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Abstract: In this note, under the positivity assumption of the
pseudohermitian curvature, we derive the existence theorem for
pseudo-Einstein contact forms and rigidity theorems for Sasakian
space forms in a closed spherical strictly pseudoconvex CR 3-
manifold of the nonnegative CR Paneitz operator with a kernel con-
sisting of the CR pluriharmonic functions and the CR Q-curvature
is pluriharmonic.
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1. Introduction

A Riemannian manifold is Einstein if the Ricci curvature tensor is function-
proportional to its Riemannian metric. For dimension greater than 2, it is
equivalent to the constant-proportional case. In contrast to the Riemannian
geometry situation, there is an analog notion that a strictly pseudoconvex
CR (2n+ 1)-manifold is pseudo-Einstein if the pseudohermitian Ricci curva-
ture tensor is function-proportional to its Levi metric. The pseudo-Einstein
condition is less rigid than the Einstein condition in Riemannian geometry.
Indeed, in the case n ≥ 2, the CR contracted Bianchi identity does not imply
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the pseudohermitian scalar curvature R to be a constant due to the presence
of pseudohermitian torsion

Rαβ,β = Rα − i(n− 1)Aαβ,β .

Any contact form on a closed strictly pseudoconvex 3-manifold is actually
pseudo-Einstein since the pseudohermitian Ricci tensor has only one compo-
nent R11.

In [Lee88], J. Lee showed that the obstruction to the existence of a
pseudo-Einstein contact form θ is that its first Chern class c1(T1,0M) van-
ishes. Indeed, for a closed strictly pseudoconvex (2n + 1)-manifold (M,J, θ)
with c1(T1,0M) = 0 and n ≥ 2, he proved that M admits a globally de-
fined pseudo-Einstein contact form if either M admits a contact form θ with
nonnegative pseudohermitian Ricci curvature tensor or the vanishing pseudo-
hermitian torsion. However, his method couldn’t be applied to the case n = 1
directly.

So it is natural to focus on the existence theorem of pseudo-Einstein con-
tact forms for n = 1. Of course, we must find another appropriate definition
for the pseudo-Einstein contact form. In fact, by Lemma 2.2 below, it is rea-
sonable to view

W1 � (R,1 −iA11,1 ) = 0
as the pseudo-Einstein contact form in a closed strictly pseudoconvex CR
3-manifold (M,J, θ).

Before we start to work on the existence of pseudo-Einstein contact forms
in a closed strictly pseudoconvex CR 3-manifold, we make the following ob-
servations in a closed strictly pseudoconvex CR (2n+1)-manifold (M,J) with
a choice of pseudohermitian contact form θ.

(i) For n ≥ 2: Assume that the pseudohermitian Ricci curvature is pos-
itive, it is well-known ([K64], [Lee88]) that we have the solvability of the
inhomogeneous tangential Cauchy-Riemann equation

(1.1a) ∂bϕ = η

for any ∂b-closed (0, 1)-form η. That is to say that

H0,1
∂b

(M) = 0.

(ii) For n = 1: We consider a closed strictly pseudoconvex CR 3-manifold
(M, θ) with c1(T1,0M) = 0. There is a pure imaginary 1-form

(1.2) σ = σ1θ
1 − σ1θ

1 + iσ0θ
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such that
dω1

1 = dσ.

Kohn’s result (Lemma 3.2 below) implies that there is a complex function

ϕ = u + iv ∈ C∞
C (M)

and γ = γ1θ
1 ∈ Ω0,1 (M) ∩ ker (�b) such that

(1.3) ∂bϕ = σ1θ
1 − γ1θ

1

with
∂b(σ1θ

1) = 0.

Here �b = 2
(
∂b∂

∗
b + ∂

∗
b∂b

)
is the Kohn-Rossi Laplacian. Thus it is natural

to ask when we have the solvability of the inhomogeneous tangential Cauchy-
Riemann equation (i.e. γ = 0)

(1.4) ∂bϕ = σ1θ
1.

In this paper, we focus on the existence of pseudo-Einstein contact forms
as in Corollary 1.1, Theorem 1.2 and Theorem 1.4, an upper bound eigenvalue
estimate for the CR Paneitz operator as in Theorem 1.3, Corollary 1.3 and
its applications to the CR rigidity theorem for Sasakian space forms as in
Corollary 1.3 and Corollary 1.4 in a closed spherical, strictly pseudoconvex
CR 3-manifold.

We first state one of the main theorems as follows:

Theorem 1.1. If (M,J, θ) is a closed strictly pseudoconvex CR 3-manifold
with c1(T1,0M) = 0. Then

(i) θ̃ = e
(f+2u)

3 θ is a pseudo-Einstein contact form if and only if f satisfies
the third-order partial differential equation

(1.5) P1f = i (A11γ1 − γ1,0) .

Here P1 is a third-order CR pluriharmonic operator

P1f = f111 + iA11f1.

(ii) In particular, θ̃ = e
(f+2u)

3 θ is a pseudo-Einstein contact form for a CR-
pluriharmonic function f if and only if the equality holds:

(1.6) (A11γ1 − γ1,0) = 0.
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As a consequence, we are able to show that one of the existence theorems
for the pseudo-Einstein contact form in this paper.

Corollary 1.1. Let (M,J, θ) be a closed strictly pseudoconvex CR 3-manifold
with c1(T1,0M) = 0. Then M admits a globally defined pseudo-Einstein con-
tact form e

(f+2u)
3 θ for any CR-pluriharmonic function f if the pseudohermi-

tian torsion is vanishing (Sasakian). More precisely, we have

γ1,0 = 0.

Note that we do not know whether γ = 0 holds in the situation as in Corol-
lary 1.1. However, by deriving the Bochner-type estimate as in the Lemma
3.4, we can conclude

γ = 0

under certain pseudohermitian geometric assumptions and obtain the solv-
ability of the inhomogeneous tangential Cauchy-Riemann equation (1.4):

Theorem 1.2. Let (M,J, θ) be a closed strictly pseudoconvex CR 3-manifold
with c1(T1,0M) = 0 and nonnegative CR Paneitz operator P0. Assume that
the pseudohermitian curvature is 1

2 -positive

R(x) > |A11|(x)

for all x ∈ M . Then θ̃ = e
(f+2u)

3 θ is a pseudo-Einstein contact form for any
CR-pluriharmonic function f if and only if the inhomogeneous tangential
Cauchy-Riemann equation (1.4) is solvable.

We observe that, for a strictly pseudoconvex 3-manifold (M3, J, θ), we
have the invariance property for the CR pluriharmonic operator P1 and CR
Paneitz operator P0. It is to say that, for rescaled contact form θ̃ = e2gθ, we
have

(1.7) P̃1 = e−3gP1 and P̃0 = e−4gP0.

Then the nonnegativity of CR Paneitz operator P0 is CR conformal invari-
ant ([H93]). Since the CR Paneitz operator P0 is nonnegative ([CCC07]) if
the pseudohermitian torsion is vanishing, it follows from Theorem 1.2 and
Corollary 1.1 that



Vanishing theorem of Kohn-Rossi cohomology class 415

Corollary 1.2. Let (M,J, θ) be a closed strictly pseudoconvex CR 3-manifold
with c1(T1,0M) = 0. Assume that the manifold is Sasakian and the Tanaka-
Webster scalar curvature is positive. Then we have the solvability of the in-
homogeneous tangential Cauchy-Riemann equation (1.4). That is to say that
the Kohn–Rossi cohomology class of σ1θ

1 is vanishing.

When the torsion is nonvanishing, with the help of the notion of C0-
convexity, we have the eigenvalue estimate for the CR Paneitz operator P0 in
terms of the CR Q-curvature.

Theorem 1.3. Let (M,J, θ) be a closed strictly pseudoconvex CR 3-manifold
of c1(T1,0M) = 0 and the nonnegative CR Paneitz operator P0 has kernel con-
sisting of the CR pluriharmonic functions. Assume that the pseudohermitian
curvature is 1

2 -positive
R(x) > |A11|(x)

and A11,1(x) = 0 for all x ∈ M . If θ̃ = e
(f+2u)

3 θ is a pseudo-Einstein contact
form for any CR-pluriharmonic function f , then one can derive the upper
bound estimate for the first eigenvalue of the CR Paneitz operator P0

(1.8) Λ2
∫
M

(u⊥)2dμ ≤
∫
M

(Q⊥)2dμ,

where the decomposition Q = Qker + Q⊥ and u = uker + u⊥ is with respect to
the CR Paneitz operator P0. Here Λ is the positive constant as in (2.4).

For a closed strictly pseudoconvex CR 3-manifold of vanishing pseudo-
hermitian torsion (Sasakian), we have

(1.9) kerP1 = kerP0.

In general, we only have kerP1 � kerP0. Then combining Theorem 1.3, Corol-
lary 1.2 and (3.2), we have the following CR rigidity theorem ([T69]) in a
Sasakian manifold due to the eigenvalue estimate of the CR Paneitz operator
(1.8).

Corollary 1.3. Let (M,J, θ) be a closed, strictly pseudoconvex CR 3-manifold
with c1(T1,0M) = 0. Assume that the manifold is Sasakian and the Tanaka-
Webster scalar curvature is positive, then

Λ2
∫
M

(u⊥)2dμ ≤
∫
M

(Q⊥)2dμ.
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In additional, if the CR Q-curvature is pluriharmonic (i.e. Q⊥ = 0), then
(M,J, θ) is the Sasakian space form with the positive constant Tanaka-Webster
scalar curvature and vanishing torsion.

We observe that any compact simply connect Sasakian 3-manifold with
the positive Tanaka-Webster scalar curvature is diffeomorphic to the sphere
S3. This result was proved by Belgun ([B00]) as a part of the classification
of three dimensional Sasakian manifolds. Also we refer to [HS16] for higher
dimensional Sasakian manifolds.

Finally, if we do not assume the torsion is vanishing (non-Sasakian), we
can derive another existence theorem for the pseudo-Einstein contact form
with the stronger condition.

Theorem 1.4. Let (M,J, θ) be a closed strictly pseudoconvex CR 3-manifold
with c1(T1,0M) = 0 and the nonnegative CR Paneitz operator P0 has kernel
consisting of the CR pluriharmonic functions. Assume that the pseudohermi-
tian curvature is 1

2 -positive

R(x) > |A11|(x)

and A11,1(x) = 0 for all x ∈ M . If the CR Q-curvature is pluriharmonic, then

γ = 0.

Hence θ̃ = e
(f+2u)

3 θ is a pseudo-Einstein contact form for any CR-plurihar-
monic function f .

As a consequence of Theorem 1.4, we have the another CR rigidity theo-
rem for Sasakian space forms ([T69]) in a spherical CR 3-manifold.

Corollary 1.4. Let (M,J, θ) be a closed spherical strictly pseudoconvex CR
3-manifold of c1(T1,0M) = 0 and the pluriharmonic CR Q-curvature. Assume
that the CR Paneitz operator P0 is nonnegative with kernel consisting of the
CR pluriharmonic functions and the pseudohermitian curvature is 1

2 -positive

R(x) > |A11|(x)

with A11,1(x) = 0 for all x ∈ M . Then (M,J, θ) is the Sasakian space form.

We conclude the introduction with the outline of the paper. In Section 2,
we derive some preliminary results and indicate the geometry and topology
of CR 3-manifolds with the positivity of pseudohermitian curvature. In Sec-
tion 3, we prove main Theorems such as Theorem 1.3 and Corollary 1.4. In
Appendix, we survey basic notions in the pseudohermitian (strictly pseudo-
convex CR) geometry.
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2. Preliminaries

In this section, we will derive some necessary ingredients for the proof of
main results. In particular, we define the positivity of pseudohermitian cur-
vature and indicate the geometry and topology of strictly pseudoconvex CR
3-manifolds.

Definition 2.1. We say that a strictly pseudoconvex CR 3-manifolds is C0-
convex if the pseudohermitian curvature is C0-positive, for a positive constant
C0. That is

(2.1) (R− C0Tor)(X,X) = Rx1x1̄ − 2C0Re[i(A1̄1̄x
1̄x1̄)] > 0

for any X = x1Z1 ∈ T1,0(M).

Before giving the proof of Theorem 1.3, we explain why we introduce the
notion of C0-convexity as follows:

Lemma 2.1 ([CaCC20]). Let M be a closed strictly pseudoconvex CR 3-
manifold. For any nonnegative constant C0, C0-convexity is equivalent to the
curvature-torsion pinching condition

R(x) > 2C0|A11|(x)

for all x ∈ M . Moreover, if M is C0-positive with C0 ≥ 1
2 , then M admits a

Riemannian metric of positive scalar curvature. In particular, it is the case if

R(x) > |A11|(x).

Definition 2.2 ([Lee88]). (i) A contact form θ on a closed strictly pseudo-
convex CR (2n + 1)-manifold (M, θ) is said to be pseudo-Einstein for n ≥ 2
if the pseudohermitian Ricci tensor Rαβ is proportional to the Levi form hαβ,
i.e.,

Rαβ = R

n
hαβ ,

where R = hαβRαβ is the Tanaka-Webster scalar curvature of (J, θ).
(ii) (Lemma 2.2) Note that any contact form on a closed strictly pseu-

doconvex 3-manifold is actually pseudo-Einstein (since the pseudohermitian
Ricci tensor has only one component R11). Then we define a contact form θ
on a closed strictly pseudoconvex CR 3-manifold (M, θ) to be pseudo-Einstein
if the following tensor is vanishing

W1 �
(
R1 − iA11,1

)
= 0.
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(iii) We define the first Chern class c1(T1,0M) ∈ H2(M,R) for the holomor-
phic tangent bundle T 1,0M by

c1(T 1,0M) = i

2π [dωα
α]

= i

2π [Rαβθ
α ∧ θβ + Aαμ,αθ

μ ∧ θ − Aαμ,αθ
μ ∧ θ].

(iv) Note that any pseudo-Einstein manifold (M2n+1, θ), the first Chern class
c1(T1,0M) of T1,0(M) is vanishing ([Lee88]).

Next let us recall the equivalent definitions of the pseudo-Einsteinian
(2n + 1)-manifold for n ≥ 2 and n = 1 as well.

Lemma 2.2 ([Lee88], [CCKL19]). (i) If (M,J, θ) is a strictly pseudocon-
vex CR (2n + 1)-manifold for n ≥ 2, then the following propositions are all
equivalent:

(1) Rαβ = R
nhαβ ,

(2)
(
ωα
α + i

nRθ
)

is closed,
(3) Wα �

(
R,α−inAαβ,

β
)

= 0.

As for n = 1, we still have the equivalence between (2) and (3).
(ii) By the equivalence of (2) and (3), we see the first Chern class c1(T1,0M)

is vanishing if (M,J, θ) is a pseudo-Einsteinian 3-manifold.

Proof. The equivalence of (1) and (2) could be found in [Lee88] for n ≥ 2. The
proof of (2) ⇐⇒ (3) for n ≥ 2 is the same with n = 1. So, for simplification,
we just give the prove the equivalence of (2) and (3) for n = 1.

Because
dω1

1 = Rθ1 ∧ θ1 + A11,1θ
1 ∧ θ − A11,1θ

1 ∧ θ,

we have

d
(
ω1

1 + iRθ
)

= dω1
1 + i

(
R,1θ

1 + R,1θ
1
)
∧ θ −Rθ1 ∧ θ1

= i
[(
R,1 − iA11,1

)
θ1 +

(
R,1 + iA11,1

)
θ1
]
∧ θ

.

Hence
d
(
ω1

1 + iRθ
)

= 0 ⇐⇒ R,1 − iA11,1 = 0.

We recall some useful notations.
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Definition 2.3 ([Lee88]). (i) Let (M,J, θ) be a three-dimensional strictly
pseudoconvex CR manifold. We define

Pϕ = (P1ϕ)θ1,

which is an operator that characterizes CR-pluriharmonic functions. Here
P1ϕ = ϕ1̄

1̄
1 + iA11ϕ

1 and Pϕ = (P 1)θ1̄, the conjugate of P . The CR Paneitz
operator P0 is defined by

(2.2) P0ϕ =
(
δb(Pϕ) + δb(Pϕ)

)
where δb is the divergence operator that takes (1, 0)-forms to functions by
δb(σ1θ

1) = σ1,
1 and, similarly, δ̄b(σ1̄θ

1̄) = σ1̄,
1̄. We observe that

(2.3)
∫
M
〈Pϕ + Pϕ, dbϕ〉L∗

θ
dμ = −

∫
M

P0ϕ · ϕ dμ

with dμ = θ ∧ dθ. One can check that P0 is self-adjoint, that is, 〈P0ϕ, ψ〉 =
〈ϕ, P0ψ〉 for all smooth functions ϕ and ψ. For the details about these oper-
ators, the reader can make references to [GL88], [H93], [Lee88], [GG05] and
[FH03].

(ii) On a complete pseudohermitian 3-manifold (M,J, θ), we call the
Paneitz operator P0 with respect to (J, θ) essentially positive if there exists
a constant Λ > 0 such that

(2.4)
∫
M

P0ϕ · ϕdμ ≥ Λ
∫
M

ϕ2dμ

for all real smooth functions ϕ ∈ (kerP0)⊥ (i.e. perpendicular to the kernel
of P0 in the L2 norm with respect to the volume form dμ = θ ∧ dθ). We say
that P0 is nonnegative if ∫

M
P0ϕ · ϕdμ ≥ 0

for all real smooth functions ϕ.

Remark 2.1. 1. The notions of Paneitz operator P0 and Q-curvature were
initially introduced on a Riemannian manifold, and were considered as a kind
of generalization of Laplacian and Gaussian curvature on a two-dimensional
manifold, respectively ([H93]).

2. The kernel of the CR Paneitz operator P0 is infinite dimensional, con-
taining all CR-pluriharmonic functions.
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3. Let (M,J, θ) be a closed strictly pseudoconvex 3-manifold with vanish-
ing pseudohermitian torsion. Then the corresponding CR Paneitz operator
P0 is essentially positive ([CCC07]).

Finally, we define the CR Q-curvature in a pseudohermitian 3-manifold
by

(2.5) Q := −Re(R,1 − iA11,1̄)1̄ = −Re(R,11̄ − iA11,1̄1̄).

Then

Q = −1
2[ΔbR− i(A11,1̄1̄ − A1̄1̄,11)].

Now for θ = e2γθ0, under this conformal change, it is known that we have the
following transformation laws ([H93]):

(2.6) Q = e−4γ(Q0 + 3
4P0γ)

and

(2.7) W1 := (R,1 − iA11,1̄ ) = e−3γ [
0
R,1 − i

0
A11,1̄ − 6

0
P 1γ],

Finally, we recall that

Definition 2.4. We call a CR structure J spherical if Cartan curvature ten-
sor Q11 vanishes identically. Here

Q11 = 1
6R11 + i

2RA11 − A11,0 −
2i
3 A11,

_
11.

Note that (M,J, θ) is called a spherical CR 3-manifold if J is a spherical
structure. We observe that the spherical structure is CR invariant and a closed
spherical CR 3-manifold (M,J, θ) is locally CR equivalent to the standard CR
3-sphere (S3, Ĵ , θ̂). In additional, if M is simply connected, then (M,J, θ) is
the standard CR 3-sphere.

3. Proofs of main theorems

In this section, we prove the main theorems. We start from the groundwork
for Theorem 1.1.



Vanishing theorem of Kohn-Rossi cohomology class 421

Lemma 3.1. If (M,J, θ) is a closed strictly pseudoconvex 3-manifold with
c1(T1,0M) = 0, then there is a pure imaginary 1-form

σ = σ1θ
1 − σ1θ

1 + iσ0θ

with dω1
1 = dσ such that

(3.1)
{

R = R11 = σ1,1 + σ1,1 − σ0
A11,1 = σ1,0 + iσ0,1 − A11σ1

.

Proof. Because

c1(T1,0M) = − 1
2πi

[
dω1

1

]
= 0,

we know there is a pure imaginary 1-form

σ = σ1θ
1 − σ1θ

1 + iσ0θ

such that
dω1

1 = dσ.

By the structure equation{
dθ = iθ1 ∧ θ1

dθ1 = A11θ ∧ θ1 ,

we have

dσ =
(
σ1,1θ

1 + σ1,0θ
)
∧ θ1 + σ1dθ

1 −
(
σ1,1θ

1 + σ1,0θ
)
∧ θ1−

σ1dθ
1 + i

(
σ0,1θ

1 + σ0,1θ
1
)
∧ θ + iσ0dθ

=
(
σ1,1 + σ1,1 − σ0

)
θ1 ∧ θ1 − (σ1,0 + iσ0,1 − σ1A11) θ ∧ θ1+(

σ1,0 − iσ0,1 − σ1A11

)
θ ∧ θ1.

.

Due to

dσ = dω1
1 = R11θ

1 ∧ θ1 + A11,1θ
1 ∧ θ − A11,1θ

1 ∧ θ,

we derive {
R = R11 = σ1,1 + σ1,1 − σ0
A11,1 = σ1,0 + iσ0,1 − A11σ1

.
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We would need need the J.J. Kohn’s Hodge theory for the ∂b complex
(see [K64]):

Lemma 3.2. If (M,J, θ) is a closed strictly pseudoconvex CR (2n + 1)-
manifold and η ∈ Ω0,1 (M), a smooth (0, 1)-form on M with

∂bη = 0,

then there are a smooth complex function ϕ ∈ C∞
C

(M) and a smooth (0, 1)-
form γ ∈ Ω0,1 (M) such that(

η − ∂bϕ
)

= γ ∈ ker (�b) ,

where �b = 2
(
∂b∂

∗
b + ∂

∗
b∂b

)
is the Kohn-Rossi Laplacian.

Subsequently, we deduce the expression for W1. We denote γ1 := γ1.

Lemma 3.3. If (M,J, θ) is a closed strictly pseudoconvex CR 3-manifold
with c1(T1,0M) = 0, then there are u ∈ C∞

R
(M) and γ = γ1θ

1 ∈ Ω0,1 (M)
with

γ1,1 = γ1,1 = 0
such that

(3.2) W1 = 2P1u + i (A11γ1 − γ1,0) .

Proof. By choosing η = σ1θ
1 as in Lemma 3.2, where σ is chosen from Lemma

3.1, there are
ϕ = u + iv ∈ C∞

C (M)
and

γ = γ1θ
1 ∈ Ω0,1 (M) ∩ ker (�b)

such that

(3.3) σ1 = ϕ1 + γ1

Note that

(3.4) �bγ = 0 =⇒ ∂
∗
bγ = 0 =⇒ γ1,1 = 0

and

(3.5) σ1 = (ϕ)1 + γ1.
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Thus

σ1,11 = (ϕ),111 + γ1,11 by (3.5)
= (ϕ),111 by (3.4)
= (ϕ),111 + i(ϕ),01 by (A.5)
= (ϕ),111 + i

[
(ϕ),10 + A11(ϕ),1

]
by (A.5)

and
σ1,11 = ϕ,111 from (3.3) and (3.4)

imply

W1 = R,1 − iA11,1
= σ1,11 + σ1,11 − iσ1,0 + iA11σ1 by (3.1)
= ϕ,111 + (ϕ),111 + iA11(ϕ),1 − iγ1,0 + iA11 (ϕ1 + γ1)
= 2

(
u,111 + iA11u1

)
+ i (A11γ1 − γ1,0)

= 2P1u + i (A11γ1 − γ1,0)

.

This completes the proof.

Now we are ready to give the proof of Theorem 1.1:

Proof. (Proof of Theorem 1.1) Set

θ̃ = e2λθ.

By the transformation law (refer to Lemma 5.4 in [H93] or Lemma 3.1 in
[CW18]), we know

(3.6) W̃1 = e−3λ (W1 − 6P1λ) ,

where the notation with “tilde” means such quantity corresponds to the new
contact form θ̃. With the help of (3.6) and Lemma 3.3, we have

W̃1 = 0

if and only if
W1 = 6P1λ

if and only if
6P1λ = 2P1u + i (A11γ1 − γ1,0) .
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That is to say
P1f = i (A11γ1 − γ1,0)

for
f = (6λ− 2u) .

Remark 3.1. From (1.5) and

γ1,01 = γ1,10 + A11γ1,1 + A11,1γ1 = A11γ1,1 + A11,1γ1,

we could deduce f satisfies the fourth-order partial differential equation

(3.7) P0f = 2i
[
(A11γ1),1 − (A11γ1),1

]
where P0 is the CR Paneitz operator (see section 2). This suggests us there
is an obstruction to the existence of pseudo-Einstein contact form pertaining
to the CR Paneitz operator. See Theorem 1.2 below for more details.

As for the proof of the case of vanishing pseudohermitian torsion:

Proof. (Proof of Corollary 1.1)
Setting A11 = 0 in (1.6), by Theorem 1.1, it suffices to show that

γ1,0 = 0

in order to have a globally defined pseudo-Einstein contact form θ̃ = e
(f+2u)

3 θ.
Note that, from (3.2) and A11 = 0,

(3.8) R,1 = 2u111 − iγ1,0.

Utilizing integration by parts, it follows from (3.8) and γ1,1 = 0 that

0 ≤
∫
M |γ1,0|2 dμ

= −
∫
M γ1γ1,00dμ

= −
∫
M γ1

(
−iR,1 + 2iu,111

)
,0
dμ

= i
∫
M γ1

(
R,0 − 2u,110

)
,1
dμ

= −i
∫
M γ1,1

(
R,0 − 2u,110

)
dμ

= 0.

.
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The third equality comes from (A.5) and A11 = 0. Then

γ1,0 = 0.

Before giving the proof of Theorem 1.2, we need the following Bochner-
type equality.

Lemma 3.4. Let (M,J, θ) be a closed strictly pseudoconvex CR 3-manifold
and θ̃ = e

(f+2u)
3 θ is a pseudo-Einstein contact form. Then we have

(3.9)
∫
M

(2R− Tor) (γ, γ) dμ + 2
∫
M

|γ1,1|2 dμ + 1
2

∫
M

(P0f) fdμ = 0.

Proof. From Theorem 1.1 and the commutation formula, it follows that

θ̃ = e
(f+2u)

3 θ

is a pseudo-Einstein contact form if and only if

(3.10) P1f = iA11γ1 + Rγ1 − γ1,11.

By the fact that γ1,1 = 0, it’s easy to see∫
M

(P1f) γ1dμ =
∫
M

(f111 + iA11f1) γ1dμ = i

∫
M

A11f1γ1dμ.

Then, substituting (3.10) into the last equality and adding its conjugation,
we have

(3.11) −
∫
M

Tor (dbf, γ) dμ =
∫
M

(2R− Tor) (γ, γ) dμ + 2
∫
M

|γ1,1|2 dμ.

On the other hand, the equality (3.10) and the commutation formulas
enable us to get∫

M (P1f) f1dμ =
∫
M (iA11γ1 + Rγ1) f1dμ−

∫
M γ1f111dμ

=
∫
M (iA11γ1 + Rγ1) f1dμ

+
∫
M γ1 (−f111 + if10 −Rγ1f1) dμ

=
∫
M iA11γ1f1dμ +

∫
M γ1 (−f111 + if10) dμ

=
∫
M iA11γ1f1dμ +

∫
M γ1 (−f111 + if01 − iA11f1) dμ

= i
∫
M (A11γ1f1 − A11γ1f1) dμ

= −
∫
M Tor (dbf, γ) dμ.
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By the definition of the CR Paneitz operator, we obtain
(3.12)∫

M
(P0f) fdμ = −

∫
M

((P1f) f1 + (P1f) f1) dμ = 2
∫
M

Tor (dbf, γ) dμ

Therefore, it follows from the equalities (3.11) and (3.12) that∫
M

(2R− Tor) (γ, γ) dμ + 2
∫
M

|γ1,1|2 dμ + 1
2

∫
M

(P0f) fdμ = 0.

Then we are done.

Such equality enables us to prove Theorem 1.2 as follows:

Proof. (Proof of Theorem 1.2) From the equality (3.9) and the hypotheses,
it is clear that if θ̃ = e

(f+2u)
3 θ is a pseudo-Einstein contact form, then

γ = 0.

Hence we can solve the inhomogeneous tangential Cauchy-Riemann equation

∂bϕ = σ1θ
1

by Lemma 3.2. Note that this implicitly implies f is CR-pluriharmonic. So
the sufficient part is completed.

As for the necessary part, it’s obvious from Theorem 1.1.

Before to go further, we need the following key lemma.

Lemma 3.5. Let (M,J, θ) be a closed strictly pseudoconvex CR 3-manifold
with c1(T1,0M) = 0. Then, with the notations as above, the following equality
holds

(3.13)
∫
M

(
R− 1

2Tor −
1
2Tor

′) (γ, γ) dμ +
∫
M |γ1,1|2 dμ+∫

M Qudμ +
∫
M

(
P0u

⊥)u⊥dμ = 0.

Here Tor′ (γ, γ) := −i
(
A11,1γ1 − A11,1γ1

)
.

Proof. From the equality (3.2), we are able to get(
R,1 − iA11,1

)
γ1 = W1γ1

= 2 (u111 + iA11u1) γ1 + iA11γ1γ1 − iγ1,0γ1
= 2 (u111 + iA11u1) γ1 + iA11γ1γ1 −

(
γ1,11 −Rγ1

)
γ1.
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Taking the integration over M of both sides and its conjugation, we have,
by the fact that γ1,1 = 0,

i
∫
M

(
A11,1γ1 − A11,1γ1

)
dμ +

∫
M (2R− Tor) (γ, γ) dμ+

2
∫
M |γ1,1|2 dμ− 2

∫
M Tor (dbu, γ) dμ = 0.

That is
(3.14)∫

M

(
R− 1

2Tor −
1
2Tor

′
)

(γ, γ) dμ +
∫
M

|γ1,1|2 dμ−
∫
M

Tor (dbu, γ) dμ = 0.

On the other hand, it follows from the equality (3.2) that

(3.15) (R,1 −iA11,1 ) u1 = W1u1 = [2P1u + i (A11γ1 − γ1,0)]u1.

By the fact that γ1,1 = 0, we see that

(3.16)

∫
M γ1,0u1dμ =

∫
M γ1u10dμ

= −
∫
M γ1 (u01 − A11u1) dμ

=
∫
M A11u1γ1dμ.

It follows from (3.15) and (3.16) that

2
∫
M Qudμ + 2

∫
M (P0u) udμ

= i
∫
M [(A11u1γ1 − A11u1γ1) − conj] dμ

= −2
∫
M Tor (dbu, γ) dμ.

Thus by (3.14)∫
M

(
R− 1

2Tor −
1
2Tor

′) (γ, γ) dμ +
∫
M |γ1,1|2 dμ+∫

M Qudμ +
∫
M

(
P0u

⊥)u⊥dμ = 0.

Proof. (proof of Theorem 1.3 and Corollary 1.3) If we assume that

kerP1 = kerP0.

Then we also have

(3.17) 0 =
∫
M

(
R− 1

2Tor −
1
2Tor

′) (γ, γ) dμ +
∫
M |γ1,1|2 dμ+∫

M Qu⊥dμ +
∫
M

(
P0u

⊥)u⊥dμ.
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Here we have used the fact that P0 is self-adjoint and∫
M

Tor (dbuker, γ) dμ = 0.

Now if θ̃ = e
(f+2u)

3 θ is a pseudo-Einstein contact form for any CR-plurihar-
monic function f , it follows from (3.9) that

γ = 0

and then

0 =
∫
M

Qu⊥dμ +
∫
M

(
P0u

⊥
)
u⊥dμ =

∫
M

Q⊥u⊥dμ +
∫
M

(
P0u

⊥
)
u⊥dμ.

By the Hölder’s inequality and essentially positivity of the CR Paneitz oper-
ator, we have ∫

M Q⊥u⊥dμ +
∫
M

(
P0u

⊥)u⊥dμ
≥ Λ

∫
M (u⊥)2dμ− (

∫
M (Q⊥)2dμ) 1

2 )(
∫
M (u⊥)2dμ) 1

2

≥ [Λ(
∫
M (u⊥)2dμ) 1

2 − (
∫
M (Q⊥)2dμ) 1

2 ](
∫
M (u⊥)2dμ) 1

2

and then
0 ≥ Λ(

∫
M

(u⊥)2dμ)
1
2 − (

∫
M

(Q⊥)2dμ)
1
2 .

Hence ∫
M

(Q⊥)2dμ ≥ Λ2
∫
M

(u⊥)2dμ.

Furthermore, if the CR Q-curvature is pluriharmonic (i.e. Q⊥ = 0), then

u⊥ = 0

and by (3.2)
W1 = 0.

Hence θ is also a globally defined pseudo-Einstein contact form. Moreover, if
the pseudohermitian torsion is vanishing, then (M,J, θ) is the Sasakian space
form.

Proof. (proof of Theorem 1.4 and Corollary 1.4) As before∫
M Qu⊥dμ +

∫
M

(
P0u

⊥)u⊥dμ =
∫
M Q⊥u⊥dμ +

∫
M

(
P0u

⊥) u⊥dμ
≥ Λ

∫
M (u⊥)2dμ

≥ 0
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if

(3.18) Q⊥ = 0.

It follows from (3.17) that

(3.19) 0 ≥
∫
M

(
R− 1

2Tor −
1
2Tor

′
)

(γ, γ) dμ +
∫
M

|γ1,1|2 dμ,

if (3.18) holds. Hence
γ = 0

if the pseudohermitian curvature is 1
2 -positive and A11,1 = 0. It follows from

Theorem 1.2 that M admits a globally defined pseudo-Einstein contact form
θ̃ = e

(f+2u)
3 θ.

Furthermore, if the CR Q-curvature is pluriharmonic (i.e. Q⊥ = 0), then

u⊥ = 0

and by (3.2),
W1 = 0.

Hence θ is also a globally defined pseudo-Einstein contact form and R is a
positive constant.

Now if (M,J, θ) is spherical and pseudo-Einstein, we have

W1 = R,1 −iA11,1 = 0

and
iR,11 = 3RA11 + 6iA11,0 − 4A11,11.

By cancelling R,11, one derives

3RA11 + 6iA11,0 − 3A11,11 = 0.

On the other hand, it follows from the commutation relation ([Lee88])
that

A11,11 − A11,11 = iA11,0 + 2RA11,

we obtain
−3RA11 + 2A11,11 − 3A11,11 = 0
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and then

−2
∫
M

|A11,1|2 dμ + 3
∫
M

∣∣∣A11,1

∣∣∣2 dμ = 3
∫
M
R |A11|2 dμ.

Hence
−2

∫
M

|A11,1|2 dμ = 3
∫
M
R |A11|2 dμ.

Moreover, since R is a positive constant, then

A11 = 0.

It follows that (M,J, θ) is the Sasakian space form with positive constant
Tanaka-Webster scalar curvature and vanishing pseudohermitian torsion.

Appendix A. Appendix section

In this appendix, we introduce some basic notions from pseudohermitian ge-
ometry as in [Lee88].

Definition A.1. Let M be a smooth manifold and ξ ⊂ TM a subbundle. A
CR structure on ξ consists of an endomorphism J : ξ → ξ with J2 = −id
such that the following integrability condition holds.

1. If X, Y ∈ ξ, then so is [JX, Y ] + [X, JY ].
2. J([JX, Y ] + [X, JY ]) = [JX, JY ] − [X, Y ].

The CR structure J can be extended to ξ ⊗ C, which we can then de-
compose into the direct sum of eigenspaces of J . The eigenvalues of J are i
and −i, and the corresponding eigenspaces will be denoted by T 1,0 and T 0,1,
respectively. The integrability condition can then be reformulated as

X, Y ∈ T 1,0 implies [X, Y ] ∈ T 1,0.

Now consider a closed 2n+1-manifold M with a cooriented contact struc-
ture ξ = ker θ. This means that θ ∧ dθn �= 0. The Reeb vector field of θ is
the vector field T uniquely determined by the equations

(A.1) θ(T ) = 1, and dθ(T, ·) = 0.

A pseudohermitian manifold is a triple (M2n+1, θ, J), where θ is a
contact form on M and J is a CR structure on ker θ. The Levi form 〈 , 〉 is
the Hermitian form on T 1,0 defined by

H(Z,W ) = 〈Z,W 〉 = −i
〈
dθ, Z ∧W

〉
.
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We can extend this Hermitian form 〈 , 〉 to T 0,1 by defining
〈
Z,W

〉
=

〈Z,W 〉 for all Z,W ∈ T 1,0. Furthermore, the Levi form naturally induces a
Hermitian form on the dual bundle of T 1,0, and hence on all induced tensor
bundles.

We now restrict ourselves to strictly pseudoconvex CR manifolds, or
in other words, compatible complex structures J . This means that the Levi
form induces a Hermitian metric 〈·, ·〉J,θ by

〈V, U〉J,θ = dθ(V, JU).

The associated norm is defined as usual: |V |2J,θ = 〈V, V 〉J,θ. It follows that H
also gives rise to a Hermitian metric for T 1,0, and hence we obtain Hermitian
metrics on all induced tensor bundles. By integrating this Hermitian metric
over M with respect to the volume form dμ = θ ∧ dθn, we get an L2-inner
product on the space of sections of each tensor bundle.

The pseudohermitian connection or Tanaka-Webster connection
([Ta75], [We78]) of (J, θ) is the connection ∇ on TM ⊗ C (and extended to
tensors) given in terms of a local frame {Zα} for T 1,0 by

∇Zα = ωα
β ⊗ Zβ , ∇Zᾱ = ωᾱ

β̄ ⊗ Zβ̄ , ∇T = 0,

where ωα
β is the 1-form uniquely determined by the following equations:

dθβ = θα ∧ ωα
β + θ ∧ τβ

τα ∧ θα = 0
ωα

β + ωβ̄
ᾱ = 0.

(A.2)

Here τα is called the pseudohermitian torsion, which we can also write as

τα = Aαβθ
β.

The components Aαβ satisfy

Aαβ = Aβα.

We often consider the torsion tensor given by

AJ,θ = Aα
β̄Zα ⊗ θβ̄ + Aᾱ

βZᾱ ⊗ θβ.
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We now consider the curvature of the Tanaka-Webster connection in terms
of the coframe {θ = θ0, θα, θβ̄}. The second structure equation gives

Ωβ
α = Ωβ̄

ᾱ = dωβ
α − ωβ

γ ∧ ωγ
α,

Ω0
α = Ωα

0 = Ω0
β̄ = Ωβ̄

0 = Ω0
0 = 0.

In [We78, Formulas 1.33 and 1.35], Webster showed that the curvature
Ωβ

α can be written as
(A.3)

Ωβ
α = Rβ

α
ρσ̄θ

ρ ∧ θσ̄ + Wβ
α
ρθ

ρ ∧ θ −Wα
βρ̄θ

ρ̄ ∧ θ + iθβ ∧ τα − iτβ ∧ θα,

where the coefficients satisfy

Rβᾱρσ̄ = Rαβ̄σρ̄ = Rᾱβσ̄ρ = Rρᾱβσ̄, Wβᾱγ = Wγᾱβ .

In addition, by [Lee88, (2.4)] the coefficients Wα
β
ρ are determined by the

torsion,
Wα

β
ρ = Aαρ,

β.

Contraction of (A.3) yields

Ωα
α = dωα

α = Rρσ̄θ
ρ ∧ θσ̄ + Wα

α
ρθ

ρ ∧ θ −Wα
α
ρ̄θ

ρ̄ ∧ θ

= Rρσ̄θ
ρ ∧ θσ̄ + Aαρ

αθρ ∧ θ − Aᾱρ̄
ᾱθρ̄ ∧ θ

(A.4)

We will denote components of covariant derivatives by indices preceded
by a comma. For instance, we write Aαβ,γ . Here the indices {0, α, β̄} indicate
derivatives with respect to {T, Zα, Zβ̄}. For derivatives of a scalar function,
we will often omit the comma. For example, ϕα = Zαϕ, ϕαβ̄ = Zβ̄Zαϕ −
ωα

γ(Zβ̄)Zγϕ, ϕ0 = Tϕ for a (smooth) function ϕ.
In particular, we define the followings for n = 1. For a real function ϕ,

the subgradient ∇b is defined by ∇bϕ ∈ ξ and 〈Z,∇bϕ〉Lθ
= dϕ(Z) for all

vector fields Z tangent to the contact plane. Locally ∇bϕ = ϕ1̄Z1 +ϕ1Z1̄. We
can use the connection to define the subhessian as the complex linear map

(∇H)2ϕ : T1,0 ⊕ T0,1 → T1,0 ⊕ T0,1,

by
(∇H)2ϕ(Z) = ∇Z∇bϕ.

Also
Δbϕ = Tr

(
(∇H)2ϕ

)
= (ϕ11̄ + ϕ1̄1).
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For all Z = x1Z1 ∈ T1,0, we define

Ric(Z,Z) = Wx1x1̄ = W |Z|2Lθ
,

T or(Z,Z) = 2Re iA1̄1̄x
1̄x1̄.

We also need the following commutation relations ([Lee88]).

(A.5)
CI,01 − CI,10 = CI,1A11 − kCI,A11,1,

CI,01 − CI,10 = CI,1A11 − kCI,A11,1,

CI,11 − CI,11 = iCI,0 + kWCI .

Here CI denotes a coefficient of a tensor with multi-index I consisting of only
1 and 1̄, and k is the number of 1’s minus the number of 1̄’s in I.
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