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Abstract: We develop a method for proving sup-norm and Hölder
estimates for ∂ on wide class of finite type pseudoconvex domains
in C

n. A fundamental obstruction to proving sup-norm estimates is
the possibility of singular complex curves with exceptionally high
order of contact with the boundary. Our method handles this prob-
lem, and in C

3, we prove sup-norm and Hölder estimates for all
bounded, pseudoconvex domains with real-analytic boundary.
Keywords: Finite type, bumping, Hölder estimates, sup-norm
estimates, ∂-equation.

1. Introduction

A fundamental problem in complex analysis is to estimate solutions to the
Cauchy-Riemann equations. In this paper, we study pseudoconvex domains
with real-analytic boundary in C

n where n ≥ 3. We develop a method to
solve the ∂-equation for (0, 1)-forms with sup-norm and Hölder estimates.

In the 1970’s, Henkin [14] and Ramirez [18] developed integral kernel tech-
niques for solving ∂ and proved sup-norm estimates for ∂ for bounded strictly
pseudoconvex domains. However, for general pseudoconvex domains, the sit-
uation is more subtle. In [20], Sibony gave an example of a smooth, bounded
pseudoconvex domain in C

3 where sup-norm estimates are not possible. Si-
bony’s example shows that pseudoconvexity alone is not enough to solve ∂
with sup-norm estimates. Therefore it makes sense to restrict to the study
to D’Angelo finite type domains (see [6, 5] for discussions of D’Angelo finite
type). In 1986, Fornæss [12] proved sup-norm estimates for a wide class of do-
mains in C2, including the Kohn-Nirenberg example. In 1988, Fefferman and
Kohn [11] solved the problem for finite type domains in C

2. Finally in 1990,
Range [19] proved Hölder estimates for pseudoconvex domains of finite type
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in C
2 using integral kernel methods. In a series of papers, Fornæss-Diederich-

Wiegerinck [10] and Fornæss-Diederich-Fischer [8] proved sup-norm estimates
for ∂ on convex, finite type domains in higher dimensions using ideas from
McNeal [16]. However, there has been little progress in the last thirty years
and new ideas have been required.

The geometry is much more complicated in dimensions three or higher.
A major difficulty is the possibility of singular complex curves with excep-
tionally high order of contact with the boundary, and hence the type might
change in different directions in subtle ways. Even for relatively simple do-
mains in C

3, the existence of sup-norm estimates is unknown. For instance,
it’s been an open problem to prove sup-norm estimates for domains where
the type is the same in all directions. In this paper we deal with these added
complexities in higher dimensions. For domains where the type is the same in
all directions, our method establishes sup-norm estimates in dimension 3 or
higher. Furthermore, we prove sup-norm estimates even in cases where there
are curves with exceptionally high order of contact with the boundary, and
in C

3, we completely handle these added difficulties and establish sup-norm
estimates for bounded pseudoconvex domains with real-analytic boundary.
More precisely, we prove the following main theorem.

Main Theorem 1. Suppose Ω is a bounded pseudoconvex domain with real-
analytic boundary of finite D’Angelo type 2L in C

3 and f is a ∂-closed (0, 1)-
form on Ω. Then there exists a solution u of ∂u = f on Ω such that

||u||∞ ≤ CΩ||f ||∞

where CΩ is independent of f . Furthermore, for every δ > 0, there is a so-
lution u = uδ as above that satisfies

( 1
2L − δ

)
-Hölder estimates with constant

depending only on Ω and δ.

The proof of the theorem introduces a natural geometric procedure, which
we call bumping to type. Moreover, whenever one can bump a domain to type,
we prove that sup-norm estimates follow.

Theorem 1.1. Suppose Ω is a bounded pseudoconvex domain with real-an-
alytic boundary such that if p ∈ ∂Ω then locally there exists another pseudo-
convex domain Ω∗

p and a function Φ given in local coordinates as

Φ = (z1 − p1) − F (z2 − p2, ..., zn − pn),

where F is strictly positive away from the origin and vanishes to type in all
directions at the origin, and
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1. Ω \ {p} ⊂ Ω∗
p,

2. |Φ(q)| ∼ dist(q, ∂Ω∗
p) when q ∈ ∂Ω, and

3. {Φ = 0} ∩ Ω∗
p = {p}.

If f is a ∂-closed (0, 1)-form on Ω, then there exists a solution u of ∂u = f
on Ω such that

||u||∞ ≤ CΩ||f ||∞
where CΩ is independent of f .

In fact, if Ω has D’Angelo type 2L, then for every δ > 0, there is a
solution u = uδ as above that satisfies

( 1
2L − δ

)
-Hölder estimates with constant

depending only on Ω and δ.

Theorem 1.1 reduces the sup-norm estimates problem to constructing the
bumped-out domain Ω∗

p. This reduction gives many new situations where we
can give sup-norm estimates in Cn for n ≥ 3. Using the results of Noell [17],
Bharali and Stensønes [2], Bharali [3], and Fornæss and Stensønes [13], and
Simon [21], one can see wide classes of domains in C

n where we can construct
Ω∗

p. We provide examples in the next section. In C
3, we explicitly construct

the bumped-out domain Ω∗
p and the function Φ, and hence we completely

solve the problem of finding sup-norm estimates for ∂ in C
3.

We conclude the introduction with an outline of the rest of the paper. In
this paper, we focus the proofs of the theorems in C

3, and we refer the reader
to forthcoming work for additional details in higher dimensions. In section
2, we give examples of classes of domains where our method applies. The
main approach is to solve the Cauchy-Fantappie equation pointwise. We then
create an integral kernel on a smaller domain Ωε and get uniform estimates on
the smaller domain. We then use a normal families argument to get estimates
on Ω. Section 3 develops this machinery and shows how we use the Cauchy-
Fantappie equation. In section 4, we show how to use a Koszul complex to
modify our smooth solutions to the Cauchy-Fantappie equation. In section 5
and 6, we show how to build a non-holomorphic support function. In section
7, we develop the plurisubharmonic weights needed to use the full extent of
Hörmander’s L2 theory. In section 8, we give L2-estimates, and in section 9,
we get pointwise estimates. We prove Theorem 1 in section 10. Finally, in
section 11, we sketch how to reduce the problem to a bumping problem in
the higher-dimensional case, which gives Theorem 1.1.

2. Examples

In this section, we give examples of wide classes of domains where our method
applies.
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Example 2.1 (A. Noell [17]). . Suppose P (z1, . . . , zn−1) is a homogeneous,
plurisubharmonic polynomial of degree 2k on C

n−1 that is not harmonic along
any complex line through the origin. Let

Ω = {(ζ, z1, . . . , zn−1) : Re(ζ) + P (z1, . . . , zn−1) < 0}.

Using a result of Noell [17], there exists the bumped out domain Ω∗
p and we

use Φ = ζ − A ‖(z1, . . . , zn−1)‖2k, and hence Theorem 1.1 applies.

Example 2.2. Let

Ω = {(ζ, z1, . . . , zn−1) : Re(ζ) +
k∑

j=1
|fj(z1, . . . , zn−1)|2 < 0}

where the common zero set of f1, . . . fk is 0 and Ω is finite type. Then we
take

Ω∗
0 = {Re(ζ) + (1 − ε)

k∑
j=1

|fj(z1, . . . , zn−1)|2 < 0}

and Φ = ζ − A
∑k

j=1 |fj(z1, . . . , zn−1)|2. Nearby boundary points are of the
same kind.

Example 2.3. Let

Ω = {z ∈ C
n :

k∑
j=1

|fj(z)|2 < 1}.

Here we can locally transform the domain to be of the form in the previous
example.

Example 2.4. Let

Ω = {(ζ, z1, z2, z3, z4) : Re(z1) + |z2
3 − z3

4 |6|z2|2 + |z2
3 − z3

4 |8

+ 15
7 |z2

3 − z3
4 |2 Re(z2

3 − z3
4)6 + ‖z‖10 < 0}.

Here we use

Ω∗
0 = {(ζ, z1, z2, z3, z4) : Re(z1) + 1

2 |z
2
3 − z2

4 |6|z2|2 + |z2
3 − z4|8

+ 15
7 |z2

3 − z3
4 |2 Re(z2

3 − z3
4)6 −

1
32 |z

2
3 − z4|8 + 1

2 ‖z‖10 < 0},
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and
Φ = ζ − A

(
|z2

3 − z3
4 |6|z2|2 + |z2

3 − z4|8 + ‖z‖10
)
.

3. Key ingredients in the paper

We briefly highlight some key techniques in the paper now. The fundamental
approach of this paper is to use integral kernel techniques. We use an idea
inspired by a comment of Range given in a workshop in Beijing to construct a
non-holomorphic support function and then solve a smooth division problem.
Using a Koszul complex and the full extent of Hörmander L2-techniques,
we modify these functions to obtain holomorphic solutions to the Cauchy-
Fantappie equations. Finally we use “pseudoballs” (see Catlin [4] and McNeal
[16]) and subaveraging to pass from L2 estimates to pointwise estimates.

3.1. Bumping to type

We begin by giving a precise definition for bumping.

Definition 3.1. Given a pseudoconvex domain Ω and p ∈ ∂Ω, then Ω can
be locally bumped at p if there exists a neighborhood U of p and a larger
pseudoconvex domain Ω∗

p such that Ω \ {p} ∩ U ⊂ Ω∗
p. We then say that Ω∗

p

is a local bumping at p.

If Ω ⊂ C
2 and p is of type 2k, then Ω∗

p can be chosen so that boundaries
meet to order 2k in the complex tangential direction. In C

n for n ≥ 3, there
are added difficulties from the additional complex tangential directions. For
example, type will change in different complex directions. Even more, there
might be singular complex curves with maximal order of tangency.

In [9], Diederich and Fornæss show that if Ω is pseudoconvex and of finite
type at p ∈ ∂Ω, then Ω can be bumped to some high order at p (potentially
much higher than the type). For our construction we need to bump to the
lowest possible order in all directions. In order to make this precise we first
need to define what it means for a polynomial to be bumpable.

Definition 3.2. Let P be a homogeneous plurisubharmonic polynomial on
C

n−1. We say that P can be bumped if there exists a plurisubharmonic function
H, smooth away from 0 and homogeneous of the same degree as P , such that
for some small ε > 0 we have H ≤ P − ε|P | with equality precisely in 0 and
along the complex lines through 0 along which P is harmonic.

In the weighted-homogeneous case this is defined by homogenizing in the
obvious way.
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Definition 3.3. Let Ω ⊆ C
n be a pseudoconvex domain. We take z =

(ζ, z′) ∈ C × Cn−1. We say that Ω is bumpable to type at p ∈ ∂Ω if it is
locally contained in a pseudoconvex domain Ω̃ with p ∈ ∂Ω̃, which locally at
p is given as

{Re(ζ) +
J∑

j=1
Mj(z′) + ‖z′‖2M + O(|ξ|2, | Im(ξ)| ‖z′‖) < 0},

where each of the Mj is a weighted-homogeneous plurisubharmonic polyno-
mial that can be bumped as in Definition 3.2.

If Ω is bumpable to type at all of its boundary points, we simply say that
Ω is bumpable to type.

3.2. Henkin integral kernel

We use the Henkin integral kernel to solve ∂ and obtain sup-norm estimates.
Let f =

∑
i fidzi be a closed (0, 1)-form and

SΩf = cn

∫
∂Ω×[0,1]

f ∧ η(w) ∧ ω(ζ) − cn

∫
Ω

f(ζ)
‖ζ − z‖2n η(ζ − z) ∧ ω(ζ)

where

w(ζ) = dζ1 ∧ · · · ∧ dζn and

η(ζ) =
n∑

i=1
(−1)i−1ζidζ1 ∧ · · · ∧ d̂ζi ∧ · · · ∧ dζn.

Further let

w(ζ) = (w1, . . . , wn) and

wi = λ
ζi − zi

‖ζ − z‖2 + (1 − λ)hi(ζ, z)

where λ ∈ [0, 1] and h1, . . . , hn solves the Cauchy-Fantappie equation
n∑

i=1
hi(ζ, z)(ζi − zi) ≡ 1

when ζ ∈ ∂Ω, z ∈ Ω, and z �→ hi(ζ, z) is holomorphic in Ω. Then ∂SΩ(f) = f .
Our goal is to construct the functions hi such that

‖SΩf‖∞ ≤ CΩ ‖f‖∞ .
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The challenge is to show that if f is bounded by a constant C ′, then there
is a constant C which only depends on C ′ and Ω such that∣∣∣∣∣

∫
∂Ω×[0,1]

f ∧ η(w) ∧ ω(ζ)
∣∣∣∣∣ < C.

When Ω ⊆ C
3, then η(w) = w1dw2 ∧ dw3 −w2dw1 ∧ dw3 +w3dw1 ∧ dw2,

and we can expand a typical term as follows

widwj ∧ dwk = wi

3∑
m=1

[
∂wj

∂λ

wk

∂ζm
− ∂wj

∂ζm

wk

∂λ

]
dλ ∧ dζm +

∑
um,ndζn ∧ dζm.

The above integral includes the (0, 1)-form f and the (3, 0)-form ω and
the real dimension of ∂Ω is five. Thus the integral cannot support the terms∑

um,ndζn ∧ dζm. Therefore we need only study the expressions

wi

3∑
m=1

[
∂wj

∂λ

wk

∂ζm
− ∂wj

∂ζm

wk

∂λ

]
dλ ∧ dζm.

When we calculate η(w) and ignore the terms that cannot be supported in
the integral over ∂Ω, we get η(w) = λ2B − λη1 − (1 − λ)η2 where B is the
Bochner-Martinelli kernel and

η1 =
3∑

n=1

{
ζ1 − z1

‖ζ − z‖2

[
h2

(
δn,3

‖ζ − z‖2 − (ζ3 − z3)(ζn − zn)
‖ζ − z‖4

)

− h3

(
δn,2

‖ζ − z‖2 − (ζ2 − z2)(ζn − zn)
‖ζ − z‖4

)]

− ζ2 − z2

‖ζ − z‖2

[
h1

(
δn,3

‖ζ − z‖2 − (ζ3 − z3)(ζn − zn)
‖ζ − z‖4

)

− h3

(
δn,1

‖ζ − z‖2 − (ζ1 − z1)(ζn − zn)
‖ζ − z‖4

)]

+ ζ3 − z3

‖ζ − z‖2

[
h1

(
δn,2

‖ζ − z‖2 − (ζ2 − z2)(ζn − zn)
‖ζ − z‖4

)

− h2

(
δn,1

‖ζ − z‖2 − (ζ1 − z1)(ζn − zn)
‖ζ − z‖4

)]}
dλ ∧ dζn,
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and

η2 =
3∑

n=1

{
ζ1 − z1

‖ζ − z‖2

(
h2

∂h3

∂ζn
− h3

∂h2

∂ζn

)

− ζ2 − z2

‖ζ − z‖2

(
h1

∂h3

∂ζn
− h3

∂h1

∂ζn

)

+ ζ3 − z3

‖ζ − z‖2

(
h1

∂h2

∂ζn
− h2

∂h1

∂ζn

)}
dλ ∧ dζn.

We see that ‖η1‖ has singularities of order |hi| 1
‖ζ−z‖3 .

The integral that is the most difficult to estimate is∫
∂Ω×[0,1]

f ∧ η2 ∧ ω.

Observe that ω(ζ) = dζ1 ∧ dζ2 ∧ dζ3 already has a differential which is
orthogonal to the complex tangential direction, so∫

∂Ω×[0,1]
f ∧ η2 ∧ ω

can only support differentials dζn from ηi that is complex tangential to ∂Ω.
Therefore we only need to estimate the integrals with terms of the form

ζ i − zi
‖ζ − z‖2

(
hj

∂hk

∂ζn
− hk

∂hj

∂ζn

)
.

3.3. Pointwise solutions to cauchy-fantappie equation

We are not able to solve the Cauchy-Fantappie equation with solutions that
are smooth in the boundary variable. Instead, we solve the Cauchy-Fantappie
equation pointwise; i.e. given p = (η0

1, η
0
2 , η

0
3) ∈ ∂Ω, we find h1, h2, h3 such

that
3∑

j=1
hj(p, z)(η0

j − zj) ≡ 1

where hj is holomorphic in z. The resulting integral kernel would be nicely
integrable if hj were continuous in p; instead, we need to use additional tech-
niques from [19] to construct a sequence of integral kernels on slightly smaller
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domains that give uniform estimates. We then use a standard normal families
argument to give sup-norm estimates on the original domain.

We now need to choose good smooth solutions gj which can be modified
using a Koszul complex with Hörmander’s L2-theory. Unfortunately, using
the usual smooth solutions to the division problem as in Skoda [22] does not
yield sufficient estimates. We therefore need to use a more careful choice of
smooth solutions. Our choice is inspired by a suggestion of Range in a lecture
in Beijing. This choice is designed to reflect the type at a boundary point in
every complex tangential “direction.”

More precisely, we will use the bumping to show that locally there exists
Φ such that:

1. Φ = (η0
1 − z1) − F ((η0

2 − z2), (η0
2 − z2), (η0

3 − z3), (η0
3 − z3)),

2. F > 0 away from (0, 0),
3. {Φ = 0} ∩ Ω∗

p = ∅,
4.

∣∣∣Φ∣∣Ω∣∣∣ ∼ dist(·, ∂Ω∗
p).

Now we let g1 = 1
Φ , g2 = P2

Φ , and g3 = P3
Φ such that

1
Φ(η0

1 − z1) + P2

Φ (η0
2 − z2) + P3

Φ (η0
3 − z3) ≡ 1.

Finally, we use the following version of Hörmander’s theorem.

Theorem 3.4 (Hörmander, Demailly). Let ρ be a plurisubharmonic function
on D ⊂ Cn, pseudoconvex, v is a ∂− closed (0, q)−form. Then there exists a
(0, q − 1)−form such that ∂u = v and∫

D
|u|2e−ρ ≤ C

∫
D
< A−1v, v > e−ρ,

where A depends on ρ and q. In case q = 1, the matrix A is just the Complex
Hessian matrix of ρ.

This result together with the subaveraging principle will give the desired
estimates.

4. Koszul complex

Given the choice of smooth solutions gj from the last section, we now illustrate
how we modify them to get holomorphic solutions. While this technique is
well-known and standard, we develop the expressions explicitly in order to
see exactly what kind of estimates we obtain.
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In order to simplify notation we write η for η0. We start with smooth
g1, g2, g3 in Ω∗

η such that

g1(η, z)(η1 − z1) + g2(η, z)(η2 − z2) + g3(η, z)(η3 − z3) ≡ 1.

This gives

∂g1(η, z)(η1 − z1) + ∂g2(η, z)(η2 − z2) + ∂g3(η, z)(η3 − z3) = 0,

and hence

∂g1 = ∂g1(η, z)(g1(η, z)(η1 − z1) + g2(η, z)(η2 − z2) + g3(η, z)(η3 − z3))
= g1∂g1(η1 − z1) + g2∂g1(η2 − z2) + g3∂g1(η3 − z3)
= g1[−∂g2(η, z)(η2 − z2) − ∂g3(η, z)(η3 − z3)]

+g2∂g1(η2 − z2) + g3∂g1(η3 − z3)
= [g2∂g1 − g1∂g2](η2 − z2) + [g3∂g1 − g1∂g3](η3 − z3).

Similarly we obtain

∂g2 = −[g2∂g1 − g1∂g2](η1 − z1) + [g3∂g2 − g2∂g3](η3 − z3),

and
∂g3 = [g3∂g1 − g1∂g3](η1 − z1) + [g3∂g2 − g2∂g3](η2 − z2).

Simplifying notation, we introduce the following

∂g1 = h1,2(η2 − z2) + h1,3(η3 − z3)
∂g2 = −h1,2(η1 − z1) + h2,3(η3 − z3)
∂g3 = −h1,3(η1 − z1) − h2,3(η2 − z2)

where
hi,j = gj∂gi − gi∂gj .

Thus

∂h1,2(η2 − z2) + ∂h1,3(η3 − z3) = 0
−∂h1,2(η1 − z1) + ∂h2,3(η3 − z3) = 0
−∂h1,3(η1 − z1) + ∂h2,3(η2 − z2) = 0.

Hence

∂h1,2 = ∂h1,2(g1(η, z)(η1 − z1) + g2(η, z)(η2 − z2) + g3(η, z)(η3 − z3))
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= g1∂h1,2(η1 − z1) + g2∂h1,2(η2 − z2) + g3∂h1,2(η3 − z3)
= g1∂h2,3(η3 − z3) − g2∂h1,3(η3 − z3) + g3∂h1,2(η3 − z3)
= [g1∂h2,3 − g2∂h1,3 + g3∂h1,2](η3 − z3)

∂h1,3 = −[g1∂h2,3 − g2∂h1,3 + g3∂h1,2](η2 − z2)
∂h2,3 = [g1∂h2,3 − g2∂h1,3 + g3∂h1,2](η1 − z1),

or

∂h1,2 = ω(η3 − z3)
∂h1,3 = −ω(η2 − z2)
∂h2,3 = ω(η1 − z1)

where
ω = g1∂h2,3 − g2∂h1,3 + g3∂h1,2.

From the above we also see that ω is a closed (0, 2)-form. We will use Hörman-
der’s Theorem (Theorem 3.4 above) to solve ∂ for the occurring (0, 2)-form
and (0, 1)-forms with an individual weight for each of the forms.

We will make a careful choice of a plurisubharmonic weight ψ0 such that
ω ∈ L2(ψ0), and find a (0, 1)-form u ∈ L2(ψ0) such that

∂u = ω.

Then

• h1,2 − (η3 − z3)u
• h1,3 + (η2 − z2)u
• h2,3 − (η1 − z1)u

are all closed forms and

∂g1 = (h1,2 − (η3 − z3)u)(η2 − z2) − (h1,3 + (η2 − z2)u)(η3 − z3)
∂g2 = −(h1,2 − (η3 − z3)u)(η1 − z1) + (h2,3 − (η1 − z1)u)(η3 − z3)
∂g3 = −(h1,3 + (η2 − z2)u)(η1 − z1) − (h2,3 − (η1 − z1)u)(η2 − z2).

Next we need to find good, minimal, weights ψ1, ψ2 and ψ3 such that if
u ∈ L2(ψ0), then

• h1,2 − (η3 − z3)u is in L2(ψ1)
• h1,3 + (η2 − z2)u is in L2(ψ2)
• h2,3 − (η1 − z1)u is in L2(ψ3)
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Then we find v1, v2 and v3, functions in L2(ψ1), L2(ψ2) and v3 ∈ L2(ψ3)
such that

∂v1 = h1,2 − (η3 − z3)u
∂v2 = h1,3 + (η2 − z2)u
∂v3 = h2,3 − (η1 − z1)u.

We now let

h1 = g1 − v1(η2 − z2) − v2(η3 − z3)
h2 = g2 + v1(η1 − z1) − v3(η3 − z3)
h3 = g3 + v2(η1 − z1) + v3(η2 − z2).

Recall gj = Pj

Φ where P1 = 1. When we go through the calculations we
see that

ω = 2∂P3 ∧ ∂P2

Φ3 .

Now we need to choose Φ, P1, P2 and P3.

5. Setting up Φ

The next part of the paper will deal with the choice of the functions g1, g2 and
g3. The critical part is to carry out the construction locally near η. Afterwards
one simply extends them to Ω∗

η. Now, for ease of notation, we assume that
η = 0. Locally around 0, the domain Ω is given as

{Re(ξ) + r(z, w) + s(ξ, z, w) < 0},

where s and r are real-analytic, s(ξ, z, w) = O(|ξ|2, ‖(z, w)‖ · | Im(ξ)|) and r
does not have any pluriharmonic terms.

We want to first choose a support function:

Φ(ξ, z, w) = ξ − F (z, w).

This function is not holomorphic as a function of z and w but will be
chosen related to how the bumped domain Ω∗

0 looks.
Finally we will concretely solve a division problem such that

P1

Φ ξ + P2

Φ z + P3

Φ w ≡ 1
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in Ω∗
0.
By Diederich-Fornæss [9] there exist a large M > 0 and a real-valued

polynomial R(z, w), without pluriharmonic terms, such that the following
domain is pseudoconvex and locally contains Ω:

Ω̃ = {Re(ξ) + R(z, w) + C‖(z, w)‖2M + s(ξ, z, w) < 0}.

Since the construction of Φ only depends on the complex tangency of complex
curves to the boundary of Ω at 0, we will consider Ω̃ instead of Ω and R instead
of r for the remainder of this section.

5.1. Initial examples

The simplest case is if the lowest order term H2k in R is not harmonic along
any complex lines through the origin. Then Noell [17] showed the domain
can be bumped to order 2k in all complex tangential directions. In this case
we choose F = A|z|2k + A|w|2k where A is a large positive constant and
P2 = −Azk−1zk and P3 = −Awk−1wk.

From [2], we know that H2k can only be harmonic along finitely many
complex lines through 0; we denote these lines by L1, L2, . . . , Lm. For sim-
plicity let us assume that none of them is the z− axis, so each line is of the
form Li = {(z, w); z = τiw}.

The next simplest case is if R − H2k is plurisubharmonic. In this case,
near each line R−H2k = q2Ki(w)+ higher order terms in w+O((z−τiw)w).

Further, by changing holomorphic coordinates if need be we may assume
that H2kILi

≡ 0.
Near a given Li we can write

H2k = Q2ji,2k−2ji((z − τiw), (z − τiw), w, w)
+ terms of order larger than 2ji in (z − τiw).

Here Q2ji,2k−2ji is homogeneous in z − τiw and w separately.
Since H2k is plurisubharmonic, it follows that also Q2ji,2k−2ji is plurisub-

harmonic (see [2] and the Appendix). Moreover Q2ji,2k−2ji = s(z − τiw)γwβ

where s is subharmonic.
From [2], it also follows that in most cases there exist a function

B(z, z, w, w) ≥ |z − τiw|2k + |z − τiw|2ji |w|2k−2ji

such that we can find a plurisubharmonic H̃2k = Q̃2ji,2k−2ji + R and H2k ≥
H̃2k + εB for some ε > 0.
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Choose a large A > 0 and near Li we let

Φi = ξ − A|z − τiw|2k − A|z − τiw|2ji |w|2k−2ji − A|w|2Ki .

From [1], we know that there is a b2Ki ≥ |w|2Ki and subharmonic q̃2Ki <
q2Ki − εb2Ki . Let

Ω∗
0 = {Re(ζ) + H̃2k(z, w) + q̃2Ki < 0}

near Li, then we patch the bumping away from the lines L1, . . . , Lm.
Further we choose

P1 = 1
P i

2 = −A(z − τiw)k−1(z − τ iw)k

P i
3 = −A(−τi(z − τiw)k−1(z − τ iw)k

+|z − τiw|2jiwk−ji−1wk−ji + wKi−1wKi).

Then
P1

Φi
ξ + P i

2
Φi

z + P i
3

Φi
w ≡ 1.

Away from the lines L1, . . . , Lm we need to glue these choices together.
First we choose a partition of unity {χi}mi=1 such that each χi is constant in
a conical neighborhood of each line L1, . . . , Lm. Then we let

Φ = ξ − A
∑

χi|z − τiw|2k − A
∑

χi|z − τiw|2jiw2k−2ji − A
∑

χi|w|2Ki .

Then we let

P1 = 1
P2 = −A

∑
χi(z − τiw)k−1(z − τ iw)k

P3 =
∑

χiP
3
i .

Finally we see that

P1

Φ ξ + P2

Φ z + P3

Φ w ≡ 1.

Examples 1.2 and 1.4 from the introduction are covered by this case. As
we can see from the other example domains in the introduction, we also need
to deal with curves of higher order of contact, not just lines. In this case the
|w|2Ki ’s need to be replaced by something much more complicated.
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5.2. Idea and first steps

The main tool for handling exceptional curves is an algorithm developed by
Fornæss and Stensønes in [13]. Each step in their algorithm will contribute
terms to the function Φ. As such, in contrast to Fornæss and Stensønes, we
have to keep track of every iteration step in the algorithm, which is why we
choose to use the language of graph theory to describe the construction of Φ.

We briefly recall the Fornæss-Stensønes algorithm from [13]. The algo-
rithm is a three step process. We start with an essentially plurisubharmonic
polynomial r(z, w) without pluriharmonic terms. First, we find a complex
line on which the lowest order terms vanish. Second, we change coordinates
to move this line to an axis. Third we use the Newton diagram to find a
weighted homogeneous polynomial coming from an extreme edge and find a
curve where the lowest order term vanishes. This process repeats until the
weighted homogeneous polynomial does not vanish along any curve. More
precisely, if the lowest order terms vanish along the line wi = τizi, then we do
the following change of coordinates z̃i = zi and w̃i = wi−τizi. Now we write r
in the new coordinates. There will be finitely many extreme edges with slope
less than negative one. Among those, choose the one with the smallest slope.
This will give rise to a weighted homogeneous polynomial of degree (ai, bi).
Now we make the (singular) change of coordinates (zi+1, wi+1) = (z̃

1
ai , w̃

1
bi ).

See [13] for more details. If we look at r in the new coordinates, we will get a
new lowest order homogeneous polynomial, which will make a contribution to
Φ, similar to the ones above, but now in the new coordinates (zi+1, wi+1). We
need help with the book keeping, so we choose the language of graph theory.

Before carrying out the construction in details, we give a brief overview
over how the graph is obtained from the Fornæss-Stensønes algorithm. We
describe a rooted (undirected) tree G = (V,E), where each node, except for
the root, corresponds to a complex line obtained from a sequence of coordinate
changes as described in [13]. Since the algorithm in [13] terminates after
finitely many steps, an initial coordinate change ensures that none of the
occurring complex lines is given as {v = 0} in the complex coordinates (u, v)
with respect to which the line is described in the algorithm.

We construct this tree by applying the algorithm from [13].
We initialize the tree with its root (0, 0) ∈ V . If the lowest order homoge-

neous term of R is not harmonic along any complex line through 0, we stop.
Otherwise, as mentioned previously, that term will be harmonic along only
finitely many complex lines through 0, say L(1,1), . . . , L(1,l1), where l1 ≥ 1 and
L(1,i) �= L(1,j) for i �= j. We add nodes (1, 1), . . . , (1, l1) ∈ V corresponding to
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these lines, as well as edges connecting each of these newly introduced nodes
to the root, i.e. {(1, 1), (0, 0)}, . . ., {(1, l1), (0, 0)} ∈ E.

Now we consider the line L(1,1), which for suitable τ(1,1) ∈ C is given
as L(1,1) = {(z, w) ∈ C

2 : z − τ(1,1)w = 0}. The real-valued polynomial R̃(1,1)
given by

R̃(1,1)(z̃, w̃) = R(z̃ + τ(1,1)w̃, w̃)

is harmonic along the complex line {(z̃, w̃) ∈ C
2 : z̃ = 0}. We consider the

Newton diagram of R̃(1,1). If there exists no extreme edge with slope < −1,
we stop (if 1 = l1) or we move on to considering the line L(1,2) (if 1 < l1).
Otherwise let E(1,1) be the extreme edge with the smallest slope among all
extreme edges with slope < −1 (Caution: this is now an extreme edge in a
Newton diagram and not an edge of the graph). We then find positive integers
k(1,1), l(1,1) with gcd(k(1,1), l(1,1)) = 1, such that the lowest-order homogeneous
terms of R̃(1,1)(z̃k(1,1) , w̃l(1,1)) are precisely given by

(
R̃(1,1)

)
E(1,1)

(z̃k(1,1) , w̃l(1,1)).

This leads us to defining a (singular) change of coordinates Ψ(1,1) : C2 → C
2

by

Ψ(1,1)(u, v) = (uk(1,1) + τ(1,1)v
l(1,1) , vl(1,1)).

We set

R(1,1) := R ◦ Ψ(1,1)

and once again consider the complex lines through 0, along which the lowest-
order homogeneous term of R(1,1) is harmonic (note that said lowest-order
homogeneous term “comes from” E(1,1)). If there is no such line we stop (if
1 = l1) or we move on to considering the line L(1,2) (if 1 < l1). Otherwise there
will be finitely many such lines, say L(2,1), . . ., L(2,c(1,1)), where c(1,1) ≥ 1 and
L(2,i) �= L(2,j) for i �= j. We add nodes (2, 1), . . ., (2, c(1,1)) ∈ V correspond-
ing to these lines, as well as edges {(2, 1), (1, 1)}, . . ., {(2, c(1,1)), (1, 1)} ∈ E

connecting these newly introduced nodes to (1, 1).
We want to iterate the procedure we just described.
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5.3. Some notation

As is obvious from the steps carried out thus far, this iteration would lead
to some very inconvenient indexing. In order to avoid this, we will introduce
some notation that lets us work around this issue. First, we define a function

A : V \ {0} → V

(the “ancestor function”) that assigns to each node (except for the root)
its “immediate ancestor”, i.e. the second node on the uniquely determined
shortest path ((m,n), . . ., (0, 0)) to the root: A(m,n) = (m − 1, j) for the
(uniquely determined) j with {(m,n), (m− 1, j)} ∈ E.

Secondly, for a node (m,n) ∈ V , we denote the set of all nodes having
(m,n) as immediate ancestor as C(m,n) (the “children set”):

C(m,n) = {(m + 1, l) ∈ V : A(m + 1, l) = (m,n)} = A−1({(m,n)}).

5.4. Setting up the graph

We now carry out the construction of the graph indicated above in a more
formal manner. We initialize the rooted undirected tree G = (V,E) with
E = ∅ and V = {(0, 0)}. We also introduce a set D, the set of nodes that have
been “dealt with”; we start with D = ∅. We set R(0,0) := R and Ψ(0,0) := id
and k(0,0) = l(0,0) = 1.

If the lowest order homogeneous term of R(0,0) is not harmonic along
any complex line through 0, we add (0, 0) to D. Otherwise, as mentioned
previously, said term will be harmonic along only finitely many complex
lines through 0, say L(1,1), . . . , L(1,l1), where l1 ≥ 1 and L(1,i) �= L(1,j) for
i �= j. We add nodes (1, 1), . . . , (1, l1) ∈ V corresponding to these lines, as
well as edges connecting each of these newly introduced nodes to the root,
i.e. {(1, 1), (0, 0)}, . . ., {(1, l1), (0, 0)} ∈ E. After having introduced these new
nodes and edges, we consider (0, 0) to be “dealt with”, so we add (0, 0) to D.

We now iterate the following procedure:
If the set V \ D is nonempty (i.e. there exists a node that has not been

“dealt with”), we do the following: pick the node (m,n) ∈ V \ D that is
minimal with respect to the lexicographical order.

The node (m,n) comes from a complex line through 0,

L(m,n) = {(z, w) ∈ C
2 : z − τ(m,n)w = 0},
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along which the lowest-order homogeneous term of RA(m,n) is harmonic. The
lowest-order homogeneous term of the real-valued polynomial R̃(m,n) given by

R̃(m,n)(z̃, w̃) = RA(m,n)(z̃ + τ(m,n)w̃, w̃)

is harmonic along the complex line {(z̃, w̃) ∈ C
2 : z̃ = 0}. We consider the

Newton diagram of R̃(m,n). If there exists no extreme edge with slope < −1,
we add (m,n) to D and go back to the beginning of the iteration. Otherwise
let E(m,n) be the extreme edge with the largest slope among all extreme edges
with slope < −1 (Caution: this is now an extreme edge in a Newton diagram
and not an edge of the graph). We then find positive integers k(m,n), l(m,n)
with gcd(k(m,n), l(m,n)) = 1, such that the lowest-order homogeneous terms of
R̃(m,n)(z̃k(m,n) , w̃l(m,n)) are precisely given by(

R̃(m,n)

)
E(m,n)

(z̃k(m,n) , w̃l(m,n)).

This leads us to defining a (singular) change of coordinates Ψ(m,n) : C2 → C
2

by

Ψ(m,n)(u, v) = (uk(m,n) + τ(m,n)v
l(m,n) , vl(m,n)).

We set

R(m,n) := RA(m,n) ◦ Ψ(m,n).

Once again, we consider the complex lines through 0, along which the lowest-
order homogeneous term of R(m,n) is harmonic (note that said lowest-order
homogeneous term “comes from” E(m,n)). If there is no such line, we add
(m,n) to D and go back to the beginning of the iteration. Otherwise there is
a finite positive number of such lines, say c(m,n). We set

b(m,n) :=
{

max{j ∈ Z : (m + 1, j) ∈ V } if (m + 1, 1) ∈ V ,
0 otherwise.

We now name these lines

L(m+1,b(m,n)+1), . . . , L(m+1,b(m,n)+c(m,n)),

and add nodes

(m + 1, b(m,n) + 1), . . . , (m + 1, b(m,n) + c(m,n)) ∈ V ,
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corresponding to these lines, as well es edges

{(m + 1, b(m,n) + 1), (m,n)}, . . . , {(m + 1, b(m,n) + c(m,n)), (m,n)} ∈ E,

connecting these newly introduced nodes to the node (m,n). We now add
(m,n) to D and go back to the beginning of the iteration. It follows from
[13], that V \D will be empty after finitely many steps. This completes the
construction of the graph G.

As on page 10, we can bump R(m,n) and get R̃(m,n). We take Ω∗
0 = {Re(ζ)+

R̃(m,n) < 0} for the bumping of Ω away from the lines Lm+1.

5.5. Definition of Φ

Let A � 0 be a large enough constant (to be made precise). We will, for each
node (m,n), define a function D(m,n) and set

Φ(ξ, z, w) := ξ − A · D(0,0)(z, w).

We will do so using a kind of “backwards induction”, where we work our
way from the leaves of the tree towards the root. More precisely, D(m,n) will
be determined by the functions associated to the nodes in the children set
C(m,n) of (m,n).

We start by defining D(m,n) for a node (m,n), whose children set is empty
(note that this is equivalent to saying that (m,n) is a leaf, unless V = {(0, 0)},
in which case of course (m,n) = (0, 0)). We consider two separate cases.

The first case is the case where (m,n) �= (0, 0) and there exists no extreme
edge with slope < −1 in the Newton diagram of R̃(m,n). Looking at the
construction of G, we see that Ψ(m,n) has not been defined in this case. We
define Ψ(m,n) by

Ψ(m,n)(u, v) = (u + τ(m,n)v, v),

and D(m,n) by

D(m,n)(u, v) = |v|2L·lA(m,n)·lA◦2(m,n)·····lA◦m−1(m,n) ,

where A◦j = A◦ · · · ◦A with j copies of A and 2L is the type at 0. It should
be noted that the product lA(m,n) · lA◦2(m,n) · · · · · lA◦m−1(m,n) is the empty
product if m < 2.

Now, still in the setting where C(m,n) is empty, we consider the case
where one of the following two assertions is true:
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• (m,n) = (0, 0)
• (m,n) �= (0, 0) and there does exist an extreme edge with slope < −1

in the Newton diagram of R̃(m,n).

Note that Ψ(m,n) was already defined in the construction of G in this case.
We define

D(m,n)(u, v) = ‖(u, v)‖2d(m,n),

where 2d(m,n) is the degree of the lowest-order homogeneous term of R(m,n).
Finally, we consider a node (m,n) with C(m,n) �= ∅. Then the lowest-

order homogeneous term of R(m,n) is harmonic precisely along the following
complex lines through 0:

L(m+1,l), where (m + 1, l) ∈ C(m,n).

We choose a partition of unity(
χ(m+1,l)

)
(m+1,l)∈C(m,n)

with respect to conical neighborhoods of the L(m+1,l)’s such that the χ(m+1,l)’s
are homogeneous of degree 0 and set:

D(m,n)(u, v) =
∑

(m+1,l)∈C(m,n)
χ(m+1,l)(u, v)

·
(
|u− τ(m+1,l)v|2d(m,n)

+ |u− τ(m+1,l)v|2d(m,n)−2q(m,n)|v|2q(m,n)

+ D(m+1,l)(Ψ(m+1,l)
−1(u, v))

)
.

Here, 2d(m,n) is the degree of the lowest-order homogeneous term of R(m,n)
and 2q(m,n) is the largest degree in v, v attained in the extreme set of the
Newton diagram of R(m,n) corresponding to slope −1 (this can be an extreme
point or an extreme edge). Furthermore, we point out that it is not a problem
that the coordinate changes Ψ(m+1,l) are singular in general, since we are
multiplying with an appropriate cut-off function χ(m+1,l). We also glue the
bumpings of Ω in the support of χ′

(m+1,l).
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6. Setting up P1, P2 and P3

As mentioned previously, we choose P1 ≡ 1. Furthermore, P2 and P3 will
only depend on z and w, i.e. not on ξ. Our goal is to split F , Φ = ξ − F ,
into terms divisible by z and terms divisible by w to obtain P2 and P3. Up to
compositions of singular coordinate changes and multiplication with products
of cut off functions, F is a sum of terms of the following forms:

• |v|2L·lA(m,n)·lA◦2(m,n)·····lA◦m−1(m,n) ,
• ‖(u, v)‖2d(m,n),
• |u− τ(m+1,l)v|2d(m,n) + |u− τ(m+1,l)v|2d(m,n)−2q(m,n)|v|2q(m,n).

Hence it is enough to treat each of these terms separately, while of course
accounting for the singular coordinate changes.

We now fix a node (m,n) for the remainder of this section. We start
with the first term. Noting that, in the corresponding coordinates, we have
vlA(m,n)·lA◦2(m,n)·····lA◦m−1(m,n) = w, we readily decompose as follows:

|v|2L·lA(m,n)·lA◦2(m,n)·····lA◦m−1(m,n)

=z · 0 + w · v(L−1)·lA(m,n)·lA◦2(m,n)·····lA◦m−1(m,n)vL·lA(m,n)·lA◦2(m,n)·····lA◦m−1(m,n) .

In order to deal with the remaining two terms, we simplify notation a
bit: we set dm := d(m,n) and, when dealing with the last term, qm :=
q(m,n). Furthermore we write Vm := (m,n), Vm−1 := A(m,n), . . . , V1 :=
A◦m−1(m,n) and of course V0 := (0, 0). We denote the coordinates corre-
sponding to Vj as (zj , wj) and let τj := τVj ; in particular we have (u, v) =
(zm, wm) and (z, w) = (z0, w0). The exponents from the coordinate changes
are denoted as αj := kVj and βj := lVj , i.e. we have w

βj

j = wj−1 and
z
αj

j = zj−1 − τjwj−1 for j = 1, . . . ,m.
For the remaining two terms we notice that, away from (0, 0), they can

be trivially rewritten as:

• ‖(zm,wm)‖2dm

|zm|2dm+|wm|2dm · (|zm|2dm + |wm|2dm),

• |zm−τ(m+1,l)wm|2dm+|zm−τ(m+1,l)wm|2dm−2qm |wm|2qm
|zm|2dm+|wm|2dm · (|zm|2dm + |wm|2dm).

But, away from (0, 0), both of these fractions are smooth bounded functions
taking values in the non-negative reals. So, away from (0, 0), both of the
remaining terms are of the form

fm · (|zm|2dm + |wm|2dm),
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for some smooth bounded function fm, defined away from (0, 0) and taking
values in R≥0. Of course such a function does not necessarily extend con-
tinuously to (0, 0), but the product of such a function with something small
enough will, e.g. fm · zm or fm · wm. That is the idea we will use in the last
step to obtain the desired splitting.

Since the cut-off functions from the construction of Φ of course also occur
in the expressions for P2 and P3, we again do not have to worry about the
coordinate changes being singular. Because of this, we will ignore the singu-
larity of the coordinate changes for the remainder of this section. We have,
away from (0, 0):

fm · (|zm|2dm + |wm|2dm)

=fm · |zm−1 − τmwm−1|
2dm
αm + fm · |w|

2dm
βm·····β1

=fm · |zm−1 − τmwm−1|
2dm
αm

|zm−1|
2dm
αm + |wm−1|

2dm
αm

· (|zm−1|
2dm
αm + |wm−1|

2dm
αm )

+ fm · |w|
2dm

βm·····β1

=fm · fm−1 · (|zm−1|
2dm
αm + |wm−1|

2dm
αm ) + fm · |w|

2dm
βm·····β1

=fm · fm−1 · |zm−1|
2dm
αm + fm · fm−1 · |w|

2dm
αm·βm−1·····β1

+ fm · |w|
2dm

βm·····β1 ,

where fm−1 is again some smooth bounded function, defined away from (0, 0)
and taking values in R≥0. Continuing inductively, we find smooth bounded
functions fm−2, . . . , f0, defined away from (0, 0) and taking values in R≥0,
such that:

fm · (|zm|2dm + |wm|2dm) =fm · · · · · f0 · |z|
2dm

αm·····α1

+ fm · · · · · f0 · |w|
2dm

αm·····α1

+ . . .

+ fm · · · · · fj · |w|
2dm

αm·····αj+1·βj ·····β1

+ . . .

+ fm · |w|
2dm

βm·····β1 .

This implies that fm · (|zm|2dm + |wm|2dm) is a (finite) sum of terms of the
form

g · |x|r,
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where r is a positive real number, x can be either z or w, and g is again some
smooth bounded function, defined away from (0, 0) and taking values in R≥0.
If r > 1, then we can write

g · |x|r =
(
g · |x|

x
· |x|r−1

)
· x.

Now g|x|/x is smooth and bounded away from (0, 0), so (since r − 1 > 0),
the function g · |x|

x · |x|r−1 extends continuously with value 0 to (0, 0). Then,
depending on whether x is z or w, we absorb the corresponding term into P2
respectively P3.

The only thing left to do is to show that the occurring exponents are
larger than 1, i.e. we have to show that 2dm > αm · · · · · αj+1 · βj · · · · · β1
for j = 0, 1, . . .,m. But, since all αi, βi come from extreme edges with slope
≤ −1, we clearly have αi ≥ βi ≥ 1 for all i, i.e. we only have to show that
2dm > αm · · · · · α1. This, however, follows immediately by tracing through
the algorithm described in the previous section.

7. Developing plurisubharmonic weights

In the next section, we will need weights coming from the algorithm in the
use of Hörmander’s theorem. We develop these weights in this section.

For each node (m,n) of G, whose children set C(m,n) is empty, we define
a function ρ(m,n), which will appear in the definition of the weight for the
(0, 2)-form ω. We fix such a node (m,n) for the remainder of this section.
Much like in the definition of Φ, we trace our way back from (m,n) to the
root and add terms along the way. We will have

ρ(m,n)(z, w, ξ) = log
(
|ξ| + |ξ|2 + H(m,n)(z, w)

)
,

for a real valued function H(m,n) ≥ 0 that will be described below. If (m,n) =
(0, 0), then V = {(0, 0)} and we set H(0,0) := D(0,0). So assume (m,n) �= (0, 0)
for the remainder of this section, i.e. V �= (0, 0).

The function H(m,n) will look like the function D(0,0), except for the fact
that all the occurring cut-off functions are replaced by either 1 or 0, depending
on whether the node of consideration lies on the uniquely determined shortest
path from (m,n) to (0, 0). In other words, H(m,n) is defined like D(0,0), but
we do not have cut-off functions and only take the nodes corresponding to
the shortest path between (m,n) and the root in G. In the language of [13],
this path in G corresponds to a mother curve. Since we do not have cut-off
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functions to take care of the fact that the coordinate changes are singular,
we sum over all the preimages and normalize to prevent problems induced by
multiplicity. We carry this out formally:

For each node of the form A◦j(m,n), where j ∈ {0, 1, . . .,m}, we define
a function E (m,n)

A◦j(m,n) and set H(m,n) := E (m,n)
A◦m(m,n) = E (m,n)

(0,0) .
We set

E (m,n)
A◦0(m,n) = E (m,n)

(m,n) := D(m,n),

(recall that (m,n) is a leaf) and for j ∈ {0, . . .,m − 1}. Finally we define
E (m,n)
A◦j+1(m,n)(u, v) using an average as follows

E (m,n)
A◦j+1(m,n)(u, v) :=

|u− τA◦j(m,n)v|2d(A
◦j+1(m,n))

+ |u− τA◦j(m,n)v|2d(A
◦j+1(m,n))−2q(A◦j+1(m,n))|v|2q(A◦j+1(m,n))

+ 1
card(ΨA◦j(m,n)

−1{(u, v)})
∑

(ũ,̃v)∈ΨA◦j (m,n)
−1{(u,v)}

E (m,n)
A◦j(m,n)(ũ, ṽ).

8. L2 estimates for the (2, 0)-form ω

We start with a lemma that will simplify the estimates.

Lemma 8.1. Let m be a positive integer and let T, S ∈ C
m×m be Hermitian

matrices, such that S is positive semidefinite and T is positive definite. Then
we have for all v ∈ C

m:

vt(T + S)−1v ≤ vtT−1v.

Proof. This follows by writing down a Cholesky decomposition for T−1 and
calculating.

Now we want to solve the equation ∂u = ω in an L2 space using the
following theorem that allows us to gain more regularity.

Theorem 8.2 (Hörmander, Demailly [7]). Let ρ be a plurisubharmonic func-
tion on D ⊂ C

3, pseudoconvex, v a ∂− closed (0, 2)−form. Then there exists
a (0, 1)−form such that ∂u = v and∫

D
|u|2e−ρ ≤ C

∫
D
< A−1v, v > e−ρ,
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where

A =

⎡⎢⎣ρξξ + ρzz ρwz −ρwξ

ρzw ρξξ + ρww ρzξ
−ρξw ρξz ρzz + ρww

⎤⎥⎦ .

In this setting, an explicit calculation gives:

A−1 = 1
detA ·M ,

where M is given by[
(ρ

ξξ
+ ρww)(ρzz + ρww) − |ρξz |

2 −ρzw(ρzz + ρww) − ρξwρ
zξ

ρzwρξz + ρξw(ρ
ξξ

+ ρww)
−ρwz(ρzz + ρww) − ρξzρwξ

(ρ
ξξ

+ ρzz)(ρzz + ρww) − |ρξw|2 −ρξz(ρ
ξξ

+ ρzz) − ρξwρwz

ρwzρzξ
+ ρ

wξ
(ρ

ξξ
+ ρww) −ρ

zξ
(ρ

ξξ
+ ρzz) − ρ

wξ
ρzw (ρ

ξξ
+ ρzz)(ρ

ξξ
+ ρww) − |ρzw|2

]
,

and

detA = (ρξξ + ρzz)
[
ρξξρzz − |ρzξ|

2
]

+ (ρww + ρzz)
[
ρzzρww − |ρzw|2

]
+ (ρξξ + ρww)

[
ρξξρww − |ρwξ|

2
]

+ 2 Levi Det(ρ) + Lξz(ρ, (ρwz, ρξw)) + Lξw(ρ, (ρwz, ρξz))
+ Lzw(ρ, (ρξw, ρξz)).

We want to apply this theorem with Ψ0, Ω∗∗
0 , ω in the roles of ρ, D,

v respectively, where Ω∗∗
0 is pseudoconvex and contains Ω \ {0}. Moreover,

locally, it is an intermediate bumping in the sense that Ω \ {0} ⊆ Ω∗∗
0 ⊆ Ω∗

0
and both inclusions denote a bumping to the type of Ω at 0. More precisely,
Ω∗∗

0 is obtained by “subtracting” half the bumping function from the defining
function of Ω.

Recall ω from section 4,

ω = 2∂P2 ∧ ∂P3

Φ3 ,

and define

Ψ0 = −
(1
k

+ εJ

)
· log (dist(·, b Ω∗

0)) + d(|ξ|2 + |z|2 + |w|2)

+
∑

(m,n)∈V : C(m,n)=∅
ερ(m,n),
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where J is the number of nodes with empty children set (i.e. the number
of leaves, if V �= {(0, 0)}) and d, ε > 0 are very small. It should be pointed
out that the term involving d is only included to ensure invertibility resp.
positivity in the appropriate places, and will not play a big role in the following
estimates. Recall furthermore that for the nodes (m,n) with empty children
set we have

ρ(m,n)(ξ, z, w) = log
(
|ξ| + |ξ|2 + H(m,n)(z, w)

)
.

If

Ψ0 = ρ + Ψ′
0,

where ρ is strictly plurisubharmonic and Ψ′
0 is plurisubharmonic, then the

matrix Aρ is a positive definite Hermitian matrix and AΨ0 −Aρ is a positive
semidefinite Hermitian matrix. Lemma 8.1 and a calculation then immedi-
ately give:

| < AΨ0
−1ω, ω > |e−Ψ0 ≤ |ω|2e−Ψ0 · (I + II + III),

where

I =
ρξξ

ρξξρzz − |ρξz|2
,

II =
ρξξ

ρξξρww − |ρξw|2
,

III = 1
ρzz + ρww

.

We have III ≤ I (since ρ is strictly plurisubharmonic), so it suffices to estimate
I and II.

Now assume that ρ is of the following form:

ρ(ξ, z, w) = ε · log
(
|ξ| + |ξ|2 + H(z, w)

)
,

where H ≥ 0 is a smooth real-valued function with the property that Hzz and
HHzz − |Hz|2 (as well as the analogous expressions with w instead of z) are
non-negative. Setting h(ξ, z, w) := |ξ| + |ξ|2 + H(z, w), a direct computation
gives:

I � h2

Hzz · (|ξ| + |ξ|2 + H) + h2

HHzz − |Hz|2
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� h2

HHzz − |Hz|2
,

and analogously, we get

II � h2

HHww − |Hw|2
,

where the occurring constants depend on ε.

8.1. Estimating the integral

We are integrating over Ω∗∗
0 . We partition the domain of integration into

finitely many sets in accordance with how Φ was defined.
Intuitively speaking, we do the following: if the lowest order homogeneous

term of R is not harmonic along any complex line through 0, the partition
is simply given by the domain itself. Otherwise, we remove small conical
neighborhoods of the complex lines through 0, along which R is harmonic
(namely L(1,1), . . . , L(1,l1)). The resulting set gives the first set of the partition.

Then, for every complex line L(1,j) such that (1, j) is a leaf, the corre-
sponding conical neighborhood gives a set of the partition. For every complex
line L(1,j) such that (1, j) is not a leaf, the lowest order homogeneous term
of R(1,j) = R ◦ Ψ(1,j) is harmonic along a finite (strictly positive) number of
complex lines through 0. Once again, we remove small conical neighborhoods
of these lines and the resulting set contributes a set to the partition after ad-
justing for the change of coordinates Ψ(1,j). We continue in the obvious way
and obtain the announced partition, which is finite, since the graph is finite.
We denote this partition as

Ω∗∗
0 =

⋃
(m,n)∈V

S(m,n),

where S(m,n) is the region corresponding to the node (m,n). We estimate
the integral by considering the regions corresponding to the nodes separately,
i.e. it suffices to show that the integral∫

S(m,n)
| < AΨ0

−1ω,ω > |e−Ψ0

�
∫
S(m,n)

|∂z,wP2 ∧ ∂z,wP3|2
|Φ|6 e−Ψ0 · h2

HHzz − |Hz|2
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+
∫
S(m,n)

|∂z,wP2 ∧ ∂z,wP3|2
|Φ|6 e−Ψ0 · h2

HHww − |Hw|2

is finite for every node (m,n) ∈ V , where integration occurs with respect to
the Lebesgue measure on R

6. We start at the root (0, 0) and inductively work
our way down to all the leaves.

8.1.1. First step We start at the root of the tree, i.e. we look at a region
in the (z, w)-plane (in the original coordinates), where small conical neighbor-
hoods of the critical complex lines through 0 have been removed (the complex
lines through 0, along which the lowest-order homogeneous term of R is har-
monic (finitely many)). If (0, 0) has empty children set, then there have not
been any lines removed and Φ takes a particularly simple form. The estimates
are much easier in this case, so we assume that C(0, 0) �= ∅.

We take ρ to be any of the ρ(m,n) (the choice will matter in the induction
step, but not here). Considering that we avoid conical neighborhoods of the
critical lines, we can ignore the terms contributed by other nodes of the graph
in the estimates for the region S(0, 0). We essentially have the following:

ρ = log
(
|ξ| + |ξ|2 + |z − τw|2k + |z − τw|2j |w|2k−2j + remainder

)
h = |ξ| + |ξ|2 + |z − τw|2k + |z − τw|2j |w|2k−2j + remainder
H = |z − τw|2k + |z − τw|2j |w|2k−2j + remainder ,

where z is bounded away from τw. Also

P2 = −A(z − τw)k−1(z − τw)k + remainder
P3 = −A(−τ(z − τw)k−1(z − τw)k + |z − τw|2jiwk−ji−1wk−ji) + remainder,

where the respective remainders are also insignificant when computing
derivatives. A calculation gives (here, x can be either z or w; note that we
are in the first step):

|∂P2|2 ∼ |x|4k−4

HHzz − |Hz|2 = (k − j)2|z − τw|2k+2j−2|w|2k−2j + remainder
∼ |x|4k−2

HHww − |Hw|2 = (k − j)2|z − τw|2k+2j−2|w|2k−2j−2|z|2 + remainder
∼ |x|4k−2.
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Using this, we can estimate the integrand as follows (we introduce a small
δ > 0 to kill a potential log-term; note also that in the current region we have
|Φ| ∼ h):

|∂P2 ∧ ∂P3|2
|Φ|6 e−Ψ0(1+δ) ·

(
h2

HHzz − |Hz|2
+ h2

HHww − |Hw|2

)

�e−Ψ0(1+δ) · h2

|x|4k−2 · |x|
4k−4|∂P3|2
|Φ|6

�e−Ψ0(1+δ) · 1
|x|2 · |∂P3|2

|Φ|4 .

We have to integrate with respect to the form dξ ∧ dξ ∧ dz ∧ dz ∧ dw ∧ dw.
Roughly speaking, integrating with respect to dξ∧dξ turns 1/|Φ|4 into 1/|Φ|2
and integrating with respect to dz∧dz takes care of the 1/|x|2. What remains
is to estimate ∫

e−Ψ0(1+δ) · |∂P3|2
|Φ|2 dw ∧ dw,

which turns out to be finite, as desired.

8.1.2. Induction step It remains to see what happens in the conical neigh-
borhood of one of the lines. After the usual coordinate change, this region
looks like the region from the first step. So this leads to an inductive pro-
cedure, where we dig our way down from the root of the tree all the way
down to the leaves (with only the leaves needing special treatment, since the
leaf-terms look a bit different).

So consider the region S(m,n) for a node (m,n) �= (0, 0). In the new
coordinates, the region looks the same as the region from the first step, so
if we can convince ourselves that also the integrand including the Jacobian
from the change of coordinates looks the same as in the first step (in the
new coordinates), then the integral can be estimated precisely as before. We
denote the coordinates corresponding to the node A(m,n) as (ξ, z, w). We
call the coordinate change φ and denote the new coordinates as (z1, w1); the
coordinate ξ of course stays the same. If (m,n) is a leaf, then the occurring
expressions take a simpler form, making the estimates much easier; so we
assume that (m,n) is not a leaf.

We look at the integral involving the h2/(HHzz − |Hz|2) term (the other
term (w instead of z) can be handled similarly, although the expression of
that term in the new coordinates will look a bit more complicated).



560 Dusty Grundmeier et al.

We take ρ = ρ(m′,n′), where (m′, n′) is any leaf with the property that the
current node (m,n) lies on the uniquely determined shortest path from the
root to (m′, n′). With other words: the current node (m,n) can be reached
from (m′, n′) by iterating the ancestor function A. So we look at

|∂z,wP2 ∧ ∂z,wP3|2
|Φ|6 e−Ψ0 · h2

HHzz − |Hz|2
· | detφ′|2

in the new coordinates (z1, w1), where the determinant factor comes from the
change of variables. Since

|∂z,wP2 ∧ ∂z,wP3|2 · | detφ′|2 = |∂z1,w1P2 ∧ ∂z1,w1P3|2,

we can estimate the integrand to be

� |∂z1,w1P2|2|∂z1,w1P3|2
|Φ|6 e−Ψ0 · h2

HHzz − |Hz|2
.

We want to make this look like in the first step. But recalling how P2 and
P3 were chosen relative to Φ, the expression |∂z1,w1P2|2 (resp. |∂z1,w1P3|2)
is still missing a factor ∼ |z/z1|2 (resp. ∼ |w/w1|2) in order to look like in
the previous step. Furthermore, we still need to express HHzz − |Hz|2 in the
new coordinates and we point out that the 1/k occurring in the definition
of Ψ0 still corresponds to the first step. But, using that ∂w/∂z1 = 0 and
z = z1

α + τwβ
1 , we get:

1
HHzz − |Hz|2

= 1
HHz1z1 − |Hz1 |2

·
∣∣∣∣ ∂z∂z1

∣∣∣∣2 = 1
HHz1z1 − |Hz1 |2

·
∣∣∣αz1

α−1
∣∣∣2 .

So, in order to account for the 1/k term in the definition of Ψ0 and the missing
factor |w/w1|2 · |z/z1|2, we point out that (roughly speaking)

e1/k log |Φ| ·
∣∣∣αz1

α−1
∣∣∣2 =

∣∣∣∣ ww1

∣∣∣∣2 · ∣∣∣∣w1

w

∣∣∣∣2 · ∣∣∣αz1
α−1

∣∣∣2 · e1/k log |Φ|

∼
∣∣∣∣ ww1

∣∣∣∣2 · ∣∣∣∣ zz1

∣∣∣∣2 · e1/k1 log |Φ|,

where 2k1 is the degree of the lowest-order homogeneous term when expressing
R with respect to z1 and w1. Now the integrand is as in the first step and the
estimate goes through the same way.
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8.2. Volume of polydiscs

In Section 9 we will pass from L2 estimates to pointwise estimates using
subaveraging. With this in mind, we have to describe the volume of “a large
polydisc” Q(q) ⊆ Ω∗∗

0 centered at a boundary point q ∈ ∂Ω \ {0} close to 0.
This will be done with respect to the coordinates corresponding to the current
region in the partition of the (z, w)-plane; Q(q) is chosen to be a polydisc in
those coordinates:

Recalling that

Ω∗∗
0 =

⋃
(m′,n′)∈V

S(m′, n′),

where S(m′, n′) is the region corresponding to the node (m′, n′), we find a
node (m,n), such that q ∈ S(m,n). In the coordinates (ξ, z(m,n), w(m,n)) cor-
responding to (m,n), we can fit a polydisc Q(q) with√

Vol(Q(q)) ∼ (|z(m,n)| + ‖(ξ, z, w)‖2L)(|w(m,n)| + ‖(ξ, z, w)‖2L)|Φ(q)|,

as is obvious from the choice of partition.

9. Passing from L2 estimates to pointwise estimates for v1,
v2, v3

The aim of this section is to give good local estimates for the functions v1,
v2, v3 appearing in the Koszul complex (see Section 4). Recall, we do this in
the local coordinates where the domain Ω is given by

Ω =
{
Re(η0

1 − z1) + r(η0
2 − z2, η

0
3 − z3) + s(η0

1 − z1, η
0
2 − z2, η

0
3 − z3) < 0

}
.

Lemma 9.1. Let p = (η0
1 , η

0
2 , η

0
3) ∈ ∂Ω, (z1, z2, z3) ∈ ∂Ω, 2L is the D’Angelo

type, 2k is the hypersurface type (or Bloom-Graham type), and δ > 0 such
that δ � 1

2k and δ � 1
2L , then

|v1(z1, z2, z3)| ≤ C · |η
0
3 − z3|
M1M2

· 1
Φ1+ 1

2k+δ− 1
2L

|v2(z1, z2, z3)| ≤ C · |η
0
2 − z2|
M1M2

· 1
Φ1+ 1

2k+δ− 1
2L

|v3(z1, z2, z3)| ≤ C · 1
M1M2

1
Φ 1

2k+δ− 1
2L
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where

M1 = |z(m,n)| +
∥∥∥(η0

1 − z1, η
0
2 − z2, η

0
3 − z3)

∥∥∥2L

M2 = |w(m,n)| +
∥∥∥(η0

1 − z1, η
0
2 − z2, η

0
3 − z3)

∥∥∥2L

and z(m,n) and w(m,n) reflect of the changes of coordinates in different zones
as we approach an exceptional curve (see Subsection 5.4), Φ = Φ(ξ, z, w) and
ξ = η0

1 − z1, z = η0
2 − z2, and w = η0

3 − z3

Proof. We choose ε, ẽ > 0 so that εJ + ε̃
k < δ. We have shown that we can

solve ∂u = ω on Ω∗∗
0 such that∫

Ω∗∗
0

|u|2e−ψ0 ≤ C.

Let κ = log
(
|ξ| + |ξ|2 + |z|2M + |w|2M

)
where M is larger than the degree

of bumping from Diederich-Fornæss (see [9]) bumping. Here we use the weight

ψ̃0 = ψ0 − ε̃ log dist(·, ∂Ω∗
0) + ε̃κ.

Define

ψ1 = ψ̃0 + log(|w|2 + ‖(ξ, z, w)‖4L) + log(‖(ξ, z, w)‖2)
ψ2 = ψ̃0 + log(|z|2 + ‖(ξ, z, w)‖4L) + log(‖(ξ, z, w)‖2)
ψ3 = ψ̃0 + log(|ξ|2 + ‖(ξ, z, w)‖4L) + log(‖(ξ, z, w)‖2).

Noting that

h1,2 = −∂P2
Φ2

h1,3 = −∂P3
Φ2

h2,3 = P3∂P2−P2∂P3
Φ2 ,

our next task is to find solutions with good estimates for

∂v1 = −∂P2

Φ2 − wu =: s1

∂v2 = −∂P3

Φ2 − zu =: s2

∂v3 = P3∂P2 − P2∂P3

Φ2 − ξu =: s3.
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Since u ∈ L2(ψ0), it follows that s1 ∈ L2(ψ1), s2 ∈ L2(ψ2) and s3 ∈
L2(ψ3). Recall Hörmander’s L2-estimates:

Theorem. Let ρ be a plurisubharmonic function on D ⊂ C
3, pseudoconvex,

s is a ∂− closed (0, 1)−form. Then there exists a (0, 1)−form v such that
∂v = s and ∫

D
|v|2e−ρ ≤ C

∫
D
< A−1s, s > e−ρ,

where A is the Complex Hessian Matrix of ρ.

We apply the theorem with sj , ψj , Ω∗∗
0 in the roles of s, ρ, D respectively.

With regards to finiteness of the integral on the right hand side we note that,
using Lemma 8.1:

< A−1
ψj
sj , sj > ≤ 1

ε̃
< A−1

κ sj , sj >

≤ C

ε̃
‖s‖2 ‖(ξ, z, w)‖2

Let v1, v2 and v3 be obtained from s1, s2, s3 by applying this result. We
want to pass to pointwise estimates for the v1, v2 and v3.

The fact that v1, v2 and v3 are “part” of holomorphic functions allows us
to use subaveraging to get pointwise estimates.

Let Q(q) = Q(ξ, z, w) be the “largest polydisc” with center q ∈ ∂Ω \ {p}
and Q(q) ⊆ Ω∗∗

p . Then√
Vol(Q(q)) ≥ c · (|u| + ‖(ξ, z, w)‖2L)(|v| + ‖(ξ, z, w)‖2L)|Φ(q)|,

where c > 0. Furthermore we have

|vj(q)|2 ≤ Ã
1

Vol(Q)

∫
Q
|vj |2

≤ ˜̃
A

exp(ψj(q))
Vol(Q)

∫
Q
|vj |2e−ψj(η).

This follows since ψj(q) − ψj(ξ) is bounded in Q. Now∫
Q
|vj |2e−ψj(η) ≤

∫
Ω∗∗

p

|vj |2e−ψj ≤ B < ∞.

From this we get that

|vj(q)| ≤ C
e

1
2ψj(q)√

Vol(Q(q))
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From the choice of ψ0 and the fact that d(q, ∂Ω∗
p) ∼ |Φ(q)| when q ∈ ∂Ω\{p}

we obtain the following pointwise estimates:

|v1(q)| ≤ C ′ |w|
|Φ|1+1/(2k)+δ

1
M1M2

· ‖(ξ, z, w)‖

|v2(q)| ≤ C ′ |z|
|Φ|1+1/(2k)+δ

1
M1M2

· ‖(ξ, z, w)‖

|v3(q)| ≤ C ′
(
|ξ| + |z|2L + |w|2L

)
|Φ|1+1/(2k)+δ

1
M1M2

· ‖(ξ, z, w)‖ .

Here we have ‖(ξ, z, w)‖ ≤ C ′′|Φ| 1
2L and

(
|ξ| + |z|2L + |w|2L

)
≤ |Φ|. The

Lemma follows.

10. Proof of Theorem 1

Now we use the above construction to first create a local kernel, then change
coordinates such that each local kernel is given in the same coordinates. We
then glue the pieces together and obtain a solution operators on a slightly
smaller domains. These solution operators will give uniform estimates which
allow us to use a normal families argument to get the solution operator SΩ(f)
such that ∂SΩ(f) = f and ‖SΩ(f)‖∞ ≤ C(Ω) ‖f‖∞. We proceed as follows.

10.1.

We let

Ψ(η, z) =
3∑

j=1
hj(η0, z)(ηj − zj),

then we see that Ψ is continuous in η, and hence there exists a neighborhood
U of η0 in ∂Ω such that |Ψ(η, z)| ≥ 1

2 when η ∈ U = U(η0).
From this we get new local solutions to the Cauchy-Fantappie equation

by taking

h̃j = hj

Ψ .

10.2.

Now choose ε > 0. Next we use that the estimates we obtain in terms of η0−z
translate to similar estimates in terms of η − z if z ∈ Ω−ε and η ∈ U . Note
we need to shrink U depending on ε.
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10.3.

Finally we use a partition of unity relative to a covering of ∂Ω by the fam-
ily {U(η0)}η0∈∂Ω to glue the solutions to the Cauchy-Fantappie equation to-
gether.

When estimating the kernel in C
3, we need to study terms of the following

forms:

(1) ηi − zi

‖η − z‖2

(
hj

∂hk

∂ζ
− hk

∂hj

∂ζ

)

and

(2) hj
1

‖η − z‖3

where

(3)
3∑

j=1
hj(η, z)(ηj − zj) ≡ 1

and ζ is a complex-tangential variable.
We start by looking at the situation when p = η0 = (η0

1.η
0
2 , η

0
3) is one

fixed point in ∂Ω and

(η0
1 − z1, η

0
2 − z2, η

0
3 − z3) = (ξ, z, w)

are the coordinates above.
Now let

h1 = g1 − (η0
2 − z2)v1 − (η0

3 − z3)v2

h2 = g2 − (η1
2 − z1)v1 − (η0

3 − z3)v3

h3 = g3 − (η0
1 − z1)v2 − (η0

2 − z2)v3.

When we insert this information into 1, we end up with a long list of
terms to consider. Representative of the challenges, we need to consider the
following:

η0
3 − z3

‖η − z‖2 g1(η0
3 − z3)

∂v3

∂ζ
(4)
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v1(η0
1 − z1)(η0

2 − z2)
∂v1

∂ζ

η0
3 − z3

‖η − z‖2(5)

g3(η0
3 − z3)

∂v2

∂ζ

η0
2 − z2

‖η − z‖2(6)

where ζ is either the second or third variable. Note that η0
1−z1
Φ and g3(η0

3 −z3)
are bounded, and we use Lemma 9.1 to see that all the terms satisfy the
following estimates:∣∣∣∣∣ η0

3 − z3

‖η − z‖2 g1(η0
3 − z3)

∂v3

∂ζ

∣∣∣∣∣
≤ C

1
|Φ|1+ 1

2k+δ
|Φ| 1

2L
|η0

3 − z3|2

‖η − z‖2
1

M2(η0, z)M3(η0, z)
1
|ζ|∣∣∣∣∣v1(η0

1 − z1)(η0
2 − z2)

∂v1

∂ζ

η0
3 − z3

‖η − z‖2

∣∣∣∣∣
≤ C

1
M2(η0, z)M3(η0, z)

1
|Φ|1+ 1

2k+δ
|Φ| 1

2L
|η0

2 − z2||η0
3 − z3|2

‖η − z‖2
1
|ζ|∣∣∣∣∣g3(η0

3 − z3)
∂v2

∂ζ

η0
2 − z2

‖η − z‖2

∣∣∣∣∣
≤ C

1
M2(η0, z)M3(η0, z)

1
|Φ|1+ 1

2k+δ
|Φ| 1

2L
|η0

2 − z2|2

‖η − z‖2
1
|ζ| .

If we now use the trick from section 10.2, the fact that η1−z1
Φ and η2−z2

Φ
1
k

are bounded, and several integration by parts, we see that the integral of the
kernel is uniformly bounded independent of ε > 0.

Finally, as in [19], these estimates are now used used to prove the Hölder
estimates in Theorem 1.

11. Some comments about dimensions higher than 3

As before, we start with a fixed boundary point p = (η1, . . . , ηn) and smooth
solutions g1, . . . , gn to the equation

n∑
j=1

gj(p, z)(ηj − zj) ≡ 1.
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Then, as before, we obtain
n∑

j=1
∂zgj(p, z)(ηj − zj) = 0.(7)

Further:

∂gi = ∂gi

n∑
j=1

gj(ηj − zj), i = 1, . . . , n.

From 7 we see that we can replace ∂gi(ηi − zi) by −∑
j 
=i ∂gj(ηj − zj). It-

eratively, we follow a Koszul complex-like procedure [15] and get ∂-closed
(0, q)-forms until we end up with a (0, n− 1)-form

ω =
n∑

j=1
δjgj∂g1 ∧ · · · ∧ ∂gj−1 ∧ ∂gj+1 ∧ · · · ∧ ∂gn,

such that ∂ω = 0. Then we use Hörmander with weights and matrices (The-
orem 3.4) to find u, such that ∂u = ω. Step by step, we go back and solve
∂-problems for (0, q)-forms with different weights and take advantage of the
fact that our data will be multiplied by terms of the form (ηi − zi) in each
step backwards to get holomorphic solutions

n∑
j=1

hj(p, z)(ηj − zj) ≡ 1.

Again we choose

g1 = 1
Φ and gj = Pj

Φ , j = 2, . . . , n,

where

Φ(p, z) = (η1 − z1) − A · F (η2 − z2, . . . , ηn − zn)

and F needs to be carefully chosen. Then

ω = c
∂P2 ∧ · · · ∧ ∂Pn

Φn
.

The big remaining (bumping) problem is to show that locally we can find
a pseudoconvex Ω∗

p and the the function F such that:
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• p ∈ ∂Ω∗
p,

• Ω \ {p} ⊆ Ω∗
p,

• {z ∈ C
n : Φ(p, z) = 0} ∩ Ω∗

p = {p},
• If z ∈ ∂Ω, then dist(z, ∂Ω∗

p) ∼ Φ(p, z).

Appendix: Bumping lemma

In order to bump plurisuharmonic polynomials in 2 variables, there is one
case that that is not handled in previous papers. If P2k is homogeneous,
plurisubharmonic but not pluriharmonic, then we say that P2k can be bumped
if there exists a homoegeneous function F such that

1. F ≥ |P2k|
2. there is a plurisubharmonic polynomial P ′ such that

P ′ ≤ P2k − ε|F |

for a small ε > 0.

In [2], Bharali and Stensønes showed that if there is no complex curve
γ such that 0 �∈ γ and P2k is harmonic along γ, then P2k can be bumped.
Furthermore, Bharali and Stensønes proved that if on the other hand, we can
find a holomorphic g such that P2l is harmonic along γc = {(z, w) : g(z, w) =
c} for an open set of values c ∈ C, then P2k = s ◦ f where s us subharmonic
and f is holomorphic. In this case, we can use a result due to Bedford and
Fornæss [1] that says that a subharmonic polynomials that are not harmonic
can be bumped to their degree. This allows us to bump P2k. The remaining
case is when there is a curve {(z, w) : g(z, w) = c} = γc that does not go
through the origin and P2k is harmonic along γc but there is not an open set
of values such that P2k is harmonic along all γc.

We briefly sketch this last remaining case for bumping in C
3. We may

assume that g is homogeneous and that c = 1. Let γ = {z ∈ C
2 : g(z) = 1}

where g is holomorphic and homogeneous. Let P2k = P . Since P is homoge-
neous, it follows that P

∣∣∣
γt

is harmonic where γt for all t ∈ R.
Let S = ∪t{γt}, then S is a hypersurface possibly with singularities. If the

Levi form of P is strictly positive in the normal direction of S, then we proceed
as follows. Let s be subharmonic and such that s ◦ g is of degree 2k (taking
roots of g if needed). Now near S, we have P − ε(s ◦ g) is plurisubharmonic if
ε > 0 is small. Now write P = P − ε(s ◦ g) + ε(s ◦ g) and bump s ◦ g as usual.

If the Levi form if P is not strictly positive in the normal direction. We
use a carefully adapted version of a classical bumping trick (see Noell [17]).
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Let A be a large positive constant and define ψ = (A| Im g|2 − |g|2)|g|j where
j is chosen such that the degree of ψ is 2k. Now ψ is plurisubharmonic and
negative near S, so P + δψ < P , but P + δψ will have a strict positive Levi
form transversally to S. Now we can bump as in the last case. Finally, we
simply glue together the bumping near S and the bumping away from S.
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