
Pure and Applied Mathematics Quarterly
Volume 18, Number 2, 481–502, 2022

Bergman-Calabi diastasis and Kähler metric of constant
holomorphic sectional curvature

Robert Xin Dong and Bun Wong

Dedicated to Professor Joseph J. Kohn

Abstract: We prove that for a bounded domain in C
n with the

Bergman metric of constant holomorphic sectional curvature be-
ing biholomorphic to a ball is equivalent to the hyperconvexity or
the exhaustiveness of the Bergman-Calabi diastasis. By finding its
connection with the Bergman representative coordinate, we give
explicit formulas of the Bergman-Calabi diastasis and show that it
has bounded gradient. In particular, we prove that any bounded
domain whose Bergman metric has constant holomorphic sectional
curvature is Lu Qi-Keng. We also extend a theorem of Lu towards
the incomplete situation and characterize pseudoconvex domains
that are biholomorphic to a ball possibly less a relatively closed
pluripolar set.
Keywords: Bergman metric, Bergman representative coordinate,
holomorphic sectional curvature, hyperconvex domain, Lu Qi-Keng
domain, L2-domain of holomorphy, pluripolar set.

1. Introduction

In [23], Lu proved his well-known uniformization theorem: a bounded domain
in C

n with a complete Bergman metric of constant holomorphic sectional
curvature is biholomorphic to the Euclidean ball. For a bounded domain
Ω ⊂ C

n, fix a point z0 ∈ Ω and let Az0 := {z ∈ Ω |K(z, z0) = 0 } be
the zero set of the Bergman kernel K(·, z0). Since Az0 is an analytic variety,
as domains Ω \ Az0 and Ω have the same Bergman kernel K and Bergman
metric g. Consider on Ω \ Az0 the Kähler potential

(1) Φz0(z) := log K(z, z)K(z0, z0)
|K(z, z0)|2
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for the Bergman metric g = ∂∂Φz0 . Locally, the right hand side of (1) coin-
cides with Calabi’s diastasis [3]. We call the function Φz0(z) the Bergman-
Calabi diastasis relative to z0. In this paper, we shall prove the following main
theorem.

Theorem 1.1. Let Ω ⊂ C
n be a bounded domain whose Bergman metric has

its holomorphic sectional curvature identically equal to a negative constant
−c2. Then the followings are equivalent:

(i) Ω is Bergman complete;
(ii) for some z0 ∈ Ω, Φz0(z) blows up to infinity at the boundary of Ω;
(iii) Ω is hyperconvex;
(iv) Ω is biholomorphic to the Euclidean ball Bn and n = 2/c2 − 1.

Remarks.

(a) The equivalence between (i) and (iv) is exactly Lu’s theorem [23]. A
domain is said to be Bergman complete if it is a complete metric space
with respect to the distance induced by the Bergman metric.

(b) It follows from the transformation rule of the Bergman kernel that the
Bergman-Calabi diastasis is invariant under biholomorphic mappings in
the sense that if f is a biholomorphic map from Ω1 to Ω2, then

ΦΩ1;z0(z) = ΦΩ2;f(z0)(f(z)).

Thus, Condition (ii) is preserved under biholomorphic mappings. For
general bounded domains, as demonstrated by our examples in Propo-
sition 3.1, Condition (ii) does not imply the Bergman completeness.

(c) Under the constant negative holomorphic sectional curvature assump-
tion in Theorem 1.1, Condition (ii) in fact implies that Ω is Bergman
exhaustive, namely its Bergman kernel function K(z, z) blowing up to
infinity at any boundary point (see Proposition 5.1). When n = 1,
Chen in [4] proved that if a bounded domain in C is Bergman exhaus-
tive then it is Bergman complete; moreover, the converse is not true as
shown by Zwonek [36]. When n ≥ 2, the Bergman exhaustiveness and
completeness do not imply each other in general (see [18, Chap. 15]).
For example, the Hartogs triangle H := {z ∈ C

2 : |z1| < |z2| < 1} is
Bergman exhaustive. But from (b) we know that H does not satisfy
Condition (ii) and is not Bergman complete, as it is biholomorphic to
D× D

∗.
The motivation of Condition (ii) in Theorem 1.1 comes from the work [6]
of Cheung and the second author who proved that if a bounded convex
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domain in C
n with a Hermitian metric of constant negative holomorphic

sectional curvature such that all metric components blow up to infinity
at the boundary, then the domain is biholomorphic to a ball (see also
[7, 33]).

(d) A bounded domain is said to be hyperconvex if there exists a continuous
negative plurisubharmonic exhaustion function. Ohsawa in [28] proved
that a bounded hyperconvex domain is Bergman exhaustive. Błocki and
Pflug in [1] and Herbort in [14] independently proved that a bounded
hyperconvex domain is Bergman complete. On the other hand, by the
works of Diederich and Fornæss [9], Kerzman and Rosay [20] and De-
mailly [8] it is known that any pseudoconvex domain with C1-smooth
boundary is hyperconvex. Previously, it was shown that any pseudocon-
vex domain with C1-smooth boundary is both Bergman exhaustive (see
[29]) and Bergman complete (see [27]). In this paper, instead of impos-
ing boundary regularity conditions, we place curvature conditions on
the domain.

(e) Theorem 1.1 says that under the constant negative holomorphic sec-
tional curvature assumption, the Bergman completeness, exhaustiveness
of the Bergman-Calabi diastasis, and hyperconvexity are all equivalent
to one another, and either of them is equivalent to the domain being
biholomorphic to a ball. Our proof of Theorem 1.1 is carried out as

(2) (ii) =⇒ (iii) =⇒ (i) =⇒ (iv) =⇒ (ii).

The second and third implications follow from [1, 14] and [23], respec-
tively. We prove the first and last implications of (2) in Section 3, where
we additionally give a direct proof of the fact that (ii) =⇒ (iv). There-
fore, the equivalence between (ii) and (iv) can be proved straightfor-
wardly without using Lu’s theorem.

Unlike the complete Kähler-Einstein metric which is known to exist on
any bounded pseudoconvex domain as shown by Cheng and Yau [5] and Mok
and Yau [25], the Bergman metric is incomplete in many cases. To find more
applications in Kähler geometry, our second motivation is to give an exten-
sion of Lu’s theorem to a wider class of domains without the completeness
assumption. Let Ω ⊂ Cn be a bounded domain with the Bergman metric g.
Recall that Ω is called a Lu Qi-Keng domain if for any p ∈ Ω, its Bergman ker-
nel K(·, p) has no zero set. At p ∈ Ω, the Bergman representative coordinate
T (z) = (w1, ..., wn)τ is defined as

(3) wα(z) :=
n∑

j=1
gj̄α(p)

⎛
⎝K(z, p)−1 ∂

∂tj

∣∣∣∣∣
t=p

K(z, t) − ∂

∂tj

∣∣∣∣∣
t=p

logK(t, t)

⎞
⎠ ,
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where (gj̄α) = (gαj̄)−1. It is well known that T (z) is holomorphic on Ω less
the zero set of K(·, p).

Our second theorem shows that a bounded domain is Lu Qi-Keng if its
Bergman metric has constant holomorphic sectional curvature, and in this
case the Bergman representative coordinate T maps Ω to a ball. Moreover,
we give explicit formulas for the Bergman-Calabi diastasis, whose gradient is
proved to be bounded.

Theorem 1.2. Let Ω ⊂ C
n be a bounded domain whose Bergman metric g

has its holomorphic sectional curvature identically equal to a negative constant
−c2. Then for any p ∈ Ω it holds that

1) the Bergman kernel K(·, p) has no zero set;
2) T defined by (3) maps Ω to {(w1, ..., wn)τ :

∑n
α,β=1 wαgαβ̄(p)wβ <

2c−2};
3) the Bergman-Calabi diastasis relative to p can be written as

(4) Φp(z) = −2
c2

log

⎛
⎝1 − c2

2

n∑
α,β=1

wα(z)gαβ̄(p)wβ(z)

⎞
⎠ , z ∈ Ω;

4) for any z0 ∈ Ω, the length of ∂Φz0 measured by g is less than
√

2|c|−1,
namely,

|∂Φz0 |2g(p) < 2c−2.

Previously, Lu’s theorem in [23] yields the above conclusions 1) – 4) under
the additional assumption that Ω is Bergman complete. Theorem 1.2 also says
that the map T is holomorphic on Ω. However, if the completeness assump-
tion in Lu’s theorem is dropped completely, then one cannot expect the same
conclusion as what he proved, namely the domain being necessarily biholo-
morphic to the ball. In fact, if E is a non-empty relatively closed pluripolar
subset of Bn, then any domain in C

n that is biholomorphic to B
n \E admits

an incomplete Bergman metric of constant holomorphic sectional curvature.
We say a set E is pluripolar if there exists a plurisubharmonic function ϕ
in C

n such that ϕ = −∞ on E, and a result [31] of Siciak implies that the
Bergman spaces on B

n \ E and on B
n are the same.

Our third theorem extends Lu’s theorem towards the Bergman-incomplete
situation. For simplicity, a domain Ω is said to satisfy Condition (�) if there
exists some point p ∈ Ω such that

1. |K(z, p)| is bounded from above by a finite constant C > 0 for any
z ∈ Ω;

2. the Bergman representative coordinate T defined at p is continuous up
to Ω.



Bergman-Calabi diastasis and Kähler metric of constant curvature 485

Theorem 1.3. Let Ω ⊂ C
n be a bounded pseudoconvex domain whose Bergman

metric has its holomorphic sectional curvature identically equal to a nega-
tive constant −c2. If Ω satisfies Condition (�), then Ω is biholomorphic to
the Euclidean ball Bn possibly less a relatively closed pluripolar set E and
n = 2/c2 − 1.

The pseudoconvexity in Theorem 1.3 is a necessary assumption. For ex-
ample, if we remove from B

n, n ≥ 2, a non-pluripolar compact subset G of
Lebesgue R2n-measure zero such that Bn \G is connected, then by Hartogs’
extension theorem the Bergman metric on B

n \G extends to B
n so the asser-

tion of Theorem 1.3 fails.
Based on Theorem 1.1, we prove Theorem 1.3 in Section 4 by using a result

of Pflug and Zwonek [30] on the so-called L2-domain of holomorphy, which is
the domain of existence of some L2 holomorphic function. The boundary of
a bounded L2-domain of holomorphy contains no pluripolar part, so we get

Corollary 1.4. Let Ω ⊂ C
n be a bounded L2-domain of holomorphy such

that the holomorphic sectional curvature of the Bergman metric on Ω is iden-
tically equal to a negative constant −c2. If Ω satisfies Condition (�), then Ω
is biholomorphic to the Euclidean ball Bn and n = 2/c2 − 1.

2. Bergman potentials with self-bounded gradient

For a bounded domain Ω ⊂ C
n, its Bergman kernel is defined as

K(z, t) :=
∑

ϕj(z)ϕj(t), z, t ∈ Ω,

where {ϕj}∞j=1 is a complete orthonormal basis for the space of L2 holomor-
phic functions. This definition does not depend on the choice of the basis.
One checks that logK(z, z) is smooth and strictly plurisubharmonic, and
thus defines the Bergman metric g as

(5)
n∑

α,β=1
gαβ̄(z)XαXβ ≡

n∑
α,β=1

∂2 logK(z, z)
∂zα∂zβ

XαXβ,

for z ∈ Ω and X ∈ C
n.

We first prove the following lemma which links the Bergman representa-
tive coordinate and the Bergman-Calabi diastasis.

Lemma 2.1. Let Ω be a bounded domain in C
n. For any z0 ∈ Ω, let Φz0 be

the Bergman-Calabi diastasis relative to z0 defined by (1). Then,
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1) the length of ∂Φz0 measured by the Bergman metric at any p ∈ Ω \Az0

is

(6) |∂Φz0 |2g(p) =
n∑

α,β=1
wα(z0)gαβ̄(p)wβ(z0),

where T (z) = (w1, ..., wn)τ is the Bergman representative coordinate
defined by (3).

2) for any p ∈ Ω, T maps Ω\Ap to a ball of radius R if and only if for any
z0 ∈ Ω, the length of ∂Φz0 measured by the Bergman metric on Ω \Az0

is less than R. Here, R is a positive constant depending only on Ω.

Proof. 1) Denote the complex gradient operators by ∇z := ( ∂
∂z1

, ..., ∂
∂zn

)τ and
∇z̄ := ( ∂

∂z̄1
, ..., ∂

∂z̄n
)τ , where τ is the transpose of a matrix. By the definition

of the Bergman-Calabi diastasis,

−∇z̄Φz0 = ∇z̄ log |K(z, z0)|2
K(z, z) = K(z0, z)−1∇z̄K(z0, z) −∇z̄ logK(z, z).

In particular, at any p ∈ Ω \ Az0 ,

− ∇z̄|z=p Φz0 = K(z0, p)−1 ∇z̄|z=pK(z0, z) − ∇z̄|z=p logK(z, z).

Then (3) implies that

T (z0) = −[G−1(p)]τ ∇z̄|z=p Φz0 ,

where G := (gαβ̄) and [G−1]τ = (gj̄α) is the inverse transpose of G. Therefore,

n∑
α,β=1

wα(z0)gαβ̄(p)wβ(z0) = T (z0)
τ
G(p)T (z0)

= (∇z|z=p Φz0)τG(p)−1G(p)[G(p)−1]τ ∇z̄|z=p Φz0

= (∇z|z=p Φz0)τ [G(p)−1]τ ∇z̄|z=p Φz0

= |∂Φz0 |2g(p),

which is the square of the length of ∇zΦz0 measured by the Bergman metric
at p.

2) The direction of =⇒. For any z0 ∈ Ω, from 1) we know that at any
p ∈ Ω\Az0 , the square of the length of ∂Φz0 measured by the Bergman metric
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is
∑n

α,β=1 wα(z0)gαβ̄(p)wβ(z0), which is less than R2 by assumption. Since p
is arbitrary, the length of ∂Φz0 is less than R on Ω \ Az0 .

The direction of ⇐=. For any p ∈ Ω, take the Bergman representative co-
ordinate T , which is defined on Ω\Ap by (3). For any z0 ∈ Ω\Ap, the left hand
side of (6) is less than R2 since p ∈ Ω \Az0 . So is the right hand side. There-
fore, T maps Ω\Ap to a ball defined as {(w1, ..., wn)τ :

∑n
α,β=1 wαgαβ̄(p)wβ <

R2}.
Remark. If at p the Bergman metric satisfies

(7) gαβ̄(p) = δαβ,

then the right hand side of (6) reduces to |T (z0)|2, and the ball in 2) is a
Euclidean ball Bn.

Moreover, we get the following lemma.

Lemma 2.2. Let Ω ⊂ C
n be a bounded domain whose Bergman metric has

its holomorphic sectional curvature identically equal to a negative constant
−c2. At p ∈ Ω, assume that the Bergman metric satisfies (7) and take the
Bergman representative coordinate T (z) = (w1, ..., wn) defined by (3). Then,

1) the Bergman-Calabi diastasis relative to p can be written as

(8) Φp(z) = −2
c2

log
(

1 − c2

2 |T (z)|2
)
, z ∈ Ω \ Ap;

2) T maps Ω to the ball Bn := {w ∈ C
n : |w|2 < 2c−2}.

Proof. At any p ∈ Ω, by [23] there exists a neighbourhood Up such that the
Bergman kernel can be locally decomposed as

(9) K(z, z) =
(

1 − c2

2 |T (z)|2
)−2

c2

ef(T (z))+f(T (z)), z ∈ Up,

where f is holomorphic on Up. The map T defined by (3) is holomorphic on
Ω \ Ap, where Ap := {z ∈ Ω |K(z, p) = 0 } is the zero set of the Bergman
kernel K(·, p). Let Ω′ := {z ∈ Ω \ Ap : T (z) ∈ B

n} be the set of points in
Ω \Ap that are mapped into the ball. In particular, Up ⊂ Ω′. By (9) and the
theory of power series, one may duplicate the variable with its conjugate so
that the full Bergman kernel can be complex analytically continued as

(10) K(z, z0) =
(

1 − c2

2

n∑
α=1

wα(z)wα(z0)
)−2

c2

ef(T (z))+f(T (z0)), z, z0 ∈ Up.
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Then for any z, z0 ∈ Up,

Φz0(z) = log
(1 − c2

2 |T (z)|2)
−2
c2 e2 Re f(T (z))(1 − c2

2 |T (z0)|2)
−2
c2 e2 Re f(T (z0))

|1 − c2

2
∑n

α=1 wα(z)wα(z0)|
−4
c2 |ef(T (z))+f(T (z0))|2

= log
[
(1 − c2

2 |T (z)|2)(1 − c2

2 |T (z0)|2)
∣∣1 − c2

2

n∑
α=1

wα(z)wα(z0)
∣∣−2]−2

c2
,

which yields that

Φp(z0) = Φz0(p) = −2
c2

log
(

1 − c2

2 |T (z0)|2
)
.

On the other hand, the Bergman-Calabi diastasis Φp(z) relative to p is defined
on Ω \Ap and thus on Ω′, where −2

c2 log
(
1 − c2

2 |T (z)|2
)

can be defined. Since
these two real-analytic functions coincide on Up, they are identical to each
other on Ω′. That is,

(11) Φp(z) = −2
c2

log
(

1 − c2

2 |T (z)|2
)
, z ∈ Ω′.

1) We claim that no point in Ω \Ap is mapped outside the ball Bn by T .
If not, suppose there exists some point q ∈ Ω \ Ap that is mapped to

{w ∈ C
n : |w|2 ≥ 2c−2}. Choose some point q0 ∈ Ω′. Since Ω \ Ap is path-

connected, one can choose a path γ that connects q0 and q. Suppose under T
the image of γ intersects ∂Bn firstly at some point T (q1).

Along the path γ take a sequence of points (ql)l∈N ⊂ Ω′ such that ql → q1.
Then by (11),

Φp(ql) = −2
c2

log
(

1 − c2

2 |T (ql)|2
)
.

Here, as ql → q1, the left hand side is finite but the right hand side blows up
to infinity. This is a contradiction, so we have thus proved our claim, which
says that Ω′ = Ω \ Ap. Therefore, (11) in fact holds on Ω \ Ap.

2) Since T maps Ω \ Ap to the ball Bn and satisfies

(12) |T (z)|2 < 2c−2,

by the Riemann removable singularity theorem, T extends across the ana-
lytic variety Ap to the whole domain Ω with |T (z)|2 ≤ 2c−2. The maximum
modulus principle yields that (12) in fact holds on Ω.
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Lemma 2.2 implies Theorem 1.2, part 1), which says that a bounded do-
main is Lu Qi-Keng if its Bergman metric has constant holomorphic sectional
curvature.

Proof of Theorem 1.2, part 1). We first assume that at p the Bergman metric
satisfies (7). Let Ap be the zero set of the Bergman kernel K(·, p). Suppose
Ap = ∅. Then take some point q ∈ Ap and take a sequence of points (zj)j∈N ⊂
Ω \ Ap such that zj → q. By (8),

Φp(zj) = −2
c2

log
(

1 − c2

2 |T (zj)|2
)
.

Letting zj → q, we see that the above left hand side blows up to infinity, but
the right hand side is finite. This is a contradiction, so Ap = ∅. Generally,
for each p ∈ Ω, one performs a possible linear transformation F from Ω to
Ω1 such that the Bergman metric on Ω1 at F (p) satisfies (7). Since F is a
biholomorphism, the Bergman metric on Ω1 also has constant holomorphic
sectional curvature. Then, by the previous argument KΩ1(·, F (p)) has no zero
set. So does K(·, p) due to the transformation rule of the Bergman kernel.

Using Theorem 1.2, part 1), and following the arguments of Bochner [2]
and Lu [23], we prove the remaining parts of Theorem 1.2, which can be seen
as a generalization of Lemma 2.2.

Proof of Theorem 1.2, the remaining parts. For simplicity, let K = K(·, ·)
denote the Bergman kernel on Ω. The holomorphic sectional curvature of
the Bergman metric is defined as

RΩ(z;X) :=

⎛
⎝ n∑

α,β=1
gαβ̄XαXβ̄

⎞
⎠

−2
n∑

i,j,k,l=1
Rij̄kl̄X iXjXkX l, z ∈ Ω, X ∈ C

n,

where the curvature tensor is given by

Rij̄kl̄ = − ∂4 logK
∂wi∂wj∂wk∂wl

+
n∑

α,β=1
gβ̄α

∂3 logK
∂wi∂wk∂wβ

∂3 logK
∂wj∂wl∂wα

=gij̄gkl̄ + gil̄gkj̄ −K−2(KKijkl −KikKj̄ l̄)

+ K−4
n∑

α,β=1
gβ̄α(KKikβ −KikKβ)(KKjlα −KjlKα).
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If the curvature is identically −c2, then (cf. [2, 15])

Rij̄kl̄ = −c2

2 (gij̄gkl̄ + gil̄gkj̄),

which implies that
(13)

∂4 logK
∂wi∂wj∂wk∂wl

=
n∑

α,β=1
gβ̄α

∂3 logK
∂wi∂wk∂wβ

∂3 logK
∂wj∂wl∂wα

+ c2

2 (gij̄gkl̄ + gil̄gkl̄).

Consider the test function

φ(w) := −2
c2

log

⎛
⎝1 − c2

2

n∑
α,β=1

wαgαβ̄(p)wβ

⎞
⎠ .

Then, φ induces a Kähler metric whose holomorphic sectional curvature is also
identically equal to −c2, with a similar identity as (13). Direct computations
and [23, Lemma 2] yield that

∂2 logK
∂wα∂wβ

∣∣∣∣∣
w=0

= ∂2φ(w)
∂wα∂wβ

∣∣∣∣∣
w=0

= gαβ̄(p),

∂3 logK
∂wγ∂wα∂wβ

∣∣∣∣∣
w=0

= ∂2φ(w)
∂wγ∂wα∂wβ

∣∣∣∣∣
w=0

= 0.

The partial derivatives of order 4 can be computed directly from (13); further-
more, the partial derivatives of higher order can be successively computed by
taking all possible successive derivatives of (13). As a result, they all vanish
at w = 0. By the uniqueness of the Taylor expansion, it holds that

K(z, z) =

⎛
⎝1 − c2

2

n∑
α,β=1

wα(z)gαβ̄(p)wβ(z)}

⎞
⎠

−2
c2

eF (T (z))+F (T (z)), z ∈ Up,

for some holomorphic function F . By the theory of power series, one gets on Up

the local formula (4). Let Ω′ := {z ∈ Ω :
∑n

α,β=1 wα(z)gαβ̄(p)wβ(z) < 2c−2}
be the set of points in Ω that are mapped into the ball. Similar to the proof
of Lemma 2.2, one checks that (4) in fact hold true for each z ∈ Ω′. By
the contradiction argument as demonstrated in the proof of Lemma 2.2, we
further observe that Ω′ = Ω and thus have proved both 2) and 3).

Part 4) then follows from 2) of Lemma 2.1.
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Part 4) of Theorem 1.2 says that the potential Φz0 has a self-bounded
gradient measured by the Bergman metric. On the Cartan classical domains,
the first author and Li and Treuer in [11] computed explicitly the (bounded)
length of ∂ logK(z, z). Lee in [22] studied Kähler-Einstein metrics admitting a
global potential whose gradient has a constant length. However, the potential
logK(z, z) does not always have a self-bounded gradient in the Bergman
metric on general bounded symmetric domains. An example of such a domain,
which is biholomorphic to the bidisc, was constructed by Zimmer in [35]. For
convenience, define the following property.

Definition 2.3. A domain Ω ⊂ C
n has Property (��) if

|∂ logK(z, z)|g

is uniformly bounded on Ω.

Notice that Property (��) is equivalent to: there exists C > 0 such that

|∂ logK(z, z)(X)| ≤ C

√
g(z)

(
X,X

)

for all X ∈ C
n and z ∈ Ω. Zimmer’s example shows that Property (��) is not

invariant under biholomorphisms, and by imitating his construction we are
able to prove

Proposition 2.4. There exists a bounded domain Ω biholomorphic to B
2

which does not have Property (��).

Proof. For a holomorphic function ψ : D → D− {0} define

Fψ : B2 → C
2

(z1, z2) �→ (ψ(z2)z1, z2) .

Since ψ is nowhere vanishing, F is injective and hence is a biholomorphism
onto its image. Let Ωψ := Fψ(B2) ⊂ B

2. We claim that there exists some ψ
such that Ωψ does not have Property (��).

Notice that

F ′
ψ(z) =

(
ψ(z2) ψ′(z2)z1

0 1

)
.

So detF ′
ψ(z1, z2) = ψ(z2) and
∣∣∣∣ ∂

∂z2
log | detF ′

ψ(z1, z2)|2
∣∣∣∣ =

∣∣∣∣ ∂

∂z2
log |ψ(z2)|2

∣∣∣∣ =
∣∣∣∣ψ′(z2)
ψ(z2)

∣∣∣∣ .
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Further, if g is the Bergman metric on B
2, then for X := (0, ∂

∂z2
) ∈ C

2,

g(z1,z2)

(
X,X

)
= 1 − |z1|2

(1 − |z1|2 − |z2|2)2
.

So
| ∂
∂z2

log |detF ′
ψ(z1, z2)|2|√

g(z1,z2)

(
X,X

) =
∣∣∣∣ψ′(z2)
ψ(z2)

∣∣∣∣ 1 − |z1|2 − |z2|2√
1 − |z1|2

.

In particular, putting z1 = 0, we get

(14)
| ∂
∂z2

log |detF ′
ψ(0, z2)|2|√

g(0,z2)

(
X,X

) = |ψ
′(z2)

ψ(z2)
|(1 − |z2|2).

Let ψ : D → D − {0} be a covering map. Then ψ is an infinitesimal
isometry with respect to the Poincaré metrics and so

|ψ′(w)|
2|ψ(w)| log 1

|ψ(w)|
= 1

1 − |w|2

for all w ∈ D. Then

|ψ′(w)|
|ψ(w)|

(
1 − |w|2

)
= 2 log 1

|ψ(w)|

is unbounded since ψ(D) = D− {0}. For this choice of ψ, either side of (14)
is unbounded so the domain Ωψ does not have Property (��).

Proposition 2.4 says that under the constant negative holomorphic sec-
tional curvature assumption, the bounded domain may not have Property
(��) in general.

3. Proof of Theorem 1.1

A bounded domain Ω is said to be hyperconvex, if there exists a continuous
plurisubharmonic function ϕ such that the sublevel set {z ∈ Ω : ϕ(z) < c} is
relatively compact in Ω for all c < 0. Next, we will show the implication (ii)
=⇒ (iii) under the constant holomorphic sectional curvature assumption in
Theorem 1.1.
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Proof of Theorem 1.1, (ii) =⇒ (iii). By the definition of the Bergman kernel
and the Cauchy-Schwarz inequality, the Bergman-Calabi diastasis Φz0 ≥ 0.
By 1) of Theorem 1.2, Φz0 is non-negatively defined on Ω. We claim that the
negative continuous function ϕ := −(1

4c
2Φz0 + 1)−1 is an exhaustion function

for Ω, i.e., the sublevel set {z ∈ Ω : ϕ(z) < N} is relatively compact in Ω for
all N < 0. If not, then there exists a point w ∈ ∂Ω ∩ {z ∈ Ω : 1

4c
2Φz0 + 1 <

−N−1}. Taking a sequence of points (zj)j∈N ⊂ Ω that tends to w, we know
that limΩ�zj→w Φz0(zj) < −4c−2(1 + N−1) < +∞, which contradicts the fact
that Φz0 blows up to infinity at ∂Ω.

To verify the plurisubharmonicity of ϕ by Theorem 1.2, we make the
following computation

∂∂ϕ = ∂

(
(1
4c

2Φz0 + 1)−2 1
4c

2∂Φz0

)

= −2(14c
2Φz0 + 1)−3 1

4c
2∂Φz0

1
4c

2∂Φz0 + (1
4c

2Φz0 + 1)−2 1
4c

2∂∂Φz0

= (14c
2Φz0 + 1)−3

(
(1
4c

2Φz0 + 1)14c
2g − 2−1c2∂Φz0(4c−2)−1∂Φz0

)

≥ (1
4c

2Φz0 + 1)−32(4c−2)−2
(
2c−2g − ∂Φz0∂Φz0

)
> 0,

which implies the hyperconvexity of Ω.

Proof of Theorem 1.1, (iv) =⇒ (ii). It suffices to verify that for some fixed
p ∈ Ω, the Bergman-Calabi diastasis Φp(z) blows up to infinity at ∂Ω. After
a possible linear transformation of domains, we may assume that (7) holds at
p. By (8) and Theorem 1.2,

Φp(z) = −2
c2

log
(

1 − c2

2 |T (z)|2
)
, z ∈ Ω,

where T (z) = (w1, ..., wn) is the Bergman representative coordinate at p de-
fined by (3).

By (iv), T : Ω → B
n is a biholomorphic map that sends p to w = 0.

Moreover, the map T is proper. As z approaches ∂Ω, Φp(z) blows up to
infinity uniformly as T (z) approaches ∂Bn = {w ∈ C

n : |w|2 = 2c−2}. That
is, (iv) =⇒ (ii).

We also give a direct proof of (ii) =⇒ (iv) without relying on Lu’s theo-
rem.
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A direct proof of (ii) =⇒(iv). For z0 ∈ Ω, after a possible linear transforma-
tion of domains, we may assume that (7) holds at z0. By (8) and Theorem
1.2,

Φz0(z) = −2
c2

log
(

1 − c2

2 |T (z)|2
)
, z ∈ Ω,

where T (z) = (w1, ..., wn) is the Bergman representative coordinate at z0
defined by (3). Thus, Φz0(z) blows up to infinity if and only if T (z) approaches
∂Bn = {w ∈ C

n : |w|2 = 2c−2}. Therefore, by Condition (ii) and Theorem
1.2, z approaches ∂Ω if and only if T (z) approaches ∂Bn. Consequently, the
holomorphic map T : Ω → B

n is proper. The Remmert proper mapping
theorem then implies that the map T : Ω → B

n is a branched covering, and
the branched points are exactly those at which the determinant of the complex
Jacobian of T vanishes. However, by our Proposition 5.2 the determinant
DT (z) does not vanish, so T : Ω → B

n is an unbranched covering map. As
B
n is simply connected, T becomes a biholomorphism.

The rest of this section is devoted to the proof of the following proposition.

Proposition 3.1. There exist bounded domains in C
n which satisfy Condi-

tion (ii) but are not Bergman complete.

Proof. We first deal with the case of n = 1. Let Cr := {z ∈ C : r < |z| < 1},
0 < r < 1, be an annulus. It is well-known that a bounded planar domain
Ω with C∞-smooth boundary is simply connected if and only if K(z, w) = 0
for all z, w ∈ Ω. Thus, there exist z0, w0 ∈ Cr such that K(z0, w0) = 0. Let
Az0 := {z ∈ Cr |K(z, z0) = 0 } = ∅ be the zero set of the Bergman kernel
K(·, z0). Since Az0 is an analytic variety, as domains Cr \Az0 and Cr have the
same Bergman kernel and metric. Then, the domain Cr \Az0 is not Bergman
complete.

We will show that Φz0(z) blows up to infinity at ∂(Cr\Az0) = Az0∪∂Cr. To
see this, for any point q ∈ \Az0 and any sequence of points {zj}j∈N ⊂ Cr such
that zj → q as j → ∞, it holds that |K(zj , z0)|2 → 0, so Φz0(zj) → ∞. For
any point s ∈ ∂Cr and any sequence of points {sj}j∈N ⊂ Cr such that sj → s

as j → ∞, the explicit formula of the Bergman kernel on Cr implies that
|K(sj , z0)|2 remains finite, whereas K(sj , sj) → ∞. Therefore, Φz0(sj) → ∞
and consequently Cr \ Az0 satisfies Condition (ii).

By the product property of the Bergman kernel, higher dimensional ex-
amples can also be constructed by considering B

n−1 ×{Cr \Az0} ⊂ C
n when

n ≥ 2.
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Remark. After the completion of this paper, we were kindly informed by
Pflug that the Skwarczyński invariant distance ρΩ = ρ in [32] is related to
the Bergman-Calabi diastasis Φz0 in the following way:

−2 log(1 − ρ2
Ω(z0, z)) = Φz0(z).

Hence, Condition (ii) is equivalent to the fact that ρΩ(z0, z) → 1 if z tends
to ∂Ω. He also pointed out that the implication (iv) to (ii) follows directly
from a simple calculation of ρBn(0, z) showing that this function tends to 1 if
z → ∂Bn.

4. Proofs of Theorem 1.3 and Corollary 1.4

Proof of Theorem 1.3. For any boundary point q ∈ ∂Ω such that

(15) lim sup
Ω�z→q

K(z, z) < ∞,

the results of Pflug [29] and Pflug and Zwonek [30] say that q ∈ int(Ω) and
there exists a neighbourhood U of q such that P := U \ Ω is a pluripolar
set. Taking all boundary points qj that satisfy (15), we get the corresponding
neighbourhoods Uj and pluripolar sets Pj . Then the (bounded) domain

Ω̃ :=
⋃
j

Uj ∪ Ω

has the same Lebesgue measure as Ω due to the pluripolarity. Moreover, ∂Ω̃
coincides with the non-pluripolar part of ∂Ω in view of [30].

Let w ∈ ∂Ω be an arbitrary boundary point such that

lim sup
z→w

K(z, z) = ∞.

By the assumption Condition (�), it follows that

(16) lim sup
Ω�z→w

Φp(z) ≥ lim sup
Ω�z→w

log K(z, z)K(p, p)
C2 = ∞.

Since the Bergman representative coordinate T (z) at p defined by (3) is con-
tinuous up to Ω, for any two sequences of points (zj)j∈N, (wj)j∈N ⊂ Ω, both
approaching w, it holds that

(17) lim
j→∞

T (zj) = lim
j→∞

T (wj).
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After a possible linear transformation of domains we may assume that (7)
holds at p. By Theorem 1.2, the Bergman-Calabi diastasis Φp relative to p
can be written as

(18) Φp(z) = −2
c2

log
(

1 − c2

2 |T (z)|2
)
, z ∈ Ω.

Therefore, (16) further implies

lim
Ω�z→w

Φp(z) = ∞,

in view of (17) and (18). Since w is arbitrary, we know that the Bergman-
Calabi diastasis Φp blows up to infinity at all points in ∂Ω̃.

Next, we will see that as domains Ω̃ and Ω have the same Bergman metric.
Notice that Pj = Uj ∩ ∂Ω is relatively closed in Uj . Restrict any function
f ∈ L2 ∩ O(Ω) to Uj \ Pj . By a result [31] of Siciak there exists a function
F ∈ L2∩O(Uj) such that F = f on Uj \Pj . Hence we get an L2 holomorphic
extension to Ω∪Uj . By the same procedure, we extend f to Ω̃, whose Bergman
metric also has constant holomorphic sectional curvature. Then, Theorem 1.1
guarantees that Ω̃ is biholomorphic to the Euclidean ball Bn and n = 2/c2−1.
Define the set

E :=
⋃
j

Pj =
⋃
j

Uj ∩ ∂Ω = Ω̃ ∩ ∂Ω,

which is relatively closed in Ω̃. Since the biholomorphic (pre)images and
countable union of pluripolar sets are still pluripolar, the proof of Theorem
1.3 is now complete.

We will use Theorem 1.3 to prove Corollary 1.4 as follows.

Proof of Corollary 1.4. An L2-domain of holomorphy is pseudoconvex, and
the boundary of a bounded L2-domain of holomorphy contains no pluripolar
part, cf. [30, 17]. By Theorem 1.3, the possible pluripolar set E is empty and
the domain is biholomorphic to the ball.

An extension of Theorem 1.3 to Riemann surfaces is given in [10].

5. Results on the exhaustiveness

We say a domain Ω is Bergman exhaustive if at any z0 ∈ ∂Ω,

lim
Ω�z→z0

K(z, z) = ∞.
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Under the constant holomorphic sectional curvature assumption in Theorem
1.1, Condition (ii) implies the Bergman exhaustiveness by Proposition 5.1
below.

Proposition 5.1. Let D be a bounded homogeneous domain in C
n, n ≥ 1.

Then the Bergman kernel K on D satisfies

K(z, z) ≥ C

δD(z)2(− log δD(z))2 , z ∈ D,

where δD is the Euclidean distance function to boundary of D and C > 0. In
particular, D is Bergman exhaustive.

Proof. The Bergman metric on D is complete, cf. [23]. By (5), let V :=
det(gjk̄) denote the Bergman volume form, and let V be its coefficient in the
Euclidean coordinate such that V = V ( i

2)ndz1∧ ¯dz1∧ ...∧dzn∧ ¯dzn. Consider
the function B(z) := V (z)/K(z, z). Due to the transformation formula of the
Bergman kernel, B is invariant under biholomorphic mappings in the sense
that if φ is a biholomorphic map from D to Ω, then BD(z) = BΩ(φ(z)). For
any two points p, q in D, which is homogeneous, there exists a biholomorphic
self-map ϕ on D such that ϕ(p) = q. So B(p) = B(q) and thus B is a constant
function on D. From this, one easily sees that the Bergman metric on D is a
(complete) Kähler-Einstein metric. Since D is pseudoconvex, by the argument
of Mok and Yau in [25], we know that

V ≥ C

δ2
D(− log δD)2 ,

which implies the desired lower bound estimate for K. Moreover, as z tends
to the boundary of D, K(z, z) blows up to infinity.

Proposition 5.1 particularly implies the Bergman exhaustiveness of a
bounded domain that is biholomorphic to a ball. See also [21, Proposition
5.2] for a proof of the fact that a bounded homogeneous domain is Bergman
exhaustive. In general, the Bergman exhaustiveness is not biholomorphically
invariant. For instance, the Hartogs triangle H is Bergman exhaustive, but its
biholomorphic image D×D

∗ is neither homogeneous nor Bergman exhaustive.
A general problem raised by Yau [34, pp. 679] is to characterize manifolds

whose Bergman metrics are Kähler-Einstein. Our results in Section 1 can be
viewed as a particular case of Yau’s problem of which the Bergman metric is
of constant negative holomorphic sectional curvature. When the manifold is a
smoothly bounded strictly pseudoconvex domain, Cheng conjectured that the
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Bergman metric is Kähler-Einstein if and only if the domain is biholomorphic
to the ball. After the previous works of Fu and the second author [12] and
Nemirovski and Shafikov [26], the Cheng conjecture was then confirmed by
Huang and Xiao in [16]. Recently in his 2021 thesis [24], Alec Martin used
the Bergman invariant function to characterize the CR-spherical boundary
of a strongly pseudoconvex domain, and thus gave somehow an alternative
argument in the final step of proving Cheng’s conjecture. On the other hand,
Kohn’s subelliptic estimate in his theory of the ∂̄-Neumann problem [13] was
applied by Kerzman in [19] to show that on a bounded strictly pseudoconvex
domain Ω with C∞-smooth boundary, for each fixed z0 ∈ Ω, the Bergman
kernel K(·, z0) is C∞ up to the boundary. He also gave in [19, p.151-152]
an example of a simply-connected planar domain D whose Bergman kernel
K(·, z0) blows up to infinity at ∂D. One can check from the following formula
in Proposition 5.2 that in Kerzman’s example the determinant of the Jacobian
of a Bergman representative coordinate is unbounded.

Our next result gives an explicit formula of the Bergman (Kähler-Einstein)
volume form.

Proposition 5.2. Let Ω ⊂ C
n be a bounded domain whose Bergman metric g

has its holomorphic sectional curvature identically equal to a negative constant
−c2. Let V be the coefficient in the Euclidean coordinate of the Bergman
volume form V := det(gαβ̄) such that V = V ( i

2)ndz1 ∧ ¯dz1 ∧ ... ∧ dzn ∧ ¯dzn.
Then,

(19) V (z) = |DT (z)|2V (p)

⎛
⎝1 − c2

2

n∑
α,β=1

wαgαβ̄(p)wβ

⎞
⎠

−n−1

,

where T (z) = (w1, ..., wn) is the Bergman representative coordinate at p ∈ Ω
and DT (z) is the determinant of the complex Jacobian of T . In particular,
DT (z) does not vanish on Ω.

Proof. For simplicity, assume that (7) holds at p. By (8) and Theorem 1.2,
part 1), the Bergman-Calabi diastasis Φp relative to p can be written as

Φp(z) = −2
c2

log
(

1 − c2

2 |T (z)|2
)
, z ∈ Ω,

Direct computations yield that

gαβ̄(z) =∂2Φp(z)
∂zα∂zβ
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=
(

1 − c2

2 |T (z)|2
)−2

n∑
i,j=1

[
δij

(
1 − c2

2 |T (z)|2
)

+ c2

2 wi(z)wj(z)
]
∂wi(z)
∂zα

∂wj(z)
∂zβ

=
n∑

i,j=1
Tij̄(w)∂wi(z)

∂zα

∂wj(z)
∂zβ

, z ∈ Ω,

where

Tij̄(w) := ∂2

∂wi∂wj

(
−2
c2

log(1 − c2

2 |w|2)
)

gives a Kähler metric on B
n. Therefore,

V (z) = det(gαβ̄) = |DT (z)|2 det(Tij̄) = |DT (z)|2
(

1 − c2

2 |T (z)|2
)−n−1

.

For general p, one may use the formula (4) instead of (8) to get (19), which
yields that the branch locus is empty.

As a final remark, our method also yields the following statement easily.

Theorem 5.3. Let Ω ⊂ C
n be a bounded domain whose Bergman metric has

its holomorphic sectional curvature identically equal to a negative constant
−c2. Assume that Ω is Bergman exhaustive and there exists some point p ∈ Ω
such that |K(·, p)| is bounded from above on Ω by a finite constant. Then, Ω
is biholomorphic to the Euclidean ball Bn and n = 2/c2 − 1.
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