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Angle deformation of Kähler–Einstein edge metrics
on Hirzebruch surfaces
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Dedicated to Bernie Shiffman on the occassion of his retirement

Abstract: We construct a family of Kähler–Einstein edge metrics
on all Hirzebruch surfaces using the Calabi ansatz and study their
angle deformation. This allows us to verify in some special cases
a conjecture of Cheltsov–Rubinstein that predicts convergence to-
wards a non-compact Calabi–Yau fibration in the small angle limit.
We also give an example of a Kähler–Einstein edge metric whose
edge singularity is rigid, answering a question posed by Cheltsov.
Keywords: Kähler–Einstein edge metric, Calabi–Yau fiberation.

1. Introduction

Recently, Cheltsov–Rubinstein [4] put forward a conjectural picture in which
non-compact Calabi–Yau fibrations emerge as the small angle limit of families
of compact singular metrics known as Kähler edge metrics. In a recent article,
we verfied this picture in the most elementary setting of Riemann surfaces [12].
Our goal in the present article is to give further evidence for the conjecture
by verifying it for some special symmetric complex surfaces. In passing, we
also answer a question of Cheltsov by proving the existence of a rigid Kähler–
Einstein edge metric.

Let M be a smooth complex projective manifold and let D = D1+. . .+Dr

be a simple normal crossing divisor in M . Following Tian [14, p. 147], a Kähler
metric on M with an edge singularity along a divisor D ⊂ M is a smooth
Kähler metric on M \D that has a cone singularity transverse to D (‘bent’ at
an angle 2πβi < 2π along Di). Such metrics are called Kähler edge metrics;
we refer to [9] for geometric analysis on such spaces and to [11] for a detailed
survey and further references.

arXiv: 2011.12666
Received July 5, 2020.
2010 Mathematics Subject Classification: Primary 53C25, 32Q20; sec-

ondary 32Q26.

343

https://www.intlpress.com/site/pub/pages/journals/items/pamq/_home/_main/index.php
http://arxiv.org/abs/2011.12666


344 Yanir A. Rubinstein and Kewei Zhang

In op. cit. [4] one is concerned with small cone angle Kähler edge metrics
that are also Einstein, called Kähler–Einstein edge (KEE) metrics and of pos-
itive Ricci curvature. For such metrics to exist it is necessary that (M,D) be
asymptotically log Fano [4, Definition 1.1], a positivity property generalizing
positivity of the first Chern class (i.e., being Fano) in the sense that c1(M)−∑r

i=1(1−βi(j))Di is positive for a sequence β(j) = (β1(j), . . . , βr(j)) ∈ (0, 1)r
tending to the origin (being Fano corresponds to the other ‘extreme’ with
β1 = . . . = βr = 1 or alternatively there being no divisor, i.e., D = 0). As-
suming then that (M,D) is asymptotically log Fano and that it admits KEE
metrics {ωβ(j)}j∈N with angles βi(j) along Di, it is conjectured there that
by taking an appropriate limit these metrics will converge to a Calabi–Yau
fibration on the non-compact space M \D [4, Conjecture 1.11].

Conjecturally, the fibration may be described in terms of the adjoint an-
ticanonical linear system as follows. Let KM denote the canonical bundle, so
that c1(M) = −c1(KM ) by definition. By our assumption −KM −D is nef as
it is a limit of ample divisors. Let d = dimH0(M,−KM−D) and let s1, . . . , sd
be a basis for the vector space H0(M,−KM −D). The Kodaira map

(1.1) M � z �→ [s1(z) : . . . : sd(z)] ∈ Pd−1,

is then a holomorphic map from M onto its image, a projective variety we
denote by Y ⊂ Pd−1. Denote by κ := dimY . It was conjectured [4, Conjecture
1.6] that κ < dimM (under the assumption that the KEE metrics ωβ exist for
small β), or equivalently that (KM + D)dimM = 0, and this was established
in dimension 2 [5] and subsequently in all dimensions [6]. The next step in
the program described in [4] is to study the geometric limit, if such exists,
of such KEE metrics when the angles tend to zero. More precisely, we are
interested in the following conjecture [4, Conjecture 1.8] (as customary, when
discussing dimension 2 we will use ‘del Pezzo’ instead of ‘Fano’, and replace
(M,D) by (S,C)):

Conjecture 1.1. Let C = C1+ . . .+Cr �∼ −KS be a disjoint union of smooth
curves in a projective surface S such that (S,C) is strongly asymptotically log
del Pezzo. Let β ∈ (0, 1)r be a sequence tending to the origin and suppose that
there exist Kähler–Einstein edge metrics ωβ of angle 2πβi along Di and of
positive Ricci curvature. Then as β → 0 an appropriate limit of ωβ converges
to a fibration of cylinders whose base is P1.

In fact, by general results of Kawamata and Shokurov C can have at
most two connected components, so that r ∈ {1, 2} [4, Remark 3.7]. Note
that part of the challenge is to identify what exactly “appropriate” means in
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Conjecture 1.1. As we show in this note the appropriate sense, at least in some
cases, turns out to be rescaling the fibers of the fibration (1.1) in a precise way
and considering a certain pointed Gromov–Haussdorff limit, inspired by the
asymptotic analysis in the Riemann surface case [12]. Moreover, we also show
that the un-rescaled limit exists as a collapsed Gromov–Haussdorff limit, and
is the Kähler–Einstein metric on the base Y (in this case the Fubini–Study
metric on P1). We believe this should generalize to the setting of Conjec-
ture 1.1.

In this note we concentrate on a particular family of (S,C) as in Con-
jecture 1.1 and first construct rather explicitly the sequence of KEE metrics
ωβ for a sequence of small angles β ∈ (0, 1)2 tending to zero. Moreover, we
analyze the small angle limit of this sequence and resolve Conjecture 1.1 for
this family of pairs. The pairs we consider are

(1.2) S = Fn, n ∈ N ∪ {0}, C1 = Zn, C2 ∈ |Zn + nF |,

where Fn is the n-th Hirzebruch surface [7], C1 is the −n-curve, and C2 is an
n-curve; see §2.3 and §3.3 for notation and precise definitions. The ‘boundary’
in these pairs consists of two disjoint components C1 and C2 which in some
senses is an added difficulty, however, the pairs (1.2) have the advantage of
being toric (by which we mean that S is toric and each Ci is a torus-invariant
holomorphic curve in S), and in fact the pairs even admit the larger symmetry
group of the Calabi ansatz. The simplest sub-case, n = 0, serves as a general
guide, and, in fact, as a nice bridge to our previous 1-dimensional work [12].
In the n = 0 case, the boundary consists of two disjoint fibers in P1 ×P1 and
while the class −KP1×P1 − (1 − β1)C1 − (1 − β2)C2 is ample for all small β1
and β2, only the classes with β1 = β2 admit KEE metrics which we denote by
ωβ1,β1 . This is reminiscent of the situation for footballs, and for a good reason.
In fact the reason that only the classes with β1 = β2 admit KEE metrics is
that if β1 �= β2 then P1 admits a conic Ricci soliton football metric with angles
2πβ1 at the North pole and 2πβ2 at the South pole (see, e.g., [12, §2]). Taking
the product with the Fubini–Study metric on P1 we see that (P1×P1, C1+C2)
admits a Kähler–Ricci soliton edge metric with nontrivial vector field, hence
cannot admit a KEE metric. When β1 = β2, the KEE metric ωβ1,β1 is nothing
but the product of the volume one Fubini–Study metric on the base Y = P1

and the volume 4πβ1 constant scalar curvature conic metric, i.e., the football,
on the fibers. Then, our previous work [12, Theorem 1.3] shows that after
rescaling the fiber metrics by 1/β2

1 there is a pointed Gromov–Haussdorff
limit that converges to the product space (P1 × C�, π∗

1ωFS + Cπ∗
2ωCyl) for

some C > 0. In fact, this can also be shown by elementary complex analysis
(op. cit. is concerned with the more general setting of Ricci solitons).
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When n > 0 the results of [12] do not apply as the situation is no longer
a product one and we need different tools. First, we describe some of the
well-known Calabi ansatz computations that reduce the KEE equation to an
ODE. These are classical when there are no edges, and as we show using
the asymptotic expansion of [9, Theorem 1] they generalize naturally to the
setting of edges. Similarly to the case n = 0 it turns out there is a relation
between β1 and β2 that is necessary and sufficient for the class −KFn − (1 −
β1)C1−(1−β2)C2 to admit a KEE representative ωβ1,β2 . Moreover, β2 → 0 as
β1 → 0 and moreover limβ1→0 β2/β1 = 1. We then generalize the asymptotic
analysis from n = 0 to prove Conjecture 1.1 for the pairs (1.2) by analyzing
rather explicitly such sequences of KEE metrics ωβ1,β2 using the Calabi ansatz.

Theorem 1.2. Consider the pairs (1.2). Then for each n ∈ N:

• There exists a family of KEE metrics ωβ1,β2 on the pairs (1.2) for each

(β1, β2) =
(
β1,

1
2n

(
nβ1 − 3 +

√
3(3 − nβ1)(1 + nβ1)

))
,

for all β1 ∈ (0, 2/n) ∩ (0, 1] with ωβ1,β2 cohomologous to

2 + nβ2

2 − nβ1
[C2] − [C1].

• As β1 tends to zero, (Fn, ωβ1,β2) converges in the Gromov–Haussdorff
sense to (P1, nωFS), where ωFS is the Fubini–Study metric. Moreover, on
the level of tensors, as β1 tends to zero, ωβ1,β2 restricted to Fn\(C1∪C2)
converges in all Ck norms to a degenerate tensor that is the pull-back of
nωFS on P1 under the projection map to the zero section of the natural
fibration π1 : Fn → P1.

• The fiberwise-rescaled metrics ω̃β1,β2 obtained by rescaling by β−2
1 only

the restriction of ωβ1,β2 to each fiber (of the projection to P1) converges
in Ck on compact subsets as well as in the pointed Gromov–Haussdorff
sense to a cylinder fibration over P1, (P1 ×C�, nπ∗

1ωFS +nπ∗
2ωCyl), i.e.,

lim
β1→0

ω̃β1,β2 = n(π∗
1ωFS + π∗

2ωCyl),

where ωCyl is the flat metric on C�, and πi is the projection on to the
i-th factor.

Remark 1.3. In the third statement of Theorem 1.2 there is a certain choice
of coordinates (Z,w) on Fn \ (C1∪C2) (see (3.3)) which then determines pro-
jection maps π1 and π2. Thus, the limit is only unique up to automorphisms
of P1 × C∗.
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In 2015, Cheltsov posed the following question [3].

Question 1.4. Let D be a smooth connected divisor in a smooth variety X,
and let β ∈ (0, 1). Does there exists a triple (X,D, β) such that (X,D) admits
a KEE metric of positive Ricci curvature and angle 2πβ along D but does not
admit KEE metrics of angles 2πα along D for any (0, 1) � α �= β?

Observe that Cheltsov’s question becomes interesting in dimension two
and above since there does not exist a constant scalar curvature conic Rie-
mann sphere with a single cone point. We answer question 1.4 affirmatively.

Corollary 1.5. Let Z−1 be a smooth curve of self-intersection 1 disjoint from
the −1-curve in the first Hirzebruch surface F1. The pair (F1, Z−1) admits a
KEE metric of angle 2πβ ∈ (0, 2π] along Z−1 if and only if β =

√
3 − 1.

Proof. The existence statement for n = 1 and β1 = 1 follows from Theo-
rem 1.2 (or from Corollary 4.1) which implies that then β2 =

√
3 − 1. This

gives a KEE metric with angle 2π(
√

3− 1) along Z−1 and smooth elsewhere.
This KEE metric cannot be deformed to have an edge singularity along the
infinity section. Indeed, by [5, Example 2.8] the pair (F1, Z−1) does not ad-
mit KEE metrics for any angle smaller than

√
3 − 1 because Z−1 log slope

destabilizes it, and neither for any angle larger than
√

3 − 1 because Z1 log
slope destabilizes it. This proves Theorem 1.5.

The metric of Corollary 1.5 is quite remarkable in that it is in fact perhaps
the first example of an “isolated” KEE metric whose edge singularity cannot
be deformed at all.

1.1. Organization

In Section 2, we provide several useful viewpoints of Hirzebruch surfaces for
the reader’s convenience. In Section 3, we characterize Kähler edge metrics
on Hirzebruch surfaces (Proposition 3.3) using the Calabi ansatz and the
asymptotic analysis of [9]. In Section 4, we solve explicitly the Kähler–Einstein
edge equation and determine the corresponding angles along the boundary
divisors (Corollary 4.1). We emphasize that the reader that is only interested
in Corollary 1.5 can skip Section 5 as Corollary 1.5 follows directly from
Corollary 4.1. Finally, in Section 5, we study the small angle limits of the
Kähler–Einstein edge metrics and prove Theorem 1.2.
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2. Several descriptions of Hirzebruch surfaces

2.1. The quotient singularity

Let n ∈ N. The simplest singularity in complex geometry is the quotient
singularity constructed as follows. Let Zn act on C2 by the diagonal action,
so that the Zn-orbit of a point (a1, a2) is the collection of n points

{(e2π
√
−1l/na1, e

2π
√
−1l/na2) ∈ C2 : l = 0, . . . , n− 1}.

This is always a collection of n distinct points, unless (a1, a2) = (0, 0). So if
we consider the orbit space (or quotient space)

C2/Zn

defined, as a set, as C2 quotiented by the equivalence relation

(2.1)
(a1, a2) ∼ (b1, b2) if there is some l ∈ {0, . . . , n− 1}
such that a1 = e2π

√
−1l/nb1 and a2 = e2π

√
−1l/nb2 (with the same l),

we obtain an orbifold, smooth on the complement of a single singular point.

2.2. Blow-up description of the total space

In the remainder of this note we always assume

n ∈ N,

since the case n = 0 was treated in the Introduction. We resolve the quotient
singularity by blowing up C2/Zn at the single singular point. Next we give
an alternative global description of the resulting resolution.

Denote by

(2.2) Bl0(C2/Zn)

the blow-up at the origin of (the orbifold, if n ≥ 2) C2/Zn. Denote by H → P1

the hyperplane bundle over P1 and by H∗ → P1 the dual (tautological) line
bundle. Then by

(2.3) − nHP1

we denote the (2-dimensional) total space of −nH ≡ (H∗)⊗n considered as a
line bundle over P1. The following is an elementary exercise.

Lemma 2.1. Bl0(C2/Zn) is biholomorphic to −nHP1 .
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2.3. Compactifying at infinity

By adding a point at infinity in each C fiber (in the −kHP1 description) we
obtain a compact space, a P1 fibration over P1. The space is equivalently
obtained by taking a product of each C fiber with another copy of C and
then taking the quotient under the C∗ action on the C2 fibers (but not acting
on the base). This space is often denoted by

(2.4) P
(
− nHP1 ⊕ CP1

)
,

and we will simply denote it by

(2.5) Fn,

for any n ≥ 0. In effect, we have added a copy of P1. We therefore have two
distinguished divisors in the space: the zero section

(2.6) Zn := {w = 0}

(the exceptional divisor in the blow-up description) and the infinity section

(2.7) Z−n := {w = ∞}.

By construction the two do not intersect. We emphasize that

Zn is the −n-curve and Z−n is the “section at infinity”;

Zn can be contracted to give rise to the weighted projective space P(1, 1, n).
We can take (2.4) as the definition of Fn. In that case it actually makes

sense for any n ∈ Z. And, since for any vector bundle A and line bundle
L we have P(A ⊗ L) = P(A), it follows that F−n is biholomorphic to Fn

(take L = 2nHP1) with the biholomorphism exchanging the zero and the
infinity sections (i.e., Zn with Z−n). Recalling Lemma 2.1 we have shown the
following:

Lemma 2.2. Fn \ Z−n is biholomorphic to Bl0(C2/Zn).

Lemma 2.3. dimH1,1
∂̄

(Fn) = 2.

Proof. By [7],

Fn

∼=−−−→
diffeo.

{
S2 × S2, n even,
P2#P2, n odd.



350 Yanir A. Rubinstein and Kewei Zhang

So one has dimH2(Fn,C) = 2. Thus 2 dimH2,0
∂̄

(Fn)+dimH1,1
∂̄

(Fn) = 2, so it
follows that dimH1,1

∂̄
(Fn) is either 0 or 2. The former possibility is excluded

since Zn
∼= P1 is a non-trivial holomorphic (1, 1)-cycle.

Remark 2.4. We will explicitly construct (1, 1)-forms in Section 3.3 below
which gives an alternative direct description why dimH1,1

∂̄
(Fn,Z) ≥ 2 hence

equal to 2. In fact, we will construct explicit representatives for each Kähler
class.

3. Edge metrics on Hirzebruch surfaces

3.1. Edge metrics on powers of the tautological line bundle

In this section we elaborate on Remark 2.4 and give a geometric approach to
compactification.

We start by constructing some U(2)-invariant Kähler edge metrics on
−nHP1 (2.3). The construction goes back to Calabi [1, 2] who considered the
case of smooth Kähler metrics. The generalization to the edge case is not
much harder.

Consider the Hermitian metric h on −H that assigns to each point in the
total space (Z,w) the norm squared

|(Z,w)|2h := |w|2||Z||2 = |w|2(|Z1|2 + |Z2|2),

i.e., locally
h(Z) = ||Z||2,

where ||Z|| is the Euclidean norm of the vector (Z1, Z2) in C2. Similarly, hn

is a metric on −nH and

|(Z,w)|2hn := |w|2||Z||2 = |w|2(|Z1|2 + |Z2|2)n,

and
hk(Z) = (|Z1|2 + |Z2|2)k.

On the chart Z2 �= 0, we choose local holomorphic coordinates z := Z1/Z2,
so that

(3.1) Z = [Z1 : Z2] = [z : 1].



Kähler–Einstein edge metrics on Hirzebruch surfaces 351

The curvature of this metric is a Kähler form on the base (i.e., the zero section
Zn

∼= P1) which is given by

−
√
−1∂∂̄ log hn = −n

√
−1∂∂̄ log ||Z||2 = −n

√
−1∂∂̄ log(1 + |z|2)2

= −n(1 + |z|2)−2√−1dz ∧ dz = −nωFS.

In the sequel, we will use the above curvature property of hn, as well as the fact
that it is a globally defined U(2)-invariant smooth function on Bl0(C2/Zn).

3.2. The Calabi ansatz on the total space

We use the logarithm of the global invariant function from above as our
coordinate from now on. That is, we set

(3.2) s(Z,w) := log |(Z,w)|2hn = log |w|2+n log(1+|z|2), (Z,w) ∈ −nHP1 ,

and seek canonical Kähler metrics on Bl0(C2/Zn) that depend solely on s,
namely, Kähler metrics of the form

η =
√
−1∂∂̄f(s),

where f is a smooth function. Our goal will be to determine appropriate f that
make η have various desirable curvature properties and edge type singularities
along Z±n.

Denote

f ′(s) := df

ds
.

Note,
∂s

∂w
= 1

w
,

∂s

∂Zi
= n

Zi

||Z||2 , i = 1, 2.

Working on the chart Z2 = 1 (recall (3.1)),
⎛
⎜⎜⎝

∂2f

∂w∂w̄

∂2f

∂w∂z̄
∂2f

∂z∂w̄

∂2f

∂z∂z̄

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

f ′′

|w|2
nf ′′z

w(|z|2 + 1)
nf ′′z

w(|z|2 + 1)
nf ′ + n2f ′′|z|2

(|z|2 + 1)2

⎞
⎟⎟⎠

Set

(3.3) π1(Z,w) := z, π2(Z,w) := w,
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and denote by ωFS the Fubini–Study metric on P1 and the flat Kähler form
on the cylinder C� by

(3.4) ωCyl :=
√
−1dw ∧ dw̄

|w|2 .

Thus,

(3.5)

η = nf ′π∗
1ωFS + f ′′π∗

2ωCyl

+ n
f ′′

1 + |z|2
(√

−1dw
w

∧ z dz +
√
−1zdz ∧ dw

w̄

)
+ n2f ′′(s)(1 + |z|2)−2zdz ∧ z dz.

From this computation we see that the two key quantities are f ′ and f ′′

(rather than f itself). Both of these must be positive, i.e., f must be an
increasing convex function of s. Inspired by this, consider a Legendre type
change of variables going back to Calabi [1] (cf. [8]; see [12] for a reference
most closely following our notation):
(3.6)

τ = τ(s) := f ′(s), ϕ = ϕ(τ) = ϕ(τ(s)) := f ′′(s), τ ∈ Imf ′ = f ′(R).

Setting

(3.7) α := n
zdz

1 + |z|2 ,

and using (3.6), we may rewrite (3.5) as

η = nτπ∗
1ωFS + ϕ

(
π∗

2ωCyl +
√
−1α ∧ α +

√
−1α ∧ dw/w +

√
−1dw/w ∧ α

)
.

(3.8)

3.3. Kähler classes

By construction, the normal bundle of Z±n is OP1(∓n) = ∓nHP1 , so

Z2
±n = ∓n, Zn.Z−n = 0.

It follows from this and Lemma 2.3 that Zn and Z−n generate the Picard
group, and thus by the Nakai–Moishezon criterion the Kähler classes are
precisely represented by −xZn + yZ−n with y > x > 0 (this also follows
directly from the Calabi ansatz). The divisor class

(3.9) F := 1
n

(
Z−n − Zn

)
,
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has zero self intersection and intersects Z±n exactly at one point, hence rep-
resents the fibers of the projection to the base Zn. Setting

(3.10) C1 = Zn, C2 = Z−n,

and using (3.9) we recover the notation (1.2). The canonical class can be
determined as follows. Write KFn = −xZn + yZ−n. By Riemann–Roch,

−2 = (KFn + Z±n).Z±n = ((1 − x)Zn + yZ−n).Zn,

which is equal to

−n(1 − x) = (Zn + (1 + y)Z−n).Z−n = n(1 + y),

so x = 1 − 2/n, y = −1 − 2/n, and

(3.11) −KFn ∼
(
1 − 2

n

)
Zn +

(
1 + 2

n

)
Z−n ∼ 2Zn + (n + 2)F.

3.4. The angle constraint as boundary data

We rewrite the angle constraint in terms of τ . Note that the domain of τ is

Imf ′ = (inf f ′, sup f ′),

and τ must be positive so inf f ′ ≥ 0.

Lemma 3.1. Suppose that η restricts to a Riemannian metric on E. Then,
inf f ′ > 0.

Proof. If inf f ′ = 0, then by (3.5) and (2.6) the restriction of η to E is
identically zero, which means the zero section is collapsed to a point, a con-
tradiction.

To simplify computations we will henceforth assume we are in the situ-
ation of Lemma 3.1 and rescale η, equivalently f , by a positive constant so
that

(3.12) inf f ′ = 1.

This is equivalent to rescaling the Kähler class of η. Thus the only contribution
to the Poincaré–Lelong formula aside from ωCyl will be from any vanishing of
ϕ along {w = 0} and along {1/w = 0}.
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By construction, Z±n = {s = ∓∞}. By our normalization above τ ranges
in the domain (1, T ) with

(3.13) Zn = {τ = 1} Z−n = {τ = T}.

Lemma 3.2. T < ∞.

Proof. By assumption η is a Kähler edge metric on the pair (1.2). Restricting
η to a fiber (i.e., say, to the vertical section {z = 0}) using (3.8), we get an
S1-invariant metric

(3.14) g = 1
2ϕ(τ)dτ

2 + 2ϕ(τ)dθ2,

where w = es/2+
√
−1θ is a coordinate on {z = 0}. This follows in the same

way as in the 1-dimensional setting [12, Lemma 2.1]. Note that here we im-
plicitly used the fact that η is U(2)-invariant, hence its restriction to any
fiber is S1-invariant. Since for any Kähler edge metric the volume of a com-
plex submanifold is finite (in this case it is a cohomological constant) and
since by (3.14) the volume form on the fiber is simply dτ ∧ dθ, it follows
from (3.13) that the volume of the fiber is 2π(T −1), that is finite if and only
if T < ∞.

By our assumption (3.12) and Lemma 3.2, τ ranges in a domain (1, T )
with T < ∞. Thus,

lim
s→±∞

dτ

ds
= 0,

i.e., using (3.6),

(3.15) ϕ(1) = ϕ(T ) = 0.

Next, we rewrite the angle constraint at the edges in terms of τ .

Proposition 3.3. η is a Kähler edge metric on the pair (1.2) with angle 2πβ1
along C1 and 2πβ2 along C2 if and only if

(3.16) ϕ(1) = 0, ϕ′(1) = β1, ϕ(T ) = 0, ϕ′(T ) = −β2.

Proof. By (3.15) it remains to determine the derivatives of ϕ at 1 and T .
Suppose first that η is a Kähler edge metric with angles as stated. It

follows from [9, Theorem 1, Proposition 4.4] that f has complete asymptotic
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expansions both near w = 0 and w = ∞. Let us concentrate on the former
first. The leading term in that expansion is |w|2β1 and using (3.2),

ϕ ∼ C1 + C2|w|2β1 + (C3 sin θ + C4 cos θ)|w|2 + O(|w|2+ε)
= C1 + C2e

β1s + (C3 sin θ + C4 cos θ)es + O(e(1+ε)s)

(note that r in [9, (56)] is equal to |w|β1/β1 in our notation, see [9, p. 102]).
Note that C1 = 0 by (3.15) (actually also C3 = C4 = 0 as ϕ is independent
of θ but we do not need this). Moreover, the expansion can be differentiated
term-by-term as |w| → 0 or s → −∞. As ϕ′(τ) = ∂ϕ

∂s
ds
dτ = ∂ϕ

∂s /ϕ, we obtain

(3.17) ϕ(1) = 0, ϕ′(1) = β1.

The same arguments imply that

(3.18) ϕ(T ) = 0, ϕ′(T ) = −β2,

the minus sign coming from the fact that the leading term in the expansion
is now 1/|w|2β2 = e−β2s.

Conversely, suppose that (3.16) holds. Then near Zn = {τ = 1} = {w =
0} there exists a positive smooth function F (z, w) and a positive constant δ
so that

(3.19) ϕ(τ(z, w)) = |w|2δF (z, w).

Using (3.2), |w|2δ = eδs/(1 + |z|2)δ, and

(3.20) d

dτ
= 1

ϕ

d

ds
,

so in the notation of (3.19),

ϕτ (1) = lim
s→−∞

d
ds

(
F (s)eβs

)
F (s)eβs

= lim
s→−∞

F ′(s)eβs + βF (s)eβs

F (s)eβs

= β + lim
s→−∞

F ′(s)/F (s).

By assumption, lims→−∞ F (s) is some positive (finite) number, in particular
we must have lims→−∞ F ′(s) = 0 Thus, dϕ/dτ(1) = δ and

(3.21) δ = β1.
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Now, taking the top wedge product of (3.8) gives,

η2 = 2nτϕ(τ)π∗
1ωFS ∧ π∗

2ωCyl

+ 2ϕ2
(
π∗

2ωCyl ∧
√
−1α ∧ α +

√
−1α ∧ dw/w ∧

√
−1dw/w ∧ α

)
= 2nτϕ(τ)π∗

1ωFS ∧ π∗
2ωCyl.

(3.22)

Now (3.4), (3.19) and (3.21) imply that η satisfies a complex Monge–Ampère
equation with right-hand side equal to a smooth volume form times 1/|w|2−2β1

near Zn. Thus, [9, Theorem 1] applies and η is a Kähler edge metric with a
complete asymptotic expansion near Zn (note that op. cit. is stated in the
case of a smooth connected divisor but applies verbatim in the case of smooth
disjoint divisors). The same arguments apply near Z−n to conclude.

4. The Einstein constraint

From the proof of Proposition 3.22 we can derive a formula for the Ricci
tensor of η. Indeed, by (3.22) and the Poincaré–Lelong formula,
(4.1)
Ric η = (1 − β1)[C1] + (1 − β2)[C2] + 2π∗

1ωFS −
√
−1∂∂̄ log τ −

√
−1∂∂̄ logϕ,

where the last term is understood to be the restriction of
√
−1∂∂̄ logϕ to the

complement of C1 + C2. For the remaining terms, compute

(4.2)

∂w log f ′ = f ′′

f ′
∂s

∂w
= f ′′

wf ′

∂z log f ′ = f ′′

f ′
∂s

∂z
= n

f ′′

f ′
z

1 + |z|2

∂ww̄ log f ′ =
(
f ′′

f ′

)′ 1
w

∂s

∂w̄
=

(
f ′′

f ′

)′ 1
|w|2

∂zw̄ log f ′ = n

(
f ′′

f ′

)′ z/w

1 + |z|2

∂zz̄ log f ′ = n2
(
f ′′

f ′

)′ |z|2
(1 + |z|2)2 + n

f ′′

f ′
1

(1 + |z|2)2 ,

and this can be simplified by noting that

(4.3) dτ

ds
= f ′′ = ϕ(τ).
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Thus,

(4.4)

∂w log f ′ = ϕ

wτ

∂zi log f ′ = n
ϕ

τ

z

1 + |z|2

∂ww̄ log f ′ =
(ϕ
τ

)
τ

ϕ

|w|2

∂zw̄ log f ′ = n
(ϕ
τ

)
τ
ϕ

z/w

1 + |z|2

∂|z|2 log f ′ = n2
(ϕ
τ

)
τ
ϕ

|z|2
(1 + |z|2)2 + n

ϕ

τ

1
(1 + |z|2)2 .

Next,
√
−1∂∂̄ logϕ is computed similarly by replacing f ′ by f ′′ everywhere.

A simplification is obtained by noting that

f ′′′

f ′′ = ϕτϕ

ϕ
= ϕτ .

Thus,

(4.5)

∂w log f ′′ = ϕτ

w

∂z log f ′′ = n
ϕτz

1 + |z|2

∂ww̄ log f ′′ = ϕττϕ

|w|2

∂zw̄ log f ′′ = n
ϕττϕz/w

1 + |z|2

∂zz̄ log f ′′ = n2 ϕττϕ|z|2
(1 + |z|2)2 + nϕτ

1
(1 + |z|2)2 .

Altogether,

√
−1∂∂̄ log τ = nϕ/τπ∗

1ωFS

+ ϕ(ϕ/τ)τ
(
π∗

2ωCyl +
√
−1α ∧ α

+
√
−1α ∧ dw/w +

√
−1dw/w ∧ α.

)
,

(4.6)
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and

√
−1∂∂̄ logϕ = nϕτπ

∗
1ωFS

+ ϕϕττ

(
π∗

2ωCyl +
√
−1α ∧ α

+
√
−1α ∧ dw/w +

√
−1dw/w ∧ α.

)
.

(4.7)

So, with α given by (3.7)

Ric η = (1 − β1)[C1] + (1 − β2)[C2] + (2 − nϕ/τ − nϕτ )π∗
1ωFS

− ϕ(ϕ/τ + ϕτ )τ
(
π∗

2ωCyl +
√
−1α ∧ α

+
√
−1α ∧ dw/w +

√
−1dw/w ∧ α

)
.

(4.8)

The Einstein edge equation

(4.9) Ric η = λη + (1 − β1)[C1] + (1 − β2)[C2]

becomes, using (3.8) and (4.8), the pair of equations

2 − nϕ/τ − nϕτ = nλτ

−ϕ
(
ϕ/τ + ϕτ

)
τ

= λϕ.

Observe that the first equation implies the second by differentiating in τ .
Also, setting τ = 1 and using (3.16) implies

(4.10) λ = 2
n
− β1.

Observe that this already puts a constraint, as we must require positive Ricci
curvature on Fn \ C, equivalently

(4.11) β1 ∈
(
0, 2

n

)
∩ (0, 1].

Thus, the Einstein equation near Zn reduces to the first-order initial value
problem

(4.12) ϕτ + ϕ

τ
= 2

n
+

(
β1 −

2
n

)
τ, ϕ(1) = 0.
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4.1. Solving the Einstein equation

Using an integration factor τ this becomes

(4.13) (τϕ)τ = 2
n
τ +

(
β1 −

2
n

)
τ 2, ϕ(1) = 0,

so

(4.14) ϕ = 1
n

τ 2 − 1
τ

+ 1
3
(
β1 −

2
n

)τ 3 − 1
τ

.

Now, for this to correspond to a compact Kähler edge space with angle 2πβ2
at Z−n we must satisfy (3.16). To that end, let us determine T, ϕ(T ), and
ϕτ (T ) in (3.16) from (4.14). We factor ϕ as

(4.15) ϕ(τ) = 1
3
(
β1 −

2
n

)
(τ − 1)(τ − α1)(τ − α2)/τ,

with α1 ≤ α2. Then,

1
3
(
β1 −

2
n

)
(τ − α1)(τ − α2) = 1

3
(
β1 −

2
n

)
(τ 2 + τ + 1) + 1

n
(τ + 1),

so

−α1α2 = α1 + α2 = 1 + nβ1

2 − nβ1
.

By (4.11) we see that α1 < 0 < α2, so T = α2 if we can show α2 > 1. Solving
the quadratic equation for α1, α2 gives

(4.16)
2α2 =

1 + nβ1 +
[
(1 + nβ1)2 + 4(1 + nβ1)(2 − nβ1)

]1/2
2 − nβ1

= 1 + nβ1 + [(9 + 6nβ1 − 3n2β2
1 ]1/2

2 − nβ1
.

We claim that α2 > 1. According to (4.16), that amounts to verifying

1 + nβ1 + [(9 + 6nβ1 − 3n2β2
1 ]1/2

2 − nβ1
> 2,

which, after some manipulation precisely reduces to (4.11), proving the claim.
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Finally, it remains to compute the final equation in (3.16), i.e., ϕτ (α2).
Using (4.15),

(4.17)
ϕτ (α2) = 1

3
(
β1 −

2
n

)
(τ − 1)(τ − α1)/τ

∣∣∣
τ=α2

= 1
3
(
β1 −

2
n

)
(α2 − 1)(α2 − α1)/α2.

Note that

(4.18)
α2 − 1 =

√
3(3 − nβ1)(1 + nβ1) + 3(nβ1 − 1)

4 − 2nβ1
,

α2 − α1

α2
= 2

√
3(3 − nβ1)(1 + nβ1)

1 + nβ1 +
√

3(3 − nβ1)(1 + nβ1)
.

Thus, ϕτ (α2) is equal to
(4.19)
nβ1 − 2

3n

√
3(3 − nβ1)(1 + nβ1) + 3(nβ1 − 1)

4 − 2nβ1

2
√

3(3 − nβ1)(1 + nβ1)
1 + nβ1 +

√
3(3 − nβ1)(1 + nβ1)

= − 1
3n

√
3(3 − nβ1)(1 + nβ1)

(√
3(3 − nβ1)(1 + nβ1) + 3(nβ1 − 1)

)
1 + nβ1 +

√
3(3 − nβ1)(1 + nβ1)

= − 1
3n

3(3 − nβ1)(1 + nβ1) + 3(nβ1 − 1)
√

3(3 − nβ1)(1 + nβ1)
1 + nβ1 +

√
3(3 − nβ1)(1 + nβ1)

= − 1
3n

[ [3(3 − nβ1)(1 + nβ1)]3/2 + 3(nβ1 − 1)3(3 − nβ1)(1 + nβ1)
−(1 + nβ1)2 + 3(3 − nβ1)(1 + nβ1)

− 3(3 − nβ1)(1 + nβ1)2 + 3(n2β2
1 − 1)

√
3(3 − nβ1)(1 + nβ1)

−(1 + nβ1)2 + 3(3 − nβ1)(1 + nβ1)

]

= − 1
3n

[√3(3 − nβ1)(1 + nβ1)
[
3(3 − nβ1)(1 + nβ1) − 3(n2β2

1 − 1)
]

−4n2β2
1 + 8 + 4nβ1

+ 3(3 − nβ1)(2n2β2
1 − 4 − 2nβ1)

−4n2β2
1 + 8 + 4nβ1

]

= 3 − nβ1

2n + 1
n

√
3(3 − nβ1)(1 + nβ1)

[
(3 − nβ1)(1 + nβ1) − (n2β2

1 − 1)
]

4n2β2
1 − 8 − 4nβ1

= 3 − nβ1 −
√

3(3 − nβ1)(1 + nβ1)
2n = −β2.

Note that β2 = β2(β1) < β1 for all β1. Yet as β1 tends to zero, β2 tends
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to β1, to wit,

β2 =
nβ1 − 3 + 3

√
1 + 2

3nβ1 − 1
3n

2β2
1

2n

= 1
2n

(
nβ1 − 3 + 3

(
1 + 1

3nβ1 −
1
6n

2β2
1 − 1

8
(2
3nβ1 −

1
3n

2β2
1

)2
+ O(β3

1)
))

= β1 −
n

3β
2
1 + O(β3

1).

(4.20)

Combining all the above together with (3.11), (4.10), and (4.9) we have shown
the following.

Corollary 4.1. Let n ∈ N. For each β1 ∈ (0, 2/n) ∩ (0, 1], there exists a
Kähler–Einstein edge metric ωβ1,β2 cohomologous to

2 + nβ2

2 − nβ1
[Z−n] − [Zn] ∼

n(β1 + β2)
2 − nβ1

[Zn] + n
2 + nβ2

2 − nβ1
[F ]

on the pair (1.2) with angles 2πβ1 along C1 = Zn and 2πβ2 = π
(
nβ1 −

3 +
√

3(3 − nβ1)(1 + nβ1)
)
/n along C2 = Z−n. One has β2 < β1 so that

limβ1→0 β1/β2 = 1.

5. Small angle limits

In this section we prove Theorem 1.2.
First, let us determine the un-rescaled small angle limit of the KEE met-

rics ωβ1,β2 . By (4.18)

(5.1)
α2 = 1 + 3

√
1 + 2

3nβ1 − 1
3n

2β2
1 + nβ1 − 1

4 − 2nβ1

= 1 + 3
4
3nβ1 − 2

9n
2β2

1 + O(β3
1)

4 − 2nβ1
= 1 + nβ1 + n2

3 β2
1 + O(β3

1),

while,

α1 = 1 + 3
−
√

1 + 2
3nβ1 − 1

3n
2β2

1 + nβ1 − 1
4 − 2nβ1

= 1 + 3
−2 + 2

3nβ1 + 2
9n

2β2
1 + O(β3

1)
4 − 2nβ1

= −1
2 + n

2β1 + 5n2

12 β2
1 + O(β3

1).

(5.2)
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Recall that τ ∈ (1, α2). Thus, by (5.1) we have |τ − 1| = O(β1). Combining
this with (4.15), (5.2), and since by Corollary 4.1 and (3.8), we have that
(5.3)
ωβ1,β2 = nτπ∗

1ωFS +ϕ
(
π∗

2ωCyl +
√
−1α∧α+

√
−1α∧dw/w+

√
−1dw/w∧α

)
,

we conclude that

(5.4) lim
β1→0

ωβ1,β2 = nπ∗
1ωFS,

and the convergence of tensors occurs smoothly, so (Fn \ (Zn ∪ Z−n), ωβ1,β2)
converges in the Gromov–Haussdorff sense to (P1, nωFS). (This combination
of smooth convergence of tensors and simultaneous collapse in the Gromov–
Haussdorff sense is reminiscent of [10, Theorem 2.4 (ii) (a)].) This concludes
the proof of the first two statements in Theorem 1.2.

We now turn to the last statement in Theorem 1.2. Inspired by [12, Lemma
3.1], we change variable from τ ∈ (1, α2) to

y :=
τ − 1 − nβ1

2
nβ2

1/2
,

with y ∈
(
− 1

β1
, 1
β1

+ O(1)
)

(recall (5.1)), with y = 0 roughly corresponding
to the mid-section between Zn and Z−n. Thus, by (4.15), (5.1), and (5.2),
and since |τ − 1| = O(β1),

(5.5) ϕ(y) = 2 − nβ1

2n
(n2β2

1
4 − n2β4

1
4 y2

)
+ O(β3

1),
(
− 1

β1
,

1
β1

+ O(1)
)
.

To determine a fiberwise-rescaled limit, define the fiberwise-rescaled met-
ric, where the rescaling only occurs for the terms that have a well-defined
restriction to each fiber, i.e.,

ω̃β1,β2 :=nτπ∗
1ωFS+

1
β2

1
ϕπ∗

2ωCyl+ϕ
(√

−1α∧α+
√
−1α∧dw/w+

√
−1dw/w∧α

)
,

with ϕ given by (5.5). As in the proof of Lemma 3.2, the restriction of ωβ1,β2

to a fiber is given by

1
2ϕ(τ)dτ ⊗ dτ + 2ϕ(τ)dθ ⊗ dθ,
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so the restriction of ω̃β1,β2 to a fiber is given by

(5.6) n2β2
1

8ϕ(y)dy ⊗ dy + 2ϕ(y)
β2

1
dθ ⊗ dθ.

The Gromov–Haussdorff limit is then diffeomorphic to P1 × C�. Indeed, us-
ing (5.5), the length, with respect to ωβ1,β2 , of the path on each fiber between
the intersection point of the fiber with Zn and its midpoint, the intersection
of the fiber with the smooth section {y = 0} is

(5.7)
∫ 1+nβ1/2

1

dτ√
ϕ(τ)

.

To estimate this, recall (4.15) and set ξ := τ − 1,

∫ 1+nβ1/2

1

dτ√
ϕ(τ)

=
∫ n

2 β1

0

√
ξ + 1√

1
3(β1 − 2

n)ξ(ξ + 1 − α1)(ξ + 1 − α2)
dξ

=
∫ n

2 β1

0

√
ξ + 1 dξ√

1
3(β1 − 2

n)ξ(ξ + 3
2 − n

2β1 − 5n2

12 β2
1 + o(β2

1))(ξ − nβ1 − n2

3 β2
1 + o(β2

1))

(5.8)

As β1 → 0, the term
√
ξ + 1√

1
3( 2

n − β1)
· 1√

ξ + 3
2 − n

2β1 − 5n2

12 β2
1 + o(β2

1)
in the

integral is uniformly bounded. Thus, to estimate the last displayed equation
we consider ∫ n

2 β1

0

dξ√
−ξ(ξ − nβ1 + o(β1))

u= ξ
β1==

∫ n
2

0

β1 du√
−β1u(β1u− β1n + o(β1))

β1→0==
∫ n

2

0

du√
u(n− u)

= O(1).

Similarly we also get O(1) for the distance between Z−n and {y = 0} with
respect to ωβ1,β2 . Hence, after the rescaling the fiberwise metric by β−2

1 , these
same distances must be O(β−1

1 ), and in the limit β1 → 0 we must get the
product differential structure on P1×C∗. Moreover, in the limit β1 → 0, (5.6)
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converges pointwise on compact subsets to

n

2 dy ⊗ dy + n

2 dθ ⊗ dθ.

The limiting metric in the pointed Gromov–Haussdorff sense is

lim
β1→0

ω̃β1,β2 = n(π∗
1ωFS + π∗

2ωcyl),

whose Kähler form is ndζ ∧ dζ/|ζ|2 = nωCyl (recall (3.4)) with ζ := ey+
√
−1θ.

Combining this with (5.3), (5.5) and (5.6), the limiting metric, in the pointed
Gromov–Haussdorff sense is then

lim
β1→0

ω̃β1,β2 = n(π∗
1ωFS + π∗

2ωCyl).

This concludes the proof of Theorem 1.2.

Remark 5.1. We mention in passing an interesting borderline phenomenon
that occurs in the cases n ∈ {1, 2}. By Corollary 4.1, when n = 2 the metrics
ωβ1,β2 exists for all β1 ∈ (0, 1). Naturally, one may ask about the large angle
limit β1 → 1. It turns out that in this case α2 → ∞ and one obtains Gromov–
Haussdorff convergence to the complete Ricci flat Eguchi–Hanson metric on
the non-compact space −2HP1 as C2 = Z−n gets pushed-off to infinity. Sim-
ilarly, when n = 1, the metrics ωβ1,β2 exists for all β1 ∈ (0, 2). In the limit
β1 → 2 one has β2 → 1 and the limit is now a complete Ricci flat metric on
−HP1 with angle 4π along Z1. We discuss these examples in detail elsewhere
[13].
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