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Sums of CR and projective dual CR functions
David E. Barrett

∗
and Dusty E. Grundmeier

To Joseph J. Kohn

Abstract: A smooth, strongly C-convex, real hypersurface S in
CP

n admits a projective dual CR structure in addition to the stan-
dard CR structure. Given a smooth function u on S, we provide
characterizations for when u can be decomposed as a sum of a
CR function and a dual CR function. Following work of Lee on
pluriharmonic boundary values, we provide a characterization us-
ing differential forms. We further provide a characterization using
tangential vector fields in the style of Audibert and Bedford.
Keywords: CR functions, pluriharmonic, projective duality.

1. Introduction

A smooth real hypersurface S in complex projective space CP
n is strongly C-

convex if it is locally projectively equivalent to a strongly convex hypersurface.
(Such S are automatically strongly pseudoconvex. See [Bar, §5] for equivalent
characterizations. We do not automatically assume S to be compact.)

For p ∈ S we let HpS = TpS ∩ JTpS, the maximal complex subspace of
TpS. (Here J : TpCP

n → TpCP
n is the complex structure tensor.)

In addition to the standard CR structure, S admits a projective dual CR
structure: if

(1.1) no complex tangent hyperplane for S passes through the origin

this may be defined as the unique CR structure for which the functions

(1.2) wj(z) =
∂ρ
∂zj

z1
∂ρ
∂z1

+ · · · + zn
∂ρ
∂zn

(j = 1, . . . , n)
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are CR, where ρ is a defining function for S (so ρ is R-valued with Ω =
{z : ρ(z) < 0} and dρ �= 0 along bD). (Note that the values of the wj along S
will not depend on the choice of ρ.) The structure defined by this condition is
projectively-invariant; along with a localization argument it follows that this
construction induces a projectively-invariant CR structure on all of S even
when (1.1) fails. (See [Bar, §6], [BG, §3] and [BE, §4] for more detail.)

The two CR structures share the same maximal complex subspaces ([Bar,
§6], [APS, §2.5]).

Given a smooth function u on S, the goal of the current paper is to
characterize whether u can be decomposed as the sum of a CR function and a
dual CR function. The projective decomposition problem is a natural analogue
of the problem of attempting to decompose a function as a sum of a CR
and conjugate-CR function, that is, of characterizing traces of pluriharmonic
functions. We prove characterizations in terms of tangential vector fields (see
section 3 for precise definitions of the vector fields X and T and section 5 for
precise definitions of Xjk and T̃jk�).

Theorem A. For S ⊂ Cn (n = 2) strongly C-convex and simply-connected,
the following conditions on smooth u : S → C are equivalent:

(1.3a) u decomposes as a sum f + g where f is CR and g is dual-CR;
(1.3b) XXTu = 0 = TTXu.

This result extends the main projective decomposition theorem of [BG]
to non-circular hypersurfaces.

In higher dimensions, we give a second order vector field condition. We
need to introduce the following additional condition:

(�) zjwj + zkwk �= 0 for all j, k.

(In particular, all zj and wj are non-zero.)

Theorem B. For S ⊂ C
n (n > 2) strongly C-convex and simply-connected

and satisfying (�) the following conditions on smooth u : S → C are equiva-
lent.

(1.4a) u decomposes as a sum f + g where f is CR and g is dual-CR;
(1.4b) for all distinct j, k, � we have

(1.5) XjkT̃jk�u = 0.

The condition (�) allows for the relatively straightforward statement of
(1.5), but when it fails we will see in Proposition 38 that it can be repaired (at
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least locally) by a linear change of variable, leading to a slightly less elegant
version of (1.5).

The paper is organized as follows. In §2, we adapt Lee’s characterization
of CR pluriharmonic functions from [Lee] to the projective decomposition
problem. In §3, we give a vector field characterization in two dimensions, and
we prove Theorem A. In §4, we provide an alternate construction for the
vector fields in Theorem A. In §5, we set up a vector field characterization
in 3 or more dimensions, and we prove Theorem B. Finally in §6, we con-
clude by reviewing the pluriharmonic boundary value problem. In particular,
we show the results on the sphere are remarkably similar to our projective
decomposition results.

2. Operators d′ and d′′

For S as above define an H-form of degree k on S to be a smoothly-varying
C-valued alternating k-tensor on each HpS.

Proposition 1. For smooth u : S → C there are uniquely-determined degree
one H-forms d′u and d′′u satisfying

• du
∣∣
H

= d′u + d′′u;
• d′u is C-linear with respect to the standard CR structure on S;
• d′′u is C-linear with respect to the projective dual CR structure on S.

The operators d′ and d′′ are linear.

Lemma 2. The standard complex structure tensor J : HpS → HpS and the
corresponding projective dual tensor J∗ : HpS → HpS satisfy ker(J∗ − J) =
{0}.
Proof of Lemma 2. Working locally we may assume after possible applica-
tion of a projective automorphism that (1.1) holds so that we have a local
diffeomorphism [Bar, Thm. 16]

DS : S → C
n

(z1, . . . , zn) �→ (w1(z), . . . , wn(z))

with
J∗ = (D′(p))−1 ◦ J ◦D′(p).

Quoting from [Bar, §6.4] we may choose projective transformations χ1, χ2
so that

χ1(0) = p
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χ2 (DS(p)) = 0

T0
(
χ−1

1 (S)
)

= C
n−1 × R

and

(χ2 ◦DS ◦ χ1)′ (0) :

⎛
⎜⎜⎜⎜⎝

z1
...

zn−1
u

⎞
⎟⎟⎟⎟⎠ �→

⎛
⎜⎜⎜⎜⎝

2iβ1z1 + 2iα1z1
...

2iβn−1zn−1 + 2iαn−1zn−1
−u

⎞
⎟⎟⎟⎟⎠

with 0 ≤ βj < αj (in fact α2
j − β2

j = 1/4).

If χ′
1(0) ·

⎛
⎜⎜⎜⎜⎝

z1
...

zn−1
0

⎞
⎟⎟⎟⎟⎠ ∈ ker(J∗ − J) then

(χ2 ◦DS ◦ χ1)′ (0) ·

⎛
⎜⎜⎜⎜⎝

iz1
...

izn−1
0

⎞
⎟⎟⎟⎟⎠ = i (χ2 ◦DS ◦ χ1)′ (0) ·

⎛
⎜⎜⎜⎜⎝

z1
...

zn−1
0

⎞
⎟⎟⎟⎟⎠

(since the χj are holomorphic) and so we must have −2βjzj + 2αjzj =
−2βjzj − 2αjzj , hence 4αjzj = 0 and zj = 0 for j = 1, . . . , n− 1.

Note that the argument above also yields the following.

Addendum 3. D′(p) is not C-linear on any complex line in HpS.

From dimension considerations Lemma 2 has the following consequence.

Corollary 4. The map J − J∗ : HpS → HpS is surjective.

Proof of Proposition 1. Let H∗
pS denote the real dual of HpS. We claim that

for any ω in H∗
pS ⊗C there are unique ω1, ω2 ∈ H∗

pS so that ω is the sum of
the J-linear ω′ def= ω1 − iω1 ◦J and the J∗-linear ω′′ def= ω2 − iω2 ◦J∗. We then
set d′u = (du

∣∣
H

)′, d′′u = (du
∣∣
H

)′′.
To prove the claim we show that the map

H∗
pS ×H∗

pS → H∗
pS ⊗ C

(ω1, ω2) �→ (ω1 + ω2) + i (−ω1 ◦ J − ω2 ◦ J∗)
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is bijective. By dimension considerations it suffices to show that the map is
injective. But a pair (ω1, ω2) in the kernel must satisfy ω1 = −ω2, ω1 ◦ J =
−ω2◦J∗ = ω1◦J∗, hence ω1◦(J−J∗) = 0. From Corollary 4 we now conclude
that ω1 = 0 = ω2.

We note for future reference that u is CR if and only if du
∣∣
H

= d′u; this
is equivalent in turn to the condition d′′u = 0. Similarly, u is dual CR if and
only if d′u = 0.

Remark 5. Later on we will make use of a corresponding decomposition of
HpS ⊗ C: we claim that any vector V ∈ HpS ⊗ C decomposes uniquely as
V ′ + V ′′, where V ′ = V1 + iJ∗V1 and V ′′ = V2 + iJV2 for real V1, V2 ∈ HpS;
equivalently, we claim that the map

HpS ×HpS → HpS ⊗ C

(V1, V2) �→ (V1 + V2) + i (J∗V1 + JV2)

is bijective. By dimension considerations it suffices to show that the map is
injective. But a pair (V1, V2) in the kernel must satisfy V1 = −V2, J

∗V1 =
−JV2 = JV1, forcing V1 = 0 = V2 by Lemma 2.

Setting

H ′
pS = {V + iJ∗V : V ∈ HpS}

H ′′
pS = {V + iJV : V ∈ HpS}

we have shown that
HpS ⊗ C = H ′

pS ⊕H ′′
pS.

A complex vector field on S with values in HS⊗C is in fact H ′-valued if
and only if it is annihilated by J∗-linear 1-forms; it is H ′′-valued if and only
if it is annihilated by J-linear 1-forms. ♦

Moving forward, we will also need linear operators d̃′ and d̃′′ mapping
functions on S to 1-forms on S and satisfying d̃′u

∣∣
H

= d′u, d̃′′u
∣∣
H

= d′′u. The
operators d̃′ and d̃′′ are not uniquely determined but explicit choices of such
operators are offered in (3.9) and (5.8) below and these also yield formulas
for d′ and d′′.

Let u be a smooth function on S. We pose the question of whether u may
be decomposed as the sum of a CR function and a dual CR function. This
problem – previously examined in [BG] – is a natural analogue of the classical
problem of characterizing functions decomposable (at least locally) as the sum
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of a CR function and a conjugate-CR function (equivalently, of characterizing
traces of pluriharmonic functions). Results on the latter problem are reviewed
in §6 below.

Theorem 6. If S is strongly C-convex and simply-connected and θ is a C-
valued contact form on S (that is, a non-vanishing complex 1-form with θ

∣∣
H
≡

0) then the following conditions on smooth u : S → C are equivalent:

(2.1a) u decomposes as a sum f + g where f is CR and g is dual-CR;
(2.1b) there is a scalar function λ so that d̃′u + λθ is closed.

Note that if S fails to be simply-connected the result will still hold locally.
An explicit choice of contact form θ is offered in (3.4) (and again in (5.5))

below. (That choice is not R-valued.)
Theorem 6 and its proof are adapted from [Lee, Lemma 3.1].

Proof. If u decomposes as a sum f + g where f is CR and g is dual-CR then
from the discussion following the proof of Proposition 1 we have d′u

∣∣
H

=
d′f

∣∣
H

= df
∣∣
H

, hence d̃′u = df − λθ for smooth scalar λ and so (2.1b) holds.
Conversely, if (2.1b) holds we may write d̃′u + λθ = df ; it follows that

d′u = df
∣∣
H

= d′f
∣∣
H

and hence that f is CR and that g
def= u − f satisfies

d′g = 0 and thus is dual CR.

Note that (2.1b) implies that

(2.2) dd̃′u
∣∣
H

= −λ dθ
∣∣
H
.

Note that the strong pseudoconvexity of S guarantees that dθ
∣∣
H

is nowhere-
vanishing.

n = 2 We may define

(2.3) λ = −
dd̃′u

∣∣
H

dθ
∣∣
H

,

then check whether or not this works. See Theorem A for the result of this
approach.

n > 2 In higher dimension we have the following result.

Theorem 7. For S, θ and u as in Theorem 6 the following are equivalent:

(2.4a) there is a smooth scalar function λ so that (2.2) holds;
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(2.4b) u may be decomposed as the sum of a CR function and a dual CR
function.

Proof. The discussion above shows that (2.4b) implies (2.4a).
Suppose on the other hand that the necessary condition (2.4a) holds.
Then the restriction of d(d̃′u + λθ) = dd̃′u + λ dθ + dλ ∧ θ to H vanishes

identically. In view of the dimension condition and the non-degeneracy of H,
Lemma 3.2 from [Lee] tells us that a closed 2-form whose restriction to H
vanishes must vanish identically, hence in particular d(d̃′u+λθ) = 0 and thus
(2.1b) holds. Theorem 6 now furnishes the desired decomposition.

3. The projective decomposition problem for n = 2

We make the standing assumption that S is a strongly C-convex hypersur-
face satisfying (1.1). (Note that (1.1) holds automatically if S is a compact
hypersurface enclosing 0 [APS, §2.5].)

We define w1(z) and w2(z) as in (1.2).

Lemma 8. We have

z1w1 + z2w2 = 1 on S(3.1a)
w1 dz1 + w2 dz2 + z1 dw1 + z2 dw2 = 0 as 1-forms on S(3.1b)

w1 dz1 + w2 dz2 = 0 as forms on H(3.1c)
z1 dw1 + z2 dw2 = 0 as forms on H(3.1d)

Proof. Equation (3.1a) is immediate; (3.1b) follows from differentiation of
(3.1a). Equation (3.1c) follows from the fact that ∂ρ vanishes along HpS;
then (3.1d) follows by combining (3.1b) with (3.1c).

Lemma 9. At each point of S at least one of

dz1 ∧ dz2 ∧ dw1

dz1 ∧ dz2 ∧ dw2

is non-zero as a 3-form on S

Proof. From Addendum 3 we see that at least one of the dwj fails to be
C-linear; the claim follows immediately.

Lemma 10. The intersection of S with {zj = 0} has no relative interior.

Proof. This follows from the strong pseudoconvexity of S.
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Proposition 11. There are uniquely-defined tangential vector fields X,T on
S satisfying

Xz1 = 0 Xz2 = 0 Xw1 = z2 Xw2 = −z1

Tz1 = w2 Tz2 = −w1 Tw1 = 0 Tw2 = 0.(3.2)

T and X take values in H ′ and H ′′, respectively.

Proof. Consider p ∈ S and suppose that dz1 ∧ dz2 ∧ dw1 �= 0 at p; then
linear independence guarantees the existence and uniqueness of X and T in a
neighborhood of p satisfying all conditions above other than Xw2 = −z1 and
Tw2 = 0. If z2(p) �= 0 then the remaining equations follow from differentiation
of z1w1 + z2w2 = 1; if z2(p) = 0 then by Lemma 10 the remaining equations
still must hold at many points near to p, hence by passing to the limit they
must also hold at p.

A similar argument holds if dz1∧dz2∧dw2 �= 0 at p; uniqueness guarantees
that the local solutions patch together to form a global solution.

Let Υ = [X,T ]. (This corresponds to iR in the notation from [BG].)

Proposition 12. We have

Υz1 = −z1 Υz2 = −z2

Υw1 = w1 Υw2 = w2.(3.3)

Proof. These follow directly from (3.2).

Proposition 13. We have

[Υ, X] = −2X [Υ, T ] = 2T.

Proof. By Lemma 9 it suffices to use (3.2) and (3.3) to test both sides against
zj , wj .

Now let

η′ = z2 dz1 − z1 dz2

η′′ = w2 dw1 − w1 dw2(3.4)
θ = −w1 dz1 − w2 dz2 = z1 dw1 + z2 dw2.

(The equivalence of the two descriptions of θ follows from (3.1b).)
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Lemma 14. We have

(3.5) du = (Tu) η′ + (Xu) η′′ + (Υu) θ.

Proof. Direct computation using (3.4) reveals that

dz1 = w2η
′ − z1θ

dz2 = −w1 η
′ − z2θ

dw1 = z2η
′′ + w1θ(3.6)

dw2 = −z1η
′′ + w2θ;

using (3.2) it follows that that (3.5) holds for u = z1, z2, w1 or w2.
From Lemma 9 we see that this implies the general case.

Lemma 15. We have

θ(X) = 0 η′(X) = 0 η′′(X) = 1
θ(T ) = 0 η′(T ) = 1 η′′(T ) = 0(3.7)
θ(Υ) = 1 η′(Υ) = 0 η′′(Υ) = 0.

Note that from θ(X) = 0 = θ(T ) we see that θ is a contact form on S; as
we quote below from §2 above we will use this choice of contact form. Note
also that (3.7) shows that η′, η′′ and θ are linearly independent at each point
of S.

Proof. From (3.4) and (3.2) we have

θ(X) = −w1(Xz1) − w2(Xz2) = 0
θ(T ) = z1(Tw1) − z2(Tw2) = 0
θ(Υ) = −w1(Υz1) − w2(Υz2) = 1.

Similar computations serve to verify the remaining entries.

From (3.4) and (3.6) we find that

dη′ = −2 dz1 ∧ dz2 = 2 η′ ∧ θ

dη′′ = −2 dw1 ∧ dw2 = −2 η′′ ∧ θ(3.8)
dθ = dz1 ∧ dw1 + dz2 ∧ dw2 = η′ ∧ η′′.
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Returning to the discussion from §2 we now set

d̃′u = (Tu) η′

d̃′′u = (Xu) η′′(3.9)
d0u = (Υu) θ

so that
d = d̃′ + d̃′′ + d0

and

d̃′u
∣∣
H

= d′u

d̃′′u
∣∣
H

= d′′u

d0u
∣∣
H

= 0.

In Proposition 16 and Theorem A below, the strongly C-convex hyper-
surface S ⊂ C

2 is assumed to be simply-connected. (In the case of compact
S, the simple-connectivity holds automatically since S will be diffeomorphic
to the sphere S3 – one way to show this is to extend the result in [Sem, §5]
using the results of [Lem].)

Proposition 16. If the equivalent conditions of Theorem 6 hold (with the
above choice of θ) then λ = Υf = XTf = XTu.

Proof. From the proof of Theorem 6 we have

d̃′u + λθ = d̃′f + d̃′′f + d0f

= d̃′f + (Υf) θ;

matching terms we find that λ = Υf = XTf = XTu as claimed.

We need to better understand the condition that d̃′u+(XTu) θ = (Tu) η′+
(XTu) θ is closed, i.e.,

0 = d(Tu) ∧ η′ + (Tu) · dη′ + d(XTu) ∧ θ + (XTu) · dθ
= ((TTu) η′ + (XTu) η′′ + (ΥTu) θ) ∧ η′ + 2(Tu) η′ ∧ θ

+ ((TXTu) η′ + (XXTu) η′′ + (ΥXTu) θ) ∧ θ − (XTu) η′′ ∧ η′

= (−ΥTu + 2Tu + TXTu) η′ ∧ θ + (XXTu) η′′ ∧ θ

= (2Tu− [Υ, T ]u + TTXu) η′ ∧ θ + (XXTu) η′′ ∧ θ

= (TTXu) η′ ∧ θ + (XXTu) η′′ ∧ θ.
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We have proved the following.

Theorem A. For S ⊂ C
n (n = 2) strongly C-convex and simply-connected,

the following conditions on smooth u : S → C are equivalent:

(3.10a) u decomposes as a sum f + g where f is CR and g is dual-CR;
(3.10b) XXTu = 0 = TTXu.

4. Alternate construction of X, T and Υ

In this section we set out an alternate approach to the development of the
vector fields X,T,Υ.

Let I′ = {(z1, z2, w1, w2) ∈ C
4 | z1w1 +z2w2 = 1}. (See Remark 21 below.)

The holomorphic vector fields

X = z2
∂

∂w1
− z1

∂

∂w2

T = w2
∂

∂z1
− w1

∂

∂z2

Y = −z1
∂

∂z1
− z2

∂

∂z2
+ w1

∂

∂w1
+ w2

∂

∂w2
.

on C
4 are tangent to I′. We have

[X , T ] = Y
[Y ,X ] = −2X(4.1)
[Y , T ] = 2T .

Consider the diffeomorphism

D
�
S : S → ΓS ⊂ I′

(z1, z2) �→ (z1, z2, w1(z), w2(z)) .

with ΓS
def= D

�
S(S). Using Addendum 3 we see that ΓS is a totally real 3-

manifold inside the complex 3-manifold I′.

Proposition 17. We have
(
D

�
S

)
∗
X =

(
X + φX + αT

) ∣∣
ΓS

(4.2a) (
D

�
S

)
∗
T =

(
T + βX + ψT

) ∣∣
ΓS

(4.2b)
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(
D

�
S

)
∗
Υ =

(
Y + (Xβ − Tφ)X + (Xψ − Tα)T + (φψ − αβ)Y

) ∣∣
ΓS

(4.2c)

for certain smooth functions α, β, ψ, φ.

Proof. Quoting (4.1) from [BG] (but correcting typos in the last two entries)
there are smooth functions α, β, ψ, φ satisfying

Xz1 = αw2 Xz2 = −αw1

Xw1 = φz2 Xw2 = −φz1

Tz1 = ψw2 Tz2 = −ψw1

Tw1 = βz2 Tw2 = −βz1.

The first two lines of (4.2) follow from applying both sides to the functions
zj , zj , wj , wj : for (4.2a) application of either side to

z1, z2, z1, z2, w1, w2, w1, w2

leads to
0, 0, αw2,−αw1, w1, w2, φz2,−φz1,

respectively, while a similar computation verifies (4.2b). The remaining line
(4.2c) now follows from a bracket computation using the previous results.

Any vector field V (with values in T I′) defined on ΓS may be written
uniquely as V tang + V normal, where V tang and JV normal are tangent to ΓS .

Proposition 18. We have
(
D

�
S

)
∗
X = 2

(
X
∣∣
ΓS

)tang

(
D

�
S

)
∗
T = 2

(
T
∣∣
ΓS

)tang

(
D

�
S

)
∗
Υ = 2

(
Y
∣∣
ΓS

)tang
.

Thus X is the unique vector field on S pushing forward to twice the
tangential part of X – that is, X = 2(D�

S)−1
∗ ((X

∣∣
ΓS

)tang) – and similarly for
T and Υ.

We will prove Proposition 18 as a consequence of a related result using
type considerations. Recall that any vector field V on a subset of I′ decom-
poses uniquely as V (1,0) + V (0,1) with

V (1,0) = 1
2 (V − iJV )
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V (0,1) = 1
2 (V + iJV ) .

Holomorphic vector fields are of type (1,0).

Proposition 19. We have

((
D

�
S

)
∗
X
)(1,0)

= X
∣∣
ΓS((

D
�
S

)
∗
T
)(1,0)

= T
∣∣
ΓS((

D
�
S

)
∗
Υ
)(1,0)

= Y
∣∣
ΓS
.

Proof. These follow directly from Proposition 17.

Lemma 20. If V is a vector field tangent to ΓS then V = 2(V (1,0))tang.

Proof. This follows from 2V (1,0) = V − iJV .

Proof of Proposition 18. Apply Lemma 20 to the results of Proposition 19.

Remark 21. We may identify I′ with an open subset of the full incidence
manifold

I
def= {((z0 : z1 : z2), (w0 : w1 : w2)) ∈ CP

2 × CP
2 | z0w0 + z1w1 + z2w2 = 0}

important in projective duality theory (as discussed in [APS, §3.2]) via the
map

I′ → I \ {z0w0 = 0}
(z1, z2, w1, w2) �→ ((i : z1 : z2), (i : w1 : w2)) .

We may also identify I′ with SL(2,C) via (z1, z2, w1, w2) �→ ( z1 −w2
z2 w1 ).

Then the flows exp(tReX ), exp(tRe T ) and exp(tReY) correspond to right-
multiplication by ( 1 t

0 1 ), ( 1 0
−t 1 ) and ( e−t 0

0 et
) respectively.

5. The projective decomposition problem for n > 2

Again we make the standing assumption that S is a strongly C-convex hy-
persurface satisfying (1.1).

We define wk(z) as in (1.2).
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Lemma 22. We have

z1w1 + · · · + znwn = 1 on S(5.1a)
w1 dz1 + · · · + wn dzn + z1 dw1 + · · · + zn dwn = 0 as 1-forms on S(5.1b)

w1 dz1 + · · · + wn dzn = 0 as forms on H(5.1c)
z1 dw1 + · · · + zn dwn = 0 as forms on H.(5.1d)

Proof. Like Lemma 8.

Proposition 23. For 1 ≤ j, k ≤ n, j �= k, there are uniquely-determined
tangential vector fields Xjk, Tjk on S satisfying

Xjkz� = 0 Tjkw� = 0

Xjkw� =

⎧⎪⎪⎨
⎪⎪⎩
zk � = j

−zj � = k

0 otherwise

Tjkz� =

⎧⎪⎪⎨
⎪⎪⎩
wk � = j

−wj � = k

0 otherwise.

(5.2)

The Tjk and Xjk take values in H ′ and H ′′, respectively.

For k = j, we set Xjj = 0 = Tjj .
Note the relation

(5.3) zjXk� + zkX�j + z�Xjk = 0.

Proposition 24. There is a uniquely-determined tangential vector field Υ on
S satisfying

Υz1 = −z1 · · · Υzn = −zn

Υw1 = w1 · · · Υwn = wn.(5.4)

Proofs of Propositions 23 and 24. These are similar to the proof of Proposi-
tion 11.

Proposition 25. We have

[Υ, Xjk] = −2Xjk

[Υ, Tjk] = 2Tjk.

Proof. Similar to the proof of Proposition 13.
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Proposition 26. For p ∈ S we have

H ′
p = Span {Tjk : 1 ≤ j, k ≤ n}

H ′′
p = Span {Xjk : 1 ≤ j, k ≤ n} .

Proof. First note that dimCH ′
p = n − 1 = dimCH ′′

p ; then note that after
possibly reordering the coordinates we may assume that z1w1 �= 0 at p and
thus that T12, . . . , T1n are linearly independent in H ′

p while X12, . . . , X1n are
linearly independent in H ′′

p .

Now let

η′jk = zk dzj − zj dzk

η′′jk = wk dwj − wj dwk(5.5)
θ = −w1 dz1 − · · · − wn dzn = z1 dw1 + · · · + zn dwn.

Note that

(5.6) dθ = dz1 ∧ dw1 + · · · + dzn ∧ dwn

and that dθ
∣∣
H

is non-degenerate.

Lemma 27. We have

(5.7) du = 1
2
∑
j,k

(Tjku) η′jk + 1
2
∑
j,k

(Xjku) η′′jk + (Υu) θ.

Proof. Check that the result holds for u = zj or wj , then apply adapted
version of Lemma 9.

Following (3.9) we set

d̃′u = 1
2
∑
j,k

(Tjku) η′jk

d̃′′u = 1
2
∑
j,k

(Xjku) η′′jk(5.8)

d0u = (Υu) θ

so that again
d = d̃′ + d̃′′ + d0.
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Let ω be an H-form of degree two. We will say that ω has

• type (2,0) if ω is J-bilinear;
• type (0,2) if ω is J∗-bilinear;
• type (1,1) if it can be written as a finite sum of wedge products of
J-linear H-forms of degree one with J∗-linear H-forms of degree one.

From standard arguments we obtain the following.

Proposition 28. Every H-form ω of degree two decomposes uniquely as a
sum ω(2,0) + ω(0,2) + ω(1,1) of forms of specified type.

Recall the decomposition of HpS ⊗ C from Remark 5.

Lemma 29. If an H-form ω has type (1,1) then

ω (V ′ + V ′′,W ′ + W ′′) = ω (V ′,W ′′) − ω (W ′, V ′′) .

Proof. Using the definition of a form of type (1,1) and the last sentence of
Remark 5 we have ω (V ′,W ′) = 0 = ω (V ′′,W ′′); the claim follows.

Proposition 30. dd̃′u
∣∣
H

= 1
4

∑
j,k,�,m

(X�mTjku) η′′�m∧η′jk; in particular, dd̃′u
∣∣
H

has type (1,1).

Proof. We first show that dd̃′u
∣∣
H

has type (1,1).
Note first that dη′jk

∣∣
H

has type (2,0), dη′′jk
∣∣
H

has type (0,2) and dθ
∣∣
H

has
type (1,1).

From direct inspection we now find that

(
dd̃′u

∣∣
H

)(0,2)
= 0

(
dd̃′′u

∣∣
H

)(2,0)
= 0

(
dd0u

∣∣
H

)(2,0)
= 0.

It suffices now to show that (dd̃′u
∣∣
H

)(2,0) = 0; this follows from taking
(2,0)-components in

0 = ddu
∣∣
H

= dd̃′u
∣∣
H

+ dd̃′′u
∣∣
H

+ dd0u
∣∣
H
.
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Ignoring the cancelling (2,0)-terms now find that

dd̃′u
∣∣
H

= 1
2
∑
j,k

d̃′′ (Tjku) η′jk
∣∣
H

= 1
4

∑
j,k,�,m

(X�mTjku) η′′�m ∧ η′jk
∣∣
H
.

For conciseness we now fix p ∈ S and set

(5.9) νp = dd̃′u(p)
∣∣
H
.

Lemma 31. The condition (2.2) holds (at p) if and only if there is a scalar
λ satisfying

νp (Tjk, X�m) = λ · dθ (Tjk, X�m)

for all j, k, �,m.

Proof. This follows from Proposition 30 along with Lemma 29 and Proposi-
tion 26.

Proposition 32. Suppose that

• T is a vector field taking values in H ′;
• X is a vector field taking values in H ′′;
• dθ(T,X) ≡ 0.

Then νp (T,X) = −XTu(p).

Lemma 33. We can write

(5.10) u = C + f1 + g2 +
N∑
j=3

fjgj + E

with

• all fj are CR;
• all fj(p) = 0;
• all gj are dual CR;
• all gj(p) = 0;
• all second derivatives of E vanish at p.
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Proof. The computations from the proof of Lemma 2 show that

Span {dzj(p), dwk(p)} = TpS ⊗ C.

A “Taylor polynomial”-type argument now serves to prove the Lemma.

Proof of Proposition 32. Invoking the decomposition from Lemma 33 we note
first that

(5.11) d̃′C = 0 = −XT (C)(p)

and

(5.12) dd̃′g2 = 0 = −XTg2(p).

Next we note that

d̃′f1 = df1 − d0fj = df1 − (Υf1) θ

(since d̃′′f1 = 0) and thus

(5.13) dd̃′f1(T,X) = (Υf1)(p) · dθ(T,X) = 0

(using θ(T ) = 0 = θ(X)).
For the general term fjgj we have

d̃′ (fjgj) = d̃′ (fj) gj
=

(
dfj − d0fj

)
gj

= gj dfj − gj (Υfj) θ

and so

dd̃′ (fjgj) = −dfj ∧ dgj − d (gj (Υfj)) ∧ θ − gj (Υfj) dθ

dd̃′ (fjgj)
∣∣
H

= −dfj ∧ dgj
∣∣
H
− gj (Υfj) dθ

∣∣
H

dd̃′ (fjgj) (T,X) = − (dfj ∧ dgj) (T,X) = −Tfj ·Xgj

thus

dd̃′ (fjgj) (T,X)(p) = −Tfj(p) ·Xgj(p) = −XT (fjgj)(p).(5.14)
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Adding (5.11), (5.13), (5.12) and (5.14) and recalling (5.9) and (5.10) we
obtain

νp (T,X) = −XTu(p).

Let

X̃jk� = wjX�j + wkX�k

T̃jk� = zjT�j + zkT�k.

The X̃jk� and T̃jk� take values in H ′′ and H ′, respectively with

X̃jk�zm = 0 T̃jk�wm = 0

X̃jk�wm =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−zjw� m = j

−zkw� m = k

zjwj + zkwk m = �

0 otherwise

T̃jk�zm =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−z�wj m = j

−z�wk m = k

zjwj + zkwk m = �

0 otherwise.

(5.15)

Lemma 34. For j, k, � distinct we have dθ(T̃jk�, Xjk) = 0 = dθ(Tjk, X̃jk�).

Proof. Using (5.6) we find that dθ(T̃jk�, Xjk) = −w�zjzk + w�zjzk = 0 and
dθ(Tjk, X̃jk�) = −z�wjwk + z�wjwk = 0.

For X ∈ H ′
pS we set

X⊥dθ =
{
T ∈ H ′′

pS : dθ(T,X)(p) = 0
}

X⊥νp =
{
T ∈ H ′′

pS : νp(T,X) = 0
}
.

Lemma 35. 1. If zj �= 0 the vectors {Xjk(p) : k �= j} form a basis for H ′′
p .

2. If (�) holds and k �= j the vectors {T̃jk�(p) : � /∈ {j, k}} form a basis of
X⊥dθ

jk (p).

Proof. In each case we have the right number of linearly independent vectors
in the indicated space.

The following result is based on Theorem 3 in [Aud].
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Theorem B. For S ⊂ C
n (n > 2) strongly C-convex and simply-connected

and satisfying (�) the following conditions on smooth u : S → C are equiva-
lent.

(5.16a) u decomposes as a sum f + g where f is CR and g is dual-CR;
(5.16b) for all distinct j, k, � we have

(5.17) XjkT̃jk�u = 0.

Proof. If (5.16a) holds then using (2.2) along with Lemma 34 and Proposition
32 we have

XjkT̃jk�u(p) = νp
(
T̃jk�, Xjk

)

= λ · dθ
(
T̃jk�, Xjk

)
(p)

= 0

for distinct j, k, �.
If (2.1b) holds then fixing j the above computation along with Lemma 35

yields X
⊥νp

jk ⊃ X⊥dθ

jk for k �= j, thus there are λk so that

Xjk ⨼ νp = λkXjk ⨼ dθ.

For distinct k1, k2 not equal to j we have

zk2Xjk1 ⨼ νp = λk1zk2Xjk1 ⨼ dθ

zk1Xjk2 ⨼ νp = λk2zk1Xjk2 ⨼ dθ;

using (5.3) this yields

zjXk1k2 ⨼ νp = (zk1Xjk2 − zk2Xjk1) ⨼ νp

= (λk2zk1Xjk2 − λk1zk2Xjk1) ⨼ dθ;

but repeating the above argument there is also λ∗ with zjXk1k2 ⨼ νp =
zjλ

∗Xk1k2 ⨼ dθ and the non-degeneracy of dθ then yields

λk2zk1Xjk2 − λk1zk2Xjk1 = λ∗zjXk1k2 = λ∗zk1Xjk2 − λ∗zk2Xjk1 .

From the independence of Xjk1 , Xjk2 and the fact that zk1 and zk2 are non-
zero we obtain λk2 = λ∗ = λk1 .

By Lemma 31 (2.2) holds; by Theorem 7 we then have (5.16a).
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Remark 36. The proof of Theorem B shows that if u satisfies (5.16a) then
it also must satisfy

TjkX̃jk�u = 0 for distinct j, k, �.(5.18)

In particular, (5.17) implies the companion condition (5.18). On the other
hand, the equations TTXu = 0 and XXTu = 0 from Theorem A do not
imply each other locally (see Example 21 in [BG]) but they do imply each
other when S is compact and circular (see Theorem B in [BG]). ♦
Remark 37.

(a) Recall that in higher dimensions we required an additional second order
vector field condition, given in (�). Failure of condition (�) may be
repaired (at least locally) by a linear change of coordinates as shown in
the following proposition.

Proposition 38. For p ∈ S there is a linear transformation T so that
T (S) satisfies (�) at T (p) (hence also in a neighborhood of T (p)).

Proof. We set z =

⎛
⎜⎝
z1
...
zn

⎞
⎟⎠ , w =

⎛
⎜⎝
w1
...
wn

⎞
⎟⎠.

If M is an invertible square matrix then replacing z by Mz the trans-
formation law from [Bar,§6] tells us that w is replaced by Mt −1w. From
(3.1a) we know that z and w are non-zero; choosing M from a Zariski-
open dense set of matrices we may assume that all entries of the new
vectors z, w are non-zero.
With this in place we make a further change of variables, replacing z

by

⎛
⎜⎜⎜⎜⎝

1 a2 · · · an
0 1 · · · 0

...
0 0 · · · 1

⎞
⎟⎟⎟⎟⎠ z and w by

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0
−a2 1 · · · 0

...
−an 0 · · · 1

⎞
⎟⎟⎟⎟⎠ w.

We find that
for 1 < j the sum z1w1 + zjwj is replaced by z1w1 + zjwj + w1

∑
k/∈{1,j}

akzk

and that
for 1 < k < � the sum zkwk+z�w� is replaced by zkwk+z�w�−w1 (akzk + a�z�).

For a Zariski-open dense set of aj ’s the transformed sums will all be
non-zero.
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(b) From Theorem B and Proposition 38 it follows easily that for any
relatively compact open U ⊂ S there are finitely many vector fields
X̂1, . . . , X̂N with values in H ′′ and T̂1, . . . , T̂N with values in H ′ so that
decomposable functions on U are characterized by the system

X̂kT̂ku = 0 for k = 1 . . . , N.

♦

6. Pluriharmonic boundary values

One inspiration for the current paper comes from the problem of charac-
terizing the boundary values of pluriharmonic functions. The pluriharmonic
boundary value problem has a long history, and we refer the reader to the
introduction of [BG] for an outline of the history. We briefly recall some key
results.

Nirenberg observed that there is no second order system of differential op-
erators which is tangential to the boundary of the ball in C

2 that characterizes
pluriharmonic boundary values (see [BG] for a discussion of this result). Bed-
ford [Bed1] provided a system of third order operators that solved the global
problem for the unit ball. In higher dimensions, Audibert [Aud] and Bedford
[Bed] solved the global and local problems using second order systems. Bed-
ford and Federbush [BeFe] extended these results to the case of embedded
CR manifolds, and Lee extended the results to abstract CR manifolds.

Our results parallel the results on the sphere, and we briefly recall the
local results on the sphere. Define the tangential vector fields

Ljk = zj
∂

∂zk
− zk

∂

∂zj
Ljk = zj

∂

∂zk
− zk

∂

∂zj

for 1 ≤ j, k ≤ n. Further let

L̃jk� = zjL�j + zkL�k.

Theorem 39. [Aud] Suppose S is a relatively open subset of S2n−1, and u
is smooth on S.

1. u extends to a pluriharmonic function on a one-sided neighborhood of
S if and only if

LjkLlmLrsu = 0 = LjkLlmLrsu

for 1 ≤ j, k, l,m, r, s ≤ n.
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2. If n > 2, then u extends to a pluriharmonic function on a one-sided
neighborhood of S if and only if

LjkL̃jk�u = 0

for all distinct j, k, �.
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