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On Calabi–Yau fractional complete intersections
Tsung-Ju Lee, Bong H. Lian, and Shing-Tung Yau

Abstract: In this article, we study mirror symmetry for pairs
of singular Calabi–Yau varieties which are double covers of toric
manifolds. Their period integrals can be seen as certain ‘fractional’
analogues of those of ordinary complete intersections. This new
structure can then be used to solve their Riemann–Hilbert prob-
lems. The latter can then be used to answer definitively questions
about mirror symmetry for this class of Calabi–Yau varieties.
Keywords: Calabi–Yau, mirror symmetry, fractional complete
intersections.

1. Introduction

1.1. Motivation

Mirror symmetry from physics has successfully made numerous predictions in
algebraic geometry and attracted lots of attentions in the past thirty years.
Roughly, mirror symmetry asserts that for a Calabi–Yau space X there exists
a Calabi–Yau space X∨ such that A(X) ∼= B(X∨) and B(X) ∼= A(X∨). Here
A(X), the A model of X, is taken to be the genus zero Gromov–Witten theory
whereas B(X), the B model of X, is the variation of Hodge structures.

Various examples of mirror pairs have been constructed. The first mir-
ror pair was given by Greene and Plesser [10], leading to the spectacular
prediction of genus zero Gromov–Witten invariants for quintic threefolds [6].
Batyrev generalized the construction to the case of Calabi–Yau hypersur-
faces in Gorenstein Fano toric varieties by making use of reflexive polytopes
[2], leading to similar predictions of Gromov–Witten invariants for general
Calabi–Yau toric hypersurfaces [15]. Later, Batyrev and Borisov gave a gen-
eral recipe to construct mirror pairs in the case of Calabi–Yau complete inter-
sections in Gorenstein Fano toric varieties by nef-partitions [3]. At the same
time, Bershadsky et al. [4] developed their fair reaching theory of topologi-
cal strings which led to predictions of Gromov–Witten invariants in higher
genera.
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Thanks to Torelli theorem, the B model is locally completely determined
by period integrals of the Calabi–Yau families. It is known that the period
integrals satisfy a set of partial differential equations, known as the Picard–
Fuchs equations. Batyrev observed in [1] that the period integrals of a fam-
ily of Calabi–Yau hypersurfaces or complete intersections in a fixed Goren-
stein Fano toric variety satisfy a generalized hypergeometric system intro-
duced by Gel’fand, Kapranov, and Zelevinskĭı [8], which is called the GKZ
A-hypergeometric system nowadays. For a family of Calabi–Yau hypersur-
faces or complete intersections in toric varieties, we attempt to understand
its period integrals through the GKZ A-hypergeometric systems associated
with it.

Hosono et al. observed that the Gröbner basis with respect to the typical
weight for the toric ideal determines a finite set of differential operators for
the local solutions to the GKZ A-hypergeometric system [15]. For such a
GKZ A-hypergemetric system, they also proved that there exists a special
boundary point called a maximal degeneracy point on a resolution of the
secondary fan compactication of the moduli [16]. It is a point over which for
all but one period integrals can not be extended holomorphically; namely,
up to a constant, there exists a unique holomorphic period at that point.
To study the moduli locally near such a special boundary point, inspired by
mirror symmetry, the generalized Frobenius method was developed in [11, 15].
Starting with the holomorphic period, the method allows us to produce other
period integrals. The generalized Frobenius method gives a uniform treatment
to describe the local solutions near a maximal degeneracy point in the moduli.

The works in [14, 17] shed light on a new construction of a mirror pair
of singular Calabi–Yau varieties. Hosono, Takagi and the last two authors
investigated the family of K3 surfaces arising from double covers branched
over six lines in P2 and proposed a singular version of mirror symmetry.
Recently, together with Hosono, the authors gave a general recipe to con-
struct pairs of singular Calabi–Yau varieties (Y, Y ∨) and showed that they
are topological mirror pairs in dimension three [13]; in other words, we have
hp,q(Y ) = h3−p,q(Y ∨) for all 0 ≤ p, q ≤ 3.

1.2. Statements of main results

The aim of this note is to straighten the results in [15, 16] to our singular
topological mirror pairs.

Consider a nef-partition (Δ, {Δi}ri=1) and its dual nef-partition
(∇, {∇i}ri=1) in the sense of Batyrev and Borisov. Let PΔ and P∇ be the
toric varieties defined by Δ and ∇. Let X → PΔ and X∨ → P∇ be maximal
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projective crepant partial resolutions (MPCP resolutions for short hereafter)
of PΔ and P∇. The nef-partitions on PΔ and P∇ determine nef-partitions
on X and X∨. Let E1, . . . , Er and F1, . . . , Fr be the sum of toric divisors
representing nef-partitions on X and X∨. We assume that both X and X∨

are smooth throughout this note.
For a nef-partition F1 + · · ·+Fr on X∨, we can define a family Y∨ → V of

singular Calabi–Yau varieties as follows. For each i, let si,1, si,2 ∈ H0(X∨, Fi)
be sections such that div(si,1) ≡ Fi and div(si,2) is smooth. Let Y ∨ → X∨ be
a double cover branched over ∪r

i=1 ∪2
j=1 div(si,j). Let

V ⊂ W∨ := H0(X∨, F1) × · · · × H0(X∨, Fr)

be an open subset such that
∑r

i=1
∑2

j=1 div(si,j) is a simple normal crossing
divisor. Deforming si,2 in V , we obtain the said family of double covers of X,
which is called the gauge fixed double covers family in this paper. Similarly,
the dual nef partition E1 + · · · + Er gives another family Y → U .

To state our main results, let us introduce some notation. Let N 
 Zn be
a lattice in which the fan of X sits and M := HomZ(N,Z). Let Σ be the fan
defining X. The nef-partition E1 + · · ·+Er on X determines a decomposition
�r
k=1Ik of Σ(1), the set of 1-cones in Σ. We can write

Σ(1) = {ρi,j : ρi,j ∈ Ii for 1 ≤ i ≤ r, 1 ≤ j ≤ ni = #Ii} .

The primitive generator for the 1-cone ρi,j is again denoted by ρi,j . For 1 ≤
i ≤ r and 1 ≤ j ≤ ni, we put νi,j := (ρi,j , δ1,i, . . . , δr,i) and additionally
νi,0 := (0, δ1,i, . . . , δr,i), where δi,j is the Kronecker delta. Let

Aext :=
[
νᵀ
1,0 · · · νᵀ

r,nr

]
∈ Mat(n+r)×(p+r)(Z), p = n1 + · · · + nr.

It turns out that the affine period integrals (For a precise definition, see §2.5.)

(1) Πγ(x) :=
∫
γ

1
s
1/2
1,2 · · · s1/2

r,2

dt1
t1

∧ · · · ∧ dtn
tn

for the gauge fixed double cover family Y∨ → V satisfy a GKZ A-hypergeo-
metric system associated with the matrix Aext and a fractional exponent

β =
[
0 −1/2 · · · −1/2

]ᵀ
∈ Qn+r.

Note that for ordinary complete intersections the exponents appearing in
the denominator in the affine period integrals would be integers. But for
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gauge fixed double cover families, the exponents become half integers (Hence
‘fractional’ complete intersections).

The affine period integrals of Y∨ → V form a local system on W∨ \D for
some closed subset D. Let TM := Hom(N,C∗). The space W∨ is equipped
with a TM × (C∗)r action via the inclusion TM × (C∗)r ↪→ (C∗)dimW∨ and
the affine periods are invariant under this action. In other words, the periods
descend to local sections of a locally constant sheaf on SW∨ , where SW∨ is
the image of (C∗)dimW∨ \ D under

(C∗)dimW∨ → (C∗)dimW∨
/TM × (C∗)r.

Following the idea in [16], we compactify (C∗)dimW∨
/TM × (C∗)r into a toric

variety via the secondary fan SΣ and the Gröbner fan GΣ. Our first theorem
in this note is

Theorem 1.1 (=Theorem 3.12). For every toric resolution XGΣ′ → XGΣ,
there exists at least one maximal degeneracy point in XGΣ′ .

The precise definition of maximal degeneracy points is given in Defini-
tion 3.1. The secondary fan SΣ is natural from combinatorics whereas the
Gröbner fan GΣ contains more information about our GKZ system. The
proof of Theorem 1.1 is parallel to the proof given in [16].

Let Lext := ker(Aext : Zp+r → Zn+r). Note that the Mori cone NE(X) is
a cone in Lext ⊗ R. Pick an α ∈ Cp+r such that Aext(α) = β. As observed in
[15], after a renormalization, a solution to the GKZ system is given by

(2)
∑

�∈Lext

∏r
i=1 Γ(−�i,0 − αi,0)∏r

i=1 Γ(−αi,0)
∏r

i=1
∏ni

j=1 Γ(�i,j + αi,j + 1)(−1)
∑

i
�i,0x�+α.

Here the components of Lext ⊂ Zp+r are labeled by (i, j) with 1 ≤ i ≤ r and
0 ≤ j ≤ ni. The variables xi,j (again 1 ≤ i ≤ r and 0 ≤ j ≤ ni) are the
coordinates for the GKZ A-hypergeometric system associated with Y∨ → V .

Let Di,j be the Weil divisor associated with ρi,j . Combining 2 with these
cohomology classes, we introduce a cohomology-valued power series

(3) Bα
X(x) :=

⎛
⎝ ∑

�∈NE(X)∩Lext

Oα
� x

�+α

⎞
⎠ exp

⎛
⎝ r∑

i=1

ni∑
j=0

(log xi,j)Di,j

⎞
⎠ ,

where

Oα
� :=

∏r
i=1(−1)�i,0Γ(−Di,0 − �i,0 − αi,0)∏r

i=1 Γ(−αi,0)
∏r

i=1
∏ni

j=1 Γ(Di,j + �i,j + αi,j + 1)
and Di,0 := −∑ni

j=1 Di,j .
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The cohomology-valued series (3) was introduced by Hosono et al. in [15]
(a.k.a. Givental’s I-function up to an overall Γ-factor [9]) which encodes the
information from the A model and the B model for a Calabi–Yau mirror pair.

We regard Bα
X(x) as an element in C�xi,j�⊗CH•(X,C). Our second result

in this note is the following theorem.

Theorem 1.2 (=Corollary 4.4). When h ∈ H•(X,C)∨ runs through a basis
of H•(X,C)∨, the pairings 〈Bα

X(x), h〉 give a complete set of solution to the
GKZ A-hypergeometric system associated with Y∨ → V .

A direct calculation shows that 〈Bα
X(x), h〉 is a solution to the GKZ A-

hypergeometric system associated with Y∨ → V . See also [5]. The dimension
of the solution space to this GKZ system is given by the normalized volume
of Aext, which turns out to be equal to the dimension of Hn(Y ∨,C) if n is
odd for a generic fiber Y ∨.

Theorem 1.2 solves the Riemann–Hilbert problem for the periods of the
family of Calabi–Yau varieties Y∨. It gives a complete description for the
Picard–Fuchs system of the periods of this family in terms of a GKZ system.

2. Preliminaries

We begin with some notation and terminologies.

• Let N = Zn be a rank n lattice and M = HomZ(N,Z) be its dual
lattice. Let NR := N ⊗Z R and MR := M ⊗Z R.

• Let Σ be a fan in NR and XΣ be the toric variety determined by Σ. Let
T ⊂ XΣ be its maximal torus with coordinates t1, . . . , tn.

• We denote by Σ(k) the set of k-dimensional cones in Σ. In particular,
Σ(1) is the set of 1-cones in Σ. Similarly, for a cone σ ∈ Σ, we denote
by σ(1) the set of 1-cones belonging to σ. By abuse of the notation, we
also denote by ρ the primitive generator of the corresponding 1-cone.

• Each ρ determines a T -invariant Weil divisor on XΣ, which is denoted
by Dρ hereafter. Any T -invariant Weil divisor D is of the form D =∑

ρ∈Σ(1) aρDρ. The polyhedron of D is defined to be

ΔD := {m ∈ MR : 〈m, ρ〉 ≥ −aρ for all ρ} .

The integral points M∩ΔD gives rise to a canonical basis of H0(XΣ, D).
• A nef-partition on XΣ is a decomposition of Σ(1) = �r

k=1Ik such that
Ek :=

∑
ρ∈Ik Dρ is nef for each k. Recall that a divisor D is called nef

if D.C ≥ 0 for any irreducible complete curve C ⊂ XΣ. We also have
E1 + · · · + Er = −KXΣ .
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• A polytope in MR is called a lattice polytope if its vertices belong to M .
For a lattice polytope Δ in MR, we denote by ΣΔ the normal fan of Δ.
The toric variety determined by Δ is denoted by PΔ, i.e., PΔ = XΣΔ .

• A reflexive polytope Δ ⊂ MR is a lattice polytope containing the origin
0 ∈ MR in its interior and such that the polar dual Δ∨ is again a lattice
polytope. If Δ is a reflexive polytope, then Δ∨ is also a lattice polytope
and satisfies (Δ∨)∨ = Δ. The normal fan of Δ is the face fan of Δ∨ and
vice versa.

2.1. The Batyrev–Borisov duality construction

We briefly recall the construction of the dual nef-partition [3]. Let I1, . . . , Ir
be a nef-partition on PΔ. This gives rise to a Minkowski sum decomposition
Δ = Δ1 + · · · + Δr, where Δi = ΔEi is the section polytope of Ei. Following
Batyrev–Borisov, let ∇k be the convex hull of {0}∪Ik and ∇ = ∇1 + · · ·+∇r

be their Minkowski sum. One can prove that ∇ is a reflexive polytope in NR

whose polar dual is ∇∨ = Conv(Δ1, . . . ,Δr) and ∇1 + · · · + ∇r corresponds
to a nef-partition on P∇, called the dual nef-partition. The corresponding nef
toric divisors are denoted by F1, . . . , Fr. Then the section polytope of Fj is
∇j .

Let X → PΔ and X∨ → P∇ be maximal projective crepant partial
(MPCP for short hereafter) resolutions for PΔ and P∇. Via pullback, the
nef-partitions on PΔ and P∇ determine nef-partitions on X and X∨ and
they determine the families of Calabi–Yau complete intersections in X and
X∨ respectively.

Recall that the section polytopes Δi and ∇j correspond to Ei on PΔ and
Fj on P∇, respectively. To save the notation, the corresponding nef-partitions
and toric divisors on X and X∨ will be still denoted by Δi, ∇j and Ei, Fj

respectively.

2.2. Calabi–Yau double covers

We briefly review the construction of Calabi–Yau double covers in [13]. Let
Δ = Δ1 + · · · + Δr and ∇ = ∇1 + · · · + ∇r be a dual pair of nef-partitions
representing E1 + · · ·+Er on −KPΔ and F1 + · · ·+Fr on −KP∇ respectively.
Let X and X∨ be the MPCP resolution of PΔ and P∇ respectively. Hereafter,
we will simply call the decomposition Δ = Δ1 + · · ·+Δr a nef-partition on X

for short with understanding the nef-partition E1 + · · ·+Er and likewise for
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the decomposition ∇ = ∇1 + · · · + ∇r. Unless otherwise stated, we assume
that

X and X∨ are both smooth.

Equivalently, we assume that both Δ and ∇ admit uni-modular triangula-
tions. From the duality, we have

H0(X∨, Fi) 

⊕

ρ∈∇i∩N
C · tρ and H0(X,Ei) 


⊕
m∈Δi∩M

C · tm.

Here we use the same notation t = (t1, . . . , tn) to denote the coordinates on
the maximal torus of X∨ and X.

A double cover Y ∨ → X∨ has trivial canonical bundle if and only if the
branch locus is linearly equivalent to −2KX∨ . Let Y ∨ → X∨ be the double
cover constructed from the section s = s1 · · · sr with

(s1, . . . , sr) ∈ H0(X∨, 2F1) × · · · × H0(X∨, 2Fr).

We assume that si ∈ H0(X∨, 2Fi) is of the form si = si,1si,2 with si,1, si,2 ∈
H0(X∨, Fi). We further assume that si,1 is the section corresponding to the
lattice point 0 ∈ ∇i ∩N , i.e., the scheme-theoretic zero of si,1 is Fi, and that
the scheme-theoretic zero of si,2 is non-singular. Deforming si,2, we obtain a
subfamily of double covers of X∨ branched over the nef-partition parameter-
ized by an open subset

V ⊂ H0(X∨, F1) × · · · × H0(X∨, Fr).

Definition 2.1. Given a decomposition ∇ = ∇1 + · · · + ∇r representing
a nef-partition F1 + · · · + Fr on X∨, the subfamily Y∨ → V constructed
above is called the family of gauge fixed double covers of X∨ branched over
the nef-partition or simply the gauge fixed double cover family if no confuse
occurs.

Given a decomposition ∇ = ∇1 + · · · + ∇r representing a nef-partition
F1 + · · ·+ Fr on X∨ as above, we denote by Y∨ → V the gauge fixed double
cover family. A parallel construction is applied for the dual decomposition
Δ = Δ1 + · · · + Δr representing the dual nef-partition E1 + · · · + Er over X
and this yields another family Y → U , where U is an open subset in

H0(X,E1) × · · · × H0(X,Er).
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2.3. Notation and conventions

Let us fix the notation and conventions we are going to use throughout this
note. We resume the situation and notation in §2.1.

• Let X → PΔ be a MPCP resolution and Σ be the fan defining X. We
will assume throughout this note that both X and X∨ are smooth.

• Let I1, . . . , Ir be the induced nef-partition on X as before. We label
the elements in Ik by ik,1, . . . , ik,nk

where nk = #Ik. We define p =
n1 + · · · + nr. We will write

Σ(1) = {ρi,j}1≤i≤r, 1≤j≤ni
.

For convenience, we will also write Di,j for the Weil divisor associated
with ρi,j .

• Let νi,j := (ρi,j , δ1,i, . . . , δr,i) ∈ N × Zr be the lifting of ρi,j , where δi,j
is the Kronecker delta. We additionally put νi,0 := (0, δ1,i, . . . , δr,i) ∈
N × Zr for 1 ≤ i ≤ r.

• We define an order on the set of double indexes by declaring (i, j) �
(i′, j′) if and only if i ≤ i′ or i = i′ and j ≤ j′. Recall that #{(i, j) : 1 ≤
i ≤ r, 0 ≤ j ≤ ni} = p + r. There are unique bijections

J := {(i, j) : 1 ≤ i ≤ r, 0 ≤ j ≤ ni} → {1, . . . , p + r} ⊂ (Z,≤),
I := {(i, j) : 1 ≤ i ≤ r, 1 ≤ j ≤ ni} → {1, . . . , p} ⊂ (Z,≤),

preserving the order.
• For a positive integer s and a matrix Aext ∈ Mats×(p+r)(Z) (resp.
A ∈ Mats×p(Z)), we will label the columns of Aext by J (resp. the
columns of A by I) and speak the (k, l)th column of Aext instead of the
(
∑

1≤i≤k−1(ni + 1) + l + 1)th column of Aext (resp. the (k, l)th column
of A instead of the (

∑
1≤i≤k−1 ni + l)th column of A). For instance, for

Aext ∈ Mats×(p+r)(Z), the (1, 0)th column of Aext is the 1st column of
Aext. The (r, nr)th column of Aext is the last column of Aext.

• Define the matrices

A :=
[
νᵀ
1,1 · · · νᵀ

r,nr

]
∈ Mat(n+r)×p(Z),

Aext :=
[
νᵀ
1,0 · · · νᵀ

r,nr

]
∈ Mat(n+r)×(p+r)(Z).

According to our convention, the columns of A are labeled by I and the
columns of Aext are labeled by J . We have the following commutative
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diagram

Zp+r Zn+r

Zp Zn.

Aext

A

The left vertical map is given by forgetting the (i, 0)th component for
all 1 ≤ i ≤ r. The right vertical map is given by projecting to the first
n coordinates. By assumption, Aext and A are surjective. Let Lext :=
ker(Aext) and L = ker(A). We then have

0 Lext Zp+r Zn+r 0

0 L Zp Zn 0

Aext

A

where the leftmost vertical arrow is an isomorphism.
• Each element � ∈ Zs can be uniquely written as �+−�− where �± ∈ Zs

≥0
whose supports are disjoint.

2.4. GKZ A-hypergeometric systems

We adapt the notation in §2.3. For 1 ≤ i ≤ r, let Wi = Cni+1. Let xi,0, . . . , xi,ni

be a fixed coordinate system on the dual space Wi
∨. Set ∂i,j = ∂/∂xi,j . Given

the matrix Aext as above and a parameter β ∈ Cn+r, the A-hypergeometric
ideal I(Aext, β) is the left ideal of the Weyl algebra D = C[x, ∂] on the dual
vector space W∨ := W∨

1 × · · · ×W∨
r generated by the following two types of

operators

• The “box operators”: ∂�+ − ∂�− , where �± ∈ Z
p+r
≥0 satisfy Aext�

+ =
Aext�

−. Here the multi-index convention is used.
• The “Euler operators”: Ek − βk, where Ek =

∑
(i,j)∈J〈νi,j , ek〉xi,j∂i,j .

Here ek = (δk,1, . . . , δk,n+r) ∈ Zn+r.

The A-hypergeometric system M(Aext, β) is the cyclic D-module D/I(Aext,
β). As shown by Gel’fand et al. [8], M(Aext, β) is a holonomic D-module.

2.5. Affine period integrals

Let Y∨ → V be the gauge fixed double cover family constructed in §2.2.
Fix a reference fiber Y ∨ = Y∨

• and let R be the branch locus of the cover
π : Y ∨ → X∨. Instead of looking at the integral of the holomorphic top form
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on Y ∨ over cycles in Hn(Y ∨,C), we will work over the maximal torus and
consider affine period integrals.

Definition 2.2. For a gauge fixed double cover family Y∨ → V as above, we
define affine period integrals to be

(4) Πγ(x) :=
∫
γ

1
s
1/2
1,2 · · · s1/2

r,2

dt1
t1

∧ · · · ∧ dtn
tn

,

where γ ∈ Hn(X∨ \ R,E ) and si,2 = xi,0 +
∑ni

j=1 xi,jt
ρi,j ∈ H0(X∨, Fi) =

W∨
i is the universal section. Here E is the local system over X∨ \ R =

(C∗)n \ ∪r
i=1{si,2 = 0} whose monodromy exponent around {si,2 = 0} is

1/2. We also define the normalized affine period integrals to be Π̄γ(x) :=
(
∏r

i=1 xi,0)1/2Πγ(x).

Note that the integrand is also multi-valued. The precise meaning of the
integral (4) is explained in [7, §2.2]. Set Aext = {νi,j : (i, j) ∈ J}. We identify
CAext with

W∨ := W∨
1 × · · · ×W∨

r = H0(X∨, F1) × · · · × H0(X∨, Fr).

Then the affine period integrals (4) form a local system on CAext \D for some
closed subset D and in general have monodromies.

From the explicit form in (4), it is straightforward to see that

Proposition 2.1. The affine period integrals satisfy the GKZ system
M(Aext, β) with

β =
[
0 −1/2 · · · −1/2

]ᵀ
∈ Cn+r.

In the region R :=
{
x ∈ CAext : |xi,0| � maxj{|xi,j |

}
for all i = 1, . . . , r},

by making use of the power series expansion

1√
1 − w

=
∑
k≥0

rkw
k, for |w| � 1

we can write
(
xi,0
si,2

)1/2

=
∑
k≥0

rk
xki,0

(−xi,1t
ρi,1 − · · · − xi,nit

ρi,ni )k.
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The normalized affine period integrals Π̄γ(x) become

Π̄γ(x) =
∫
γ

⎛
⎝ r∏

i=1

∑
k≥0

rk
xki,0

(−xi,1t
ρi,1 − · · · − xi,nit

ρi,ni )k
⎞
⎠ dt1

t1
∧ · · · ∧ dtn

tn
.(5)

Consider the cycle γ0 := {|t1| = · · · = |tn| = ε}. We can compute Π̄γ0(x).
Using the residue formula, over the region R, we have

Π̄γ0(x) = (2π
√
−1)n

∑
�∈L

C� · (−1)
∑r

i=1 �i,0x�(6)

where L := {� ∈ Lext : �i,j ≥ 0 for all j �= 0} and

C� =
r∏

i=1

r−�i,0Γ(−�i,0 + 1)
Γ(�i,1 + 1) · · ·Γ(�i,ni + 1) .(7)

Remark 2.3. The sheaf π∗CY ∨ (resp. π∗CY ∨\R) is decomposed into eigen-
sheaves

π∗CY ∨ = Gχ0 ⊕ Gχ1 (resp. π∗CY ∨\R = Lχ0 ⊕ Lχ1).

Here χk(a) = ak where a is the generator of the multiplicative group Z/2Z.
Let i : R → Y ∨ and j : Y ∨ \ R → Y ∨ be the closed and open embedding.
Consider the standard triangle in the derived category

j!CY ∨\R → CY ∨ → i+CR.

Applying the functor Rπ∗ to the above sequence, one can show that
Gχ1 |X∨\R 
 Lχ1 and that Hn

c (X∨,Gχ1) 
 Hn
c (X∨ \R,Lχ1).

Moreover, we have

Hn
c (Y ∨,C) = Hn

c (X∨,Gχ0) ⊕ Hn
c (X∨,Gχ1)

= Hn
c (X∨,C) ⊕ Hn

c (X∨,Gχ1)

 Hn

c (X∨,C) ⊕ Hn
c (X∨ \R,Lχ1).

If n is odd, Hn
c (X∨,C) = 0 since X∨ is a smooth toric variety.

3. Existence of maximal degeneracy points

In this section, we study the maximal degeneracy problem and show that the
GKZ system associated with the gauge fixed double cover family Y∨ → V
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admits a maximal degeneracy point on a resolution of the secondary fan
compactification of the moduli. This extends the results in [16] to our case.
The proof presented here is parallel to the one given in [16].

3.1. The maximal degeneracy points

From the discussion in §2.5, the affine period integrals (4) are sections of
a local system defined on CAext \ D. Recall that Aext = {νi,j : (i, j) ∈ J},
Wi = H0(X∨, Fi)∨, and W =

∏r
i=1 Wi. We also identify CAext with W∨.

Applying the functor HomZ(−,C∗) to the sequence

0 → Lext → Zp+r ≡ ZAext → Zn+r ≡ N × Zr → 0,

we obtain a short exact sequence of algebraic tori (TM = HomZ(N,C∗))

1 → TM × (C∗)r → (C∗)Aext → Hom(Lext,C
∗) → 1.

Let SAext be the image of (C∗)Aext \ D under the map

(C∗)Aext → (C∗)Aext/TM × (C∗)r φ−→ HomZ(Lext,C
∗).

Here the isomorphism φ is given by

φ(x)(�) = (−1)
∑r

i=1 �i,0x� where � ∈ Lext.

Any complete fan F in L∨
ext ⊗ R gives rise to a complete toric variety XF

which compactifies the torus

HomZ(Lext,C
∗) 
 HomZ(L,C∗)

and SAext as well. Since the normalized affine period integrals Π̄γ(x) are TM ×
(C∗)r invariant, they descend to local sections of a locally constant sheaf on
SAext .

Definition 3.1. We call a smooth boundary point p ∈ XF \ HomZ(L,C∗)
a maximal degeneracy point if near p there is exactly one normalized affine
period integral Π̄γ (up to a constant) extends over p holomorphically.

3.2. Triangulations, secondary fans and Gröbner fans

To proceed, let us retain the notation in §2.3 and recall the following termi-
nologies.
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• Let Aext = {νi,j : (i, j) ∈ J} be the set points in Zn+r. We denote by
Conv(Aext) the convex hull generated by Aext.

• A triangulation T of Conv(Aext) is a collection of (r+n−1)-dimensional
simplices whose vertices are in Aext such that the intersection of two
such simplices is a face of both and that their union is Conv(Aext).

• A continuous function h on the cone over Conv(Aext) is called T -
piecewise linear if it is linear on the cone over each simplex in T . A
T -piecewise linear function h is called convex if h(a+b) ≤ h(a)+h(b) for
arbitrary a, b and is called strictly convex if it is convex and h|σ �= h|τ
for any large cones σ �= τ .

• Each point x ∈ RAext (components are labeled by (i, j) ∈ J) determines
a T -piecewise linear function, which is denoted by hx. Let C(T ) be the
set of all x ∈ RAext such that hx is convex and that hx(νi,j) ≤ xi,j for a
non vertex νi,j ∈ Aext. Note that C(T ) is a rational polyhedral cone in
RAext but not strongly convex.

• A triangulation T is called regular if C(T ) contains an interior point,
i.e., there exists an x ∈ RAext such that hx is a strictly convex function.

Definition 3.2. The collection of the cones C(T ) with T regular, together
with all of their faces form a generalized fan in RAext . Note that each cone in
C(T ) contains MR×Rr as a linear subspace via Aᵀ

ext : MR×Rr ↪→ RAext . We
can project the generalized fan C(T ) along the subspace and get a complete
fan in L∨

ext ⊗ R. The resulting fan SΣ is called the secondary fan of Aext.

Each ω ∈ RAext determines a polyhedral subdivision on Conv(Aext). Let
C = Cone{(νi,j , ωi,j) ∈ Aext × R : νi,j ∈ Aext}. Recall that the lower hull of
C is a collection of facets of C whose last coordinate in the inward normal
vector is positive. Projecting down the facets in the lower hull gives rises to
a polyhedral subdivision of Conv(Aext) if dimC = n + r. For generic ω, the
subdivision Tω is a triangulation. One can show that a triangulation T of
Conv(Aext) is regular if and only if T = Tω for some ω ∈ RAext .

Consider a polynomial ring C[y] := C[yi,j : (i, j) ∈ J ] and the toric ideal

IAext =
〈
yl

+ − yl
− : l = l+ − l− ∈ Lext

〉
.

Each ω ∈ RAext
≥0 determines a weight on C[y] by defining

inω(yn) :=
∑
i,j

ωi,jni,j , where yn =
∏
i,j

y
ni,j

i,j .
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Let LTω(IAext) be the leading term ideal with respect to inω. We say that
ω, ω′ ∈ RAext

≥0 are equivalent if LTω(IAext) = LTω′(IAext). We can extend the
equivalence relation to RAext by the homogeneity of IAext .

Definition 3.3 (Cf. [18, 19]). The equivalence classes of vectors in RAext

form a fan. Projecting along the linear subspace Aᵀ
ext : MR ×Rr ↪→ RAext , we

obtain a fan in L∨
ext ⊗ R. The resulting fan GΣ is called the Gröbner fan of

Aext. An interior point in a large cone in GΣ is called a term order of IAext .

Remark 3.4. Although the secondary fan and the Gröbner fan (cf. Defini-
tion 3.2 and Definition 3.3) depend not only on Σ but also on the nef-partition,
we still denote them by SΣ and GΣ respectively for simplicity. We also remark
that Conv(Aext) projects to Conv(∇1, . . . ,∇r) under the canonical projection
NR × Rr → NR.

Remark 3.5. Sturmfels [18] showed that the Gröbner fan GΣ refines the
secondary fan SΣ. The two fans coincide if Aext is unimodular. In particular,
if ω ∈ RAext is a term order, then Tω is a triangulation of Conv(Aext).

3.3. The cohomology ring of toric manifolds

We resume the notation in §2.3 and the situation there. Recall that a primitive
collection of Σ is a subset P ⊂ Σ(1) such that the full set P does not form a
cone in Σ but any proper subset does.

For a projective smooth toric variety XΣ, the cohomology ring H•(XΣ,Z)
is given by Z[ai,j : (i, j) ∈ I]/I, where I is the ideal generated by

(a) aP :=
∏

(i,j)∈P ai,j , where P is a primitive collection in Σ;
(b)

∑
(i,j)∈I〈m, ρi,j〉ai,j for all m ∈ M .

The ideal generated by (a) is called the Stanley–Reisner ideal of Σ.
For a primitive collection P, we can define the primitive relation of P as

follows. By completeness of Σ, the vector
∑

(i,j)∈P ρi,j must lie in the relative
interior of some cone σ uniquely in Σ. We may write

∑
(i,j)∈P

ρi,j =
∑

(i,j)∈σ(1)
ci,jρi,j , ci,j ∈ Z>0.

Equivalently, we have
∑

(i,j)∈P
ρi,j −

∑
(i,j)∈σ(1)

ci,jρi,j =
∑

(i,j)∈I
bi,jρi,j = 0, with bi,j ∈ Z.
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Under the inclusion L ↪→ Rp, the vector (bi,j) ∈ Rp is an element in L,
called the primitive relation of P, and is denoted by �(P). We can identify
L⊗R with N1(XΣ), the real vector space of 1-cycles on XΣ modulo numerical
equivalence.

Proposition 3.1 (Toric cone theorem). Let NE(XΣ) ⊂ L ⊗ R be the cone
generated by classes of irreducible complete curves in XΣ. We have

(8) NE(XΣ) = NE(XΣ) =
∑
P

R≥0�(P),

where the summation runs over all primitive collections P.

Lemma 3.2. Under our smoothness assumption, we have P∩σ(1) = ∅ where
σ(1) is the set of 1-cones contained in σ.

Proof. See [16, Proposition 4.7].

We can lift the primitive relations to obtain relations among νi,j . For a
primitive collection P, we have correspondingly a cone σ in Σ as above. We
can thus write

(9)
∑

(i,j)∈P
νi,j =

∑
(i,j)∈σ(1)

ci,jνi,j +
r∑

i=1
ci,0νi,0.

Corollary 3.3. ci,0 ≥ 0 for all i = 1, . . . , r.

Proof. �(P) represents a curve class. The assertion follows from the fact that
I1 � · · · � Ir is a nef-partition and ci,0 is the intersection number of �(P) with
Ei.

Let �(P) be a primitive relation and �ext(P) be the corresponding element
in Lext under the identification L 
 Lext. We can rewrite (9) into

(10) 0 =
∑

(i,j)∈P
νi,j −

∑
(i,j)∈σ(1)

ci,jνi,j −
r∑

i=1
ci,0νi,0 =

∑
(i,j)∈J

di,jνi,j .

Corollary 3.4. The vector (di,j)(i,j)∈J is equal to �ext(P) as elements in RAext

and �±ext(P) is given by the left-hand and the right-hand side of (9).
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3.4. Indicial ideals of Picard–Fuchs equations

Our aim in this paragraph is to describe the indicial rings attached to the
GKZ system. The arguments here are almost along the same line in [16]. In
this subsection, unless otherwise stated, X = XΣ is a smooth projective toric
variety defined by a fan Σ as in §2.3.

Definition 3.6. For � ∈ Lext = ker(Aext), we define

I�(α) := x−αx�
+(∂x)�

+
xα ∈ C[α] := C[αi,j : (i, j) ∈ J ].

Let us recall the definition of indicial ideals.

Definition 3.7. For a cone τ ⊂ L∨
ext ⊗ R and an exponent β ∈ Cn+r, the

indicial ideal Ind(τ, β) is the ideal in C[αi,j : (i, j) ∈ J ] generated by

• I�(α) where 0 �= � ∈ τ∨ ∩ Lext;
• ∑

(i,j)∈J〈m̄, νi,j〉αi,j − 〈m̄, β〉 for all m̄ ∈ M × Zr.

There is a canonical triangulation on Conv(Aext). It is given by the max-
imal cones in the fan defining the toric variety W , the total space of the rank
r vector bundle over X whose sheaf of sections is ⊕r

i=1OX(−Ei). (Recall that
E1+. . .+Er is the nef-partition on X.) We call this triangulation the maximal
triangulation of Conv(Aext) and is denoted by Tmax.

For a smooth variety X, the Kähler cone of X is denoted by Käh(X). If
X is a smooth projective toric variety, then Käh(X) is a cone sitting inside
H2(X,R) whose closure coincides with the the closure of the ample cone
Amp(X). This is a large cone since X is projective. Let Käh(X) be the
closure of the Kähler cone of X.

Since E1 + · · ·+Er is a nef-partition, we have �ext(P)i,0 ≤ 0 for all i and
[16, Proposition 6.1] still holds. Combining with [loc. cit., Corollary 6.2 and
Corollary 6.3], we obtain the following corollaries.

Corollary 3.5. The leading term ideal LTω(IAext) with respect to the term
order ω such that Tω = Tmax is the Stanley–Reisner ideal of Σ.

Corollary 3.6. Käh(X) ∈ GΣ.

Taking such a term order ω (one can take any element in the ample cone
to achieve this), we see that the leading term ideal of

{
y�

+
ext(P) − y�

−
ext(P) : P is a primitive collection

}
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is nothing but the Stanley–Reisner ideal. Indeed, since P is primitive and ω
is ample, ω.�(P) > 0. Consequently, y�+ext(P) is the leading term with respect
to ω. Now use Corollary 3.4.

Corollary 3.7. The set{
y�

+
ext(P) − y�

−
ext(P) : P is a primitive collection

}
is a minimal Gröbner basis of the toric ideal IAext for any term order ω
with Tω = Tmax. Consequently, the polynomial operators in the GKZ system
M(Aext, β) are generated by the box operators associated with �ext(P), where
P is a primitive collection of Σ.

Remark 3.8. From the corollaries above, we see that one can also use the
Gröbner basis with respect to a term order ω with Tω = Tmax to approximate
the indicial ideal Ind(τ, β) as well as the GKZ system in our fractional case.

Let �ext(P) be the lifting of �(P) under the isomorphism Lext 
 L as
before.

Lemma 3.8. Let τ = Käh(X). The ideal generated by

(a’) I�ext(P)(α) for P primitive;
(b’)

∑
(i,j)∈J〈m̄, νi,j〉αi,j − 〈m̄, β〉 for all m̄ ∈ M × Zr;

is an ideal contained in Ind(τ, β). Moreover, they have the same zero locus.

Proof. Let I ′ be the ideal generated by the elements in (a′) and (b′). Clearly,
we have I ′ ⊂ Ind(τ, β). For any term order ω ∈ τ , we have Tω = Tmax.
Together with Corollary 3.7, it follows from [16, Proposition 5.6] that the
zero locus of Ind(τ, β) is the same as the one defined by I ′.

From this, we can deduce that

Proposition 3.9. Let τ ⊂ Käh(X). There is a surjection

(11) H•(X,C) → C[α]/Ind(τ, β), Di,j �→ αi,j

from the cohomology ring of X to the indicial ring of the GKZ A-hypergoemet-
ric system associated with the family Y∨ → V .

Proof. Let I ′ again be the ideal generated by the elements in (a′) and (b′) in
Lemma 3.8. By Corollary 3.4, for a primitive collection P, we have �+ext(P)i,0 =
0 for all i, �+ext(P)i,j = 1 for ρi,j ∈ P, and �+ext(P)i,j = 0 for ρi,j /∈ P.
Consequently,

I�ext(P)(α) = α�+ext(P).
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When P runs through all primitive collections of Σ, the elements I�ext(P)(α)
generate exactly the Stanley–Reisner ideal of Σ. From this, we see that

H•(X,C) 
 C[αi,j : (i, j) ∈ J ]/I ′.

The statement follows from the fact that I ′ ⊂ Ind(Käh(X), β) ⊂ Ind(τ, β).

In particular, this implies

Corollary 3.10. Let τ be as in Proposition 3.9. The zero locus of Ind(τ, β)
consists of at most one point α = (αi,j) ∈ Cp+r where αi,0 = −1/2 for
1 ≤ i ≤ r and αi,j = 0 for other i, j.

3.5. The existence of maximal degeneracy points

We summarize the results we have obtained in the previous paragraphs. Recall
that the secondary fan SΣ is a complete fan in L∨

ext ⊗R and the toric variety
XSΣ gives rise to a compactification of the algebraic torus

(C∗)Aext/TM × (C∗)r.

The Gröbner fan GΣ gives a partial resolution XGΣ → XSΣ.
Let τ be a regular maximal cone in the space L∨

ext ⊗ R. It determines
a unique integral basis {�(1), . . . , �(p−n)} of Lext in τ∨ ∩ Lext, and hence a
set of canonical coordinates z(1)

τ , . . . , z
(p−n)
τ on the smooth affine toric variety

Xτ = Hom(τ∨ ∩ Lext,C). Explicitly, we have

z(k)
τ = (−1)

∑r

i=1 �
(k)
i,0 x�

(k)
, 1 ≤ k ≤ p− n.

We can employ the argument in [16, Corollary 5.12] to obtain the following
result.

Corollary 3.11. Let τ ⊂ Käh(X) be a regular cone of maximal dimension.
The GKZ system M(Aext, β) has at most one power series solution of the
form xα(1 + g(z)) with g(0) = 0 on Xτ . Moreover, if this is a solution, then
α = (αi,j) with αi,0 = −1/2 for 1 ≤ i ≤ r and αi,j = 0 for other i, j.

Now we can prove our main result in this section.

Theorem 3.12. For every toric resolution XGΣ′ → XGΣ, there exists at least
one maximal degeneracy point in XGΣ′.
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Proof. Put τ ′ = Käh(X). Then Xτ ′ is a (possibly singular) affine toric variety.
A smooth subdivision F of τ ′ gives a toric resolution XF → Xτ ′ . Let τ be a
regular maximal cone in F .

Recall that τ ′ determines the maximal triangulation Tmax. By definition,

τ∨ ⊃ {� ∈ Lext : �i,j ≥ 0, νi,j /∈ B}

for all bases B ∈ Tmax. Also, for all 1 ≤ i ≤ r and all B ∈ Tmax, we have
νi,0 ∈ B. It follows that the range L in the summation (6) is contained in
τ∨. Consequently, for any � ∈ L, there exist uniquely non-negative integers
m1, . . . ,mp−n such that

� =
p−n∑
k=1

mk�
(k).

As a function on Xτ , the normalized affine period integral Π̄γ0 becomes

(12) Π̄γ0(z) = (2π
√
−1)n

∑
m∈S

C∑p−n

k=1 mk�(k)z
m
τ ,

where S=
{
(m1, . . . ,mp−n) ∈ Z

p−n
≥0 : �i,0 ≤ 0 for all i, where �=

∑p−n
k=1 mk�

(k)
}

and C� as well as γ0 are defined in §2.5.
On one hand, from (12), we see that Π̄γ0 extends holomorphically to the

unique torus fixed point in Xτ . On the other hand, by Corollary 3.11, there are
no other normalized affine period integrals with this property. This completes
the proof.

4. Generalized Frobenius methods

The aim of this section is to give a complete set of solutions to the GKZ
hypergeometric system for our double covers via mirror symmetry. We will
mainly follow the exposition in [15] and [5]. In what follows, let X = XΣ be
as in §2.3.

4.1. A series solution to GKZ systems

We continuously assume the case β =
[
0 −1/2 . . . −1/2

]ᵀ
∈ Qn+r. Let

α ∈ Cp+r such that Aext(α) = β. An obvious choice of α is α = (αi,j) with
αi,j = 0 for j �= 0 and αi,0 = −1/2 for i = 1, . . . , r (regarded as a column
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vector). A formal power series solution to the GKZ system M(Aext, β) is
given by

(13)
∑

�∈Lext

1∏r
i=1

∏ni
j=0 Γ(�i,j + αi,j + 1)x

�+α.

Notice that in the present case the formal power series (13) is non-zero and will
be convergent around the origin if we choose the charge vectors appropriately.
However, in order to obtain an “integral” series, a renormalization is needed.
Following the treatment in [15], we multiply the series (13) by an overall
constant factor

∏r
i=1 Γ(1+αi,0). Manipulating the identity Γ(z)Γ(1−z) = π/

sin(πz) (z /∈ Z), we can rewrite the product
∏r

i=1 Γ(1 + αi,0) · (13) into the
following form.

Definition 4.1 (The Γ-series, cf. [15, Equation (3.5)]). Let

Φα(x) :=
∑

�∈Lext

∏r
i=1 Γ(−�i,0 − αi,0)∏r

i=1 Γ(−αi,0)
∏r

i=1
∏ni

j=1 Γ(�i,j + αi,j + 1)(−1)
∑

i
�i,0x�+α.

(14)

Remark 4.2. We can multiply (14) by an overall factor
∏r

i=1
∏ni+1

j=1 Γ(αi,j+1)
to get the usual product form. It was pointed out in [12] that the Gamma
function is crucial in order to get an integral, symplectic basis of the period
integrals, although the period integrals obtained from the product form and
the Gamma form are the same up to a Gamma factor.

4.2. A cohomology-valued series associated with the holomorphic
period

Put Di,0 = −∑ni
j=1 Di,j for all 1 ≤ i ≤ r. For each � ∈ Lext, we define

(15) Oα
� :=

∏r
i=1(−1)�i,0Γ(−Di,0 − �i,0 − αi,0)∏r

i=1 Γ(−αi,0)
∏r

i=1
∏ni

j=1 Γ(Di,j + �i,j + αi,j + 1) .

The quantity is understood as follows. The function 1/Γ(z) is an entire func-
tion on the complex plane. For j �= 0, we can expand

1
Γ(z + �i,j + αi,j + 1)

into a power series in z around 1/Γ(�i,j + αi,j + 1); namely

1
Γ(z + �i,j + αi,j + 1) = 1/Γ(�i,j + αi,j + 1) + a1z + a2z

2 + · · · .
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Then for a divisor class D ∈ H2(X,Z), we define

1
Γ(D + �i,j + αi,j + 1) = 1/Γ(�i,j + αi,j + 1) + a1D + a2D

2 + · · · ,

where 1 ∈ H0(X,Z) is the Poincaré dual of the fundamental class. This is an
honest element in H•(X,C) since D is nilpotent. For j = 0, we consider the
deformed coefficient

Γ(−z − �i,0 − αi,0)
Γ(−αi,0)

and expand it into a power series in z around z = 0; namely

Γ(−z − �i,0 − αi,0)
Γ(−αi,0)

= Γ(−�i,0 − αi,0)
Γ(−αi,0)

+ a1z + a2z
2 + · · · .

For any divisor class D ∈ H2(X,Z), we define

Γ(−D − �i,0 − αi,0)
Γ(−αi,0)

= Γ(−�i,0 − αi,0) · 1
Γ(−αi,0)

+ a1D + a2D
2 + · · · .

Consequently, Oα
� is a well-defined element in H•(X,C).

Remark 4.3. Note that 1/Γ(w + D) is divisible by D if w ∈ Z≤0.

The following lemma follows from the multiplicative property of the
Gamma function.

Lemma 4.1. Let w ∈ C. Then for any D ∈ H•(X,Z),

(w + D)
Γ(1 + w + D) = 1

Γ(w + D) .

Proof. Fix w ∈ C, we have Γ(1 + w + z) = (w + z)Γ(w + z) as a function in
z. Therefore,

(w + z)
Γ(1 + w + z) = 1

Γ(w + z) .

We now define the cohomology-valued series. Recall that we have an iso-
morphy Lext 
 L between the lattice relation of Aext and that of A. The Mori
cone NE(X) can thus be regarded as a cone in Lext which is also denoted by
NE(X).
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Definition 4.4 (Cf. [15, 5]). We define the cohomology-valued B series to
be

(16) Bα
X(x) :=

⎛
⎝ ∑

�∈NE(X)∩Lext

Oα
� x

�+α

⎞
⎠ exp

⎛
⎝ r∑

i=1

ni∑
j=0

(log xi,j)Di,j

⎞
⎠ .

Bα
X is regarded as an element in C�xi,j� ⊗C H•(X,C).

Proposition 4.2. We have Oα
� = 0 for � ∈ Lext \ NE(X).

Proof. Let � = (�i,j) ∈ Lext \ NE(X). We claim that there exists a primitive
collection P ⊂ {(i, j) ∈ J : �i,j < 0}. Assuming the claim, we see that

∏
(i,j)∈P

Di,j

appears in the numerator of Oα
� and hence Oα

� = 0 in H•(X,C).
To prove the claim, we choose an ample divisor B with B.� < 0. B

corresponds to a term order on C[yi,j ], the homogeneous coordinate ring of
X. Write � = �+ − �− as before. Then B.(�+ − �−) < 0 and y�

− will be the
leading term of y�+ − y�

− with respect to B. Hence y�
− is contained in the

Stanley–Reisner ideal of X.
Using the fact that αi,j = 0 for all i and j �= 0, we see that Oα

� is
divisible by Di,j for those (i, j) such that �i,j < 0 and hence it is divisible
by

∏
(i,j)∈P Di,j for some primitive collection P of X. This establishes the

claim.

This proposition allows us to rewrite

Bα
X(x) =

⎛
⎝ ∑

�∈Lext

Oα
� x

�+α

⎞
⎠ exp

⎛
⎝ r∑

i=1

ni∑
j=0

(log xi,j)Di,j

⎞
⎠ .

Proposition 4.3 (Cf. [5, Proposition 2.17]). We regard Bα
X(x) as an element

in C�xi,j� ⊗C H•(X,C). For any h ∈ H•(X,C)∨, the pairing 〈Bα
X(x), h〉 ∈

C�xi,j� is annihilated by M(Aext, β).

Proof. For simplicity, we drop the subscripts α and X in Bα
X(x). For each
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variable xi,j , we have

∂B(x)
∂xi,j

=
∑

�∈Lext

(
�i,j + αi,j + Di,j

xi,j

)
Oα

� x
�+α exp

⎛
⎝ r∑

i=1

ni∑
j=0

(log xi,j)Di,j

⎞
⎠

=
(

1
xi,j

) ∑
�∈Lext

(�i,j + αi,j + Di,j)Oα
� x

�+α exp

⎛
⎝ r∑

i=1

ni∑
j=0

(log xi,j)Di,j

⎞
⎠ .

(17)

Hence the series 〈Bα
X(x), h〉 is annihilated by the Euler operators. Now we

examine the box operators. We write

(17) =
(

1
xi,j

) ∑
�∈Lext

Oα
�−ei,jx

�+α exp

⎛
⎝ r∑

i=1

ni∑
j=0

(log xi,j)Di,j

⎞
⎠ ,(18)

where {ei,j : (i, j) ∈ J} is the standard basis of Zp+r. Here we extend the
definition of Oα

ξ to any element ξ ∈ Zp+r by (15).
For l = l+ − l− ∈ Lext, we have

∏
li,j>0

(
∂

∂xi,j

)li,j

B(x) =
∑

�∈Lext

Oα
�−l+x

�+α−l+ exp

⎛
⎝ r∑

i=1

ni∑
j=0

(log xi,j)Di,j

⎞
⎠ .

(19)

Similarly, we have

∏
li,j<0

(
∂

∂xi,j

)−li,j

B(x) =
∑

�∈Lext

Oα
�−l−x

�+α−l− exp

⎛
⎝ r∑

i=1

ni∑
j=0

(log xi,j)Di,j

⎞
⎠ .

(20)

Note that the ranges of the summations appeared on the right hand side
of (19) and (20) are the same. Indeed, for any � ∈ Lext and l ∈ Lext, there
exists �′ ∈ Lext such that �− l+ = �′− l− since l = l+− l− ∈ Lext. This implies
that �lB(x) = 0.

Corollary 4.4. Assume X is smooth as before. When h ∈ H•(X,C)∨ runs
through a basis of H•(X,C)∨, the series 〈Bα

X(x), h〉 give a complete set of
solution to M(Aext, β).

Proof. It is clear that all the coefficients are linearly independent. On one
hand, for a general x, we know that the solution space to M(Aext, β) has
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dimensional volr+n(Aext), where volr+n denotes the normalized volume in
Rn+r. On the other hand, by [13, Proposition 1.2],

volr+n(Aext) = χ(X) = dim H•(X,C)

since X is a smooth toric variety.

Remark 4.5. For odd n, from the proof of [13, Theorem 2.2], we know
χ(Y ∨) = χ(X∨) − χ(X). Also from [loc. cit., Theorem 2.1], we have

dim Hp,q(Y ∨,C) = dim Hp,q(X∨,C) for p + q �= n.

Since X∨ is also a smooth toric variety, it follows that dim Hn(Y ∨,C) =
χ(X) = volr+n(Aext). Together with Remark 2.3, it suggests that the affine
periods are all the solutions to the GKZ system.
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