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Bergman kernels for Paley-Wiener spaces and Nazarov’s
proof of the Bourgain-Milman theorem

Bo Berndtsson

Abstract: We give a general inequality for Bergman kernels of
Bergman spaces defined by certain convex weights in C

n. We also
discuss how this can be used in Nazarov’s proof of the Bourgain-
Milman theorem, as a substitute for Hörmander’s estimates for the
∂̄-equation.

1. Introduction

If φ is a plurisubharmonic function in a domain D in C
n, the Bergman space

A2(D, e−φ) is the Hilbert space of holomorphic functions in D that are square
integrable against the weight e−φ;

A2 = A2(D, e−φ) = {f ∈ H(D);
∫
D
|f |2e−φdλ < ∞}.

In this note we are mainly interested in the case when φ is convex and
D = C

n. However, we do allow our convex functions to attain the value +∞,
and in that case we are in effect only integrating over the set where φ is finite,
and we only require f to be holomorphic in the interior of that set. With this
understanding we omit the reference to the domain in the Bergman space,
and write A2 = A2(e−φ). We will mostly deal with weight functions φ that
only depend on x = Re z, (z = x+ iy) and write φ(x) or φ(Re z) to emphazise
that. Thus

A2(e−φ(x)) = {f ∈ H(D),
∫
D
|f |2e−φ(x)dxdy < ∞},

where D is the interior of the set {z = x + iy;φ(x) < ∞}.
The (diagonal) Bergman kernel for A2 is the function

B(z) := sup
f∈A2

|f(z)|2/‖f‖2.
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Our main result is as follows.

Theorem 1.1. Let φ1 and φ2 be convex functions on R
n and let B be the

Bergman kernel for the space A2(e−φ1(x)−φ2(x)). Let also B′ be the Bergman
kernel for the space

A2(e−φ1(x)−φ2(y)) := {f ∈ H(D),
∫
D
|f |2e−φ1(x)−φ2(y)dxdy < ∞},

where D is the interior of the set {z = x + iy;φ1(x) + φ2(y) < ∞}. Then, if
φ1 and φ2 are symmetric (φj(−x) = φj(x)),

B′(0) ≤ CnB(0),

where

logC = 1
π

∫ 1

−1

− log s2

1 + s2 ds.

If φ1 = φ2 = φ, we may take C = 2 if φ is homogenous of order 2, and
C = 1.604 if φ is homogenous of order 1.

The point of the theorem is that the spaces A0 := A2(e−φ1(x)−φ2(x)) and
A1 := A2(e−φ1(x)−φ2(y)), are rather different and it is not a priori clear that
their Bergman kernels should be in any way related. While A0 is defined by
a weight function that only depends on x, the weight in the definition of A1
decreases in all directions. Thus, e. g., the function f = 1 lies in A1 but not
in A0. Using that function in the definition of the Bergman kernel we get
immediately

B′(0) ≥ (
∫

e−φ1

∫
e−φ2)−1,

and the theorem implies that the same estimate holds for B(0), up to a
constant:

Corollary 1.2. With the notation of the theorem

(1.1) B(0) ≥ C−n(
∫

e−φ1

∫
e−φ2)−1

Our principal motivation (or inspiration) for the theorem comes from
Nazarov’s proof ([10]) of the Bourgain-Milman theorem, [6]. Nazarov’s idea
was to use Bergman kernels for Paley-Wiener spaces (see section 3) to prove
inequalities for volumes of convex bodies. His main result is basically what
we have formulated as a corollary, in the special case when φ1 = φ2 = IK ,
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the indicator of a symmetric convex body (defined as zero on K and infinity
outside). The inequality (1.1) then becomes

(1.2) B(0) ≥ C−n|K|−2,

where |K| means the volume of K. He then coupled this estimate with an
estimate from above

(1.3) B(0) ≤ n!Cn
1 |K◦||K|−1,

where K◦ is the polar body of K. The result is that

|K||K◦| ≥ Cn
2 /n!,

with C2 an absolute constant. This is the Bourgain-Milman inequality. The
famous Mahler conjecture says that C2 can be taken equal to 4. This is so
far open. The best result on the value of the constant so far, C2 = π, is due
to Kuperberg, [8], see also [1]. It is perhaps worth pointing out that when φ
is a quadratic form, the estimate in Theorem 1.1 holds with C = 1 (in fact
B′(0) = B(0) then); see the end of section 2.

Nazarov used Hörmander’s L2-estimates for the ∂̄-equation to prove (1.2).
Here we will use a different argument based on plurisubharmonic variation
of Bergman kernels from [2]. The theorem on plurisubharmonic variation of
Bergman kernels is also based on Hörmander’s L2-estimates, so our approach
is not more elementary than Nazarov’s, but it does eliminate a few technical-
ities from the argument, apart from giving a more general statement.

The inequality (1.3) is also non trivial, but much easier than (1.2), and
completely elementary. We will give the corresponding inequality for convex
functions in section 4 (this is based on the master’s thesis of Hultgren, [7]).

In the next section we will give the proof of Theorem 1.1. In section 3 we
give some generalities on Bergman and Paley-Wiener spaces, and in section 4
we discuss estimates from above of Bergman kernels (in both these sections,
we again largely follow [7]). In the last section we will discuss the values of
the constant one can obtain by this method – they are somewhat worse than
Kuperberg’s estimate, and just barely better than Nazarov’s.

It should be said that the only new results in this note are Theorem 1.1
and its Corollary 1.2. The rest of the material is at least essentially known,
but we include it in an attempt to give an easy introduction to this very
interesting circle of ideas. In a companion paper, [1], we also give a variation
of Kuperberg’s proof, using different ideas from complex analysis.
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We also refer to [3] for another analysis of Nazarov’s proof, from a different
angle.

Finally I would like to thank Bo’az Klartag and Yanir Rubinstein for
very stimulating discussions on these matters, and the referee for valuable
suggestions for improvement of the manuscript.

2. An estimate for Bergman kernels

We are looking at Bergman spaces on C
n defined by weight functions e−φ(x)

where φ is convex on R
n. We may assume that φ(0) = 0 and also assume that

φ(x) = φ(−x). The main technical difficulty in Nazarov’s paper is to prove
that for φ = IK , the Bergman kernel at the origin is bounded from below by
a constant depending on n times |K|−2. This is where Hörmander’s theorem
comes in.

Here we follow another approach to prove such things in a somewhat more
general setting. Let φ1(x) and φ2(x) be two convex functions on R

n satisfying
the hypotheses above. We consider the Bergman space A2(e−φ1(x)−φ2(x)) of
holomorphic functions satisfying

∫
|f(x + iy)|2e−φ1(x)−φ2(x)dxdy < ∞.

Let ζ ∈ C and define

‖f‖2
ζ =

∫
Cn

|f |2e−φ1(ζz)−φ2(z)dλ(z).

Here we are using the notation φj(z) = φj(Re z). Denote by Bζ the Bergman
kernel for this norm. When ζ = i, the norm is

‖f‖2
i =

∫
Cn

|f |2e−φ1(−y)−φ2(x)dλ.

The main point is that the Bergman kernel for this norm is fairly easy to esti-
mate from below since f = 1 is a contender in the definition of the Bergman
kernel. The theorem says that bounds from below of Bi give bounds from
below of B1 which is the Bergman kernel for the norm defined by φ1 + φ2.

Theorem 2.1. For general convex functions φ1, φ2, symmetric and vanishing
at the origin, we have

Bi(0) ≤ CnB1(0),
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with

logC = 1
π

∫ 1

−1

− log s2

1 + s2 ds.

If φ1 = φ2 = φ, we may take C = 2 if φ is homogenous of order 2, and
C = 1.604 if φ is homogenous of order 1.

The proof depends on two things: First, logBζ(0) =: b(ζ) is subharmonic
in C. This is a consequence of the main theorem in [2] on plurisubharmonic
variation of Bergman kernels:

Theorem 2.2. Let D be a pseudoconvex domain in C
n+1 = {ζ, z); ζ ∈ C, z ∈

C
n}, and let for ζ fixed, Dζ = {z ∈ C

n; (ζ, z) ∈ D}. Let φ(ζ, z) be a plurisub-
harmonic function in D and denote by

A2
ζ = A2(Dζ , e

−φ(ζ,·)).

Let Bζ(z) be the (diagonal) Bergman kernel for A2
ζ . Then

logBζ(z)

is a plurisubharmonic function of (ζ, z) in D (if it is not identically equal to
−∞).

Since φj(z) = φj(Re z) are convex, φ1(ζz) + φ2(z) is plurisubharmonic.
In case φ1 and φ2 are both finite everywhere this is all we need; Theorem 2.2
implies directly that b(ζ) is subharmonic. In the general case we need to verify
that D, the interior of the set where φ1(ζz) + φ2(z) is finite is pseudoconvex,
but the reader may well concentrate on the finite valued case and deduce the
corollary from there by writing general convex functions as increasing limits
of finite valued functions. (The corollary is all we use for the proof of the
Bourgain-Milman theorem.)

To handle the pseudoconvexity issue we let U1 be the interior of the set
where φ1(z) is finite and define U2 analogously. Since the Uj are convex,
there are non negative convex functions χj defined in Uj such that for any c,
{z;χj(z) ≤ c} are compact in Uj , i. e. the χj are convex exhaustion functions
of Uj . Define

χ(ζ, z) = χ1(ζz) + χ2(z) + |ζ|2.

Then χ is plurisubharmonic and it is easy to verify that the sets {(ζ, z);χ(ζ, z)
≤ c} are compact subsets of D for any c. Hence χ is a plurisubharmonic
exhaustion function of D, so D is pseudoconvex.
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The second fact we need is that b satisfies an estimate

b(ζ) ≤ C + n log |ζ|2.

This second fact comes from changing variables

‖f‖2
ζ = |ζ|−2n

∫
Cn

|f(z/ζ)|2e−φ1(z)−φ2(z/ζ)dλ(z).

From here we get that
Bζ(0) = |ζ|2nB̌1/ζ(0),

where B̌ means that we have changed the roles of φ1 and φ2. (It does not mat-
ter that f(z) changes to f(z/ζ) since the origin where we study the Bergman
kernel remains fixed.) Then we note that B̌1/ζ(0) is bounded as ζ → ∞; it
tends to the Bergman kernel for the weight e−φ1 .

This means that we can apply the Poisson representation in the upper
half plane to the function b(ζ) − n log |ζ|2, which is bounded near infinity. It
is not bounded near the origin, where it has a logarithmic pole, but it is at
any rate integrable on the real axis. Therefore we have that

b(i) = logBi(0) ≤ 1
π

∫ ∞

−∞

b(s) − n log s2

1 + s2 ds.

What remains is to estimate b(s) for s ∈ R, and by symmetry we need only
worry about s > 0.

If s ≤ 1, we have

(2.1) ‖f‖2
s =

∫
|f |2e−φ1(sx)−φ2(x)dλ(z) ≥ ‖f‖2

1,

since φ(sx) is increasing in s. Hence b(s) ≤ b(1).
If s ≥ 1 we have

(2.2) ‖f‖2
s = s−2n

∫
|f |2e−φ1(x)−φ2(x/s)dλ(z) ≥ s−2n‖f‖2

1,

for the same reason. Hence b(s) ≤ b(1) + n log s2 when s ≥ 1. Notice that
these estimates of b(s) are actually sharp if φ1 = φ2 is the indicator function
of a convex body.

Putting these estimates together we get

b(i) ≤ 1
π

∫ 1

−1

b(1) − n log s2

1 + s2 ds + 1
π

∫
|s|>1

b(1)
1 + s2 ds.
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This completes the proof of the first part of the theorem.
For the second part, when φ1 = φ2 = φ we have, when φ is homogenous

of order 2, that

‖f‖2
s =

∫
|f |2e−φ(sx)−φ(x)dλ(z) =

∫
|f |2e−2φ(

√
(s2+1)/2x)dλ(z) =

= ( 2
1 + s2 )n

∫
|f(z/

√
(s2 + 1)/2)|2e−2φ(x)dλ(z).

This implies that

Bs(0) = (s
2 + 1
2 )nB1(0),

where B1(0) is now the Bergman kernel for the weight function e−2φ. Hence,
using the Poisson integral representation again,

b(i) = logBi(0) ≤ n
1
π

∫ ∞

−∞

log(1 + s2) − log 2
1 + s2 ds + b(1).

(The term log s2 gives zero contribution to the Poisson integral.)
We now use that

1
π

∫ ∞

−∞

log(1 + s2)
1 + s2 ds = 2 log 2

(it is a standard residue integral). Hence

b(i) ≤ n log 2 + b(1),

which is what we claim.
Finally, if φ1 = φ2 = φ where φ is homogenous of order 1, we write

φ(sx) +φ(x) = 2φ(x(|s|+ 1)/2). The same argument as in the 2-homogenous
case gives

logC = 4
π

∫ ∞

0

log(1 + s)
1 + s2 ds− 2 log 2.

By numerical calculation (e.g. Wolfram alpha) this gives C slightly less than
1.604.

It is interesting to compare the second part of the theorem to the special
case when φ(x) = |x|2/2. Then Bi(0) = B1(0). To see this, note that

x2 = (x2 + y2)/2 + Re z2/2
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Thus, if we multiply f by ez
2/4, we change the second norm to the first. Hence

the Bergman kernels are equal since ez
2/4 = 1 at the origin. The factor 2n in

the theorem cannot be omitted in general though, as can be seen from the
example φ(x) = |x| when n = 1.

Note also that when φ is x2/2, then

(2.3) b(ζ) = n(log(1 + |ζ|2) − log 2) + b(1),

not only for ζ real, but for all ζ. This follows by a similar argument: Writing
ζ = ξ + iη,

|Re (ζz)|2 = ξ2|x|2 + η2|y|2 − 2ξηx · y,

which is equal to |ζ|2|x|2 plus the real part of a holomorphic function (of
z) vanishing at the origin. Hence, the same argument as above gives 2.3.
(Moreover, the same formula holds for any quadratic form φ = xtAtAx, where
A is a real n× n matrix; this follows by changing variables w = Az.)

So, when φ(x) = |x|2/2 (or a general quadratic form), the estimate in the
theorem is off by a factor 2n. We loose this factor in the proof when we use
the Poisson representation formula. The Poisson representation is an identity
for harmonic functions, but for subharmonic functions we loose the Green
potential part. For φ a quadratic form, the discussion above shows that the
term we loose is the Green potential of the Fubini-Study form i∂∂̄ log(1+|ζ|2).

3. Bergman spaces, Paley-Wiener spaces and logarithmic
Laplace transforms

If K is a convex body in R
n, the Paley-Wiener space associated to K, PW (K)

is the space of all entire functions in C
n of the form

f(z) =
∫
K
et·z f̃(t)dt,

where f̃ lies in L2(K). We define the norm of f to be L2-norm of f̃ . Then
PW (K) becomes a Hilbert space of entire functions. Any f in the space
satisfies an estimate

|f(x + iy)| ≤ ehK(x)‖f‖
√
|K|,

where
hk(x) = sup

t∈K
t · x,
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is the support function of K and |K| denotes the volume of K. Moreover, the
restriction of f to the iRn lies in L2. The Paley-Wiener theorem asserts that
conversely, any such function f lies in the Paley-Wiener space.

We will consider a generalization of Paley-Wiener space, associated to
convex functions on R

n instead of convex bodies. If ψ is a convex function on
R

n, we denote by PW (eψ) the space of all holomorphic functions of the form

(3.1) f(z) =
∫
Rn

et·z f̃(t)dt,

where
‖f‖2

PW :=
∫
Rn

|f̃ |2eψdt < ∞.

We allow ψ to attain the value +∞, and the L2-condition should then be
interpreted so that f̃ vanishes where ψ = ∞. Thus the classical Paley-Wiener
spaces correspond to ψ = IK ; the convex indicator of K that is zero on K
and infinity on the complement of K.

Another particular case of generalized Paley-Wiener spaces are Bergman
spaces, where the weight depends only on the real part of z. Let φ = φ(x)
be a convex function on R

n, and consider the Bergman space, A2(e−φ(x)),
associated to φ, i.e. the space of holomorphic functions such that

(3.2) ‖f‖2
A2 :=

∫
|f(x + iy|2e−φ(x)dxdy < ∞.

Again, we allow φ to attain the value +∞. We then only integrate over the
tube domain where φ is finite, and f is only required to be holomorphic
there. Proposition 3.1 below says that such spaces are Paley-Wiener spaces,
associated to a weight function ψ that is the ‘logarithmic Laplace transform’
of φ (see [4] and [5] for early uses of this transform).

Definition 1. Let φ be a convex function on R
n. Then the logarithmic

Laplace transform of φ is the function φ̃ defined by

eφ̃(t) =
∫

e2xt−φ(x)dx.

Logarithmic Laplace transforms are clearly convex, but it is also clear that
a general convex function can not be written like this. For one thing, they are
always real analytic in the interior of the set where they are finite, but it is also
easy to see that e.g. the indicator of a convex body is not a logarithmic Laplace
transform. One can verify that the sum of two logarithmic Laplace transforms
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is again a logarithmic Laplace transform(of the convolution of e−φ1 and e−φ2 ;
Prekopa’s theorem implies that the convolution is log-concave). Thus the set
of logarithmic Laplace transforms is an additive semigroup and 2φ̃ is again
in the set, but (1/2)φ̃ is in general not. The next statement is essentially
included in [11] by O. Rothaus, but not explicitly stated there (see also [11]
for references to previous work of Bochner for tube domains).

Proposition 3.1. The spaces PW (eφ̃) and A2(e−φ) are equal and

‖f‖2
A2 = (2π)n‖f‖2

PW .

Thus we see that weighted Bergman spaces where the weight only depends
on x = Re z are Paley-Wiener spaces of a special kind, namely defined by
weight functions ψ that are logarithmic Laplace transforms.

For the proof, we first assume that f lies in PW (eφ̃). Hence, f is the
Fourier-Laplace transform (3.1) of a function f̃ , and

∫
|f̃ |2eφ̃dt < ∞.

It follows that et·xf̃ lies in L2(Rn) for any x in the interior of the set where
φ(x) < ∞.

Let fx(y) = f(x + iy). Then Parseval’s formula gives
∫

|fx|2dy = (2π)n
∫

e2t·x|f̃ |2dt.

Multiplying with e−φ(x) and integrating with respect to x we get
∫

|f(x + iy)|2e−φ(x)dxdy = (2π)n
∫

|f̃ |2eφ̃dt.

Thus f lies in A2(e−φ(x)) and the norm in A2 coincides with the norm in
PW (eφ̃) multiplied by (2π)n.

Hence, the Paley-Wiener space with weight φ̃ is at least isometrically
embedded in A2(e−φ(x)), and it remains only to show that it is dense.

For this we take f in A2 and note that fx lies in L2 for almost all x in the
interior of the set where φ(x) < ∞. Take one such x0. By Fourier inversion
we can write

fx0(y) =
∫

et·(x0+iy)f̃(t)dt,
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with et·x0 f̃ in L2. Now assume that f̃ has compact support. Then

f(z) =
∫

et·z f̃(t)dt,

since the right hand side is an entire function and it agrees with f where
Re z = x0. By Parseval’s formula again,

∫
|f(x + iy)|2dy = (2π)n

∫
e2t·x|f̃(t)|2dt,

and we can multiply by e−φ(x) and integrate with respect to x to conclude
that f lies in PW (eφ̃).

Thus, to prove that the Paley-Wiener space is dense in A2 it suffices to
prove that the space of f in A2 such that fx has compactly supported Fourier
transform for some x, is dense. For this, let α be a smooth, non-negative
function with compactly supported Fourier transform and total integral equal
to 1. Put

h(z) =
∫

f(z + is)α(s)ds.

Then hx has compactly supported Fourier transform, and since

|h(z)|2 ≤
∫

|f(z + is)|2α(s)ds,

h lies still in A2. Hence any such h lies in the Paley-Wiener space. Finally,
by scaling α appropriately we get an approximate identity, and therefore a
sequence of functions in the Paley-Wiener space that converges to f . This
completes the proof.

We next give an explicit formula for the Bergman kernel of PW (eψ). In
case ψ = φ̃ and φ is the indicator IK of a convex body, this formula appears
in [11]. In that case our Paley-Wiener space is, by the previous proposi-
tion, isomorphic to the Bergman space of a tube domain, and that is how
Rothaus formulates his result. The general case of a weighted Bergman space
A2(e−φ(x)) is also essentially included in Rothaus’ paper, but not explicitly
stated there.

Proposition 3.2. The Bergman kernel B(z) for PW (eψ) is

B(z) =
∫

e2t·x−ψ(t)dt.
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In particular, the Bergman kernel for A2(e−φ) is

(2π)−n
∫

e2t·x−φ̃(t)dt.

Proof. By the definition of the Bergman kernel we have

B(x + iy) = sup
f̃

|
∫

et·(x+iy)f̃(t)dt|2,

where the supremum is taken over all f̃ with
∫

|f̃ |2eψdt ≤ 1.

The first part of the proposition follows immediately from this and Cauchy’s
inequality. The second part follows from the first part and Proposition 3.1.

Remark 1. There is an intriguing symmetry between Propositions 3.1 and 3.2
in that the logarithmic Laplace transform appears in both places, for rather
different reasons. It would be nice to have a better explanation of this than
just brute computation.

Taking ψ = IK , PW (eψ) = PW (K) and the proposition shows that the
Bergman kernel at the origin for the classical Paley-Wiener space PW (K)
is |K|. This was the starting point for Nazarov. However, one cannot work
directly in PW (K), since it is difficult to construct functions in that space,
by methods like Hörmander’s L2-estimates. Therefore Nazarov works instead
with ψ = φ̃, where φ is an indicator function. This is a Bergman space, and
Hörmander-type methods can be applied. He then uses Rothaus’ variant of
Proposition 3.2 that we discussed above, for the special case when φ = IK is
the indicator of a convex body.

4. Estimates from above of the Bergman kernel

Following Nazarov, we next give an estimate from above of the Bergman
kernel, with the difference that we work with convex functions instead of
convex bodies (see also [7]). In the next theorem we take the weight to be
2φ(x) instead of φ(x). This fits better with Theorem 1.1, and is also more
convenient in the estimate from above.
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Theorem 4.1. Let B be the (diagonal) Bergman kernel for the space
A2(e−2φ(x)). Assume φ is convex and symmetric around the origin. Then

(4.1) B(0) ≤ π−n

∫
e−φ∗

∫
e−φ

,

where φ∗ is the Legendre transform of φ.

Proof. Let Φ = 2φ. By Proposition 3.1

(4.2) B(0) = (2π)−n
∫

e−Φ̃,

where
eΦ̃(t) =

∫
e2t·x−Φ(x)dx.

Changing variables we get

eΦ̃(t) = 2−n
∫

et·x−Φ(x/2)dx.

Let x = y + ξ where y is constant and ξ is a new variable in the integral. By
convexity,

Φ((y + ξ)/2) ≤ (Φ(y) + Φ(ξ))/2 = φ(x) + φ(ξ),

so

eΦ̃(t) ≥ 2−net·y−φ(y)
∫

et·ξ−φ(ξ)dξ.

Since φ is symmetric, the gradient with respect to t of the integral in the
right hans side vanishes for t = 0, so this is a minimum point for the function
defined by the integral:

∫
et·ξ−φ(ξ)dξ ≥

∫
e−φ(ξ)dξ.

Taking the supremum over all y we get

eΦ̃(t) ≥ 2−neφ
∗(t)

∫
e−φdx.

Inserting this in formula (4.2) we get (4.1).

We can now combine this with Corollary 1.2 (with φ1 = φ2 = φ):
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Theorem 4.2. If φ is a symmetric convex function

C−nπn ≤
∫

e−φ
∫

e−φ∗

where C is given in Theorem 1.1. If φ is homogenous of order 2, we can take
C = 2.

This estimate is not optimal. The theorem of Kuperberg, [8] suggests that
one can remove the factor C−n, see [1] for a proof of this. The function version
of Mahler’s conjecture says that one can take the left hand side equal to 4n.

5. Convex bodies and numerical values

In this section we translate Theorem 4.2 to an estimate for volumes of convex
bodies and compare the result obtained to earlier results.

Take φ∗ = IK , the indicator function of a symmetric convex body K.
Then φ = hK , the support function of K. Hence

∫
e−φ(t) =

∫
Rn

dt

∫ ∞

hK(t)
e−sds =

∫ ∞

0
e−s

∫
hK(t)<s

dt =

|K◦|
∫ ∞

0
sne−sds = n!|K◦|,

since sK◦ = {hK < s}.
Hence Theorem 4.2 gives the inequality

|K||K◦| ≥ C−nπn/n!,

which is worse than Kuperberg’s estimate by a factor C−n, C = 1.604.
Nazarov’s estimate corresponds to C = (4/π)2, which is roughly 1.62. Thus
our estimate is better than Nazarov’s, but not by much.
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