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Holomorphic feedforward networks
Michael R. Douglas

Abstract: A very popular model in machine learning is the feed-
forward neural network (FFN). The FFN can approximate general
functions and mitigate the curse of dimensionality. Here we intro-
duce FFNs which represent sections of holomorphic line bundles
on complex manifolds, and ask some questions about their approx-
imating power. We also explain formal similarities between the
standard approach to supervised learning and the problem of find-
ing numerical Ricci flat Kähler metrics, which allow carrying some
ideas between the two problems.

I’m delighted to contribute to this volume for Bernie Shiffman, who along
with Steve Zelditch initiated me into complex geometry as it is actually done
by mathematicians. Our papers on the statistics of flux vacua [17–19] remain
important in string theory. They were also my jumping-off point for many
other works on complex geometry, in particular work on balanced metrics
and the Tian–Yau–Zelditch–Lu expansion with Semyon Klevtsov [14, 15], and
on numerical methods for finding Ricci-flat metrics on Calabi–Yau manifolds
[6, 7, 12, 13, 16].

More recently, I have been studying machine learning and artificial intel-
ligence. My interest in this goes back to my graduate school days, where I
worked with Gerry Sussman [2], a pioneer of AI, and took classes from John
Hopfield on his famous model of neural networks. Some reminiscences about
these times are in [11]. Although it took many years, machine learning is now
at the forefront of applied mathematics and many other fields. Its concepts
and technologies are being applied to many problems which at first might not
be thought to be related to learning or statistics.

One very active topic is numerical methods for PDE inspired by machine
learning, and a few examples are [8, 21, 25]. A good way to explain the rel-
evance of ML is to recall the “curse of dimensionality” [5]. A central part
of any numerical method for PDE is to define a finite dimensional space of
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parameterized functions F which are used to approximate the solutions. The
simplest way to do this is to specify the function values at a fixed subset of
points. This approximation is controlled by restricting the variation of the
target function, for example one can put a uniform bound on its derivatives
such as |f(x) − f(y)| ≤ L|x − y|. While this gets us down to a finite prob-
lem which can be put on a computer, on a d-dimensional manifold M we
require O(Ld) parameters. This is a disaster for the high dimensional PDEs
of many-body physics and control theory, and problematic even for moder-
ate dimensions such as the d = 6 Calabi–Yau manifolds of interest in string
theory.

Machine learning also involves approximating functions, often functions
on thousands or even millions of variables, such as digital images. Thus the
curse of dimensionality is a central problem and there are many ways to deal
with it. The simplest class of ML problems is supervised learning, in which
one needs to estimate an unknown function f : M → R from data. This
includes classification – say, we take M to be the space of maps from pixels
to intensities, and we define f > 0 (resp. f < 0) to mean that the image is
a picture of a cat (resp. a dog). What makes this “learning” is that we do
not say much about f a priori, rather we tell the computer how to infer f
from examples. Thus, we give it a dataset D of input–output pairs (xi, f(xi))
sampled from some underlying distribution ρ on M . We then postulate a
class of functions F (a model), and an algorithm which looks at the data
and produces a f̂ ∈ F which generalizes to the underlying distribution, i.e.
Eρ[f̂ − f ] is expected to be small. A straightforward way to try to do this is
to numerically minimize the error ED[f̂ − f ] on the dataset.

In traditional statistics, one postulates a simple F , say functions which
are a linear combination of N fixed basis functions. One then finds a trade-
off between accuracy of approximation (which increases with N) and errors
arising from fitting the randomness in sampling from ρ (which also increase
with N). This is quantified by concepts such as bias-variance tradeoff, and
it leads one to prefer simple models, those which use the smallest possible
number of parameters N needed to describe the data.

Much of the recent work rejects the idea that F should be simple. In
“deep learning,” one takes F to be the class of functions which can be re-
alized by a class of feedforward neural networks with a definite number of
layers, parameters, etc. These functions depend nonlinearly on the parame-
ters in fairly complicated ways, but in return the curse of dimensionality is
mitigated. While the nonlinearity of F would be expected to lead to a bad op-
timization problem with many local minima, in practice this turns out not to
be the case. Indeed, by taking a large number of parameters, one can simplify
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the optimization landscape. Given enough parameters (many more than the
number of data points), one can find a f̂ which precisely fits the data points.
For such a f̂ , ED[f̂ − f ] = 0 and it turns out to be easy to find such minima.
However, the dogmas of statistics tell us that such minima are “overfit” and
give a poor description of the underlying distribution, i.e. Eρ[f̂ − f ] is large.

But surprisingly, with the right choices of F and optimization algorithm,
this is not the case. Such models can generalize well, apparently violating this
dogma. Understanding how this can be is a very active field of research, of
which a few recent works include [3, 4, 29].

Carrying over these advantages from ML to PDE, one could hope that
a function class F produced by a feedforward neural network would have
the same advantages in numerical solution of PDE, mitigating the curse of
dimensionality and simplifying the optimization problem. These hopes have
been borne out in many works such as [8, 21, 25].

The present work is inspired by work on numerical methods to find Ricci
flat metrics on hypersurfaces in projective space [10, 13, 22]. Here F is a class
of Kähler metrics, and in previous works this was taken to be the space of all
metrics which could be obtained by pullback from a Fubini–Study metric, thus
log linear in the parameters. We adapt the feedforward neural network to this
problem and define “holomorphic networks” and “bihomogeneous networks,”
which represent subsets of these metrics using a nonlinear parameterization.
In [16] we study this approach numerically. Here we point out some formal
parallels with machine learning, and ask some mathematical questions about
the ability of these FFNs to approximate functions.

1. Network approximations to Kähler metrics

1.1. Feed-forward networks

A feed-forward network (FFN, also called MLP for multilayer perceptron) is
a nonlinear map F [ �W ] from a vector space X to another vector space Y with
parameters �W . It is built by composing a sequence of maps which alternate
between two types, general linear maps W and fixed nonlinear transforma-
tions θ, as in

(1.1) F [ �W ] = W (d) ◦ θ|Vd−1 ◦W (d−1) ◦ . . . ◦ θ|V2 ◦W (2) ◦ θ|V1 ◦W (1).

Each linear map W (i) has as its range a new vector space Vi, so

W (1) ∈ Hom (X , V1),(1.2)
W (2) ∈ Hom (V1, V2),(1.3)
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...
W (d) ∈ Hom (Vd−1,Y)(1.4)

The combination θ ◦ W is called a layer, with the final layer W (d) being an
exception in not having θ. The number of layers d is the depth.

Usually one takes the domain X ∼= K
D and range Y ∼= K

D′ with K ∼= R,
though K ∼= C is sometimes used in signal processing applications. We are
free to choose the dimensions Di of the intermediate spaces Vi, the width
hyperparameters of the network.1 By “the width” we will mean maxDi.

Generally one allows the W ’s to be arbitrary linear transformations, so
the parameters consist of the list of W (i). Thus, defining D = dimX and
D′ = dimY , we have

(1.5) �W ∈ W �D
∼= ⊕d

i=1Hom (KDi−1 ,KDi).

To define the θ’s, we start with the one dimensional case θ|K : K → K,
which is called the activation function. This could be any function; two pop-
ular choices for K = R are θ(x) = tanh x, and the “rectified linear unit” or
ReLU function

(1.6) θReLU (x) =
{
x, x ≥ 0
0, x < 0.

To define θV for a general vector space V , we pick a basis ei for V and apply
θ|K componentwise,

(1.7) θV

(∑
i

ci ei

)
=

∑
i

θK(ci) ei.

While this depends on the choice of basis, since every θ in Eq. (1.1) appears
both prefixed and postfixed by a general linear transformation, the param-
eterized space of maps is independent of this choice. Thus, for each choice
of specific dimensions �D and activation function θ|K, we get a space of FFN
maps of dimension DD1 + D1D2 + . . . + Dd−1D

′, which we denote F �D;θ.
This definition was inspired by a simple model in neuroscience (the “per-

ceptron”), in which a neuron is modeled by the computation which takes an
1The term hyperparameter in machine learning refers to a choice which is not

determined automatically by optimization, in contrast to parameters (also called
“coefficients” or “weights”) which are generally chosen to minimize an energy (“ob-
jective” or “loss”) function.
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input vector v and produces a single component of (θ ◦ W )(v). These days
neuroscience uses far more sophisticated models of neurons, but FFN’s are
widely used in applied math and machine learning as function approximating
spaces, analogous to spaces of polynomials or other linear combinations of
basis functions. Thus rather than “neuron” one usually uses the term “unit,”
and the network F [ �D; θ] contains D1 + . . . + Dd−1 + D′ units.

It has been shown that feed-forward networks can approximate arbitrary
real valued functions. This is the case even for d = 2 [9], but in this case
one can need an exponentially large number of units, as would be the case
for simpler methods of interpolation (the “curse of dimensionality”). By us-
ing more layers, one can gain many advantages – complicated functions can
be represented with many fewer units, and local optimization techniques are
much more effective. How exactly this works is not well understood theoreti-
cally and there are many interesting observations and hypotheses as to how
these advantages arise.

1.2. Multilayer holomorphic embeddings

Our goal is to use the FFN Eq. (1.1) to define a parameterized space of
functions from a projective manifold M to a space Y . To begin, let L → M
be a holomorphic line bundle, let s = (s0, . . . , sN ) be a basis of sections of
H0(L), and let ιs be the corresponding Kodaira embedding of M into CP

N .
To use Eq. (1.1), we want to regard this embedding as a map into X ∼=

C
N+1. We can do this in a patch U ⊂ M by choosing a local frame. If the

maps W and θ each have a nice geometric interpretation, the choice of frame
should drop out at the end. Taking the Vi’s to be complex vector spaces, this
is evident for W as each W ∈ Hom (V, V ′) corresponds to a holomorphic map
PV → PV ′.

An arbitrary choice of activation function θ will not have a simple geo-
metric interpretation. To find one which does, consider the particular case of
M = CP

n and L = O(k), so that the sections s are degree k polynomials.
Clearly we want θ(s) to also be a homogeneous polynomial, so the natural
choice is

(1.8) θ(s) ≡ sp

and its componentwise analog Eq. (1.7). Taking into account the dependence
on the frame, the geometric interpretation of this is a map

(1.9) θ : H0(L) ⊕ . . .⊕H0(L)︸ ︷︷ ︸
D times

→ H0(Lp) ⊕ . . .⊕H0(Lp)︸ ︷︷ ︸
D times

.
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Another way to relate Eq. (1.1) to geometry is to appeal to the “metathe-
orem for vector bundles” ([23], Thm. 2.2.3), that any canonical construction
in linear algebra gives rise to a geometric version for holomorphic vector bun-
dles. To use this we define θ in terms of a canonical multilinear map on K,
namely the tensor product

(1.10) ⊗p : Km → K : (z1, z2, . . . , zk) → z1 z2 . . . zp.

By evaluating this on p copies of a section, we get a natural map from the
line bundle Lm to its p’th power Lpm.

This interpretation of Eq. (1.1) was made in [16] in the following concrete
form. We took M to be a hypersurface in CP

n, and L = O(1). We then took
as our computational representation of M the image in H0(O(1)) of a set of
randomly chosen points in M . We could then use the implementations of the
W and θ maps in a standard ML package (Tensorflow).

While we will generally use p = 2 in our networks, one could take a dif-
ferent p in each layer, so the network Eq. (1.1) depends on a vector �p =
(p1, . . . , pd). As a further generalization, instead of identifying the input sec-
tions zi in Eq. (1.10), one could multiply the outputs of distinct FFN’s, or
make other geometrically consistent combinations. Each possible “architec-
ture” is naturally associated to a directed graph, in which a particular use
of Eq. (1.10) corresponds to a vertex, the inputs zi correspond to incoming
edges, and the output z1 . . . zp corresponds to a single outgoing edge. These
are examples of tensor networks, about which we will say more below.

The upshot is a construction of parameterized maps from M into
⊕DH

0(Lm), defined by Eq. (1.1) and Eq. (1.8) with parameter space Eq. (1.5).
Let us denote these maps as F h

L;�p; �D[ �W ] with �W ∈ W �D (or just F h[ �W ] in con-
text). We can regard them as defining embeddings of M into projective space,
which for sufficiently large D include all possible embeddings by a complete
space of sections.

1.3. Algebraic metrics and holomorphic networks

Next, given an embedding of M into projective space, we can pull back the
Fubini–Study metric to get a Kähler metric on M . Let KFS

L be the space of
Fubini–Study metrics on CP

N ∼= PH0(L)∗, parameterized by an (N + 1) ×
(N + 1) positive definite hermitian matrix GI,J̄ . The Kähler potentials

(1.11) KFS [G] = log
∑
I,J̄

GI,J̄s
I s̄J̄ ,
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then define Kähler metrics on M , the space of which we also denote KFS
L . Re-

placing L with the series of line bundles Lk, we get embeddings into higher
dimensional projective spaces, and a sequence of spaces of Fubini–Study met-
rics KFS

Lk . This gives us the ability to approximate a given Kähler metric to
arbitrary accuracy, by taking sufficiently high k. As discussed in [10, 27], this
accuracy can go as k−ν for any ν.

This is a very nice parameterized class of metrics, and we will shortly
discuss a method for finding the best numerical approximation to the Ricci
flat metric in this class. However, there is a problem with this numerical
application. Since N ∼ kdimC M , the number of coefficients will go as kdimR M ,
the curse of dimensionality referred to earlier.

Let us try to break this curse by replacing the complete space of sections
with the image of F h

L;�p; �D[ �W ], to produce a space of metrics Kh
L;�p; �D. Now the

parameter spaces Eq. (1.5) for the construction in §1.2 come in a variety of
sizes, obtained by adjusting the intermediate dimensions {Di}. And since the
degree k is related to the depth as k =

∏d−1
i=1 pi (in terms of �p in Eq. (1.8)),

the number of coefficients scales with k only as O(D2 log k).
We now write this out explicitly for d = 2 and p = 2. A slightly sim-

pler expression is obtained by removing the final weight matrix W (2) from
Eq. (1.1), which is redundant if we can vary G in Eq. (1.11). We then have

(1.12) Kh[W (1), G] = log
∑

1≤I,J̄≤D1

GI,J̄(
∑
i

W
(1),I
i si)2(

∑
j

W
(1)∗,J̄
j̄

s̄j̄)2.

The nonlinear dependence on the weights W is a general feature of FFN’s.
We studied this construction computationally along lines we describe be-

low, and found that it is not very good at approximating Ricci flat metrics.
This may be because these metrics are pullbacks of degenerate FS metrics on
the embedding space, called partial Fubini–Study metrics (see for example
[28]).

1.4. Bihomogeneous networks

A variation on the previous construction is to first make sesquilinear com-
binations of the holomorphic sections and then apply the nonlinear network
construction. Thus, we could take

(1.13) X ≡ H0(L) ⊗ ¯H0(L),

embed M ↪→ X by taking the outer product sI×s̄J̄ of the basis of sections with
its complex conjugate, and use the network Eq. (1.1) to define parameterized
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functions F [ �W ] : X → R. We then replace the Kähler potential Eq. (1.11)
with

Kb
L;�p; �D[ �W ] = logFb(1.14)

F b = W (d) ◦ θ ◦W (d−1) ◦ . . . ◦ θ ◦W (1) · (Re sI s̄J̄ , Im sI s̄J̄).(1.15)

In terms of a concrete embedding by polynomials, this amounts to taking the
linear spaces Vi to be subspaces of the space of bihomogeneous polynomials
of degree (ni, ni), while θ is still Eq. (1.8).

We will denote a particular Kähler potential of this type as Kb[ �W ] and
the space of these as Kb

L,�p, �D. Here D = D0 = b0(L)2 and D′ = Dd = 1, with
the intermediate Di adjustable. Note that X has a real structure, and we
can take the intermediate values and weights in Eq. (1.1) to be real. Thus
this network has DD1 + . . .+Dd−1 real parameters. For sufficiently large Di,
this reproduces the complete space KFS

Lp1...pd−1 of FS Kähler potentials, though
with a more complicated parameterization.

Here is a depth 2 bihomogeneous network with p = 2 (the analog of
Eq. (1.12)), and a depth 3 network:

Kb
L;2;D1 = log

∑
1≤I≤D1

W
(2)
I (

∑
i

W
(1),I
i,j̄

sis̄j̄)2(1.16)

Kb
L;�2;D1,D2

= log
∑

1≤I≤D2

W
(3)
I

⎛
⎝ ∑

1≤J≤D1

W
(2),I
J (

∑
i

W
(1),J
i,j̄

sis̄j̄)2
⎞
⎠2

.(1.17)

These networks are better behaved than the holomorphic networks for
small intermediate widths. In particular, the function class with d layers is
simply contained in the function class with d + 1 layers. To be precise, take
p = 2, then we apply a rescaling (denoted 2×) to match the Kähler classes
from the two constructions,

(1.18) 2 ×K[L;�2; �D] ⊂ K[L;�2; �D ⊕Dd].

For Kh one needs Dd ≥ h0(L2d−1). But for Kb, this can be accomplished with
Dd = 1 (for example, D2 = 1 in Eq. (1.17)).

In particular one can start with the 1 layer network F = |W · z|2 and
repeatedly apply θ · id to get F = |W · z|2k, a function sharply peaked at
z ∝ W . One can then add this to another network F ′, increasing its widths
by one and adding a feature with size 1/k. Thus one can describe structure on
the same short length scales as Eq. (1.11) but using many fewer parameters.
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In [16] we give numerical evidence that these metrics are quite good at
representing the Ricci flat metrics. Again, there are variations of this con-
struction labeled by directed graphs. We could also take differences of these
potentials to define classes of real valued functions.

1.5. Matrix product states

These were originally proposed to describe spin chains in quantum physics,
and have been applied to ML problems in [1, 26] and other works. We will use
them to make a third definition of a parameterized subset of the Fubini–Study
metrics.

Without going into all the details, a spin is a quantum system whose wave
function is a point in PV ∗ with V ∼= C

D, while a chain of N spins has a wave
function Ψ in PX where X ≡ ⊗NV ∗. Since N might be the number of atoms
in a macroscopic object, the curse of dimensionality is a dominant aspect of
these problems. Thus the need for parameterized low dimensional subsets of
X is even greater.

A matrix product state (MPS) is defined by specifying a series of auxiliary
linear spaces Li, and a series Ti of multilinear maps

(1.19) Ti : V → Hom(Li, Li+1).

Typically one takes all of the Li to be isomorphic, and then writes

(1.20) ΨT = Tr T1T2 . . . TN .

This gives us an N(dimL)2 − 1 dimensional subset of the full DN − 1 dimen-
sional space of wave functions.

To adapt this to the problem at hand, we could take V ≡ H0(L) to get a
parameterized subset of holomorphic sections of SymNV . While we have not
yet tried this construction or its many variations, one which seems particularly
natural is a bihomogeneous version with

(1.21) KT ≡ log Tr (T1 · z)(T1 · z)†(T2 · z)(T2 · z)† . . . (Td · z)(Td · z)†.

1.6. Numerical methods

Suppose we want to approximate a given Kähler potential K with one from
these classes, say Kb. This is a problem in interpolation of functions, which is
closely related to supervised machine learning. To get a dataset, we sample
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points xi from X and evaluate yi = K(xi), to get “data” (xi, yi). We then
postulate a “loss function,” a measure of the distance between the dataset
and the model (xi, Kb(xi)). This is a function of the parameters of Kb, which
we then minimize using computational methods, usually gradient descent.

Now, the problem of finding a Ricci flat Kähler metric can be phrased as
an approximation problem. Since the first Chern class vanishes, the canon-
ical bundle has a unique section up to overall scale. This is a nonvanishing
holomorphic d-form, call it Ω. Then the Ricci flat Kähler form ω satisfies

(1.22) ωd = NΩ ∧ Ω̄

where the constant N can be determined by integrating both sides. One could
then use the Lp norm of the difference as a loss function, as in [22].

In [16] we carried this out to find numerical Ricci flat metrics on quintic
hypersurfaces of dimension 3, following the general approach developed in
[13, 22]. To sample from a hypersurface in CP

d+1, we sample pairs of points
using some measure μ on CP

d+1. We then find the intersection of the cor-
responding line with the hypersurface. By a result of Shiffman and Zelditch
([24], lemma 3.1), the resulting set of points is distributed by the pullback
of μ. Then, since one can compute the right hand side of Eq. (1.22), one
can treat this as a problem in function interpolation, choosing the weights in
Eq. (1.14) to best fit this given function. This is a task well suited to machine
learning software.

2. Accuracy of approximation

What determines the accuracy of the FFN description Eq. (1.14) of a canon-
ical Kähler metric? Is it the depth of the network or the number of its pa-
rameters? Here is a precise form of the question and some speculations.

2.1. Approximation by algebraic metrics

To begin, recall the discussion of approximation of metrics from [10, 27].
Given any Kähler metric ω on M , we can find a sequence of algebraic metrics
(pullbacks of degree k Fubini–Study metrics Eq. (1.11) to M) such that

(2.1) ||ω − ωk|| = o(k−ν)

for any ν. This can be shown by using the Tian–Yau–Zelditch–Lu expansion
for the density of states on M ,

ρh(z) ≡
∑
I

|sI(z)|2h(2.2)

= 1 + k−1a1(ω) + k−2a2(ω) + . . . ,(2.3)
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where h is a Hermitian metric on Lk with curvature −2πikωh, and the ai are
local invariants constructed from ω. To define ρ we introduce a Hermitian
metric on H0(Lk),

(2.4) ||s||2Hilb(h) = R

∫
M

dμh |s|2h,

where dμh = ωn
h/n!. The sum in Eq. (2.3) is taken over an orthonormal

basis with respect to Eq. (2.4). Thus it depends on h both through the inner
product Eq. (2.4) and explicitly in | . . . |h.

Now, starting with h such that ωh = ω, we can find a h̃ whose curvature
is

(2.5) ωh̃ = ωh + k−1i∂∂̄ log(ρh).

One way to see this is to regard the sum in Eq. (2.2) as a bihomogeneous
polynomial in the sense of §1.4. As such it can be directly interpreted as h̃.
Taking ∂∂̄ log of Eq. (2.3) then gives us Eq. (2.5).

We can now define the balanced metrics. These have h̃ = h in Eq. (2.5),
and thus

(2.6) ρh̃(z) = 1.

When a balanced metric exists, by Eq. (2.3) it is a canonical approximation
to a Ricci flat or constant scalar curvature metric.

The ideas above can be combined to show Eq. (2.1). One can use Eq. (2.3)
to compute the leading term in ρh̃ in an expansion in 1/k, and then Eq. (2.5)
to define a corrected h̃′ for which this term agrees with the one in ρh. This
procedure can be carried out to arbitrary order. The problem is that one
needs k2n coefficients to describe this sequence. This fits with the expectation
from “curse of dimensionality” for a basis of functions which is localized on a
length scale L ∼ 1/k.

2.2. Approximation by bihomogeneous metrics

Could Eq. (2.1) hold with ωk taken from some restricted class of metrics? In
particular, consider the subsets of metrics Kb

L;�p; �D defined by the bihomoge-
neous networks Eq. (1.14). For sufficiently large widths �D, these include the
general Fubini–Study metric, and as we decrease the widths we get subsets
which use many fewer parameters, of order width maxDi times depth d. Fur-
thermore, as we explained these metrics can contain structure on the same
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length scale L ∼ 1/k as the general Fubini–Study metric. Could these net-
works break the curse of dimensionality?

To sharpen the question, define a polynomial width sequence of networks
to be a sequence of networks with d ∈ N, such that the width maxDi grows
at most polynomially in d. Take p = 2 for definiteness, then these networks
define sequences of metrics ωk with k = 2d−1. Define ω to be of polyno-
mial complexity if a sequence exists satisfying Eq. (2.1) for some ν > 0. We
would like to know whether there exist metrics ω which are not of polynomial
complexity.

Let us try to bound the maximum distance from the algebraic metrics to
an approximate metric, as

(2.7) ∀K ∈ KLk ,∃K̃ ∈ Kb
L;�p; �D s.t. ||ωK − ωK̃ || ≤ BLk;�p; �D.

For concreteness we can take M = CPn, but our arguments here will only be
qualitative. Let us consider a two layer network with p = 2, so the inputs are
the complete set of degree (k/2, k/2) polynomials, and θ(z) = z2. We then
want to understand the dependence BLk;p=2;D1 of the upper bound.

The simplest hypothesis is that B = 0 once we match the counting of
parameters between KLk and Kb

Lk/2;2;D1
, in other words when the width D1

satisfies

(2.8)
(
k + n

k

)2

= D1

(
k
2 + n

k
2

)2

.

This has the asymptotic behaviors

(2.9) D1 ∼
{

22n for n � k,(
n
k

)k for n � k.

The intuition is that while we need to combine general quadratic functions
of the inputs, these are only independent for sufficiently high dimension n; in
low dimension they are linearly dependent.

The qualitative behavior Eq. (2.9) can be checked by simplifying even
more, to take the inputs to be vectors XI in RD. For n = 1, it follows because
one can write any degree 4m real univariate polynomial as a difference of
squares of two such polynomials.2 For the n � k limit, let XI be a basis for

2Write p = g2 − h2 = (g − h)(g + h) and then factor p into terms of degree 1
and 2.
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the degree k/2 polynomials of dimension D, then we are trying to minimize
an error of the form

(2.10) E = ||
∑
I,J

fIJX
IXJ −

D1∑
α=1

(
∑
I

W
(1)
α,IX

I)2||.

If we use the Frobenius norm, this is minimized by regarding fIJ as a matrix
and diagonalizing it. The optimal rank D1 solution is to write f = ct w c and
keep the top K (in magnitude) values of w. The worst case for approximation
is all eigenvalues equal, in which case we need D1 = D reproducing the second
case in Eq. (2.9). In this case one also sees that taking D′ < D inputs has
the same effect.

In the n � k limit we even see that the best rank D1 approximation to
a quadratic on R

D has worst case relative L2 error 1 − D1/D. If we boldly
extrapolate this to general Bn,k;D1 by replacing D with the critical value of
D1 satisfying Eq. (2.8), we would conjecture that

(2.11) Bn,k;2;D1 = max 0, Bn,k;1

(
1 − D1 − 1

Dmatch − 1

)
; Dmatch ≡

(k+n
k

)2
D0

,

where D0 =
(k/2+n

k/2
)2

and Bn,k;1 is the worst case error bound for approxi-
mating a degree (k, k) polynomial with a single degree (k/2, k/2) polynomial.
In other words, the improvement in approximation ability for a two layer
network is linear in the ratio of the number of available parameters to the
minimal number of parameters for a universal network, meaning one which
can exactly reproduce any degree k polynomial.3

A strong form of the conjecture is that this is even the case if we allow
the choice of inputs to depend on the function we are approximating. Thus,
if we take the inputs to be a subspace of dimension D0 but which can depend
on K in Eq. (2.7), the worst case error would still be Eq. (2.11). This is not
at all obvious, but the idea is motivated by the effect of taking D′ < D in
Eq. (2.10).

This strong form of the conjecture could be generalized to a multilayer
network, and suggests that in low dimensions n, the growth k2n is inevitable.
Let us consider a d layer network. By the above, the final layer can approx-
imate a general function in terms of 22n outputs of independent d − 1-layer
networks. For example, we can modify Eq. (1.17) by replacing the layer 1

3The linearity corresponds to the worst case in which f in Eq. (2.10) is the
identity. Constraints on the spectrum of f could lead to better bounds.



264 Michael R. Douglas

weights W
(1),J
i,j̄

with independent weights W
(1),IJ
i,j̄

for each choice of subnet-
work indexed by I, to get

Kb
L;�2;D1,D2

= log
∑

1≤I≤D2

W
(3)
I

⎛
⎝ ∑

1≤J≤D1

W
(2),I
J (

∑
i

W
(1),IJ
i,j̄

sis̄j̄)2
⎞
⎠2

.

(2.12)

We can repeat this process for each successive layer, producing a tree struc-
tured network (an idea introduced in [20]) whose total number of parameters
would be N ∼ 22dn ∼ k2n. Since we did not change the assumptions leading
to Eq. (2.8), the asymptotic parameter count is still the same as that for a
general polynomial.

Thus the question is, can we improve on this by sharing intermediate
results. Since the intermediate width of the tree structured network at layer l
is 22n(d−l), in principle there is a lot of scope for this. And in the early layers,
the number of independent polynomials is N ∼ (2l)2n ∼ 22nl � 22n(d−l), so
for l < d/2 one might save on parameters by replacing the many subnetworks
with a single network which constructs a complete basis. However without
further assumptions this does not buy much. Rather than write the analog
of Eq. (2.12), let us just give the modification at layer d/2. Replacing the
subnetworks with the general sections of degree

√
k, we take

(2.13) W
(d/2),IdId−1...Id/2
Id/2−1

⇒ W
(d/2),IdId−1...Id/2
i1...id/2−1,j̄1...j̄d/2−1

.

The 2dn subnetworks each have O(2dn) parameters, so the count is still
O(k2n).

Now, it still might be that the subnetworks do not need all of these inputs
and one could use fewer parameters. To study this systematically we would
want generalizations of Eq. (2.7) to bound the error for jointly approximat-
ing Di > 1 functions, given a subspace of the possible inputs. This second
dependence (on the subspace) is crucial as we are trying to drastically reduce
the number of inputs to the intermediate layers. But according to the strong
form of Eq. (2.11), the error would not depend on this choice; it would still
be governed by the ratio of the number of parameters to the number for a
universal network. Any error bound which decreases with k would require a
number of parameters which grows as the same power of k.

Thus, assuming a very strong conjecture, we have argued that to obtain
Eq. (2.1) for a general metric we need a number of coefficients growing as k2n.
Whether or not we believe this argument, still this would not be too surprising
in the worst case. Could the situation be better in special cases, such as the
Ricci flat and balanced metrics?
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Is there a useful definition of a balanced bihomogeneous metric? Since
these are a subset of the embedding metrics, one could try to define a balanced
bihomogeneous metric by finding a functional on embeddings whose minimum
is the balanced metric. One could then take its minimum over the subset of
bihomogeneous metrics.

Indeed, such a functional exists [10],

(2.14) ψ(G) =
∫
M

ν(z)KG(s(z)) − 1
N + 1tr logG,

where ν(z) is a measure on M , and K and G are as in Eq. (1.11). To get
the balanced metric defined by Eq. (2.6) one must take ν to be the volume
form for this metric. But the definition makes sense for a general ν, and on a
Calabi–Yau manifold we can use the other canonical volume form (the r.h.s.
of Eq. (1.22)) to get a simpler definition which also converges to the Ricci flat
metric.

The problem with this is that, as a function of the weights W , Eq. (2.14)
is probably nonconvex. If one substitutes in Eq. (1.14) to get an explicit
expression for it (analogous to Eq. (2.10)), this will be degree 2d−i in the
weights W (i). Thus it probably does not have a unique minimum. This prob-
lem is familiar from the neural network literature, but surprisingly enough
turns out not to be a serious problem in the applications to machine learn-
ing. Still, for present purposes an unambiguous definition would be better.
Perhaps there are more geometric definitions of holomorphic network which
avoid this problem.
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