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Optimization results for sphere maps
John P. D’Angelo

Abstract: We prove several optimization results for monomial and
polynomial sphere maps. We formulate two open problems about
the uniquely difficult situation in two dimensions.
Keywords: Optimization, polynomial sphere maps, linear pro-
gramming.

1. Introduction

This paper considers an optimization problem motivated and introduced in
[5]. Consider rational mappings f that send the unit sphere in C

n to the unit
sphere in CN for some N . Our first result is in the monomial case. Given the
degree d, we assume that f includes the monomials zd1 , . . . , z

d
n. We then seek

the minimum and maximum values of ‖f(1)‖2, where 1 = (1, 1, ..., 1), as a
function of d and n. Basic results about this problem were obtained in [5] and
additional results appear in [3]. A detailed account of this problem as part of
the general theory of rational sphere maps will appear in the author’s book
[4]. We review the motivation for these questions in Section 2.

Finding the maximum value for monomial maps is elementary. In all
source dimensions n and degrees d, the maximum value is nd. This value
is achieved by the d-fold tensor product map Hd(z) = z⊗d. It is well-known
that all homogeneous polynomial sphere maps of degree d with linearly inde-
pendent components are unitarily equivalent to Hd. See for example [2]. In
Theorem 5.1 we prove that this map also gives the maximum value of ‖p(1)‖2

in the general polynomial case, where the proof is slightly more subtle.
In Section 6 we note some facts about the rational case. For rational maps,

dimension 1 differs in the following obvious way; the point 1 lies outside the
closed unit ball in dimensions at least 2, but lies on the circle in dimension
1. Hence, in one dimension, ‖f(1)‖2 = 1 for every rational sphere map, and
the optimization problem is not interesting. In dimensions at least 2, for each
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non-zero degree d, there is a rational sphere map of degree d with a singular-
ity at 1. Hence the maximum value of ‖f(1)‖2 does not exist. Furthermore
the noncompactness of the automorphism group of the unit ball also has
consequences for the minimum.

In the monomial case, finding the minimum in source dimension 2 is
extremely difficult. The problem has been coded up to degree 201 and various
results are known, but it is perhaps impossible to write down a general formula
for the minimizer. Section 4 contains some complicated formulas and two open
problems.

In this paper we prove Theorem 1.1, a result that will also appear in the
author’s book [4]. In source dimension 3 and higher (the result also holds in
source dimension 1, where it is trivial), there is a unique explicit monomial
mapping realizing this minimum, and the value of the minimum is the simple
formula n + n(n− 1)(d− 1).

Corollaries 3.1 and 3.2 of Theorem 1.1 give asymptotic results about the
minimum as the degree tends to infinity. Theorem 5.1 and its Corollary 5.1
study the maximum in the more general polynomial case.

It is natural to ask why the case of dimension 2 is both so different and
so difficult. Roughly speaking the reason is the following. For n ≥ 2, consider
the unit sphere S2n−1 ⊆ C

n as a CR manifold. Intersecting the sphere with
a hyperplane defined by setting a variable equal to 0 gives the unit sphere in
one less dimension. If n = 2, then we get the unit circle in C, which is not a
CR manifold. In source dimensions 3 or more, however, the intersection is a
CR manifold. The extra structure then matters in solving a crucial system of
equations.

In order to state Theorem 1.1, we introduce the following set. Let S(n, d)
denote the collection of polynomials p in n real variables x = (x1, ..., xn) such
that

• p : Rn → R is of degree d.
• p has non-negative coefficients.
• p(x) = 1 on the hyperplane given by s(x) =

∑n
j=1 xj = 1.

• For each j, p contains the monomial xdj with coefficient 1.

This set of polynomials is closed in the topology determined by taking
limits of coefficients, and because the coefficients are non-negative, it is also
bounded. Evaluation at a point is continuous, and hence the minimum m(n, d)
and maximum M(n, d) values of p(1) for p ∈ S(n, d) are achieved.

Let f be a polynomial mapping such that f(S2n−1) ⊆ S2N−1. We call f
a polynomial sphere map. When the components of f are single monomials
we call f a monomial sphere map. Let f be a monomial sphere map and put
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p(x) = ‖f(z)‖2. Then p depends only upon the variables x = (|z1|2, ..., |zn|2),
and furthermore,

p(x) = 1 on
∑

xj = 1.

The numbers m(n, d) and M(n, d) therefore give the minimum and maximum
of ‖f(1)‖2 for monomial sphere maps sending S2n−1 into S2N−1. It is natural
to ask how these values depend on the source dimension and the degree.

We remark that ‖f(z)‖2 ≤ 1 for z in the closed unit ball; when n ≥ 2
we are evaluating f at a point outside the sphere. The motivational section
clarifies why we do so.

Theorem 1.1. Suppose p ∈ S(n, d). For all source dimensions n and degrees
d,

1. M(n, d) = nd.
2. m(n, d) ≤ n + n(n− 1)(d− 1).
3. For n �= 2, equality holds in (2).
4. The unique p for which equality holds in dimensions not 2 is given by

p(x) =
n∑

j=1
xdj +

n∑
j=1

(
∑
j �=k

xj)(
d−1∑
l=1

xlk).

In Section 4, for various degree d, we list the polynomial for which m(2, d)
is achieved. We also recall results from [3] in the two dimensional case. The
level of complexity is in stark contrast to the situation in dimensions not
equal to 2. We pose two open problems in this section.

The author wishes to acknowledge Daniel Lichtblau for coding he has
done [11] and for various useful discussions.

2. Motivation

Let V,W be vector spaces and assume T : V → W is a linear map. If w is in
the range of T , then each solution u to Tu = w can be written u = u0 + v,
where u0 is a particular solution and v is an arbitrary element of the null-space
of T . The linear system is called underdetermined when the null-space is non-
trivial. Additional information is required to obtain a unique solution. One
common approach is to work in L2 and find the solution that minimizes the
L2 norm. When T is the Cauchy-Riemann operator ∂ on a smoothly bounded
pseudoconvex domain, the resulting solution is called the Kohn or canonical
solution. It was believed for a long time that this solution would have optimal
regularity properties, but this statement does not hold in general. See [1].
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It is tempting to wonder whether there might be some related minimization
problem that does yield optimal regularity properties. In this paper, however,
we are concerned only with finite dimensional linear systems.

Consider a linear system T (u) = w where T : Rn → R
N . When solving

the system, one can seek to minimize norms such as the L1 or L2 norms.
Assume that the standard bases are used. In compressed sensing, one seeks
a solution u for which the fewest number of components are non-zero. Such
a solution is called sparse, and sparse solutions are particularly important in
signal processing.

The L1-norm of a solution u = (u1, ..., un) is given by ‖u‖1 =
∑n

j=1 |uj |.
A famous theorem of Donoho (See [7]) states for most large linear systems
that a generic solution with minimum L1 norm is also a sparse solution. Least
squares solutions (those with minimal L2 norm) turn out to be less useful in
applications.

We next make the connection to monomial sphere maps. References [3],
[4], [5], [6], [8], [9], [10] for example have made extensive use of studying mono-
mial sphere maps by way of the linear system we next describe. Given a fixed
source dimension and degree, a monomial sphere map can be regarded as the
solution of a certain linear system. Both the L1 norm and the number of terms
in a sparse solution have useful interpretations in CR geometry. The start-
ing point is homogenization. First note that there is a unique homogeneous
polynomial of degree d that is 1 on the hyperplane given by s(x) =

∑
xj = 1,

namely sd.
Next let f : Cn → C

N be a monomial map for which f(S2n−1) ⊆ S2N−1.
If the components of f , in multi-index notation, are Cαz

α, then we have

(1)
∑
α

|Cα|2xα = 1 on s(x) = 1.

Homogenizing this equation leads to an equation that holds everywhere:

(2)
d∑

|α|=0
|Cα|2xαs(x)d−|α| = s(x)d

Fix a degree d. Equate coefficients in (2) to obtain an underdetermined
linear system for the unknown constants |Cα|2; this system determines all
monomial sphere maps of degree at most d. Assume that Cα �= 0 for some
α with |α| = d, in order to guarantee that the solution is of degree pre-
cisely equal to d. Finding the minimum possible target dimension for the
corresponding monomial map is the same as finding a solution for which the
number of non-vanishing components is minimal. Thus the solution is sparse.
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The number of unknowns in the linear system is
(n+d

d

)
, the number of

independent polynomials of degree at most d in n variables. The number of
equations is

(n+d−1
d

)
, the number of independent homogeneous polynomials of

degree d in n variables. For example, when n = 2, there are 1+2+ ...+d+1 =
(d+1)(d+2)

2 unknowns and d + 1 equations.
For us, the L1 norm is the value of a function at a certain point, and the

number of terms in a sparse solution is the minimum target dimension for
the monomial sphere map. Corollary 3.2 of Theorem 1.1 yields an asymptotic
relationship between these problems as the degree tends to infinity. See [5]
and [3] for details, based upon the degree bounds from [6] and [10].

For a polynomial p to lie in S(n, d), it must correspond to the squared
norm of a monomial sphere map of degree d where an additional assumption
holds. The assumption that p contains the specific monomials xdj with coeffi-
cient 1 has two significant effects. First, it forces S(n, d) to be compact, and
hence the minimum and maximum values are attained. Second, it decreases
the number of unknowns.

We interpret these statements in two real dimensions. Imagine a polyno-
mial p(x, y) of degree d with non-negative coefficients that equals 1 on the
line segment (t, 1 − t) for 0 ≤ t ≤ 1. What is the smallest possible value of
p(1, 1)? The infimum value is 1, but this value is not achieved. For 0 < ε ≤ 1,
the polynomial (1 − ε) + ε(x + y)d satisfies the first three conditions in the
definition of S(2, d) but not the fourth. As ε tends to 0, the value at (1, 1)
tends to 1. The difficulty is that the set of polynomials satisfying the first
three conditions is not closed. Including the fourth condition makes the set
closed and allows us to ask a seemingly elementary but in fact extremely
difficult question. Assume that p(x, y) is a polynomial of degree d with non-
negative coefficients, and that p(x, 1 − x) = 1 for all x. Suppose in addition
that p(x, 0) = xd and p(0, y) = yd. What is the minimum value of p(1, 1)?
See Section 4 and especially [3] for formulas of staggering complexity.

3. Proof of Theorem 1.1

We need the following preliminaries. We write ∼= to denote equality on the
hyperplane given by s(x) = 1. Given a polynomial p(x), we may symmetrize
it by considering

Sym(p) = 1
n!

∑
γ

(p ◦ γ),

its average over the permutations γ of the coordinates. Since 1 is symmetric,
it follows that Sym(p)(1) = p(1). We note the following explicit example
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when n = 3, and the variables are (x, y, z):

(3) 6 Sym(xky) = xk(y + z) + yk(x + z) + zk(x + y).

If p ∈ S(n.d) is a polynomial for which p(1) is minimal, then Sym(p) also
minimizes the value at 1. Hence we may assume from the start that a mini-
mizer is symmetric.

First it is easy to show that M(n, d) = nd for all n, d. Note sd ∈ S(n, d)
and that s(1)d = nd. Assume p ∈ S(n, d). Put p(x) =

∑ |cα|2xα. Then
p(x) = 1 when s(x) = 1. Homogenizing gives

(s(x))d =
∑

|cα|2xα(s(x))d−|α|

and hence

nd = s(1)d =
∑

|cα|2(n)d−|α| ≥
∑

|cα|2 = p(1).

In Theorem 5.1 we extend this result to the general polynomial case, where
the proof is more subtle. We also show in Section 5 that no such result holds
in the rational case. We return to the monomial setting.

Next, to show that m(n, d) ≤ n+n(n− 1)(d− 1) holds, it suffices to find
a polynomial p for which p(1) = n+n(n−1)(d−1). That polynomial is given
by

(4) p(x) =
n∑

j=1
xdj +

n∑
j=1

(
∑
j �=k

xj)(
d−1∑
l=1

xlk).

The coefficients of p are non-negative, it contains the terms xdj and its value
at 1 is n + n(n − 1)(d − 1). It remains to show that p(x) = 1 on s(x) = 1.
The proof is a computation with the finite geometric series:

p(x) =
n∑

j=1
xdj +

n∑
j=1

(
∑
j �=k

xj)(
d−1∑
l=1

xlk) ∼=
n∑

j=1
xdj +

n∑
k=1

(1 − xk)(
d−1∑
l=1

xlk)(5)

=
n∑

j=1
xdj +

n∑
k=1

(xk − xdk) =
n∑

j=1
xk ∼= 1.

When n = 1 the only polynomial in S(1, d) is xd and the conclusion holds.
Assume now that n ≥ 3. We must show that the polynomial in (4) achieves
the minimum. We divide the proof into three steps.
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Step 1 is to show (for n ≥ 2) that a polynomial achieving m(n, d) can be
written in the form

(6)
n∑

j=1
xdj + n!

d−1∑
k=1

c[k]Sym(xk1x2)

for non-negative numbers c[k].
Step 2 is to show (for n �= 2) that there is a unique collection of numbers

c[k] for which the expression in (6) equals 1 on the hyperplane. Step 2 fails
in source dimension 2, as we show in Section 4.

Conclusion (4) of Theorem 1.1 is then easy. The polynomial in (4) satisfies
all our conditions, and by uniqueness it is the minimizer. Note that c[k] = 1
for all k and we obtain property (4) from Theorem 1.1.

We begin Step 1. The argument in source dimension 3 relies on compu-
tations done in source dimension 2. It is relatively easy to reduce the case of
source dimension n ≥ 3 to that of n = 3. For n ≥ 3, we need both conclusions
of the following result when n = 2.

Proposition 3.1. Suppose p(x, y) is a symmetric element of S(2, d), written
for some symmetric polynomial h(x, y) with non-negative coefficients in the
form

(6) xd + yd + Axy +
d−1∑
k=2

c[k](xky + xyk) + (xy)2h(x, y).

Then A +
∑d−1

k=2 c[k] = d. If also p(1, 1) is minimal, then h(x, y) = 0.

Proof. We homogenize (6) to get, for some homogeneous polynomial H,

(7) xd+yd+Axy(x+y)d−2 +
d−1∑
k=2

c[k](xky+xyk)(x+y)d−k−1 +(xy)2H(x, y).

The polynomial in (7) is homogeneous and equals 1 on x + y = 1; therefore
it must be (x + y)d. Therefore the coefficient of xd−1y on the left-hand side
of (7) must equal d. But this coefficient is precisely equal to

A +
d−1∑
k=2

c[k].

The first statement follows.
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Next we substitute the formula
∑

c[k] = d− A in (6) to obtain

p(1, 1) = 2 + A + 2
d−1∑
k=2

c[k] + h(1, 1)

= 2 + A + 2(d− A) + h(1, 1) = 2d + 2 − A + h(1, 1).

We minimize p(1, 1) by choosing h(1, 1) to vanish and choosing A as large as
possible. Since h has non-negative coefficients, we set it equal to 0 and the
conclusion follows. Note that we have not determined how to maximize A.
We only know that we wish to choose the c[k] such that

• c[k] ≥ 0 for each k,
• A +

∑d−1
k=2 c[k] = d,

• A is as large as possible for p to satisfy the linear system.

In [3] the bound A ≤ 4 − 2
[ d+1

2 ] is proved, but determining the actual largest
value for a given degree seems impossibly difficult. (Here [ ] denotes the floor
function.)

Proposition 3.2. Assume that n = 3 and p ∈ S(3, d) is symmetric. Group
terms as follows:

p(x, y, z) = xd+yd+zd+A(xy+xz+yz)+
d−1∑
j=2

c[j](xj(y+z)+yj(x+z)+zj(x+y))

(8)

+(xyz)g(x, y, z) + ((xy)2 + (xz)2 + (yz)2)h(x, y, z),

where g and h are symmetric. Suppose that p(1, 1, 1) is minimal. Then g and
h vanish identically.

Proof. Note that p(x, y, 0) satisfies the hypotheses of Proposition 3.1. There-
fore A +

∑d−1
j=2 c[j] = d. It follows that

p(1, 1, 1) = 3 + 3A + 6
d−1∑
j=2

c[k] + g(1, 1, 1) + 3h(1, 1, 1)

= 3+3A+6(d−A)+g(1, 1, 1)+3h(1, 1, 1) = 3+6d−3A+g(1, 1, 1)+h(1, 1, 1).

Note that g(1, 1, 1) and h(1, 1, 1) are non-negative, as each polynomial has
non-negative coefficients. If either of these does not vanish identically, we can
decrease this expression by multiplying g and h by parameters t1, t2 ∈ [0, 1).
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The linear system will have a solution for all such t1, t2. Thus we minimize
the value at 1 by choosing g and h to vanish and then choosing A as large as
possible.

The next result yields step 2 in the proof of Theorem 1.1.

Theorem 3.1. For each positive integer d, there is a unique polynomial of
degree d of the form (9) that equals 1 on the hyperplane x + y + z = 1.
(9)

p(x, y, z) = xd+yd+zd+A(xy+xz+yz)+
d−1∑
j=2

c[j](xj(y+z)+yj(x+z)+zj(x+y))

Suppose d ≥ 2 and p satisfies (9): Then A = 2 and c[j] = 1 for each j.

Proof. The result is trivial when d = 1. First suppose d = 2. Then (9) becomes
x2 + y2 + z2 +A(xy+xz+ yz), which equals 1 on x+ y+ z = 1 only if A = 2.
Next suppose that d ≥ 3. We have seen from (4) that these values of A and
c[j] give a solution. It therefore suffices to show that the linear system has a
unique solution. For j ≥ 2, let Tj denote six times the symmetrization of xjy.
By formula (3),

Tj(x, y, z) = xj(y + z) + yj(x + z) + zj(x + y).

Notice that Tj(1, 1,−2) = −1 − 1 + (−2)j2 �= 0 for j �= 0.
We homogenize (9) and set the result equal to (x + y + z)d. We get a

formula that holds for all (x, y, z). The same holds if we use the values 2 for
the coefficient of the quadratic term and 1 for all the other coefficients.

Subtracting the two resulting formulas gives an identity of the form
(10)

0 = (A−2)(xy+xz+yz)(x+y+z)d−2+
d−1∑
j=2

(c[j]−1))Tj(x, y, z)(x+y+z)d−1−j

First set (x, y, z) = (1, 1,−2) in (10). All terms divisible by (x + y + z)
vanish, and the only term remaining is when j = d− 1. We get

0 = (c[d− 1] − 1)Td−1(1, 1,−2)

and hence c[d−1]−1 = 0. Thus c[d−1] = 1. Plug this value into (10) and we
get the same formula except now the sum goes only up to d− 2. Divide both
sides of the result by (x+ y+ z) to get an equation that holds for all (x, y, z).
The only term not now divisible by (x + y + z) is the term with j = d − 2.
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Again substitute (1, 1,−2) for (x, y, z) to conclude that c[d− 2] − 1 = 0. By
the method of descent we get c[j] = 1 for all j with 2 ≤ j ≤ d− 1. Plugging
into (10) then yields A = 2 as well, and hence the solution is unique.

Next suppose that the source dimension n is at least 4 and that p is an
arbitrary symmetric element of S(n.d). Setting all but three of the variables
equal to 0 puts us into the situations of Proposition 3.2 and Theorem 3.1. It
thus follows that p is a minimizer if and only if p satisfies (4).

The proof of Theorem 1.1 is complete. The following corollary follows
instantly in dimensions not equal to 2, and also holds in dimension 2.

Corollary 3.1. For all dimensions n, the following asymptotic result holds:

lim
d→∞

m(n, d)
d

= n(n− 1).

Proof. For n �= 2, the result follows from the explicit formula for m(n, d) in
Theorem 1.1. When n = 2, we need an appropriate bound on m(n, d) from
below. Let λ be the coefficient of the xy term in a minimizer. It is elementary
to show that 2 ≤ λ < 4 holds for all degrees at least 2. In fact λ increases a
a function of d, but we do not need to know this monotonicity. For example,
the lower bound in (*) is proved for all dimensions in [4] and the upper bound
comes from Theorem 1.1:

(∗) n + n(n− 1)(d− λ

2 ) ≤ m(2, d) ≤ n + n(n− 1)(d− 1).

In (*), for general n, λ denotes the coefficient of the quadratic term, but the
lower bound is relevant only when n = 2, because otherwise equality holds
with the right-hand side. In any case, since λ is bounded as a function of d,
dividing by d in (*) and letting d tend to infinity gives n(n− 1).

The next corollary relies on the well-known degree bounds for monomial
sphere maps with target dimension N . For n = 1 of course there is no such
bound, as zd maps the circle to the circle and d can be arbitrarily large. For
n = 2, the sharp bound is d ≤ 2N − 3, and for n ≥ 3 the sharp bound is
d ≤ N−1

n−1 . See [6] and [10]. Let N (n, d) denote the minimum target dimension
satisfying these degree bounds. Thus N(n, d) = 1 + d(n− 1) when n ≥ 3 and
N(2, d) is the ceiling of d+3

2 .

Corollary 3.2. Let m(n, d) denote the minimum value of p(1) for p ∈
S(n, d). Let N (n, d) denote the minimum target dimension of a monomial
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sphere map of degree d with source dimension n. If n �= 2, then

lim
d→∞

m(n, d)
N (n, d) = n.

If n = 2, the limit is 4.

Corollary 3.2 gives an asymptotic result comparing the L1 norm of a
particular solution to a certain linear system with the sparsest solution, the
one with with fewest non-zero components.

4. The case n = 2

Recall the basic problem. A polynomial p(x, y) satisfies the following proper-
ties:

• p is of degree d

• p has non-negative coefficients.
• p(x, 1 − x) = 1 for all x
• p(x, 0) = xd and p(0, y) = yd.

What is the minimum possible value of p(1, 1)?
We begin by providing the solution for degrees up to 11. Recall that

m(2, d) denotes the minimum. This list is taken from [3] and will appear also
in [4]. Notice that passing from odd degree to the next even degree is easy,
but passing from even degree to the next odd degree is quite subtle.

m(2, 1) = 2 for x + y

m(2, 2) = 4 for x2 + y2 + 2xy
m(2, 3) = 5 for x3 + y3 + 3xy

m(2, 4) = 7 for x4 + y4 + xy(3 + x2 + y2)

m(2, 5) = 26
3 for x5 + y5 + xy

(10
3 + 5

3(x3 + y3)
)

m(2, 6) = 32
3 for x6 + y6 + xy

(10
3 + 5

3(x3 + y3) + x4 + y4
)

m(2, 7) = 25
2 for x7 + y7 + xy

(7
2 + 7

2(x4 + y4)
)

m(2, 8) = 29
2 for x8 + y8 + xy

(7
2 + 7

2(x4 + y4) + x6 + y6
)
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m(2, 9) = 577/35 for

x9 + y9 + xy

(123
35 + 3(x4 + y4) + 6

5(x5 + y5) + 9
7(x7 + y7)

)

m(2, 10) = 647
35 for

x10 + y10 + xy

(123
35 + 3(x4 + y4) + 6

5(x5 + y5) + 9
7(x7 + y7) + x9 + y9

)

m(2, 11) = 573
28 for

x11 + y11 +xy

(99
28 + 33

14(x4 + y4) + 33
14(x5 + y5) + 55

28(x8 + y8) + 11
14(x9 + y9)

)
.

Let λd denote the coefficient of the xy term in the minimizer of degree
d. It always holds (See [3] or [4]) that λd + m(2, d) = 2d + 2 and that λd is
a monotone sequence bounded above by 4. We may thus rephrase the basic
question as follows. Consider a polynomial with non-negative coefficients of
the form

p(x, y) = xd + yd + Axy +
d−1∑
j=2

c[k](xky + xyk).

Suppose p(x, y) = 1 on x + y = 1. What is the maximum possible value of A
as a function of d? Equivalently, what is the minimum value of p(1, 1)?

We challenge the reader to find a general pattern! To convince the reader
of the difficulty, λ35 (the coefficient in degree 35) is the following fraction:

17966598676264183
4976648507631528 .

The value of this fraction to ten decimal places is 3.6101803551.
We pose two open problems in source dimension 2.

Open problem. Let λd denote the coefficient of xy in a polynomial realizing
m(2, d). It is known that λd is a monotone sequence bounded above by 4.
Find limd→∞ λd. In degree 201, the value of λd is approximately 3.626016659.
Open problem. Given d, determine those k for which the coefficient c[k] in
a minimizer is non-zero. Call this set NZ(d). This problem is perhaps too
difficult, but the following might hold. Consider a very large odd degree d.
Let c[k] denote the coefficient of (xky + xyk) in a minimizer. Then, for small
k, k ∈ NZ(z) only for k congruent to 5 or 6 modulo 6. Thus these k come in
consecutive pairs determined by a congruence. The pattern must eventually
break down, because the cardinality of NZ(d) should be approximately half
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the degree, and hence this pattern gives too few. We illustrate when d = 121.
Here is the set NZ(121):

5 6 11 12 17 18 23 24 29 30 35 36 40 41 46 47 51 52 57 58 62 63

67 68 71 72 76 77 80 81 84 85 88 89 92 93 95 96 98 99 101

102 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

The first twelve coefficients follow this pattern, but then it breaks down.
The lists in degrees 123 and 125 begin the same way; the first 25 such k are
the same. The data suggest stabilization as the degree grows. The first 62
values in NZ(197) and NZ(201) are the same, and most of the remaining
values are the same. Can one prove something precise along these lines as d
tends to infinity?

5. The maximum in the general polynomial case

Recall that 1 denotes the n-tuple of all 1’s. Note also that ‖1‖2 = n. Consider
a polynomial sphere map of degree d that is not necessarily a monomial map.
In this section we prove the following result:

Theorem 5.1. Let p : C
n → C

N be a polynomial mapping of degree d.
Assume that p(S2n−1) ⊆ S2N−1. Then ‖p(1)‖2 ≤ nd. Equality holds if p is
homogeneous but can hold otherwise.

Theorem 5.2 (from [2]) characterizes homogeneous polynomial sphere
maps p in terms of the volume of the image of the unit ball under p. This
volume is the integral of the determinant of the complex Hessian of ‖p‖2 over
the source ball. When p is not homogeneous, Proposition 5.1 applies. The
crucial point in measuring the volume of the image is that the partial tensor
product operation from Proposition 5.1 increases the volume of the image
while preserving the degree. Examples 5.1 and 5.2 show that the value at 1
does not characterize homogeneity.

Theorem 5.2. Let p : Cn → C
N be a polynomial sphere map of degree d.

For n ≥ 2, the following are equivalent:

• p is homogeneous.
• The 2n-dimensional volume of the image of the unit ball under p is

dnπn

n! .
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We begin the proof of Theorem 5.1. The key idea considers the expansion
of p into homogeneous parts:

p =
d∑

j=0
pj ,

where each pj is a vector-valued homogeneous polynomial of degree j. By
letting the circle act on the sphere, one can prove various identities relating
the inner products 〈pj , pk〉. See [2] for detailed discussion of these identities
and their applications. In the monomial case, these inner products vanish
for j �= k. One can regard Proposition 5.1 as the first step in a process
of orthogonal homogenization. The proof of Theorem 5.1 requires only this
proposition and not all the identities.

Proposition 5.1. Suppose p = pν + ...+ pd is a polynomial sphere map with
source dimension n and target dimension N . Suppose that ν, the order of
vanishing at 0, is less than d, the degree. Then there is a proper subspace
V ⊆ C

N such that

• The image of pν lies in V .
• The image of pd lies in the orthogonal complement of V .
• Let πV denote orthogonal projection onto V . Then the map

(11) Ep = (πV p⊗ z) ⊕ (1 − πV )(p)

is also a polynomial sphere map.
• Ep is of degree d and its order of vanishing at 0 exceeds ν.
• For all z ∈ C

n, we have

(12) ‖Ep(z)‖2 = ‖p(z)‖2 + (‖z‖2 − 1)‖πV p(z)‖2.

Proof. Assume ν < d. Replace z by eiθz in the identity (that holds on the
sphere)

‖pν(z) + ... + pd(z)‖2 = ‖z‖2d

to get, for each θ,

‖eiνθpν(z) + ... + eidθpd(z)‖2 = ‖z‖2d.

The right-hand side is independent of θ. Expanding the inner product on
the left-hand side yields a trig polynomial that thus must be constant. The
only term of the form ei(d−ν)θ is the inner product 〈pd, pν〉, which must then
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vanish. Hence these polynomials map into orthogonal subspaces. Let V be
the smallest subspace into which pν maps. The first two items follow. The
third item follows from the Pythagorean theorem. Since we do not tensor on
the orthogonal complement of V , the map Ep remains of degree d. Formula
(12) follows from (11), after using ‖p‖2 = ‖πV p‖2 + ‖(1 − πV )p‖2.

Corollary 5.1. Suppose n ≥ 2 and that p is a polynomial sphere of degree d,
but that p is not homogeneous. Assume that (πV p)(1) �= 0. Then ‖p(1)‖2 <
nd.

Proof. Put z = 1 in (12). Since ‖1‖2 = n ≥ 2, and (πV p)(1) �= 0, the
term (‖z‖2 − 1)‖πV p(z)‖2 is positive at 1 and hence ‖p(1)‖2 < ‖Ep(1)‖2.
Thus the operation of replacing p by Ep increases the value of the norm
at 1. By Proposition 5.1, either Ep is homogeneous or we are in the same
situation. Keep applying this partial tensor product process until we reach a
homogeneous map. The only homogeneous polynomial sphere map of degree
d has norm ‖z‖2d. We conclude for some polynomial mapping w that

(13) ‖z‖2d = ‖p(z)‖2 + ‖w(z)‖2(‖z‖2 − 1).

Since ‖w‖2 ≥ ‖πV p‖2, evaluating at 1 yields the desired result.

Example 5.1. The second conclusion of Theorem 5.1 fails when n = 1. For
c = cos(θ) and s = sin(θ), and both non-zero, consider the polynomial sphere
maps z → (czd, szk) for k < d. Then p is of degree d and ‖p(1)‖2 = 1 = nd

but p is not homogeneous.

Equality can also occur in higher dimensions. In the next example, pν(1) =
0 and equality holds. In the notation of Proposition 5.1, πV p = ( z−w√

2 , 0, 0).

Example 5.2. The following polynomial sphere map p is of degree 2 with
source dimension 2:

p(z, w) =
(
z − w√

2
, z(z + w√

2
), w(z + w√

2
)
)
.

We have ‖p(1, 1)‖2 = (
√

2)2 + (
√

2)2 = 4 = nd, but p is not homogeneous.

Remark 5.1. One can write down a formula for the polynomial map w in
(13). Let Ek denote the iteration of k partial tensor product operations. Let
πk denote the orthogonal projection arising at the k-th step. Then

‖w‖2 =
d−ν∑
k=1

‖πkEk−1p‖2.
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6. Rational sphere maps

We close the paper with several simple facts about the situation for rational
sphere maps. First we note a trivial inequality:

(14) |
n∑

j=1
zj | ≤

√
n‖z‖.

Statement (14) follows from applying the Cauchy-Schwarz inequality to the
vectors z and 1. As a consequence, in dimensions at least 2, the zero set of
the polynomial q(z) = 1 −

∑
j
zj

n lies outside the closed unit ball. There is
thus a vector-valued polynomial map p such that f = p

q maps the unit sphere
in C

n to the unit sphere in C
N and p

q is reduced to lowest terms. See [2] for a
general statement; for this given q, one can easily construct p directly. In fact
there is a p of degree 1. By taking tensor products, there is an example p of
each degree d ≥ 1. Since f has a singularity at 1, for each degree d there is
no maximum value of ‖f(1)‖2. It follows that Theorem 5.1 fails for rational
sphere maps that are not polynomials.

We next consider the values of ‖f(1)‖2 for rational sphere maps f formed
from automorphisms. The automorphism group of the unit ball is not com-
pact, which has consequences. For example, for a point a in the unit disk,
and s2 = 1 − |a|2, consider the following automorphism for n ≥ 2:

φa(z) = (a− z1,−sz2, ...− szn)
1 − z1a

.

One computes that

‖φa(1)‖2 = 1 + (1 − |a|2)(n− 1)
|1 − a|2

Let 0 > a > −1 and let a tend to −1. Then ‖φa(1)‖2 tends to 1. Since
‖φa(z)‖2 = 1 on the sphere, the maximum principle forces ‖φa(1)‖2 to be at
least 1. Therefore the infimum value as a varies is 1, and this value is not
achieved. The d-th tensor power of φa is a rational sphere map of degree d,
and again,

‖(φ⊗d
a )(1)‖2 = ‖φa(1)‖2d =

(
1 + (1 − |a|2)(n− 1)

|1 − a|2

)d
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tends to 1. Thus, for each d the infimum is 1, and this value is not attained.
On the other hand, if 0 < a < 1, and a tends to 1, then the limits are infinite,
providing a second proof that the supremum is infinity.

These considerations help explain why the optimization problems are
more interesting in the polynomial case. They also indicate why we intro-
duced the fourth condition in the definition of the set S(n, d).
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