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Entropy of Bergman measures of a toric Kaehler
manifold

Steve Zelditch
∗

and Pierre Flurin

Abstract: Associated to the Bergman kernels of a polarized toric
Kähler manifold (M,ω,L, h) are sequences of measures {μz

k}∞k=1
parametrized by the points z ∈ M . We determine the asymptotics
of the entropies H(μz

k) of these measures. The sequence μz
k in some

ways resembles a sequence of convolution powers; we determine
precisely when it actually is such a sequence. When (M,ω) is a
Fano toric manifold with positive Ricci curvature, we show that
there exists a unique point z0 (up to the real torus action) for
which μz

k has asymptotically maximal entropy. If the Kähler metric
is Kähler–Einstein, we show that the image of z0 under the moment
map is the center of mass of the polytope. We also show that the
Gaussian measure on the space H0(M,Lk) induced by the Kähler
metric has maximal entropy at the balanced metric.
Keywords: Bergman kernel, holomorphic line bundle, measures
on moment polytope.

In [Z09], the second author introduced a sequence {μz
k}∞k=1 of probability

measures on the convex lattice polytope P ⊂ R
m associated to a toric Kähler

manifold (M,ω). The measures μz
k are supported on the dilated lattice points

P ∩ 1
kZ

m, and depend on a choice of Hermitian metric h = e−ϕ on the toric
line bundle L → M with ωϕ := i∂∂̄ϕ = ω. They also depend on a point
z ∈ M , or more precisely on its image x = μ(z) under the moment map

(1) μh := μ : M → P ⊂ R
m,

associated to h. In the special case where M = CP
1 and ω = ωFS is the

Fubini–Study metric, the measures μz
k are the standard binomial measures

indexed by x ∈ [0, 1] and coincide with the kth convolution power μ∗k
x of the
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Bernoulli measure μx = xδ1+(1−x)δ0 on [0, 1]. More generally, for the Fubini–
Study metric hFS on the kth power of the standard line bundle O(k) → CP

m

in any dimension, the measures μz
k are the standard multi-nomial distribu-

tions, which are also a sequence of convolution powers. For general toric Käh-
ler manifolds, the sequences {μz

k}∞k=1 is certainly not a sequence of convolution
powers. Yet, many of the classical results on convolution powers are also valid
for the sequence {μz

k}∞k=1: In [SoZ12] they are shown to satisfy a law of large
numbers and a large deviations principle; more recently, they were proved to
satisfy a central limit theorem [ZZ18]. The purpose of this note is to given
an asymptotic formula for the entropies of {dμz

k}∞k=1, extending the family of
probabilistic results one step further. We further investigate the points z and
metrics h for which the sequences have asymptotically maximal entropy. The
proofs are non-probabilistic and are based on Bergman kernel asymptotics,
and especially on the local CLT results in [ZZ18] and on the LDP in [SoZ12].

To state the result, we introduce some notation, referring to Section 1
and to [Z09, SoZ12, ZZ18] for much of the background. The moment map (1)
associated to this data defines a torus bundle of the open orbit of (C∗)m
over the interior of the convex lattice polytope P . As reviewed in Section 1.2,
there is a natural basis {sα}α∈kP of the space H0(M,Lk) of holomorphic
sections of the k-th power of L by eigensections sα of the Tm action. In a
standard frame eL of L over Mo, they correspond to monomials zα on (C∗)m.
The pointwise norms of zα in the open orbit are given by |zα|2e−kϕ(z) where
h = e−φ in a standard frame. The toric Kähler potential φ on the open
orbit is Tm-invariant and may be viewed as a convex function on Rm. Its
Legendre transform u is a convex function on P known as the symplectic
potential. For instance, the symplectic potential of the Fubini–Study metric
is uFS(x) = x log x + (1 − x) log(1 − x) (see Section 1.3).

For α ∈ kP ∩ Z
m, we define

(2) Phk(α, z) := |zα|2e−kϕ(z)

Qhk(α) ,

where Qhk(α) is defined in (9). Further, we denote by Πhk : L2(M,Lk) →
H0(M,Lk) the Szegö projector and by Πhk(z) the associated density of states,
i.e. the metric contraction of the diagonal of the kernel of Πhk ; see Section 1.2.
We now come to the main definition:

Definition 0.1. For any z ∈ Mo and k ∈ N, we define the probability
measure on P ⊂ R

m by,
(3)

μz
k := 1

Πhk(z, z)
∑

α∈kP∩Zm

|sα(z)|2hk

‖sα‖2
hk

δα
k

= 1
Πhk(z, z)

∑
α∈kP∩Zm

Phk(α, z)δα
k
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Note that 1
Πhk (z,z)

∑
α∈kP∩Zm Phk(α, z) = 1. The measures are Tm-invari-

ant in z, and therefore define a family discrete measures on P ∩ 1
kZ

m parame-
trized by points μh(z) ∈ P . Although it is not explicit in the notation, μz

k

depends on the choice of Hermitian metric h on L. For background on ‘lattice
probability measures’ we refer to [GK].

Remark 1. All of the techniques and result of this article can be extended
to the case where μ(z) ∈ ∂P , i.e. z lies on the divisor at infinity of M .
Indeed, the formulae derive from the large deviations principle of [SoZ12] and
the convergence theorem for geodesics [SoZ07, SoZ10] and these results were
proved for all z, including z on the divisor at infinity. But since it is lengthier
and more technical to work at the boundary, for the sake of brevity we assume
z ∈ Mo in this article.

0.1. Asymptotics of entropy of μz
k

The (Shannon) entropy of a discrete probability measure with masses {pα}
is defined by (cf. [KS])

H = −
∑
α

pα ln pα.

Thus, the entropy of μz
k is

(4) H(μz
k) = −

∑
α∈kP∩Zm

Phk(α, z)
Πhk(z) ln Phk(α, z)

Πhk(z) .

The asymptotic entropy result is:

Theorem 0.2. Let h = e−φ be a toric Hermitian metric on L → M and let
ωϕ = i∂∂̄φ be the corresponding Kähler metric. Then, as k → ∞,

H(μz
k) = 1

2 log(det
(
(2πek)(i∂∂̄ϕ|z)

)
+ o(1)

Note that the entropy depends only on the image μh(z) = x0 of z under
the moment map (1). Also, det(i∂∂̄ϕ) is the density of the volume form ωm

ϕ

relative to Lebesgue measure on the open orbit. As in [Ab98] it is convenient
to rewrite log det i∂∂̄ϕ in terms of the symplectic potential and its Hessian in
action-angle variables, with action variables x ∈ P and angle variables θ on
μ−1
h (x). We recall that the symplectic potential u is the Legendre transform
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of the open orbit Kähler potential; we refer Section 1.3 and to [Ab98, Ab03]
for background. Then set,

(5) L(x) = 1
2 log det∇2u(x) = −1

2 log det i∂∂̄ϕ,

and Theorem 0.2 may be reformulated as follows.

Theorem 0.3. Let h = e−φ be a toric Hermitian metric on L → M and let
u be the open orbit symplectic potential. Then, as k → ∞,

H(μz
k) = 1

2 log(det (2πek)
∇2u|μh(z)

) + o(1) = m

2 log(2πek) − L(x) + o(1).

Note that the entropy of uniform measure μkP∩Zm on a set of r element is
log r. The number #(kP ∩ Z

m) of such lattice points is 	 km#(P ∩ Z
m), so

that uniform measure on these lattice points has entropy m log k+ log #(P ∩
Zm). μz

k is not uniform, but rather is approximately a discretized Gaussian
distribution centered at μ(z) and of width k−

1
2 (see Lemma 1.2 and Lemma 1.3

for the precise statements). A discretized Gaussian of width k−
1
2 and of height

km is concentrated in the ball B(z, k− 1
2 ) and is similar to uniform measure

on that ball of the same height. This approximation accurately predicts the
leading order term log km/2.

Remark 2. One may expect analogous results for non-compact infinite vol-
ume toric Kähler manifolds, such as C

m with the Bargmann–Fock space of
analytic functions. The techniques of [F12] apply in that setting. However,
the large deviations results have not been established in such cases, and we
confine the article to compact Kähler manifolds.

Theorem 0.3 specializes to known asymptotics of entropies of multinomial
distributions when (M,ω) is complex projective space with Fubini–Study met-
ric. In dimension m = 1, the binomial distributions are convolution powers
μp
k = (μp)∗k of the Bernoulli measure μp defined by μp({1}) = p, μp({0}) =

1 − p. In this case, the entropy asymptotics can be obtained from local cen-
tral limit theorems and Stirling’s formula, and according to [JSz99, Theo-
rem 2] and to [K98]), H(μz

k) has a complete asymptotic expansion in powers
of k−1 whose coefficients involve the Bernoulli numbers. The entropy of μp is
p log p + (1 − p) log(1 − p) = uFS(p), the Fubini–Study symplectic potential
(see Section 1.3 and [Ab98] for background). Thus, p(1−p) = (u′′F (p))−1. The
parameter p ∈ [0, 1] is the image of the parameter z ∈ CP

1 under the Fubini–
Study moment map. The kth convolution power μp

k is the binomial measure,
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for which pk,� =
(k
�

)
p�(1 − p)k−�. Its Shannon entropy has the asymptotics

(see [JSz99, Corollary 1]),

H(μp
k) = 1

2 log k + 1
2(1 + log(2πp(1 − p)) + O(k−

1
2 + ε).

To compare with Theorem 0.3, we note that in the Fubini–Study case,
u′FS(x) = log x

1−x , u′′FS(x) = 1
x(1−x) , log(u′′FS(x))−1 = log x(1 − x).

Now consider multinomial distributions, which correspond to the toric
Kähler manifold M = CP

m with the Fubini–Study metric hFS on L = O(1).
The parameters �p corresponds to a point in Δm = {�p ∈ R

m+1
+ :

∑m+1
j=1 pj = 1},

which is polytope associated to CP
m. Given k ∈ Z≥1, let �α ∈ Z

m+1
+ and

let k = |�α|. If �x ∈ R
m+1 let �x�α =

∏m+1
j=1 xα1

1 · · · xαm+1
m+1 . A random vector

�X = (X1, . . . , Xm+1) has the multinomial distributions with parameters k

and �p if Prob[X̃ = α̃] =
(k
α̃

)
p̃α̃ where

(k
�α

)
= k!

�α! .
It is proved in [CG12, Theorem 1] and [Mat78] that the multinomial

distributions with parameters k and �p = (p1, . . . , pm+1) has the asymptotic
form,

H(μ∗k
p ) = 1

2 log((2πke)mp1 · · · pm+1)+
1

12k

⎛⎝3(m + 1) − 2 −
m+1∑
j=1

1
pj

⎞⎠+O( 1
k2 ).

Remark 3. Since
∑m+1

j=1 pj = 1, there are only m independent pj . In the for-
mula of Theorem 0.2, the parameter m+1 in the multinomial case corresponds
to CP

m, so the coefficients of log k agree.

Aside from asymptotic entropies of multinomial distributions, there ex-
ist few general results on asymptotic entropies of convolution powers μ∗k.
Asymptotics of entropies to several orders for certain classes of discrete dis-
tributions as k → ∞ were obtained in [K98, JSz99]. In the case of sums
of i.i.d. real-valued random variables, i.e. convolution powers of probability
measures on R, Dyachkov proved in [D96, Theorem 2] that

H(μ∗k) 	 1
2(log k) + 1

2 log(2πeσ2) + o(1).

In view of the resemblence of the entropy asymptotics of the toric Kähler
probability measures μz

k to convolution powers, it is natural to characteristic
the toric Hermitian line bundles (L, h) → (M,ω) for which μz

k is a sequence
of convolution powers.
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Theorem 0.4. The sequence {μz
k}∞k=1 is a sequence of convolution powers

for all z if and only if Hilbk(h) is balanced for all k, i.e. the density of states
Πhk(z) = Dk is constant for all k. Hence, ω is a Kähler metric of constant
scalar curvature.

To prove Theorem 0.4 we first prove a result about balanced metrics on
any Kähler manifold which seems of independent interest.
Proposition 0.5. For any Kähler manifold (M,ω, J), the following are equiv-
alent:

1. Hilbk(h) is balanced for all k, i.e. the density of states Πhk(z) = Ck is
constant for all k.

2. Πhk(z, w) = Ak[Πh1(z, w)]k, where

Ak = dimH0(M,Lk)
(2π)mV ol(P )

( (2π)mV ol(P )
dimH0(M,L)

)k

.

In the case of a toric Kähler manifold,

Ak =
(

#{α ∈ kP ∩ Z
m}

(2π)mV ol(P )

)(
(2π)mV ol(P )

#{α ∈ P ∩ Zm}

)k

.

We refer to [D02] for background and results on balanced and constant
scalar curvature metrics on toric Kähler manifolds.

0.2. Ricci curvature and measures of maximal entropy

The entropy H(μ) of a discrete probability measure μ is a measure of the
degree to which μ is uniform. The larger the entropy, the more uniform the
measure, so that the measure of maximal entropy in a given family of probabil-
ity measures is the most uniform measure. This measure of maximal entropy
is often considered the most important. Hence it is natural to ask for which
z does μz

k have maximal entropy in the family μz
k, at least asymptotically as

k → ∞. For instance, in the case of binomial measures μ∗k
p , p = 1

2 .
Locating the point μ(z) = x where μz

k has asymptotically maximal en-
tropy is related to the Ricci curvature of (M,ω). We recall that the Ricci
curvature of the Kähler metric ωϕ is given by Ric(ω) = −i∂∂̄ log det(gīj), i.e.
Rick� = − ∂2

∂zk∂z̄� (log det gīj) where ω = i
2gij̄dz

i ∧ dz̄j . In [Ab98] it is shown
that in the toric case,

(6) Ric = −1
2ddc log det H = −1

2

m∑
i,j,k

Hij,jkdxk ∧ dθi.

Thus, the Ricci potential is the function −L(x) (5).
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Due to the inverse relation of i∂∂̄φ and ∇2u, points where the Ricci po-
tential is maximal are points where (5) is minimal. In the simplest case of
the Fubini–Study symplectic potential on CP

1, in a standard gauge the sym-
plectic potential satisfies, log u′′FS(x) = − log x(1 − x), and d2

dx2 log u′′FS(x) =
x−2 + (1 − x)−2. The unique minimum point of log u′′FS occurs at x = 1

2 . In
the case of multinomial distributions and Fubini–Study potentials in higher
dimensions, the maximum occurs at the center of mass of the simplex. These
are model cases of toric Fano Kähler–Einstein manifolds. It turns out that
related statements are true for compact toric Kähler manifolds with posi-
tive Ricci curvature. We recall that Ric(ω) represents the first Chern class
c1(M) and Ric > 0 implies that (M,ω) is a toric Fano manifold. That is, if
Ric(ω) > 0, then ω is a positively curved metric on the anti-canonical bundle
−KX , hence −KX is ample. A toric Fano manifold has a distinguished center,
namely the center of mass of polytope. We refer to [D08] for background and
results on toric Fano Kähler manifolds and their preferred centers.

Theorem 0.6. For fixed (L, h,M, ω), the points x = μ(z) for which the
measures μz

k have asymptotically maximal entropy as k → ∞ occur at the
minimum points of L(x) (5). If (M,ω) is Fano and Ric(ω) is positive, then
there is a unique minimum. In the Kähler–Einstein Fano case, where Ric(ω) =
aω, the point of maximal entropy is the center of mass of P (which equals 0
if P is put in the form of [M87]).

For instance, in the case of Fubini–Study metrics on CP
m, the open

orbit Kähler potential is log(1 + |w|2), w ∈ C
m, and − log det∇2ϕ(ρ) =

(m + 1)ϕ(ρ) − ρ. The unique point of maximal entropy is given by eρ

1+eρ =
1
m(1, . . . , 1). In the gauge of Mabuchi [M87], where the polytope is translated
by − 1

m(1, . . . , 1), the unique point is 0 (see Section 1.4 for background on
gauges).

Remark 4. The Mabuchi functional M(ω) on Kähler metrics involves the
relative entropy of ωm

φ and of a background volume form. As shown in
[D02, Proposition 3.2.8], it is given on a toric Kähler manifold by M(ω) =
(2π)nFa(u) where,

Fa(u) =
∫
P
L(x)dx +

∫
∂P

udσ − a

∫
P
udx,

where a = Vol(∂P,dσ)
Vol(P) where dσ is Euclidean surface measure.
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0.3. Differential entropy of the Gaussian measure γhk

There is a second (and much simpler) problem regarding entropies of prob-
ability measures on a toric Kähler manifold, or indeed on any polarized
Kähler manifold. Associated to any Hermitian metric h on L is a sequence
{Hilbk(h)}∞k=1 of Hermitian inner products on H0(M,Lk). In turn the inner
product induces a Gaussian measure γhk

on H0(M,Lk). If we fix a background
metric h0, or corresponding inner product G0, then the inner product Hilbk
is represented by a positive Hermitian matrix P and the Gaussian measure
γhk is represented by detPe−〈P−1X,X〉 on C

Nk where Nk = dimCH0(M,Lk).
When a probability measure μ on R

n has a density f relative to Lebesgue
measure dx, its differential entropy is defined by

H(fdx) = −
∫
Rn

f(x) log f(x)dx.

It is well-known that if f(x) = N(μ, σ) = 1√
2πσ exp

(
− (x−μ)2

2σ2

)
is a Gaussian,

then,
h(fdx) = ln(σ

√
2πe).

We now calculate the differential entropy of the Gaussian measures γhk .

Proposition 0.7. Let (L, h,M, ω) be any polarized Kähler manifold, and
let γhk be the associated Gaussian measure on H0(M,Lk). Then H(γhk ) =
− log det Hilbk(h). The Hermitian metric h for which H(γhk ) has maximal
entropy is the balanced metric.

0.4. Further problems on the sequence of toric measures

Although entropy has a natural interpretation for a single probability measure
(its degree of uniformity), it plays a more essential role in the dynamics of
Markov chains (the Shannon–Breiman–MacMillan theorem; see [KS]).

A well-known Markov chain is the so-called Wright–Fisher Markov chain:
Let Xn (n ≥ 0) be the Markov chain with state space {0, . . . , N} and with
transition probabilities,

pij := P (Xn+1) = j|Xn = i) =
(
N

j

)
( i

N
)j(1 − i

N
)N−j , (i, j = 0, . . . , N).

A more general Wright–Fisher Markov chain is to define

pij =
(
N

j

)
ψj
i (1 − ψi)N−j ,
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where ψi are other weights of the lattice points. There is a straightforward
generalization to toric Kähler manifolds by defining the right stochastic ma-
trix

P
(N)
αβ =

|sα(β)|2hN

QhN (α)ΠhN (β, β) .

In fact, we could take any orthonormal basis {sN,j} and any points {zN,k}dNk=1
and form the Markov chain with

P
(N)
j,k :=

|sN,j(zN,k)|2hN

ΠhN (zN,k, zN,k)
.

It might be of interest to determine the asymptotic entropy of this Markov
chain, which is closely related to the measures μz

k.

Remark 5. The article [DK] also considers entropy in the context of Bergman
kernels, but does not seem to overlap this article. It is devoted to the simpler
question of when the density of states Πhk(z) has maximal entropy (it is
evidently the balanced metric) and its applications to black hole physics.

1. Background on toric varieties

We employ the same notation and terminology as in [SoZ12, ZZ18]. We re-
call that a toric Kähler manifold is a Kähler manifold (M,J, ω) on which
the complex torus (C∗)m acts holomorphically with an open orbit Mo. We
choose a basepoint z0 on the orbit open and identify Mo ≡ (C∗)m{z0}. The
underlying real torus is denoted Tm so that (C∗)m = Tm × R

m
+ , which we

write in coordinates as z = eρ/2+iθ in a multi-index notation. Thus, |z|2 = eρ.
We often express the Kähler potential in ρ coordinates.

We assume that M is a smooth projective toric Kähler manifold, hence
that P is a Delzant polytope, i.e. that P is defined by a set of linear inequalities

(7) �r(x) := 〈x, vr〉 − αr ≥ 0, r = 1, ..., d,

where vr is a primitive element of the lattice and inward-pointing normal to
the r-th (n − 1)-dimensional face of P . We denote by P o the interior of P
and by ∂P its boundary; P = P o ∪ ∂P .

1.1. Toric line bundles and their powers

We consider powers Lk → M of an ample toric line bundle L → M with
k ∈ Z. A model case is that of powers O(k) → CP

m of the dual line bundle
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O(1) → CP
m of the hyperplane line bundle O(−1) → CP

m. Positive powers
O(k) are ample line bundles and the holomorphic sections correspond to
monomials zα on C

m+1 with |α| = k. Negative powers have no holomorphic
sections.

The canonical line bundle K is the top exterior power of the holomor-
phic cotangent bundle; its sections are smooth (m, 0) volume forms. Theo-
rem 0.6 concerns Fano toric Kähler manifolds, namely manifolds with ample
anti-canonical line bundle (hence, negative canonical line bundle). A model
example is CP

m, for which K = O(−(m + 1)).
We need to linearize (or quantize) the torus action so that it acts on

H0(M,Lk). It is sufficent to lift the action to L∗. The lifting procedure is
described in [ZZ19, Lemma 1.1] for single Hamiltonians, and essentially the
same procedure works to define lifts of the commuting Hamiltonians of a
torus action. We equip L with a toric Hermitian metric h whose curvature
(1, 1)-form ω. The Hermitian metric h on L induces a Chern connection on
the S1 bundle Xh = ∂D∗

h → M where D∗
h ⊂ L∗ is the unit co-disk bundle

with respect to h. We then lift the Hamilton vector fields ξHj generating the
torus action on M to contact vector fields ξ̂Hj = ξhHj

− 2πHjR on Xh where
ξ̂hH denotes the horizontal lift of ξH and where R is the Reeb vector field gen-
erating rotations in the fibers of Xh → M . The vertical and horizontal parts
commute, and if ξHj commute then their horizontal lifts commute. We may
choose generators so each ξHj generates a 2π-periodic flow (such Hamiltoni-
ans are known as action variables). It is verified in [ZZ19, Lemma 2.6] that
ξ̂Hj also generates a 2π-periodic flow. Together with R, one has a T

m+1 action
on Xh. The Hamiltonians Hj are not uniquely defined because one may add
a constant cj to each without changing ξHj . However, in order that the lifts
ξ̂Hj generate periodic flows, it is only possible to add a lattice point �k ∈ Z

m

to the vector (H1, . . . , Hm) of Hamiltonians. Thus, the possible lifts form a
Z
m-family.

For each choice of lift and each power Lk of the ample toric line bundle,
there exists a unique (up to scalars) torus-invariant section, whose restriction
to the open orbit we denote by eLk . See [Fu] or [GS82, Section 5] (which treats
general compact Lie groups). In the case of O(k) → CP

m it corresponds to
the lattice point α = 0. For k = m + 1, the invariant section may be viewed
as the multivector (z1

∂
∂z1

)∧ · · · ∧ (zm ∂
∂zm

) dual to the meromorphic invariant
volume form dz1

z1
∧ · · · ∧ dzm

zm
, which has an order 1 pole at each boundary

divisor.
A natural basis of the space of holomorphic sections H0(M,Lk) associated

to the kth power of an ample toric holomorphic line bundle L → M is the
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basis of equivariant sections, i.e. holomorphic eigensections of the linearized
torus action. They are defined in the open orbit by the monomials zα where
α is a lattice point in the kth dilate of the polytope, α ∈ kP ∩ Z

m. To be
more precise, on the open orbit sα(z) = zαeLk . Let Ik ⊂ Z

m be the subset
consisting of the weights in H0(M,Lk) under the action of (C∗)m, and let Pk

be the convex hull of Ik. Then Pk = kP ′ for a fixed convex polytope P ′. We
denote the dimension of H0(M,Lk) by Nk. For background, see [Fu].

1.2. Inner products and norms of monomials

We equip L with a toric Hermitian metric h whose curvature (1, 1)-form may
be expressed in terms of a local holomorphic frame eL by ω = i∂∂̄ log ‖eL‖2

h.
Any hermitian metric h on L induces inner products Hilbk(h) on H0(M,Lk),
defined by

(8) 〈s1, s2〉Hilbk(h) =
∫
M

(s1(z), s2(z))hk

ωm
h

m! .

The equivariant sections (monomials) are orthogonal with respect to any such
toric inner product. We often express the norm in terms of a local Kähler
potential, ‖eL‖2

h = e−ϕ, so that |sα(z)|2hk = |zα|2e−kϕ(z) for sα ∈ H0(M,Lk).
The L2 norm-square of sα with respect to the natural inner product Hilbk(h)
induced by the Hermitian metric on H0(M,Lk) is given by,

(9) Qhk(α) = ‖sα‖2
hk =

∫
Cm

|zα|2e−kϕ(z)dVϕ(z).

Here, dVϕ = (i∂∂̄ϕ)m/m!.

1.3. Kähler potential, moment map and sympletic potential

An open-orbit Kähler potential is a real-valued torus invariant function ϕ
such that i∂∂̄ϕ = ω on the open orbit. This potential is only defined up to
an additive pluri-harmonic torus invariant function (i.e. an affine function).
Recall that the log coordinates (ρ, θ) on Mo ∼= (C∗)m are defined by setting
zi = eρi/2+

√
−1θi . Since the Kahler potential ϕ is Tm-invariant, ϕ(z) only

depends on the ρ variables, hence we may write it as ϕ(ρ) (eρ = |z|2). The
associated moment map μh is defined as the gradient of the Kähler potential,

μh : Rm
ρ → P ⊂ R

m
x , ρ �→ ∇φ(ρ).
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The polytope P is the image of the moment map. The moment map μh : M →
R

m is only well-defined up to an additive constant vector; hence P is only
defined up to translation without further normalization. As this indicates,
there are a number of implicit choices in the definition of the Kähler potential
and moment map.

Given the norming constants (9), a standard definition of the open-orbit
Kähler potential is,

(10) ϕ(ρ) := log
( ∑

α∈P∩Zm

e〈α,ρ〉

Qh(α)

)
.

The sum is essentially the density of states (the value of the Bergman kernel
on the diagonal) (see Section 1.6). More precisely, it is the modulus square
of the coefficient of the Bergman kernel relative to the invariant frame, i.e.
the ratio of the density of states and the norm square |eL|2 of the invariant
section. These definitions depend on the choice of linearization of the torus
action. If the invariant section corresponds to the lattice point α0, then the
exponent in e〈α,ρ〉 in (10) is translated to e〈α−α0,ρ〉.

We now consider the symplectic potential u0 associated to φP o , defined as
the Legendre transform of ϕ on R

m:

(11) uϕ(x) = ϕ∗(x) = Lϕ(x) := sup
ρ∈Rm

(〈x, ρ〉 − ϕ(eρ/2+iθ)).

It is a function on P , or in invariant terms it is a function on Lie(Tm)∗ 	
Lie(Rm

+ )∗. In general, the Legendre transform of a function on a vector space
V is a function on the dual space V ∗.

Thus,

(12) uϕ(x) = 〈x, ρx〉 − ϕ(ρx), eρx/2 = μ−1
ϕ (x) ⇐⇒ ρx = 2 log μ−1

ϕ (x)

on P . The gradient ∇xuϕ is an inverse to μωϕ on MR on the open orbit, or
equivalently on P , in the sense that ∇uϕ(μωϕ(z)) = z as long as μωϕ(z) /∈ ∂P .

The symplectic potential has canonical logarithmic singularities on ∂P .
According to [Gu94] and to [D02] (Proposition 3.1.7),

(13) u0(x) =
∑
k

�k(x) log �k(x) + f0

where f0 ∈ C∞(P̄ ). The Guillemin canonical metric is the special case where
f0 = 0.
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1.4. Gauges and examples

As mentioned above, Kähler potentials and the corresponding symplectic po-
tentials are not unique, and we refer to a choice of one potential as a choice
of gauge. The gauge symmetries of the pairs (ϕ, u) are as follows. We assume
that the arguments ρ of ϕ and x of u are related by x = μh(eρ/2).

• ϕ → ϕ + c, u → u− c for any c ∈ R;
• ϕ(ρ) → ϕ(ρ) +�b · ρ, x → x +�b = ∇(ϕ(ρ) +�b · ρ) �b ∈ R

m;
• u(x) → u(x) + �k · x, ρ → ρ + �k;
• If we only choose Kähler potentials (10) corresponding to Bergman

kernels and torus-invariant sections, then �b ∈ Z
m.

Let us illustrate the definitions and ambiguities with the Kähler potential,
moment map and symplectic potential for the Fubini–Study metric of CPm.
In the case of O(1) → CP

1, a standard choice for the Fubini–Study Kähler
potential is ϕ(z) = log(1 + |z|2) = log(1 + eρ) = ϕ(eρ) = ϕ(ρ) (with a little
abuse of notation) and the moment map is μFS(ρ) = eρ

1+eρ . As in the intro-
duction, the polytope is [0, 1] and the correspondinng symplectic potential is
uFS(x) = x log x + (1 − x) log(1 − x).

However, other gauge choices are possible. If we allow all Chern classes
and intervals, a second choice of Kähler potential is ϕr(ρ) = r2 log cosh ρ. The
corresonding symplectic potential is,

ur(x) = 1
2
(
(r2 + x) log(r2 + x) + (r2 − x) log(r2 − x)

)
,

where the parameter r determines the radius of the corresponding round S2,
and corresponding polytope is [−r2, r2]. The radius parametrizes the coho-
mology class of the Kähler form, which is a translate of the centered polytope
[−1

2 ,
1
2 ] with r2 = 1

2 .
As a higher dimensional example, consider the canonical bundle O(−(m+

1)) → CP
m with the Fubini–Study metric. The image of the moment map for

this potential is (m+ 1) times the standard unit simplex in R
m. The volume

form is given by ωm
FS = ( i

2)m
∏m

i=1 dzi∧dz̄i
(1+|z|2)m+1 and − log(1 + |z|2)m+1 is a Kähler

potential for the Ricci form. On the other hand, one may express the volume
form in terms of the invariant (m, 0) form

∏m
i=1

dzi
zi

. That changes the Kähler
potential by −∑

j log |zj | and translates the simplex by −(1, 1, · · · , 1) so that
it is centered at 0.
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1.5. Fano toric Kähler manifolds

Theorem 0.6 pertains to Fano toric Kähler manifolds, namely those with
positive anti-canonical bundle. The polytope of a Fano Kähler manifold has
a preferred center x0 ∈ P such that �j(x0) = 1 for all j. As explained in
[D08, Section 3.1], this follows because the wedge product of the vector fields
generating the torus action is a meromorphic m-form on M with a simple pole
along each of the divisors corresponding to the faces. Its inverse is a section
of the anti-canonical bundle. The centre x0 is also the centre of mass of ∂P
with its induced surface measure. The center is 0 if and only if the metric is
Kähler–Einstein [M87, WZ04]; equivalently, vanishing of the Futaki invariant
is equivalent to the fact that the preferred center is the center of mass.

1.6. Szegö (or, Bergman) kernels

The Szegö (or Bergman) kernels of a positive Hermitian line bundle (L, h) →
(M,ω) are the kernels of the orthogonal projections Πhk : L2(M,Lk) →
H0(M,Lk) onto the spaces of holomorphic sections with respect to the in-
ner product Hilbk(h),

(14) Πhks(z) =
∫
M

Πhk(z, w) · s(w)ω
m
h

m! ,

where the · denotes the h-hermitian inner product at w. In terms of a local
frame e for L → M over an open set U ⊂ M , we may write sections as s = fe.
If {skj = fje

⊗k
L : j = 1, . . . , Nk} is an orthonormal basis for H0(M,Lk), then

the Szegö kernel can be written in the form

(15) Πhk(z, w) := Fhk(z, w) e⊗k
L (z) ⊗ e⊗k

L (w) ,

where

(16) Fhk(z, w) =
Nk∑
j=1

fj(z)fj(w) , Nk = dimH0(M,Lk).

We also introduce the local kernel Bk(z, w), defined with respect to the uni-
tary frame:

(17) Πhk(z, w) = Bk(z, w) · ekL(z)
‖ekL(z)‖h

⊗ ekL(w)
‖ekL(w)‖h
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The density of states Πhk(z) is the contraction of Πk(z, w) with the hermitian
metric on the diagonal,

Πhk(z) :=
Nk∑
i=0

‖ski (z)‖2
hk

= Fhk(z, z) |e(z)|2kh = Bk(z, z),

where in the first equality we record a standard abuse of notation in which
the diagonal of the Szegö kernel is identified with its contraction. On the
diagonal, we have the following asymptotic expansion the density of states,

(18) Πhk(z) = km(a0 + a1S(z)km−1 + a2(z)km−2 + · · · )

where S(z) is the scalar curvature of ω. The leading order term a0 = 1
(see Section 1.8) if Πhk(z, w) is the Szegö kernel relative to the volume form
dV = ωm

m! .

1.7. Bergman kernels for a toric variety

In the case of a toric variety, we have

(19) Fhk(z, w) =
∑

α∈kP∩Zm

zαw̄α

Qhk(α) ,

where Qhk(α) is defined in (9). If we sift out the αth term of Πhk by means
of Fourier analysis on Tm, we obtain (2).

Let ϕ̃(z, w) denote the almost analytic extension of ϕ(z) from the diago-
nal, that is ϕ̃ satisfies the condition ∂̄k

z ϕ̃(z, w)|z=w = ∂k
wϕ̃(z, w)|z=w = 0 for all

k ∈ N and ϕ̃(z, w)|z=w = ϕ(z). The Tm action is by holomorphic isometries
of (M,ω) and therefore

(20) ϕ̃(Φ�tz,Φ�tw) = ϕ̃(z, w).

The Szegö kernel (17) admits a parametrix with complex phase ϕ̃. In the
case of a toric Kähler manifold, it takes the following simple form [STZ03].

Proposition 1.1. For any hermitian toric positive line bundle over a toric
variety, the Szegö kernel for the metrics hk

ϕ have the asymptotic expansions
in a local frame on M ,

Bhk(z, w) ∼ ek(ϕ̃(z,w)− 1
2 (ϕ(z)+ϕ(w)))Ak(z, w) mod k−∞,

where Ak(z, w) ∼ km
(
1 + a1(z,w)

k + · · ·
)

is a semi-classical symbol of order
m and where the phase satisfies (20).
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1.8. Facts from algebraic geometry

If Lk is very ample (i.e. the vanishing theorem holds), then Nk :=
dimH0(M,Lk) satisfies

Nk + 1 = χ(Lk) =
∫
M

ekc1(L)Td(M) = a0k
m + a1k

m−1 + · · · + am,

where

a0 = 1
m!

∫
M

c1(L)m, a1 = 1
(2(m− 1)!

∫
M

c1(L)m−1c1(M).

Also, [ω] = 2πc1(L). Also∫
M

Πhk(z, z)dVω = dimH0(M,Lk) = a0k
m + a1k

m−1 + · · · ,

with
a0 = Volω(M) =

∫
M

ωm

m! , a1 = 1
2π

∫
M

S(ω)dVω.

Here, dVω = ωm

m! .

1.9. Asymptotic results on Qk(α) and P(α, z)

In [SoZ12, (23)], the norming constants are expressed in terms of the sym-
plectic potential:

(21) Qhk(α) =
∫
P
ek(u0(x)+〈α

k
−x,∇u0(x)〉dx.

For interior α, and αk with |α− αk| = O( 1
k ),

(22) Qhk(αk) ∼ k−m/2eku0(α),

and for all α and αk with |α− αk| = O( 1
k ),

(23) 1
k

logQhk(αk) = u0(α) + O( log k
k

).

The weights Phk(α, z) (2) of the dilate μz,1
k admit pointwise asymptotic

expansions. The following is [ZZ18, Lemma 5.1] (see (25) for the definition
of Iz).
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Lemma 1.2. Phk(α, z) = km/2(2π)−m/2| det Hess(uϕ(αk )| 1
2 e−kIz(α

k
)(1 +

O(1/k)), where O(1/k) is uniform in z, α. If |μ(z) − α
k | = O( 1

k ), then

Phk(α, z) = km/2(2π)−m/2| det Hess(uϕ(μh(z))|
1
2 e−kIz(α

k
)(1 + O(1/k)),

where O(1/k) is uniform in z, α.

1.10. Probabilistic results

In [SoZ12] the following is proved:

Proposition 1.3. Let (M,L, h, ω) be a polarized toric Hermitian line bundle.
Then the means, resp. variances of μz

k are given respectively by,

1. mk(z) = μh(z) + O(k−1);
2. Σk(z) = k−1Hess ϕ + O(k−2).

Moreover, the measures μz
k satisfy a weak law of large numbers; see (28).

Let h = e−ϕ be a toric Hermitian metric on L. Recall that the symplectic
potential uϕ associated to ϕ is its Legendre transform: for x ∈ P there is a
unique ρ(x) such that μϕ(eρ(x)/2) = dϕ(ρ(x)) = x. If z = eρ/2+iθ then we
write ρz = ρ = log |z|2. Then the Legendre transform is defined to be the
convex function

(24) uϕ(x) = 〈x, ρ(x)〉 − ϕ(ρ(x)).

Also define

(25) Iz(x) = uϕ(x) − 〈x, ρz〉 + ϕ(ρz).

Then Iz(x) is a convex function on P with a minimum of value 0 at x = μh(z)
and with Hessian that of uϕ.

1.11. Large deviations

In [SoZ12] it is proved that the measures μz
k satisfy a large deviations principle

with speed k and a rate function Iz (25). The rate functions Iz for {dμz
k}

depend on whether z lies in the open orbit Mo of M or on the divisor at
infinity D. The following is proved in [SoZ12].

Theorem 1.4. For any z ∈ M , the probability measures μz
k satisfy a uniform

Laplace large deviations principle with rate k and with convex rate functions
Iz ≥ 0 on P defined as follows:
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• If z ∈ M0, the open orbit, then Iz(x) = u0(x) − 〈x, log |z|〉 + φP o(z),
where φP o is the canonical Kähler potential of the open orbit and u0 is
its Legendre transform, the symplectic potential;

• When z ∈ μ−1
0 (F ) for some face F of ∂P , then Iz(x) restricted to

x ∈ F is given by Iz(x) = uF (x) − 〈x′, log |z′|〉 + φF (z), where log |z′|
are orbit coordinates along F , φF is the canonical Kähler potential for
the subtoric variety defined by F and uF is its Legendre transform. On
the complement of F̄ it is defined to be +∞.

• When z is a fixed point then Iz(v) = 0 and elsewhere Iz(x) = ∞.

The local asymptotics of Lemma 1.2 (due to [ZZ18, Lemma 5.1]) are
derived from this large deviations principle.

1.12. Bernstein polynomials and associated measures

One approach to entropy of the measures μz
k is to recognize their relation

to Bernstein polynomials [Z09]. The Bernstein polynomials of a continuous
function f ∈ C(P ) of a general toric Kähler manifold are quotients

(26) Bhk(f)(x) = Nhkf(x)
Πhk(μ−1

h (x), μ−1
h (x))

of a numerator polynomial Nhkf(x) by the denominator Πhk(z, z) with
μh(z) = x. Here, μh is the moment map associated to the Kähler form ωh

associated to h, and

Nhkf(x) =
∑

α∈kP∩Zm

f(α
k

)e
k(uφ(x)+〈α

k
−x,∇uφ(x)〉)

Qhk(α) .

The numerator polynomials as well as the denominator admit complete
asymptotic expansions: there exist differential operators Nj , such that

Nhk(f)(x) ∼ km

πm

(
f(x) + k−1N1f(x) + · · ·

)
,

where the operators Nj are computable from the Bergman kernel expansion
for Πhk(z, z). In particular,

N1f(x) = 1
2
(
f(x)S(μ−1

h (x)) + ∇μh(μ−1
h (x)) · ∇2f(x)

)
,
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where S(z) is the scalar curvature of the Kähler metric ωh. Combining the
asymptotics of the numerator and denominator produces the asymptotics for
f ∈ C∞(P ).

Bhk(f)(x)=f(x)+L1f(x)k−1+L2f(x)k−2+· · ·+Lmf(x)k−m + O(k−m−1),
(27)

in C∞(P̄ ), where Lj is a differential operator of order 2j depending only on
curvature invariants of the metric h; the expansion may be differentiated any
number of times.

The relevance of Bernstein polynomials to the measures μz
k is the following

easily verifiable formula [Z09]: if x = μφ(z) and h = e−φ, then

Bhkf(x) =
∫
P
f(y)dμz

k(y).

It follows that, for any f ∈ C(P ),

(28) lim
k→∞

∫
P
f(y)dμz

k(y) = f(μ(z)).

2. Proof of Theorem 0.2 on entropy asymptotics

In this section, we prove Theorem 0.2. Since it is a rather technical calculation,
we first give a detailed outline using prior results on the large deviations
principle reviewed in Section 1.11, and on Bernstein polynomials (reviewed
in Section 1.12). We then give a self-contained proof in Section 2.2. The
outline is quite detailed and helps as a guide to the self-contained proof.

2.1. Sketch of proof

The entropy of μz
k is given explicitly in (4). The weights Phk(α, z) (2) of the

dilate μz,1
k admit pointwise asymptotic expansions in Lemma 1.2. We assume

that μ(z) ∈ P o, so that Iz(x) = u0(x) − 〈x, log |z|〉 + φP o(z). Unravelling the
logarithm in (4) gives,

(29) H(μz
k) = − 1

Πhk(z, z)
∑

α∈kP∩Zm

Phk(α, z) (logPhk(α, z) − log Πhk(z, z)) .

By (18),

(I) 1
Πhk(z, z)

∑
α∈kP∩Zm

Phk(α, z) log Πhk(z, z) ∼ log(a0k
m) + O( 1

k
)(30)

= m log k + O( 1
k

).
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Therefore it suffices to determine the asymptotics of the first term of (29),

− 1
Πhk(z, z)

∑
α∈kP∩Zm

Phk(α, z) logPhk(α, z).

By Lemma 1.2,

logPhk(α, z) = log(km/2(2π)−m/2) + log | det Hess(uϕ(μh(z))|
1
2(31)

− kIz(α
k

) + O(1/k)).

Since the first two terms are independent of α, we obtain a second term,

(II) − 1
Πhk(z, z)

∑
α∈kP∩Zm

Phk(α, z)(32)

×
(
log(km/2(2π)−m/2) + log | det Hess(uϕ(μh(z))|

1
2

)
= − log(km/2(2π)−m/2) − log | det Hess(uϕ(μh(z)))|

1
2 + O( 1

k
).

Thus, we are left with the third term,

(33) (III) 1
Πhk(z, z)

∑
α∈kP∩Zm

Phk(α, z)(kIz(α
k

)).

We obtain asymptotics for this term using the asymptotics of Bernstein poly-
nomials as reviewed above. To make this connection, we define a function fz
so that

fz(
α

k
) = Iz(α

k
).

Both sides extend with no complication from the lattice points α
k to all x ∈ P o.

By Theorem 1.4, it follows that term (III) is, up to errors of order O( 1
k ), the

Bernstein polynomial for

fz(x) = Iz(x) = u0(x) − 〈x, log |z|〉 + φP o(z).

Note that since u and φ are Legendre transforms, one has

u(x) + φ(ρ) = 〈x, ρ〉, x = μ(eρ).

By (27), the leading term in the asymptotic expansion of (III) is 0. Since this
term is multiplied by k, this signals that (III) = O(1). Since f(μ(z)) = 0,
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the leading order asymptotics is given by the second term,

(III.0) N1f(x) = 1
2
(
f(x)S(μ−1

h (x)) + ∇μh(μ−1
h (x)) · ∇2f(x)

)
(34)

= ∇μh(μ−1
h (x)) · ∇2Iz(μ(z)).

However, ∇2Iz = ∇2u0, so the last term is Tr(Im) = m.
Adding the contributions of (30)–(32)–(34) gives

H(μz
k) = (I) + (II) + (III.0)(35)

= log(km) − log(km/2(2π)−m/2) − log | det Hess(uϕ(μh(z))|
1
2

+ m

2 + O( 1
k
)

= m

2 (1 + log(2πk)) − log | det Hess(uϕ(μh(z))|
1
2 + O( 1

k
),

agreeing with the formula of Theorem 0.2.

Remark 6. Above, we used that a0 = 1 to simplify the first term.

2.2. A more detailed proof

We now give a more detailed proof without using prior results on Bernstein
polynomials.

Let Q̃k(y) := eku0(y) ∫
P ek(u0(x)−u0(y)+<∇u0(x),y−x>)dx.

Lemma 2.1. For all neighborhoods of the boundary of the polytope U we
have a uniform equivalent outside of U , Q̃k(y) = (2π)m/2|det∇2u0(y)|−1/2 ×
km/2eku0(y)(1 + mk(y)

k1/2−ε ) where supk∈N,y∈P−U |mk(y)|< ∞.

Proof. Let fy(x) = u0(y)−u0(x)+ < ∇u0(x), x−y >. It is a positive function
that attains 0 only once in y and whose Hessian is ∇2u0|y at y. For positive
constants δk to be determined below,

Q̃k(y) = eku0(y)
∫
P
e−kfy(x)dx

(36)

= eku0(y)(
∫
B(y,δk)

e−k(∇2u0|y(x−y,x−y)+δkf(x))dx + Ke−k infP−B(x,δk) fy(x)).(37)

Let mδ
y := infP−B(x,δ) fy(x)

2δ2 and M δ
y := fy(x)−∇2u0(x−y,x−y)

6δ3 .
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We have two bounds on Q̃k(y)∫
B(y,δk)

e−
k
2∇

2u0(x−y,x−y)−kδ3
kM

δk
y dx

≤ Q̃k(y)e−ku0(y) ≤
∫
B(y,δk)

e−
k
2∇

2u0(x−y,x−y)+kδ3
kM

δk
y dx + Vol(P )e−k δ2

km
δk
y

Now changing the variables in the integral leads to∫
B(0,

√
kδk)

e−
1
2∇

2u0(z,z)−kδ3
kM

δk
y km/2dz

≤ Q̃k(y)e−ku0(y) ≤
∫
B(0,

√
kδk)

e−
1
2∇

2u0(z,z)+kδ3
kM

δk
y km/2dz + Vol(P )e−k δ2

km
δk
y

In order for the whole term to converge we need to choose δk to carefully.
If we choose δk = εk−α with α ∈ (1

3 ,
1
2) we’ll obtain a exponential rate of

convergence.
More over as k goes to infinity,

∫
B(0,

√
kδk) e

− 1
2∇

2u0(z,z) =
√

det 2π(∇2u0)−1

(1 + Nk(
√
kδk)m−2e−

(
√

kδk)2

2 ) with (Nk)k∈N a bounded sequence.
Now we have the following sandwich:

e−kδ3
kM

δk
y (1 + Nk(

√
kδk)m−2e−

(
√

kδk)2

2 )

≤ Qk(y)
√

det∇2u0(y)
(2π)m

2 km/2eku0(y)

≤ ekδ
3
kM

δk
y (1 + Nk(

√
kδk)m−2e−

(
√

kδk)2

2 + Nkk
−m

2 e−k δ2
km

δk
y )

The first vanishing term comes from the term in ekδ
3
kM

δk
y The final equiv-

alent is of the form:

Qk(y)
√

det∇2u0(y)
(2π)m

2 km/2eku0(y)
= 1 + cykkδ

3
k = 1 + cykk

1−3α = 1 + cykk
− 1

2+ε

With (cyk)k∈N a bounded sequence. In order to prove that (cyk)k∈N is uni-
formly bounded over P − U , we just need to show that mδ

y and M δ
y are

uniformly bounded. For any neighborhood U of the boundary of P , P − U

is a compact set where u0 is C∞ and so where mδ
y and M δ

y are uniformly
bounded.
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2.3. Computation of the entropy

Now that we proved this technical lemma, we’ll use it and the asymptotics
of the Szegö kernel Π(z, z) = km + O(km−1) to obtain the following uniform
asymptotic for the individual probabilities of the sequence of measures: Let’s
take any neighborhood of the boundary U such that μ(z) is in the interior of
P − U . We have that ∀α ∈ P − U such that kα ∈ kP ∩ Z

m for a certain k.

μz
k(α) =

|zα|2hk

Qk(α)Πk(z, z)
=

√
det∇2u0(y)
(2πk)−m/2 e−kIz(α)

(
1 + cα

k1/2−ε

)

With |cα|≤ M and M only depending on U .
Let’s split the calculation in two:

H(μz
k) = −

∑
p∈U

μz
k(p) log(μz

k(p)) −
∑

p∈P−U

μz
k(p) log(μz

k(p))

Lemma 2.2. The first term goes to zero.

Proof. Let νk := μz
k(·)1·∈U

μz
k
(U) . Then

−
∑
p∈U

μz
k(p) log(μz

k(p)) = −μz
k(U) log(μz

k(U)) + μz
k(U)H(νk)

Note that ν is concentrated on a finite number of points that is equal to
|U |km + o(kd), hence H(νk) ≤ d log(k) + constant and μz

k(U) decrease expo-
nentially due to the LDP. This implies that the result.

−
∑
p∈U

μz
k(p) log(μz

k(p)) →k→∞ 0

We need to compute the second term H ′(μz
k) of H(μz

k). Let’s split the
sum again in four parts. We’ll use the notation PU

k :=
(
kP ∩ Z

m
)
/k − U .

H ′(μz
k) : =

∑
α∈PU

k

μz
k(α) log((2πk)m/2)(38)

−
∑

α∈PU
k

μz
k(α) log(

√
det∇2u0(α))(39)
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+
∑

α∈PU
k

μz
k(α)kIz(α)(40)

−
∑

α∈PU
k

μz
k(α) log

(
1 + cα

k1/2−ε

)
(41)

Then trivially we have that |(41)|< log
(

1 + M
k1/2−ε

)
→

k→∞
0 and that

(38) = m
2 log(2πk) + o(1).

For (39) we need to notice that u0 is strictly convex on the interior of
P , so it’s stricly concave on P − U . Consequently, log(|det∇2u0(α)|)1/2 is a
continuous bounded function on P − U and the LDP implies that the term
converges to log(|det∇2u0(μ(z))|1/2).

The only difficult term to compute is the third term (40), which we’ll
denote A3.

Lemma 2.3. limk→∞A3 = m
2 .

Proof. Let K := −∇2u0(μ(z)). For a δ arbitrary small, we have:

• Outside of Bδ(x0) we have Iz > ε1(δ)δ2 with ε1(·) a strictly positive
function with a strictly positive lower bound.

• Inside of Bδ(x0) we have fk(α) = |det∇2u0(α)|1/2
(
1 + ckα

k1/2−ε

)
=

|detK|1/2(1+ εk2(α−x0)) such that ‖εk2(·)‖∞ < εk2,δ, with εk2,δ increasing
with δ and decreasing with k such that it vanishes as k → ∞ and δ → 0.

• Inside of Bδ(x0) we also have that Iz(x0+δx)=1
2K(δx, δx)+ε3(δx)‖δx‖3

with ‖ε3(·)‖∞ < ∞.

We treat the functions ε1 as increasing positive functions of δ that vanish
at 0 and the functions εk2 as positive functions which vanish at 0 and are
increasing with δ and decreasing with k as k → ∞. We then have:

A3√
detK(2π)−m/2

(42)

= (2π)−m/2
√

detK
∑

α∈PU
k

μz
k(α)kIz(α)
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=
∑

α∈PU
k
∩Bδ(x0)

k−m/2

√
|det∇2u0(α)|

detK

(
1 + cα

k1/2−ε

)
e−kIz(α)kIz(α)

(43)

+ O(k1+m/2e−kε1(δ)δ2)

= k−m/2 ∑
δx∈(PU

k
−x0)∩Bδ(0)

e−
k
2K(δx,δx) k

2K(δx, δx)(1 + O(εk2) + O(kδ3))

(44)

+ O(k1+m/2e−kε1(δ)δ2)

with the two O being uniformly bounded over (PU
k − x0) ∩Bδ0(0).

(45)

Now let’s rescale δx by k−
1
2 to get,

= k−m/2 ∑
δx∈

√
k(PU

k
−x0)∩B√

kδ(0)

e−
1
2K(δx,δx) 1

2K(δx, δx)(1 + O(εk2) + O(kδ3))

(46)

+ O(k1+m/2e−kε1(δ)δ2)

Now the set P k
δ :=

√
k(PU

k − x0) ∩ B√
kδ(0) is for small enough δ and

interior x0 the set 1√
k
(Zm − x0) ∩ B√

kδ. If we choose a specific sequence of
δk = ε

kγ with γ ∈ (1
3 ,

1
2), the series converges as k goes to infinity and all the

Os vanish from the limit.
The series is a truncated step function approximation of the following

integral ∫
Rm

K(x, x)
2 e−

K(x,x)
2 dx =

√
det 2π

K

m

2
Since the integrand is Riemann integrable, we don’t need further arguments.
Finally,

lim
k→∞

A3 = m

2a0(2π)m

Combining the asymptotics above for the terms (38)–(41), we obtain the
following asymptotics for the entropy of the measures μz

k:

H(μz
k) =

k→∞

m

2 log(2πk) − 1
2 log(|det∇2u0(x0)|) + m

2 + o(1)

This concludes the proof of Theorem 0.2.
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2.4. Point z for which μz
k has asymptotically maximal entropy:

proof of Theorem 0.6

We now consider the point x = μ(z) for which the measure μz
k has asymptot-

ically maximal entropy within the family {μz
k}. For Fano Kähler manifolds,

we prove that there exists a unique point x = μ(z) at which μz
k has asymp-

totically maximal entropy. For Fano Kähler manifolds with Kähler–Einstein
metric, we prove that the unique point x ∈ P is the point x = 0.

Proof. As mentioned in the introduction, it follows from Theorem 0.2 that the
points z such that μz

k has asymptotically maximal entropy are points where
the Ricci potential is maximal. Due to the inverse relation of det i∂∂̄φ and
L(x) = log(|det∇2u0(x0)|) (5), points where the Ricci potential is maximal
lie in the inverse image under the moment map μh of points x for which L(x)
is minimal (see Theorem 0.3). Since u is convex, we may remove the absolute
value.

It is proved in [Ab98, Theorem 2.8] that L(x) is a smooth function on
the interior of P and L(x) ↑ ∞ as x → ∂P . Consequently, u has a global
minimum which lies in the interior of P . This proves existence for all toric
Kähler manifolds.

If we assume that Ricci curvature Ric(ω) is positive definite, then the
minimum is unique. Indeed, by (6), positive Ricci curvature is equivalent to
L(x) (5) being a strictly convex function. Since L(x) ↑ ∞ as x → ∂P , L(x)
is proper and strict convexity implies that the minimum of u is unique. We
state the result as the following,

Lemma 2.4. If (M,ω) is a toric Fano manifold of positive Ricci curvature,
then there is a unique point ρ0 in the open orbit of maximal entropy, corre-
sponding to a unique point x0 = μh(eρ0/2) ∈ P .

We now assume further that ω is a toric Kähler–Einstein metric. In that
case, the equation Ric(ω) = aω (for some C > 0) implies that there exists a
constant vector �b and c ∈ R so that

(47) − log det(i∂∂̄ϕ)(ρ) = aϕ(ρ) +�b · ρ + c.

Indeed, ∂∂̄(− log det(i∂∂̄ϕ)(ρ) − aϕ(ρ)) = 0 and therefore the difference po-
tential is a toric pluriharmonic function, hence a linear function. By Lemma
2.4, we get
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Lemma 2.5. If If (M,ω) is a toric Kähler–Einstein Fano manifold of positive
Ricci curvature, then in the gauge (47), there is a unique critical point in the
open orbit where

(48) ∇ϕ(ρ) = μh(eρ) = −1
a
�b.

Alternatively, we may write the critical point equation in terms of the
symplectic potential u and the function L(x) (5). The Kähler–Einstein equa-
tion (47) for the potentials then changes to,

(49) L(x) = aφ(eρx) +�b · ρx + c, μh(ρx) = x.

Since u = Lφ (Legendre transform), and ∇u(x) = μ−1
h (x) one has u(x) =

x · ρx − φ(eρx) and so (49) simplifies to,

(50) L(x) = a(x · ∇u(x)− u(x)) +�b · ∇u(x) + c = (ax+�b) · ∇u− au(x) + c.

As mentioned in Section 1.3, toric Kähler potentials are not unique be-
cause of the gauge symmetries. For instance, one may add a linear function of
ρ to obtain an equivalent potential. The shift of gauge by an affine function
results in a translation of the Delzant polytope. According to [M87, Definition
3.6], there exists an open orbit toric Kähler potential φ so that so that

(51) detD2
ρϕ = e−ϕ, e−ϕ

m∏
j=1

idzj ∧ dz̄j
|zj |2

∈ C∞(M,Ω),

where zj are open orbit coordinates (in (C∗)m and C∞(M,Ω) is the space of
smooth volume forms. We refer to (51) as the Mabuchi or Kähler–Einstein
gauge. In the gauge (51), the the potential satisfies,

(52) ϕ = − log det(i∂∂̄ϕ)(ρ) (�b = 0).

Combining with Lemma 2.5 gives,

Lemma 2.6. In the gauge (52) for the Kähler potential, the unique point of
maximal entropy solves the critical point equation,

∇ρϕ(ρ) = 0, ( ⇐⇒ μ(eρ/2) = 0).

It follows that in this gauge, the point x0 ∈ P for which μz0
k has asymp-

totically maximal entropy is the origin 0 ∈ P .
This completes the proof of Theorem 0.6.
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Remark 7. According to [M87], the origin in the gauge (51) is the center of
mass of the polytope P . This follows from the facts that, by [M87, Corollary
5.5], the so-called Futaki invariant aP = 0, and by [M87, Theorem 9.2.3], that
the center of mass of P is 0.

One may directly prove that the center of mass in the Kähler–Einstein
gauge equals 0, i.e. the gauge ϕ such that − log det i∂∂̄ϕ = aϕ, using the
moment map change of variables μh(eρ) = ∇ρϕ(ρ) = x(ρ), which gives

xmass = 1
Vol(P )

∫
P
xdx = 1

Vol(P )

∫
Rn

∇ρϕ(ρ) det∇2
ρϕ dρ.

Using the fact that det i∂∂̄ϕ(eρ) = det∇2
ρϕdρ = e−ϕ(ρ)dρ we get that

(53) xmass = − 1
Vol(P )

∫
Rn

∇ρ(e−ϕ)dρ

By (10), ϕ(ρ) = maxα∈P∩Zm ρ·α+O(1) as ρ → ∞. As long as maxα∈P∩Zm (ρ·
α) ≥ ε|ρ| for some ε > 0 and large ρ, e−ϕ is rapidly decreasing and one can
integrate by parts in (53) to prove that xmass = 0. The lower bound is true if
and only if 0 ∈ P o. It must be the case that maxα∈P∩Zm ρ ·α ≥ ε|ρ| for large
ρ; otherwise, there exists direction in which ϕ does not go to +∞ implying
that

Vol(P ) =
∫
P
dx =

∫
Rn

e−ϕdρ = ∞

which is a contradiction thus proving the result.

Some further references for the existence of the potential satisfying (51)
are [WZ04, W15]. The formula (50) agrees with [WZ04, (2.18)]. They define
the parameters c� by,

∫
P
y� exp{

n∑
�=1

c�y�}dy = 0

if M admits a Kähler–Einstein metric then �c = 0; in terms of our notation, �c
is the center of mass of P . See also [W15, Page 3615] and [D08, Section 3.3].

Let us check the identities in the simplest case of CP
1 with Fubini–

Study metric. If we choose the gauge uFS(x) = x log x + (1 − x) log(1 − x)
in which P = [0, 1], then log(u′′FS(x))−1 = log x(1 − x), b = 1, a = −2.
Similar equations hold for CP

m. If we choose a gauge for which ur(x) =
1
2
(
(r2 + x) log(r2 + x) + (r2 − x) log(r2 − x)

)
and P = [−r2, r2], then b = 0.
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3. Convolution powers and toric measure: proof of
Theorem 0.4

3.1. Proof of Proposition 0.5

First, we prove Proposition 0.5. For the reader’s convenience we recall that it
says that, for any Kähler manifold (M,ω, J), the following are equivalent:

1. Hilbk(h) is balanced for all k, i.e. there exist constants Ck so that the
density of states Πhk(z) = Ck for all k.

2. Πhk(z, w) = Ak(Πh1(z, w))k, where

dimH0(M,Lk)
vol(M, ω) = Ak

(
dimH0(M,L)

vol(M, ω)

)k

.

Proof. (1) =⇒ (2). If Πhk(z, z) = Ck for some constant Ck, then neces-
sarily Ck = dimH0(M,Lk)

vol(M,ω) . If (1) holds, then the constant Ck in (1) is given
by this formula for all k. We then define Ak by Ak = Ck

Ck
1
. Thus, Ck and Ak

are uniquely determined by the assumption (1) and by definition of Ak we
have Πhk(z, z) = Ak(Πh1(z, z))k. This equation holds along the totally real
submanifold {(z, z̄) : z ∈ M} ⊂ M × M̄ , where we identify the complexifica-
tion of M with M × M̄ . Since Πhk(z, w) is holomorphic, the equation implies
Πhk(z, w) = Ak(Πh1(z, w))k for all (z, w) ∈ M × M̄ , i.e. (1) =⇒ (2).

(2) =⇒ (1). Conversely assume (2). To prove (1) it suffices to prove that
Πh1(z, z) = C1. If this is false, we introduce constants α < 1, β > 1 and con-
sider the sets M− = {z : Πh1(z, z) < αC1} and M+ = {z : Πh1(z, z) > βC1}.
If Πh1(z, z) = C1 is false, M± must be non-empty open sets for some α <
1, β > 1. Assuming (2), we have Πhk(z, z) < AkC

k
1α

k in M− and Πhk(z, z) >
AkC

k
1β

k in M+. But AkC
k
1 = Ck = 1

Vol(M) dimH0(M,Lk), and standard
Bergman kernel asymptotics give Πhk(z, z) 	 1

Vol(M) dimH0(M,Lk) +
o(dimH0(M,Lk)). We then get the contradiction that 1

Vol(M) dimH0(M,Lk)<
αk 1

Vol(M) dimH0(M,Lk) in M− and 1
Vol(M) dimH0(M,Lk) > βk 1

Vol(M) dimH0

(M,Lk), concluding the proof.

Remark 8. We note that Πhk(z, w) is holomorphic in z and anti-holomorphic
in w. The density of states ρk = Πhk(z, z) is the metric contraction of the
diagonal values of Πhk(z, w) by the metric e−kφ(z) and therefore is not the
restriction of a holomorphic function on the complexification M × M̄ to the
anti-diagonal. Hence, Πhk(z, z) = Ck does not imply that Πhk(z, w) = Ck. But
the equation Πhk(z, z) = Ak(Πh1(z, z))k is the restriction of a holomorphic
equation to the anti-diagonal and therefore extends to all of M × M̄ .
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3.2. Proof of Theorem 0.4

To prove Theorem 0.4 we need to relate convolution powers of μz
k and the

two conditions in Proposition 0.5.
Define the lattice path ‘partition function’: For α ∈ kP ∩ Z

m,

(54) Pk(α) :=
∑

(β1,...,βk):βj∈P,β1+···+βk=α

k∏
j=1

1
Q(βj)

.

Then, we have

Lemma 3.1.

Πhk(z, z) = Ak(Πh1(z, z))k ⇐⇒ PkQk = Ak.

Proof. Recall from (19) that

(55) Fhk(z, w) =
∑

α∈kP∩Zm

zαw̄α

Qhk(α) ,

where Qhk(α) is defined in (9), and that

Πhk(x, y) = Fhk(z, w)ekL(z)ekL(w).

On the other hand, by definition of the partition function, we also have

F k
h1(x, y) =

∑
α∈kP∩Zm

Pk(α)zαw̄α

If we contract the diagonal values of each kernel with the metric, the hypoth-
esis of the Lemma gives,

Fhk(z, z) = Ak(Fh1(z, z))k,

and comparing coefficients of the monomials completes the proof.

Next, we evaluate the the Fourier transform Fx→ξ(μ1)∗k of the convolution
powers of μz

1.

Lemma 3.2. We have,

Fx→ξ(μz
1)∗k = 1

(Πh1(z, z))k
∑

α∈kP∩Zm

Pk(α)ei〈α,ξ〉.
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Proof. By definition of the partition function (54),

Fx→ξ(μz
1)∗k = (Fμz

1)k(ξ) =
(∑

α∈P

Ph1(α, z)
Πh1(z, z) e

i〈α,ξ〉
)k

= 1
(Πh1(z, z))k

∑
α∈kP∩Zm

Pk(α)ei〈α,ξ〉

The following Lemma is the main step in the proof of Theorem 0.4.

Lemma 3.3. μz
k = (μz

1)∗k for all k and all z ∈ Mo if and only if

(56) Πhk(z, z)
(Πh1(z, z))k = Ak = Pk(α)Qk(α), ∀k, α ∈ kP ∩ Z

m,∀z ∈ Mo,

where Ak is the constant determined by Proposition 0.5.

Proof. By the definition (2) of Phk(α),

μz
k = (μz

1)∗k ⇐⇒ ∑
α∈kP∩Zm

Phk (α,z)
Πhk (z,z) e

i〈α,ξ〉 =
(∑

α∈P
Ph1 (α,z)
Πh1 (z,z) e

i〈α,ξ〉
)k

⇐⇒ Phk (α,z)
Πhk (z,z) = Ph1 (α,z)k

(Πh1 (z,z))k , ∀α ∈ kP ∩ Z
m

⇐⇒ 1
Qhk (α)Πhk (z,z) = 1

(Πh1 (z,z))kP(α), ∀α ∈ kP ∩ Z
m

⇐⇒ (Πh1 (z,z))k
Πhk (z,z) = P(α)Qhk(α), ∀α ∈ kP ∩ Z

m.

Equality is only possible if the left side is independent of z and the right side
is independent of α. Therefore, both must be a constant, and the left side
must be the constant Ak determined by Proposition 0.5.

We now complete the proof of Theorem 0.4. First assume that μz
k = (μz

1)∗k

for all k and all z ∈ Mo. Then by Lemma 3.3, Πhk (z,z)
(Πh1 (z,z))k = Ak for all k

and z ∈ Mo) (hence for z ∈ M). Then, by Proposition 0.5, Πhk(z, z) is a
constant for all k, say Dk. The constant Dk is determined by integrating
and as in Lemma 0.5, Dk = 1

V ol(M) dimH0(M,Lk). By the Bergman kernel
expansion (18), ω is a CSC metric.

Conversely suppose that Hilbk(h) is balanced for each k, i.e. that Πhk(z)
is constant. By Proposition 0.5, Πhk (z,z)

(Πh1 (z,z))k = Ak for all k and z ∈ Mo and by
Lemma 3.3, μz

k = (μz
1)∗k for all k.



300 Steve Zelditch and Pierre Flurin

3.3. Differential entropy of Gaussian measures on H0(M,Lk):
proof of Proposition 0.7

Proposition 0.7 is of a different nature from the preceding results, since it
concerns Gaussian measures on H0(M,Lk) induced by Hermitian metrics on
K, rather than the toric measures dμz

k. But it is related in that both concern
entropies of probability measures induced by Kähler metrics. The proof is
rather simple, because we may reduce it to results of Donaldson on balanced
metrics.

Proof. The entropy H(γP |γI) of this Gaussian measure relative to that of the
background is − log detP .

In the case of a toric Kähler manifold, we may represent an inner product
by the norming constants Qhk

(α). In fact the toric Gaussian measure is the
product measure

∏
α∈kP∩Zm

√
Qhk

(α)e−〈Qhk
(α)−1x,x〉dx

Then detP =
∏

α∈kP∩Zm Qhk
(α). It follows that the differential entropy of

the associated Gaussian measure is

(57) H(γ �Qhk
) = − log det Hilbk(h) = −

∑
α∈kP∩Zm

log Qhk(α).

Interestingly, (57) is the functional L introduced by Donaldson in [D05,
(10)]. In [D05, Lemma 2] and [D05, Corollary 1] it is proved that a metric is
balanced if and only if it is a critical point of the functional L̃ = L − d

V I on
the space K of Kähler metrics in the fixed (1, 1) class. In fact, as explained
there, δL vanishes for all δφ of integral zero if and only if the density of states
Πhk(z) is a constant. The second term − d

V I is only to fix the undetermined
constant in the Kähler potential and may be omitted if we work with global
potentials on the open orbit.
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