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Basic estimates for the generalized ∂-complex
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∗

Dedicated to J.J. Kohn on his 90th birthday

Abstract: We study certain densely defined unbounded opera-
tors on the Segal-Bargmann space, related to the annihilation and
creation operators of quantum mechanics. We consider the corre-
sponding D-complex and study properties of the complex Lapla-
cian �̃D = DD∗ + D∗D, where D is a differential operator of
polynomial type, in particular we discuss the corresponding ba-
sic estimates, where we express a commutator term as a sum of
squared norms.
Keywords: ∂-complex, Segal-Bargmann space, sum of squared
norms.

1. Introduction

We consider the classical Segal-Bargmann space

A2(Cn, e−|z|2) = {u : Cn −→ C entire :
∫
Cn

|u(z)|2e−|z|2 dλ(z) < ∞}

with inner product

(u, v) =
∫
Cn

u(z) v(z) e−|z|2 dλ(z).

For 0 ≤ p ≤ n let A2
(p,0)(Cn, e−|z|2) denote the space of (p, 0)-forms with

coefficients in A2(Cn, e−|z|2). We define

dom(∂) = {f ∈ A2(Cn, e−|z|2) : ∂f

∂zj
∈ A2(Cn, e−|z|2), j = 1, . . . , n}.
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The operator ∂f =
∑n

j=1
∂f
∂zj

dzj is a densely defined closed operator

∂ : A2(Cn, e−|z|2) −→ A2
(1,0)(Cn, e−|z|2).

The adjoint operator

∂∗ : A2
(1,0)(Cn, e−|z|2) −→ A2(Cn, e−|z|2)

is given by ∂∗g =
∑n

j=1 zjgj , where g =
∑n

j=1 gj dzj ∈ dom(∂∗) and

dom(∂∗) = {g ∈ A2
(1,0)(Cn, e−|z|2) :

n∑
j=1

zjgj ∈ A2(Cn, e−|z|2)}.

Hence one has

(∂f, g) = (
n∑

j=1

∂f

∂zj
dzj ,

n∑
j=1

gj dzj) =
n∑

j=1
( ∂f
∂zj

, gj) = (f,
n∑

j=1
zjgj) = (f, ∂∗g).

This kind of duality is used to describe the annihilation and creation operators
in quantum mechanics [3], it is used by D.G. Quillen to represent Hermitian
forms as sums of squares [13] and by H. Render in the real analytic setting
to investigate sets of uniqueness for polyharmonic functions [14]. In [7] and
[8] the ∂-operator on weighted Bergman spaces on Hermitian manifolds is
investigated, a similar duality appears for instance on the unit ball endowed
with Bergman-Kähler metric.

If one replaces the single derivative with respect to zj by a differential
operator of the form pj( ∂

∂z1
, . . . , ∂

∂zn
), where pj is a complex polynomial on

C
n (we write pj(u) for pj( ∂

∂z1
, . . . , ∂

∂zn
)u), the duality relation is now of the

form
(pj(u), v) = (u, p∗jv),

where p∗j (z1, . . . , zn) is the polynomial pj with complex conjugate coefficients,
taken as multiplication operator. Newman and Shapiro [11], [12] use this
duality relation in their analysis of Fischer spaces of entire functions.

We generalize the ∂-operator by setting

(1) Du =
n∑

j=1
pj(u) dzj ,

where u ∈ A2(Cn, e−|z|2), see [4].



Basic estimates for the generalized ∂-complex 585

Operating on (p, 0)-forms we define

(2) Du =
∑
|J |=p

′
n∑

k=1
pk(uJ) dzk ∧ dzJ ,

where u =
∑

|J |=p
′ uJ dzJ is a (p, 0)-form with coefficients in A2(Cn, e−|z|2),

here J = (j1, . . . , jp) is a multiindex and dzJ = dzj1 ∧ · · · ∧ dzjp and the
summation is taken only over increasing multiindices. We get again densely
defined closed operators and observe that D2 = 0 and that we have

(3) (Du, v) = (u,D∗v),

where u ∈ dom(D) = {u ∈ A2
(p,0)(Cn, e−|z|2) : Du ∈ A2

(p+1,0)(Cn, e−|z|2)} and

D∗v =
∑

|K|=p−1

′
n∑

j=1
p∗jvjK dzK

for v =
∑

|J |=p
′ vJ dzJ .

Replacing ∂ by D one gets a corresponding complex Laplacian �̃D =
DD∗ + D∗D, for which one can use duality and the machinery of the ∂̄-
Neumann operator ([9], [10]) in order to prove existence and boundedness of
the inverse to �̃D and to find the canonical solutions to the inhomogeneous
equations Du = α and D∗v = β. In addition, studying the spectrum of �̃ for
∂, one gets estimates for the canonical solutions, which are not attainable by
standard methods, see [7], section 5 and [8], section 4.

In the ∂̄-Neumann problem the underlying Hilbert space is L2(Ω) and
the ∂̄-operator is defined in the sense of distributions in order to become a
densely defined unbounded operator on L2(Ω) with closed graph. The adjoint
operator ∂̄∗ is again a differential operator. In our setting, the underlying
Hilbert space is A2(Cn, e−|z|2), the operator D is a densely defined unbounded
operator on A2(Cn, e−|z|2) with closed graph, the adjoint operator D∗ is now a
multiplication operator. This phenomenon is used to describe the commutator
equation [A,A′] = I of quantum mechanics on an appropriate Hilbert space,
see [3], Chapter 1. The abstract theory of unbounded operators on Hilbert
space is identical in both cases.

In our setting, the corresponding D-complex has the form

A2
(p−1,0)(Cn, e−|z|2) D−→

←−
D∗

A2
(p,0)(Cn, e−|z|2) D−→

←−
D∗

A2
(p+1,0)(Cn, e−|z|2).
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Similar to the classical ∂-complex (see [4]) we consider the generalized box
operator �̃D,p := D∗D + DD∗ as a densely defined self-adjoint operator on
A2

(p,0)(Cn, e−|z|2) with

dom(�̃D,p) = {f ∈ dom(D)∩dom(D∗) : Df ∈ dom(D∗) and D∗f ∈ dom(D)}.

see [5] for more details.
The (p, 0)-forms with polynomial components are dense in A2

(p,0)
(Cn, e−|z|2). In addition, the (p, 0)-forms with polynomial components are
dense in dom(D) ∩ dom(D∗) endowed with the graph norm

u �→ (‖u‖2 + ‖Du‖2 + ‖D∗u‖2)1/2.

See [5] and [6] for the details.
In [5] it is shown that the basic estimate

(4) ‖u‖2 ≤ C(‖Du‖2 + ‖D∗u‖2),

for any u ∈ dom(D) ∩ dom(D∗) implies that �̃D,1 has a bounded inverse.
The basic estimate can easily be shown for the ∂-complex (see [5]), whereas
for the more general D-complex one has major difficulties. From [5] we know
that for the basic estimates it suffices to show that there exists a constant
C > 0 such that

(5) ‖u‖2 ≤ C
n∑

j,k=1
([pk, p∗j ]uj , uk),

for any (1, 0)-form u =
∑n

j=1 ujdzj with polynomial components.
In this paper we will show that inequality (5) can be expressed by coercive-

ness of a corresponding densely defined Hermitian form on A2
(1,0)(Cn, e−|z|2)×

A2
(1,0)(Cn, e−|z|2).

In the last part we concentrate on n = 2 exhibiting some classes of ho-
mogeneous polynomials of arbitrary degree such that (5) holds.

2. Hermitian forms

We take the right hand side of (5) to define a Hermitian form.
Let

(6) H(u, v) =
n∑

j,k=1
([pk, p∗j ]uj , vk),
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where u and v are (1, 0)-forms with polynomial components.
Then

H : A2
(1,0)(Cn, e−|z|2) × A2

(1,0)(Cn, e−|z|2) −→ C

is a densely defined Hermitian form. This follows from

H(v, u) =
n∑

j,k=1
([pk, p∗j ]vj , uk)

=
n∑

j,k=1

[
(p∗jvj , p∗kuk) − (pkvj , pjuk)

]

=
n∑

j,k=1

[
(p∗kuk, p∗jvj) − (pjuk, pkvj)

]−

=
n∑

j,k=1

[
(p∗juj , p∗kvk) − (pkuj , pjvk)

]−
= H(u, v)−

Condition (5) can be written in the form

(7) H(u, u) ≥ 1
C
‖u‖2,

which means that the Hermitian form H is lower semibounded, and as C > 0
even that H is coercive.

We just mention that associated with the form H there is an operator TH

defined by THu := wu for u ∈ dom(TH), where dom(TH) = {u ∈ dom(H) :
there exists wu ∈ A2

(1,0)(Cn, e−|z|2) such that H(u, v) = (wu, v) for v ∈
dom(H)}, where (wu, v) denotes the inner product in A2

(1,0)(Cn, e−|z|2). Since
dom(H) is dense, the (1, 0)-form is uniquely determined by u, and the oper-
ator TH is well defined and linear. By definition, dom(TH) ⊆ dom(H), and

H(u, v) = (THu, v) for u ∈ dom(TH) and v ∈ dom(H).

In our case, it’s easy to give an explicit expression for

TH : A2
(1,0)(Cn, e−|z|2) −→ A2

(1,0)(Cn, e−|z|2).
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We have

THu =
n∑

j=1
[p1, p

∗
j ]uj dz1 +

n∑
j=1

[p2, p
∗
j ]uj dz2 + · · · +

n∑
j=1

[pn, p∗j ]uj dzn.

See [15] for the general properties of Hermitian forms and the corresponding
operators.

3. Commutator terms as a sum of squared norms

In order to handle the expression

n∑
j,k=1

([pk, p∗j ]uj , uk)

we use the following operator theoretic method. Let Aj and Bj , j = 1, . . . , n
be operators satisfying

[Aj , Ak] = [Bj , Bk] = [Aj , Bk] = 0, j �= k

and
[Aj , Bj ] = I, j = 1, . . . , n.

Let P and Q be polynomials of n variables and write A = (A1, . . . , An) and
B = (B1, . . . , Bn).

The assumptions are satisfied, if one takes Aj = ∂
∂zj

and Bj = zj the mul-
tiplication operator. The inspiration for this comes from quantum mechanics,
where the annihilation operator Aj can be represented by the differentiation
with respect to zj on A2(Cn, e−|z|2) and its adjoint, the creation operator Bj ,
by the multiplication by zj .

Then

(8) Q(A)P (B) =
∑
|α|≥0

1
α!P

(α)(B)Q(α)(A),

where α = (α1, . . . , αn) are multiindices and |α| = α1 + · · · + αn and α! =
α1! . . . αn!, see [13], [16].

Applying (8) we get

(9) ([pk, p∗j ]uj , uk) =
∑
|α|≥1

1
α! (p(α)∗

j p
(α)
k uj , uk),
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see [6], and try to express

n∑
j,k=1

([pk, p∗j ]uj , uk)

as a sum of squared norms. See also [1] and [2] for the term squared norms
in a different context.

In the following we concentrate on polynomials of two complex variables
to demonstrate the method of squared norms, and to show for what kinds of
polynomials it is applicable.

Theorem 3.1. Let p1(z1, z2) and p2(z1, z2) be polynomials of degree 2 with
real coefficients. Suppose that for b1 �= 0 and a2 �= 0 the polynomials have the
form

p1(z1, z2) = b1z1z2 + d1z1 + e1z2 and

p2(z1, z2) = a2z
2
1 + a2z

2
2 + 2e1a2

b1
z1 + 2d1a2

b1
z2,

where d1 and e1 are arbitrary real numbers, or for a1 �= 0 and c2 �= 0 the
polynomials have the form

p1(z1, z2) = a1z
2
1 + d1z1 and p2(z1, z2) = c2z

2
2 + e2z2,

where d1 and e2 are arbitrary real numbers. Then

(10) ‖u‖2 ≤ C
2∑

j,k=1
([pk, p∗j ]uj , uk),

for any (1, 0)-form u =
∑2

j=1 ujdzj with polynomial components.

Proof. We denote the first derivative with respect to z1 by (10), and with
respect to z2 by (01). It is easily seen that our polynomials p1 and p2 satisfy

(11) p
(01)∗
2 p

(01)
1 = p

(10)∗
1 p

(10)
2 , p

(10)∗
2 p

(10)
1 = p

(01)∗
1 p

(01)
2 .

So we can use the technique in the proof of Theorem 3.2 of [6] to compute
in the following way: If p1(z1, z2) = a1z

2
1 + d1z1 and p2(z1, z2) = c2z

2
2 + e2z2,
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then
2∑

j,k=1
([pj , p∗k]uk, uj) = 2a2

1‖u1‖2 + 2c22‖u2‖2

+ ‖d1u1 + 2a1
∂u1

∂z1
‖2

+ ‖e2u2 + 2c2
∂u2

∂z2
‖2.

If p1(z1, z2) = bz1z2 + dz1 + ez2 and p2(z1, z2) = az2
1 + az2

2 + fz1 + gz2
with bg = 2ad and bf = 2ae, then

2∑
j,k=1

([pj , p∗k]uk, uj) = b2‖u1‖2 + 4a2‖u2‖2

+ ‖du1 + fu2 + 2a∂u2

∂z1
+ b

∂u1

∂z2
‖2

+ ‖eu1 + gu2 + 2a∂u2

∂z2
+ b

∂u1

∂z1
‖2.

Finally we determine homogeneous polynomials p1 and p2 of degree K
such that (5) holds.

Let a, b ∈ R, a, b �= 0. We consider the following homogeneous polynomials
of degree K: if K is even we set

(12) p1(z1, z2)∗ = a

K/2∑
�=0

(
K

2�

)
zK−2�
1 z2�

2 ,

and

(13) p2(z1, z2)∗ = b

(K−2)/2∑
�=0

(
K

2� + 1

)
zK−2�−1
1 z2�+1

2 ,

if K is odd we set

(14) p1(z1, z2)∗ = a

(K−1)/2∑
�=0

(
K

2�

)
zK−2�
1 z2�

2 ,

and



Basic estimates for the generalized ∂-complex 591

(15) p2(z1, z2)∗ = b

(K−1)/2∑
�=0

(
K

2� + 1

)
zK−2�−1
1 z2�+1

2 .

In addition we have

bp1(z1, z2)∗ + ap2(z1, z2)∗ = ab(z1 + z2)K ,

for all cases.
The derivatives of p1 and p2 with respect to z1 or z2 yield homogeneous

polynomials of less degree, but of exactly the same type, for instance, we get
for K being even

p
(10)∗
1 = Ka

(K−2)/2∑
�=0

(
K − 1

2�

)
zK−2�−1
1 z2�

2 ,

which corresponds to (14).

Lemma 3.2. Let p1 and p2 be like in (12) and (13), or like in (14) and (15).
Then

(16) p
(01)∗
2 p

(01)
1 = p

(10)∗
1 p

(10)
2 , p

(10)∗
2 p

(10)
1 = p

(01)∗
1 p

(01)
2 .

Proof. We have only to prove the first equality of (16), the second will then
follow by interchanging the roles of p1 and p2. First we consider (12) and (13):

p
(01)∗
2 = Kb

(K−2)/2∑
�=0

(
K − 1

2�

)
zK−2�−1
1 z2�

2 ,

p
(01)
1 = Ka

(K−2)/2∑
�=0

(
K − 1
2� + 1

)
∂K−1

∂zK−2�−2
1 ∂z2�+1

2
;

and we have

p
(10)∗
1 = Ka

(K−2)/2∑
�=0

(
K − 1

2�

)
zK−2�−1
1 z2�

2 ,

p
(10)
2 = Kb

(K−2)/2∑
�=0

(
K − 1
2� + 1

)
∂K−1

∂zK−2�−2
1 ∂z2�+1

2
.

Comparing the coefficients of the differential operators p
(01)∗
2 p

(01)
1 and p

(10)∗
1

p
(10)
2 yields the desired result.
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Next we take (14) and (15):

p
(01)∗
2 = Kb

(K−1)/2∑
�=0

(
K − 1

2�

)
zK−2�−1
1 z2�

2 ,

p
(01)
1 = Ka

(K−3)/2∑
�=0

(
K − 1
2� + 1

)
∂K−1

∂zK−2�−2
1 ∂z2�+1

2
;

and we have

p
(10)∗
1 = Ka

(K−1)/2∑
�=0

(
K − 1

2�

)
zK−2�−1
1 z2�

2 ,

p
(10)
2 = Kb

(K−3)/2∑
�=0

(
K − 1
2� + 1

)
∂K−1

∂zK−2�−2
1 ∂z2�+1

2
.

Finally, compare again the coefficients of the differential operators p(01)∗
2 p

(01)
1

and p
(10)∗
1 p

(10)
2 to see that they coincide.

Theorem 3.3. Let p1, p2 be homogeneous polynomials of degree K as in (12),
(13) or (14), (15). Then there exists a constant C > 0 such that

(17) ‖u‖2 ≤ C
2∑

j,k=1
([pk, p∗j ]uj , uk),

for any (1, 0)-form u =
∑2

j=1 ujdzj with polynomial components.

Proof. We will express the right hand side of (17) as a sum of squared norms.
We use

([pk, p∗j ]uj , uk) =
∑
|α|≥1

1
α! (p(α)∗

j p
(α)
k uj , uk),

see [6]. By Lemma 3.2 we have

p
(01)∗
2 p

(01)
1 = p

(10)∗
1 p

(10)
2 , p

(10)∗
2 p

(10)
1 = p

(01)∗
1 p

(01)
2 ,

and hence
2∑

j,k=1
[(p(10)∗

j p
(10)
k uj , uk) + (p(01)∗

j p
(01)
k uj , uk)]

= ‖p(10)
1 u1 + p

(10)
2 u2‖2 + ‖p(01)

1 u1 + p
(01)
2 u2‖2.
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In order to get the corresponding equations for the derivatives of order 2,
we start with with the first order derivatives of p1 and p2 and observe that
they are of the same type as the original polynomials, just of one degree lower.
We have for the derivatives of order 2 that

∑
|α|=2

1
α! (p(α)∗

j p
(α)
k uj , uk) = 1

2(p(20)∗
j p

(20)
k uj , uk) + (p(11)∗

j p
(11)
k uj , uk)

+ 1
2(p(02)∗

j p
(02)
k uj , uk),

so we get

1
2

2∑
j,k=1

[(p(20)∗
j p

(20)
k uj , uk) + (p(11)∗

j p
(11)
k uj , uk)]

= 1
2‖p

(20)
1 u1 + p

(20)
2 u2‖2 + 1

2‖p
(11)
1 u1 + p

(11)
2 u2‖2

and

1
2

2∑
j,k=1

[(p(11)∗
j p

(11)
k uj , uk) + (p(02)∗

j p
(02)
k uj , uk)]

= 1
2‖p

(11)
1 u1 + p

(11)
2 u2‖2 + 1

2‖p
(02)
1 u1 + p

(02)
2 u2‖2.

For the derivatives of order m we have the following types of derivatives
together with the corresponding factor in formula (8):

1
m! (m, 0); 1

(m− 1)!1! (m− 1, 1); 1
(m− 2)!2! (m− 2, 2); . . .

. . .
1

1!(m− 1)! (1,m− 1); 1
m! (0,m).

We take the factor 1
m! for the derivatives of type (m, 0) and (m− 1, 1):

1
m!

2∑
j,k=1

[(p(m,0)∗
j p

(m,0)
k uj , uk) + (p(m−1,1)∗

j p
(m−1,1)
k uj , uk)]

= 1
m!‖p

(m,0)
1 u1 + p

(m,0)
2 u2‖2 + 1

m!‖p
(m−1,1)
1 u1 + p

(m−1,1)
2 u2‖2.
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So, for the type (m− 1, 1), the factor 1
(m−1)! −

1
m! = m−1

m! is left. We continue
with what was left for type (m− 1, 1) and get

m− 1
m!

2∑
j,k=1

[(p(m−1,1)∗
j p

(m−1,1)
k uj , uk) + (p(m−2,2)∗

j p
(m−2,2)
k uj , uk)]

= m− 1
m! ‖p(m−1,1)

1 u1 + p
(m−1,1)
2 u2‖2 + m− 1

m! ‖p(m−2,2)
1 u1 + p

(m−2,2)
2 u2‖2.

Now the factor 1
(m−2)!2! −

m−1
m! = (m−1)(m−2)

m!2! is left for the derivatives of
type (m− 2, 2). So after �− 1 steps, the factor

(18) (m− 1)(m− 2) . . . (m− � + 1)
m!(�− 1)!

is left. Therefore we obtain for the factor in the next step

1
(m− �)!�! −

(m− 1)(m− 2) . . . (m− � + 1)
m!(�− 1)! = (m− 1)(m− 2) . . . (m− �)

m!�! ,

which is of the same type as (18) for the derivatives of type (m− �−1, �+1).
In this way we can proceed until the derivatives of order K and observe

that for |α| = K one of the constants p
(α)
1 and p

(α)
2 is zero and the other

positive. So we get c1‖u1‖2 and c2‖u2‖2, for c1, c2 > 0; all other terms are
squared norms.

Remark 3.4. a) If there exists a real constant C �= 0 such that p2(z1, z2) =
Cp1(z1, z2), then we set [p1, p

∗
1] = A and get for the (1, 0)-forms u = u1dz1 +

u2dz2, where u2 = −u1
C :

2∑
j,k=1

([pk, p∗j ]uj , uk) = (Au1, u1) − (Au1, u1) − (Au1, u1) + (Au1, u1) = 0.

So, (17) does not hold in this case.
b) Let p1(z1, z2) = az2

1 + bz1z2 + cz2
2 and p(z1, z2) = dz2

1 + ez1z2 + fz2
2 be

two homogeneous polynomials with real coefficients and suppose that condition
(16)

p
(01)∗
2 p

(01)
1 = p

(10)∗
1 p

(10)
2 , p

(10)∗
2 p

(10)
1 = p

(01)∗
1 p

(01)
2 .

holds. The first equation gives

(ez1 + 2fz2)
(
b

∂

∂z1
+ 2c ∂

∂z2

)
= (2az1 + bz2)

(
2d ∂

∂z1
+ e

∂

∂z2

)
,
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which, by a comparison of the coefficients, yields

be = 4ad, ce = ae, bf = bd, 4cf = be.

The second equation of (16) gives no further information. If e �= 0 and b �= 0,
we obtain p1(z1, z2) = az2

1 + bz1z2 + az2
2 and p2(z1, z2) = dz2

1 + ez1z2 + dz2
2,

where 4ad = be. If b = 0, but e �= 0, we get a = c. So, if we want p1 to be
non-trivial, we have to suppose that a �= 0 and we get f = d = 0. Hence, in
this case: p1(z1, z2) = az2

1 + az2
2 and p2(z1, z2) = ez1z2. So, if we consider

q1(z1, z2) := z2
1 + z2

2 and q2(z1, z2) := z1z2

as basis polynomials for the solution of (16), we can express an arbitrary
nontrivial solution of (16) in the form

(
βδ
4 β
1 δ

)(
q1
q2

)
=

(
βδ
4 q1 + βq2
q1 + δq2

)
,

where
(

βδ
4 β

1 δ

)
is a real invertible matrix. A primitive function with respect

to z1 of the basis polynomial q1 is z3
1
3 + z1z

2
2 and a primitive function with

respect to z1 of the basis polynomial q2 is z2
1
2 z2 + z3

2
6 , which corresponds to

the polynomials z3
1 + 3z1z

2
2 and 3z2

1z2 + z3
2, which we consider in Theorem

3.3. Continuing this procedure one finally gets the polynomials (12), (13) and
(14), (15). In this way it was possible to guess what kind of homogeneous
polynomials of degree K can be chosen such that the basic estimate holds.
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