : B∨

ε → C where �F (ξ) = F|Bε,z
· ξ for ξ ∈ B∨

ε,z ⊂ B∨
ε .

More generally, one can define a presheaf OB∨
ε

of “holomorphic functions” on
B∨

ε as follows: if V ⊂ B∨
ε is an open set, we take OB∨

ε
(V ) to be the closure

in locally uniform topology in V of the algebra generated by the pull-backs
u ◦ π∨, u ∈ OX(π∨(V )), and by the functions �F , F ∈ Bε′(π∨(V )), which are
linear on the fibers of B∨

ε . One then gets a genuine sheaf OB∨
ε

by sheafifying
the above presheaf. The construction of OBε is made by reversing the roles of
Bε and B∨

ε (the ∂ operator of B∨
ε being the Von Neumann adjoint of the (1, 0)

part of the Chern connection of ∇1,0 on Bε, and the sheaf of “holomorphic
sections” of B∨

ε being its kernel).

4. On the invariance of plurigenera for polarized Kähler
families

An important unsolved problem of Kähler geometry is the invariance of pluri-
genera for compact Kähler manifolds, which can be stated as follows.

4.1 Conjecture. Let π : X → S be a proper holomorphic map defining a
family of smooth compact Kähler manifolds over an irreducible base S. Assume
that π admits local polarizations, i.e. every point t0 ∈ S has a neighborhood V
such that π−1(V ) carries a Kähler metric ω. Then the plurigenera pm(Xt) =
h0(Xt,mKXt) of fibers are independent of t for all m ≥ 0.

This conjecture has been affirmatively settled by Y.-T. Siu [19] in the
case of projective varieties of general type (in which case the proof has been
translated into a purely algebraic form by Y. Kawamata [9]), and then by
[20] and Păun [17] in the case of arbitrary projective varieties; remarkably, no
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algebraic proof of the result is known beyond the case proved by Kawamata.
Here, we wish to study such results in the Kähler context. This requires a
priori substantial modifications of Siu’s proof, since the technique involves in
a crucial manner the use of an auxiliary ample line bundle. In the light of the
previous sections, a potential replacement would be to use the “very ample”
Bergman bundles just constructed. Conjecture 4.1 would be a consequence of
the following more technical statement.

4.2 Conjecture (Generalized version of the Claudon–Păun theorem). Let
π : X → Δ be a polarized family of compact Kähler manifolds over a disc
Δ ⊂ C, and let (Lj , hj)0≤j≤N−1 be (singular) hermitian line bundles with
semi-positive curvature currents iΘLj ,hj ≥ 0 on X. Assume that

(a) the restriction of hj to the central fiber X0 is well defined (i.e. not
identically +∞).

(b) the multiplier ideal sheaf I(hj|X0) is trivial for 1 ≤ j ≤ N − 1.

Then any section σ of O(NKX +
∑

Lj)|X0 ⊗ I(h0|X0) over the central fiber
X0 extends into a section σ̃ of O(NKX +

∑
Lj) over a certain neighborhood

X′ = π−1(Δ′) of X0, where Δ′ ⊂ Δ is a sufficienty small disc centered at 0.

The invariance of plurigenera is the special case of Conjecture 4.2 when
all line bundles Lj and their metrics hj are trivial. Since the dimension
t 	→ h0(Xt,mKXt) is always upper semicontinuous and since Conjecture 4.2
implies the lower semicontinuity, we conclude that the dimension must be
constant along analytic discs, hence along the irreducible base S, by joining
any two points through a chain of analytic discs.

4.3 Remark. A standard cohomological argument shows that we can in fact
take X′ = X in the conclusion of Conjecture 4.2, because the direct image sheaf
E = π∗O(mKX +

∑
Lj) is coherent, and the restriction E → E⊗ (OΔ/m0OΔ)

induces a surjective map at the H0 level on the Stein space Δ, so we can
extend σ̃ mod π∗m0 to X.

We now indicate how the technology of Bergman bundles could possibly
be used to approach the conjectures.

4.4 Lemma. Let X′ = π−1(Δ′) → Δ′ be the restriction of π : X → Δ
to a disc Δ′ � Δ centered at 0, of radius R′ < R. For ε ≤ ε0 = ε0(R′)
small enough, one can find a Stein open subset U′

ε ⊂ X′ × X, such that the
projection pr1 : U′

ε → X′ is a complex ball bundle over X′ that is locally trivial
real analytically.
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Proof. The arguments are very similar to those of §1, except for the fact
that X is no longer compact, but this is not a problem since X → Δ is
proper, and since we can always shrink Δ a little bit to achieve uniform
bounds (would they be needed). Let γ be a real analytic hermitian metric
on X, and exph : TX → X be the corresponding real analytic and fiber-
holomorphic exponential map associated with γ, as in §1. The map exph is no
longer everywhere defined, but if we restrict it to the ε-tubular neighborhood
of the zero section in TX′ , we get for ε > 0 small enough a real analytic
diffeomorphism (z, ξ) 	→ (z, exphz(ξ)) onto a tubular neighborhood of the
diagonal of X′ × X′. The rest of the proof is identical to what we did in §1,
taking

(4.5) U′
ε =

{
(z, w) ∈ X′ × X ; | loghz(w)|γ < ε

}
.

In order to study Conjecture 4.2, we first state a technical extension theo-
rem needed for the proof, which is a special case of the well-known and ex-
tremely powerful Ohsawa–Takegoshi theorem [16], see also [14], [15], [5], the
general Kähler case stated below being due to [2].

4.6 Proposition. Let π : Z → Δ be a smooth and proper morphism from
a (non compact) Kähler manifold Z to a disc Δ ⊂ C and let (L, h) be
a (singular) hermitian line bundle with semi-positive curvature current
iΘL,h ≥ 0 on Z. Let ω be a global Kähler metric on Z, and let dVZ, dVZ0

the respective induced volume elements on Z and Z0 = π−1(0). Assume that
hZ0 is well defined (i.e. almost everywhere finite). Then any holomorphic sec-
tion s of O(KZ + L) ⊗ I(h|Z0) extends into a section s̃ over Z satisfying an
L2 estimate ∫

Z
‖s̃ ‖2

ω⊗hdVZ ≤ C0

∫
Z0

‖s‖2
ω⊗hdVZ0 ,

where C0 ≥ 0 is some universal constant (depending on dimZ and diam Δ,
but otherwise independent of Z, L, . . . ).

4.7 Remark. The assumptions of Proposition 4.6 imply that Z is holomor-
phically convex and complete Kähler, thus, as an alternative to the technique
used in [2], the regularization arguments explained in [3] would also apply to
yield the result. We leave motivated readers eventually complete such a proof.

Attempt of proof of Conjecture 4.2. Let p = pr1 : U′
ε → X′ be as in Lemma

4.4, and q = pr2 : U′
ε → X. We take ε < ε0 and use on Z := U′

ε a Kähler
metric ω0 defined on the Stein manifold U′

ε0 . On can define e.g. ω0 as the i∂∂
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of a strictly plurisubharmonic exhaustion function on U′
ε0 , but we can also

take the restriction of pr∗1 ω + pr∗2 ω|X where ω is the Kähler metric on the
total space X, and ω = −ω the corresponding Kähler metric on the conjugate
space X.

First step: construction of a sequence of extensions on Z = U′
ε via the

Ohsawa–Takegoshi extension theorem.
The strategy is to apply iteratively the special case 4.6 of the Ohsawa–

Takegoshi extension theorem on the total space of the fibration

π′ = π ◦ p : Z = U′
ε → X′ → Δ′,

and to extend sections of ad hoc pull-backs p∗G from the zero fiber Z0 =
π′ −1(0) = p−1(X0) to the whole of Z = U′

ε. We write hj = e−ϕj in terms
of local plurisubharmonic weights, and define inductively a sequence of line
bundles Gm by putting G0 = OX′ and

Gm = Gm−1 + KX′ + Lr if m = Nq + r, 0 ≤ r ≤ N − 1.

By construction we have

Gm = mKX′ + L1 + · · · + Lm, for 1 ≤ m ≤ N − 1 ,
Gm+N − Gm = GN = NKX′ + L0 + · · · + LN−1 , for all m ≥ 0.

The game is to construct inductively families of sections, say {f̃ (m)
j }j=1,...,J(m),

of p∗Gm over Z, together with ad hoc L2 estimates, in such a way that

for m = 0, . . . , N − 1, p∗Gm is generated by L2 sections(4.8)

{f̃ (m)
j }j=1,...,J(m) on U′

ε0 ;

we have the m-periodicity relations J(m + N) = J(m) and f̃
(m)
j(4.9)

is an extension of f (m)
j := (p∗σ)qf (r)

j over Z for m = Nq + r, where

f
(r)
j := f̃

(r)
j|Z0

, 0 ≤ r ≤ N − 1.

Property (4.8) can certainly be achieved since U′
ε0 is Stein, and for m = 0 we

can take J(0) = 1 and f̃
(0)
1 = 1. Now, by induction, we equip p∗Gm−1 with

the tautological metric |ξ|2/∑� |f̃
(m−1)
� (x)|2, and

G̃m := p∗Gm −KZ = p∗Gm − (p∗KX′ + q∗K
X

) = p∗(Gm−1 + Lr) − q∗K
X
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with that metric multiplied by p∗hr = e−p∗ϕr and a fixed smooth metric
e−ψ of positive curvature on (−q∗K

X
)|U′

ε0
(remember that U′

ε0 is Stein!). It
is clear that these metrics have semi-positive curvature currents on Z (by
adjusting ψ, we could even take them to be strictly positive if we wanted).
In this setting, we apply the Ohsawa–Takegoshi theorem to the line bundle
KZ + G̃m = p∗Gm, and extend in this way f

(m)
j into a section f̃

(m)
j over Z.

By construction the pointwise norm of that section in p∗Gm|Z0 in a local
trivialization of the bundles involved is the ratio

|f (m)
j |2∑

� |f
(m−1)
� |2

e−p∗ϕr−ψ,

up to some fixed smooth positive factor depending only on the metric induced
by ω0 on KZ. However, by the induction relations, we have

∑
j |f

(m)
j |2∑

� |f
(m−1)
� |2

e−p∗ϕr =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
j |f

(r)
j |2∑

� |f
(r−1)
� |2

e−p∗ϕr for m = Nq + r, 0 < r ≤ N − 1,∑
j |f

(0)
j |2∑

� |f
(N−1)
� |2

|p∗σ|2e−p∗ϕ0 for m ≡ 0 modN , m > 0.

Since the sections {f (r)
j }0≤r<N generate their line bundle on Uε0 ⊃ U′

ε, the
ratios involved are positive functions without zeroes and poles, hence smooth
and bounded [possibly after shrinking a little bit the base disc Δ′, as is per-
mitted]. On the other hand, assumption 4.2 (b) and the fact that σ has coeffi-
cients in the multiplier ideal sheaf I(h0|X0) tell us that e−p∗ϕr , 1 ≤ r < m and
|p∗σ|2e−p∗ϕ0 are locally integrable on Z0. It follows that there is a constant
C1 = C1(ε) ≥ 0 such that

∫
Z0

∑
j |f

(m)
j |2∑

� |f
(m−1)
� |2

e−p∗ϕr−ψdVω0 ≤ C1

for all m ≥ 1 (of course, the integral certainly involves finitely many trivi-
alizations of the bundles involved, whereas the integrand expression is just
local in each chart). Inductively, the L2 extension theorem produces sections
f̃

(m)
j of p∗Gm over Z such that

∫
Z

∑
j |f̃

(m)
j |2∑

� |f̃
(m−1)
� |2

e−p∗ϕr−ψdVω0 ≤ C2 = C0C1.
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Second step: applying the Hölder inequality. Put k = Nq(k) + r(k) with 0 ≤
r(k) < N , and take m = Nq(m) to be a multiple of N . The Hölder inequality
|
∫ ∏

1≤k≤m ukdμ| ≤
∏

1≤k≤m(
∫
|uk|mdμ)1/m applied to the measure μ = dVω0

and to the product of functions
(∑

j |f̃
(m)
j |2∑

� |f̃
(0)
� |2

)1/m

e−
1
N
p∗(ϕ0+...+ϕN−1)−ψ =

∏
1≤k≤m

( ∑
j |f̃

(k)
j |2∑

� |f̃
(k−1)
� |2

e−p∗ϕr(k)−ψ

)1/m

in which
∑

� |f̃
(0)
� |2 = |f̃ (0)

1 |2 = 1 and
∑

j |f̃
(m)
j |2 = |f̃ (m)

1 |2, implies that

(4.10)
∫
Z

∣∣f̃ (m)
1

∣∣2/me− 1
N
p∗(ϕ0+...+ϕN−1)−ψdVω0 ≤ C2.

As the functions ϕr(k) and ψ are locally bounded from above, we infer from
this the weaker inequality ∫

Z

∣∣f̃ (m)
1

∣∣2/mdVω0 ≤ C3.(4.10′)

The last inequality is to be understood as an inequality that holds in fact
only locally over X′, on sets of the form p−1(V ), where V � X′ are small
coordinate open sets where our line bundles are trivial, so that the section
f̃

(m)
1 of q(m) p∗(NKX′ +

∑
Lj) can be viewed as a holomorphic function on

p−1(V ).

Third step: construction of singular hermitian metrics on NKX′ +
∑

Lj . The
rough idea is to extract a weak limit of the m-th root occurring in (4.10),
(4.10′), combined with an integration on the fibers of p : Z = U′

ε → X′, to
get a singular hermitian metric on NKX′ +

∑
Lj . This is the crucial step in

the proof, and the place where the Kähler setup will require new arguments;
especially, the integration on fibers makes the weak limit argument much less
obvious than in the projective setup. Our (yet incomplete) attempt involves
the results of §2, §3 on Bergman bundles.

4.11 Proposition. Assume that the sections f̃
(m)
1 have been constructed on

Z = U′
ε → X′, ε ≤ ε0(R′), and let us shrink these sections to a smaller

neighborhood U′
ρε, ρ < 1. Then there exists a subsequence m ∈ M0 ⊂ N

such that, with respect to local trivializations of the Lj and local holomorphic
sections dw = dw1 ∧ . . . ∧ dwn+1 of K

X
), we have a well defined limit

θ(z) = lim
m∈M0
m→+∞

1
m

log
∫
w∈U′

ρε,z

|f̃ (m)
1 (z, w)

∣∣2 i(n+1)2dw ∧ dw, z ∈ X′
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that exists almost everywhere on X′, and H = e−Nθ defines a singular hermi-
tian metric on p∗(NKX′ +

∑
Lj) satisfying the following estimates:

(a) |σ|2H = |σ|2e−Nθ = 1 on X0 ⊂ X′;
(b)

∫
X′

e−θe−
1
N

(ϕ0+...+ϕN−1)dVω < ∞;
(c) there are constants C4, C5 > 0 such that θ ≤ C4 and

i∂∂θ ≥ − C5

ε2ρ2
(
C4 − θ

)
ω.

Proof. First notice that the choice of the w local coordinates on X is irrelevant
in the definition of θ (the L2 integrals may eventually change by bounded
multiplicative factors, which get killed as m → +∞). We apply the mean
value inequality for plurisubharmonic functions, applied on ω0-geodesic balls
of Z centered at points (z, w) ∈ U′

ρε and of radius 1
2(1−ρ)ε (say). As dimZ =

2(n + 1), we obtain by (4.10′) a uniform upper bound

sup
U′

ρε,z

|f̃ (m)
1 |2/m ≤ C6

((1 − ρ)ε)4(n+1)

∫
U′

ε

|f̃ (m)
1 |2/m i(n+1)2 dw ∧ dw

≤ C7

((1 − ρ)ε)4(n+1) , ∀z ∈ X′.(4.12)

Here our sections can be seen as functions only locally over trivializing open
sets of the line bundles in X′, but we can arrange that there are only finitely
many of these; hence the transition automorphisms only involve bounded
constants, after raising to power 1/m. At this point, we consider the Bergman
bundle Bε → X′, and write locally over X′

f̃
(m)
1 (z, w) dw =

∑
α∈Nn+1

ξm,α(z) ẽα(z, w) ⊗ g(z)q(m), z ∈ X′, w ∈ U′
ε,z

in terms of an orthonormal frame (ẽα)α∈Nn+1 of Bε, of the corresponding
Hilbert space coefficients ξm = (ξm,α)α∈Nn+1 as defined in §2, and of a local
holomorphic generator g of OX(NKX′ +

∑
Lj). If we put dw = dw1 ∧ . . . ∧

dwn+1 in local coordinates, we get an equality

θm,ρ(z) := 1
m

log
∫
w∈U′

ρε,z

|f̃ (m)
1 (z, w)

∣∣2 i(n+1)2dw ∧ dw

= 1
m

log
( ∑

α∈Nn+1

ρ2(|α|+n+1) |ξm,α(z)|2
)
,(4.13)
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and by (4.12), we obtain an upper bound

θm,ρ(z) ≤
1
m

log C8 (ρε)2(n+1) Cm
7

((1 − ρ)ε)4m(n+1) ≤ C9 + 4(n + 1) log 1
(1 − ρ)ε =: C10,ρ,ε.

(4.14)

The sum
∑

α∈Nn+1 ρ2(|α|+n+1) |ξm,α(z)|2 = emθm,ρ(z) is nothing else than the
square of the norm of the section f̃

(m)
1 , expressed with respect to the natu-

ral hermitian metric 〈•, •〉ρ of the Bergman bundle Bρε. The inequalities
(4.12) show that the series converges uniformly over the whole of X′. As
∇0,1ξ = 0, a standard calculation with respect to the Bergman connection
∇ = ∇1,0 + ∇0,1 of Bρε implies

i∂∂θm,ρ = i
m ‖ξm‖2

ρ

(
〈∇1,0ξm,∇1,0ξm〉ρ − 〈ΘBρεξm, ξm〉ρ−

〈∇1,0ξm, ξm〉ρ ∧ 〈∇1,0ξm, ξm〉ρ
‖ξm‖2

ρ

)

≥ − 1
m

〈iΘBρεξm, ξm〉ρ
‖ξm‖2

ρ

(4.15)

by the Cauchy–Schwarz inequality. On the other hand, as the orthonormal
coordinates expressed in Bρε are the (ρ|α|+n+1ξm,α), the curvature bound ob-
tained in §2 yields

〈iΘBρεξm, ξm〉ρ ≤ (2 + O(ρε))(ρε)−2 ∑
α∈Nn+1

(|α| + n + 1) ρ2(|α|+n+1) |ξm,α|2 ω.

The last two inequalities imply the fundamental estimate

i∂∂θm,ρ

≥ −(2 + O(ρε))(ρε)−2

m

∑
α∈Nn+1

(|α| + n + 1) ρ2(|α|+n+1) |ξm,α|2∑
α∈Nn+1

ρ2(|α|+n+1) |ξm,α|2
ω(4.16)

≥ −1 + O(ρε)
ε2ρ

(
∂

∂ρ
θm,ρ

)
ω.(4.16′)

From its definition, we see that θm,ρ is a convex function of log ρ. Therefore,
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for ρ ≤ ρ1 < 1, we have

ρ
∂

∂ρ
θm,ρ ≤

θm,ρ1 − θm,ρ

log ρ1 − log ρ ≤ C9,ρ1,ε − θm,ρ

log ρ1
,

by (4.14), and (4.16′) implies

i∂∂θm,ρ ≥ − C11

ε2ρ2
(
C10,ρ1,ε − θm,ρ

)
ω.

A straightforward calculation yields

−i∂∂ log(C10,ρ1,ε + 1 − θm,ρ) ≥ − C11

ε2ρ2 ω,

hence the functions um = − log(C10,ρ1,ε + 1 − θm,ρ) ≤ 0 have Hessian forms
that are uniformly bounded from below. Also, by construction (cf. 4.9), θm,ρ

converges to 1
N log |σ| on X. Standard results of pluripotential theory imply

that we can find a subsequence of (um) that converges in Lp topology (for
every p ∈ [1,+∞[) and pointwise almost everywhere. Therefore we can find
a limit θm,ρ → θ satisfying the Hessian estimates

i∂∂θ ≥ − C11

ε2ρ2
(
C10,ρ1,ε − θ

)
ω, −i∂∂ log(C10,ρ1,ε + 1 − θ) ≥ − C11

ε2ρ2 ω

Proposition 4.11 is proved, as estimate (b) follows from (4.10).

Fourth step: applying Ohsawa–Takegoshi once again with the singular hermi-
tian metric produced in the third step. Assume that we can replace estimate
4.11 (c) by the stronger fact that the curvature form of H = e−Nθ is positive
in the sense of currents, i.e.

−i∂∂ logH = N i∂∂θ ≥ 0.(4.17)

This means that NKX′ +
∑

Lj possesses a hermitian metric H such that
‖σ‖H ≤ 1 on X0 and ΘH ≥ 0 on X′. In order to conclude, we proceed as Siu
and Păun, and equip the bundle

E = (N − 1)KX′ +
∑

Lj

with the metric η = H1−1/N ∏
h

1/N
j , and NKX′ +

∑
Lj = KX′ + E with the

metric ω ⊗ η. It is important here that X possesses a global Kähler polariza-
tion ω, otherwise the required estimates would not be valid. Clearly η has a
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semi-positive curvature current on X′ and in a local trivialization we have

‖σ‖2
ω⊗η ≤ C|σ|2 exp

(
− (N − 1)θ − 1

N

∑
ϕj

)
≤ C

(
|σ|2

∏
e−ϕj

)1/N

on X0. Since |σ|2e−ϕ0 and e−ϕr , r > 0 are all locally integrable, we see that
‖σ‖2

ω⊗η is also locally integrable on X0 by the Hölder inequality. A new (and
final) application of the L2 extension theorem to the hermitian line bundle
(E, η) implies that σ can be extended to X′. Conjecture 4.2 would then be
proved.

Fifth step: final discussion. Unfortunately, estimate (4.17) will a priori hold
only in the case where ε can be taken arbitrarily large (in the sense that the
exponential map is at least everywhere an immersion – one can then argue on
the “unfolded neighborhood” Ũε diffeomorphic to the ε-tubular neighborhood
of the 0 section in TX , equipped with the complex structure obtained by
pulling back the complex structure of X ×X via exph. This condition is met
e.g. when X is a complex torus or a ball quotient. However, it is doubtful that
all compact Kähler manifolds with KX pseudo-effective satisfy this property.
The main issue is that the unboundedness of ΘBε,h does not a priori imply that
the right hand side of (4.15) converges weakly to 0, while this is obviously true
in the algebraic situation where we use instead a given ample line bundle A
on X. One possible way to circumvent this difficulty is to observe that the
term 〈iΘBρεξm, ξm〉ρ is controlled by ‖ξm‖ρ‖ξm‖′ρ where

‖ξm‖′ 2ρ : =
∑

α∈Nn+1

(|α| + n + 1)2 ρ2(|α|+n+1) |ξm,α|2

∼
∫
w∈U′

ρε,z

|f̃ (m)
1 (z, w)

∣∣2 + |Dwf̃
(m)
1 (z, w)

∣∣2,
and it would be sufficient to find extensions f̃

(m)
1 satisfying the additional

estimate ∫
w∈U′

ρε,z

|Dwf̃
(m)
1 (z, w)

∣∣2 ≤ Km

∫
w∈U′

ρε,z

|f̃ (m)
1 (z, w)

∣∣2(4.18)

where Km grows subquadratically, i.e. 1
m2Km → 0. Getting such an estimate,

e.g. a bound Km = O(m) in the general situation, does not appear to be
completely implausible, since the main inductive step consists of extending a
section multiplied by p∗σ(z, w) = σ(z), which is therefore independent of w
on X′

0. In this process, one might hope to obtain an appropriate L2 extension
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theorem taking care of “vertical derivatives” with respect to a given morphism
Y → X → Δ (namely, U′

ε → X′ → Δ′ in this circumstance). We will try to
investigate these questions in the near future.
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