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Abstract: In this paper, we first give an exposition on mapping
problems between indefinite hyperbolic spaces. Then we formulate
a new problem along this direction, propose an approach and prove
some partial results.
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1. Introduction

We first recall some notations and definitions. Let n, � be integers such that
n ≥ 2 and 0 ≤ � ≤ n− 1. The generalized complex unit ball is defined as the
following domain in P

n:

B
n
� = {[z0, ..., zn] ∈ P

n : |z0|2 + ... + |z�|2 > |z�+1|2 + ... + |zn|2}.

In the special case of � = 0, Bn
0 is the standard unit ball Bn in C

n ⊂ P
n. The

generalized ball Bn
� carries a canonically defined indefinite metric ωB

n
�

that is
invariant under the action of its automorphism group SU(� + 1, n + 1):

ωB
n
�

= −
√
−1∂∂̄ log(

�∑
j=0

|zj |2 −
n∑

j=�+1
|zj |2).

The generalized ball equipped with the metric ωB
n
�

is often called an indefinite
hyperbolic space form. When � = 0, it is reduced to the standard hyperbolic
space form (up to a normalization).
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The topological boundary ∂Bn
� , is often called a generalized sphere. Its

local realization is the real hyperquadric

H
n
� = {(z, w) = (z1, · · ·, zn−1, w) ∈ C

n : Imw = −
�∑

j=1
|zj |2 +

n−1∑
j=�+1

|zj |2}

which serves as a basic model for Levi-nondegenerate hypersurfaces (see [4])
and plays a fundamental role in CR geometry. Note that when � = 0, Hn

0 is
the standard Heisenberg hypersurface. Due to the special geometric structure
of the generalized spheres, many striking rigidity phenomena have been dis-
covered for mappings F : ∂Bn

� → ∂BN
�′ . The study of local holomorphic maps

that send an open piece of ∂Bn
l to ∂BN

l′ with l > 0 was initiated by Baouendi-
Huang [3]. In particular, Baouendi and the first author [3] proved a holomor-
phic mapping F from an open connected subset U of C

n to C
N (N ≥ n),

sending a piece of ∂Bn
� , 0 < � ≤ n−1

2 , to ∂BN
� , possesses a super-rigidity prop-

erty if it does not map the whole open neighborhood U into ∂BN
� . Here the

mentioned super-rigidity means that the map F extends to a linear embed-
ding of Pn into P

N . This super-rigidity phenomenon in [3] contrasts with the
rigidity of holomorphic mappings between Heisenberg hypersurfaces (i.e., the
0−signature hyperquadrics) in complex spaces of different dimensions. In the
0−signature case, the rigidity only holds when the difference in dimension
is small. For instance, there is the well-known Whitney map sending ∂Bn to
∂B2n−1 for n ≥ 2 (see [5]). For more results on the 0−signature case, see
[9, 10, 6] and references therein. In this paper, we concentrate on the case of
� > 0. In [1], Baouendi-Ebenfelt-Huang generalized the rigidity result in [3]
as follows:

Theorem 0.1 (Baouendi-Ebenfelt-Huang [1]). Let N ≥ n, 1 ≤ � ≤ n−1
2 ,

1 ≤ �′ ≤ N−1
2 and 1 ≤ � ≤ �′ < 2l. Let U be an open subset in P

n containing
some p ∈ ∂Bn

� with U ∩ B
n
� being connected, and F a holomorphic map from

U into P
N . Assume F (U ∩B

n
� ) ⊆ B

N
�′ and F (U ∩ ∂Bn

� ) ⊆ ∂BN
�′ . Then F is an

isometric embedding from (U ∩ Bn
� , ωB

n
�
) into (BN

�′ , ωB
N
�′
).

Here we say F is isometric if it preserves the indefinite hyperbolic metrics:
F ∗(ωB

N
�′
) = ωB

n
�

on U ∩B
n
� . For many closely related results along these lines,

the readers are referred to the papers [7, 8, 14, 15, 16, 17, 18, 19, 20, 21] and
references therein. In particular, by analyzing the structure of the moduli
space of linear subspaces contained in generalized balls, Ng [17] establishes
the global version of Theorem 0.1.
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Theorem 0.2 (Ng [17]). Let 1 ≤ � < n
2 , 1 ≤ �′ < N

2 and f : Bn
� → B

N
�′ be a

proper holomorphic map. If �′ ≤ 2�− 1, then f extends to a linear embedding
of Pn into PN .

In a recent paper [12], the authors and Lu-Tang induced a boundary CR
invariant— geometric rank for holomorphic mappings between hyperquadrics
of positive signatures. Then we gave a complete characterization for local
holomorphic isometric embeddings between indefinite hyperbolic spaces in
terms of this geometric rank.

Theorem 0.3 (Huang-Lu-Tang-Xiao [12]). Let N ≥ n ≥ 3, 0 ≤ � ≤ n−1, � ≤
�′ ≤ N − 1. Let U be an open subset in P

n containing some p ∈ ∂Bn
� and F

be a holomorphic map from U into P
N . Assume that U ∩B

n
� is connected and

F (U ∩ B
n
� ) ⊂ B

N
�′ , F (U ∩ ∂Bn

� ) ⊂ ∂BN
�′ . Then the following are equivalent.

(1) F is CR transversal and has geometric rank zero at generic points on
U ∩ ∂Bn

� near p.
(2) F is an isometric embedding from (U ∩ B

n
� , ωB

n
�
) to (BN

�′ , ωB
N
�′
).

In a preprint [13], the authors and Lu-Tang use the above characterization
to generalize the aforementioned results in [1] and [17] as follows:

Theorem 0.4 (Huang-Lu-Tang-Xiao [13]). Let N ≥ n ≥ 3, 1 ≤ � ≤ n−2, � ≤
�′ ≤ N − 1. Let U be an open subset in P

n containing some p ∈ ∂Bn
� and

F be a holomorphic map from U into PN . Assume U ∩ Bn
� is connected and

F (U∩Bn
� ) ⊆ B

N
�′ , F (U∩∂Bn

� ) ⊆ ∂BN
�′ . Assume one of the following conditions

holds:

(1). �′ < 2�, �′ < n− 1;
(2). �′ < 2�,N − �′ < n;
(3). N − l′ < 2n− 2�− 1, �′ < n− 1;
(4). N − l′ < 2n− 2�− 1, N − �′ < n.

Then F is an isometric embedding from (U ∩ B
n
� , ωB

n
�
) to (BN

�′ , ωB
N
�′
).

Corollary 0.5 (Huang-Lu-Tang-Xiao [13]). Let N ≥ n ≥ 3, 1 ≤ � ≤ n −
2, � ≤ �′ ≤ N−1. Assume one of the conditions (1)–(4) in Theorem 0.4 holds.
Let F be a rational proper map from B

n
� to B

N
�′ . Then F is a linear embedding

from P
n to P

N . Moreover, there exists h ∈ Aut(BN
�′ ) such that

h ◦ F ([z]) = [z0, ..., z�, 0, ..., 0, z�+1, ..., zn, 0, ..., 0],

for [z] = [z0, ..., z�, z�+1, ..., zn] ∈ P
n, where the first zero tuple has �′ − l

components.
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Here for a holomorphic rational map F from P
n to P

N with I ⊆ P
n its

set of indeterminacy, we say F is a rational proper map from B
n
� to B

N
�′ , if F

maps from B
n
� \ I to B

N
�′ and maps ∂Bn

� \ I to ∂BN
�′ .

If none of the conditions (1)–(4) holds, then one of the following two
cases must hold: (A). �′ ≥ 2� and N − �′ ≥ 2n− 2�− 1; (B). N − �′ ≥ n and
�′ ≥ n− 1. The following examples show that Theorem 0.4 and Corollary 0.5
are in a sense optimal.

Example 1.1 (Generalized Whitney map from B
�+k
� to B

2�+2k−1
2� ). Let � ≥

1, k ≥ 1. Write [w, z] = [w0, w1, · · · , w�, z1, · · · , zk] for the homogeneous co-
ordinates of P�+k and

B
�+k
� =

{
[w, z] ∈ P

k+� :
�∑

i=0
|wi|2 >

k∑
j=1

|zj |2
}
.

Write U = P
k+� \ {w0 = zk = 0}. Consider the following map G : U →

P
2k+2�−1:

G([w, z]) = [w2
0, w0w1, · · · , w0w�, w1zk, · · · , w�zk,

w0z1, w0z2, · · · , w0zk−1, z1zk, z2zk, · · · , zk−1zk, z
2
k].

Notice that |G|22�+1 = (|w0|2 + |zk|2)(−
∑�

i=0 |wi|2 +
∑k

j=1 |zj |2). Consequently,
G maps U ∩ B

�+k
� to B

2�+2k−1
2� and maps U ∩ ∂B�+k

� to ∂B2�+2k−1
2� .

Example 1.2 (Generalized Whitney map from B
�+k
� to B

2�+2k−1
�+k−1 ). Let � ≥

1, k ≥ 1. Let the homogeneous coordinates [w, z] of P�+k and B
�+k
� ⊆ P

�+k be
the same as in Example 1.1. Let V = P

�+k \ {w0 = w� = 0} and H : V →
P

2k+2�−1 be defined as follows:

H([w, z]) = [w2
0, w0w1, · · ·w0w�−1, w�z1, w�z2, · · · , w�zk,

w0z1, w0z2, · · · , w0zk, w1w�, w2w�, · · · , w2
� ].

Notice that |H|2�+k = (|w0|2−|w�|2)(−
∑�

i=0 |wi|2 +
∑k

j=1 |zj |2). Thus H maps
V ∩ ∂B�+k

� to ∂B2�+2k−1
�+k−1 . In particular, set V+ := {[w, z] ∈ V : |w0| > |w�|}.

Then H maps V+ ∩ B
�+k
� to B

2�+2k−1
�+k−1 and maps V+ ∩ ∂B�+k

� to ∂B2�+2k−1
�+k−1 .

Example 1.3 (Generalized Whitney map from B
�+k
� to B

2�+2k−1
�+k−1 ). Let � ≥

0, k ≥ 2. Let the homogeneous coordinates [w, z] of P�+k and B
�+k
� ⊆ P

�+k be
the same as in Example 1.1. Let V = P

�+k \ {z1 = zk = 0} and H : V →
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P
2k+2�−1 be defined as follows:

H([w, z]) = [w0zk, w1zk, · · · , w�zk, z
2
1 , z1z2, · · · , z1zk−1,

z2zk, z3zk, · · · , z2
k, w0z1, w1z1, · · · , w�z1].

Notice that |H|2�+k = (|zk|2 − |z1|2)(−
∑�

i=0 |wi|2 +
∑k

j=1 |zj |2). Thus H maps
V ∩ ∂B�+k

� into ∂B2�+2k−1
�+k−1 . In particular, set V+ := {[w, z] ∈ V : |zk| > |z1|}.

Then H maps V+ ∩ B
l+k
� to B

2�+2k−1
�+k−1 and maps V+ ∩ ∂B�+k

� to ∂B2�+2k−1
�+k−1 .

It is then a natural question to classify holomorphic maps that send a
piece of ∂Bn

� to ∂B2n−1
�′ . Inspired by the above results and examples, we make

the following conjecture:

Conjecture 1.4. Let n ≥ 3, 1 ≤ � ≤ n−1
2 , � ≤ �′ ≤ 2n− 2. Let U be an open

subset in P
n containing some p ∈ ∂Bn

� and F be a holomorphic map from U
into P

2n−1. Assume U∩Bn
� is connected and F (U∩Bn

� ) ⊆ B
2n−1
�′ , F (U∩∂Bn

� ) ⊆
∂B2n−1

�′ . Then one of the following holds:

(1) F is an isometric embedding from (U ∩ B
n
� , ωB

n
�
) to (B2n−1

�′ , ω
B

2n−1
�′

).
(2) After composing appropriate automorphisms of Bn

� and B
2n−1
�′ , F equals

the generalized Whitney map in Example 1.1.
(3) After composing appropriate automorphisms of Bn

� and B
2n−1
�′ , F equals

the generalized Whitney map in Example 1.2.
(4) After composing appropriate automorphisms of Bn

� and B
2n−1
�′ , F equals

the generalized Whitney map in Example 1.3.

In the case of (2) and (3)-(4), we have �′ = 2� and �′ = n−1, respectively.

Note the special case of � = �′ = 0, Conjecture 1.4 was confirmed by the
work of the first author and Ji [11]. To tackle the conjecture in its full gener-
ality, motivated by the approach in [11], we propose to first understand the
geometric rank of the map F (see §2.1 for the notion of the geometric rank).
In this paper we prove some partial results along these lines by investigating
the geometric rank of a holomorphic map F sending a piece of ∂Bn

� to ∂BN
�′

when the difference of � and �′ is not too large. More precisely, we prove the
following result.

Theorem 1.5. Let N ≥ n ≥ 3, 2 ≤ � ≤ n−1
2 , � ≤ �′ ≤ N − 1. Let U be an

open subset in P
n containing some q0 ∈ ∂Bn

� and F be a holomorphic map
from U into P

N . Assume F (U ∩B
n
� ) ⊂ B

N
�′ ,F (U ∩∂Bn

� ) ⊂ ∂BN
�′ . Furthermore,

assume F is CR transversal at q0 and assume �′ ≤ 3�−2. Then the geometric
rank of F equals either 0 or 1 at every point sufficiently close to q0.
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The paper is organized as follows. In §2.1, we recall some preliminaries
and the definition of geometric rank from [12]. We establish a lemma on the
Hermitian rank of real polynomials in §2.2. Then in §2.3, we use this lemma
to prove Theorem 1.5.

2. Proof of Theorem 1.5

2.1. Preliminaries

We first recall some notations from [12] which will be needed in the proof.
Given a fixed � ≥ 1, we denote by δj,� the symbol which takes value −1
when 1 ≤ j ≤ � and 1 otherwise. For fixed integers �′ ≥ � ≥ 1 and n ≥ 1,
we denote by δj,�,�′,n the symbol which takes value -1 when 1 ≤ j ≤ � or
n ≤ j ≤ n+ �′− �−1 and 1 otherwise. When �′ = �, δj,�,�′,n is the same as δj,�.
Let m ≥ 1. For two m-tuples x = (x1, · · ·, xm), y = (y1, · · ·, ym) of complex
numbers, we write 〈x, y〉� =

∑m
j=1 δj,�xjyj , and |x|2� = 〈x, x̄〉�. Also write

〈x, y〉�,�′,n =
∑m

j=1 δj,�,�′,nxjyj and |x|2�,�′,n = 〈x, x̄〉�,�′,n. Note if m ≤ n − 1,
the two symbols 〈·, ·〉� and 〈·, ·〉�,�′,n are identical.

For 0 ≤ � ≤ n− 1, we define the generalized Siegel upper-half space

S
n
� = {(z, w) ∈ C

n−1 × C : Im(w) > −
�∑

j=1
|zj |2 +

n−1∑
j=�+1

|zj |2}.

The boundary of Sn� is the standard hyperquadrics: Hn
� = {(z, w) ∈ C

n−1×C :
Im(w) =

∑n−1
j=1 δj,�|zj |2}. We also define for � ≤ �′ ≤ N − 1

S
N
�,�′,n = {(z, w) ∈ C

N−1 × C : Im(w) >
N−1∑
j=1

δj,�,�′,n|zj |2}.

We similarly define S
N
�′ ,H

N
�′ ,H

N
�,�′,n. Now for (z, w) = (z1, · · ·, zn−1, w) ∈ C

n,
let Ψn(z, w) = [i + w, 2z, i− w] ∈ P

n. Then Ψn is the Cayley transformation
which biholomorphically maps the generalized Siegel upper-half space S

n
� and

its boundary H
n
� onto B

n
� \ {[z0, · · ·, zn] : z0 + zn = 0} and ∂Bn

� \ {[z0, · · ·, zn] :
z0 + zn = 0}, respectively.

Note that H
N
�,�′,n is identical to H

N
�′ when �′ = �. When �′ > �, HN

�′ is
holomorphically equivalent to H

N
�,�′,n by a permutation of coordinates in C

N .
We will more often work with H

N
�,�′,n instead of H

N
�′ , as it makes notations

simpler.
We will write Aut(Hn

� ) and Aut0(Hn
� ) for the (holomorphic) automor-

phism group of Hn
� and the local isotropy group of Hn

� at 0, respectively. Write
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Aut+(Hn
� ) and Aut+0 (Hn

� ) for the automorphisms in Aut(Hn
� ) and Aut0(Hn

� ),
respectively, that in addition preserves sides (that is, maps Sn� to S

n
� ). Clearly

they are subgroups of Aut(Hn
� ) and Aut0(Hn

� ), respectively. We define
Aut(HN

�,�′,n), Aut0(HN
�,�′,n) and Aut+(HN

�,�′,n) and Aut+0 (HN
�,�′,n) similarly.

Recall we denote by (z, w) = (z1, · · · , zn−1, w) the coordinates of Cn.
Write u for the real part of w and write

(2.1) Lj := 2iδj,�z̄j
∂

∂w
+ ∂

∂zj
, 1 ≤ j ≤ n− 1, T := ∂

∂u
.

Then {L1, ···, Ln−1} forms a global basis for the CR tangent bundle T (1,0)
H

n
� of

Hn
� , where T is a tangent vector field of Hn

� transversal to T (1,0)Hn
� ⊕T (0,1)Hn

� .
Let F = (f̃ , g) = (f, φ, g) = (f1, ···, fn−1, φ1, ···, φN−n, g) be a holomorphic

map from a neighborhood U of p0 ∈ H
n
� into C

N , satisfying F (U∩Sn� ) ⊂ S
N
�,�′,n

and F (U ∩H
n
� ) ⊂ H

N
�,�′,n. We additionally assume M1 := U ∩H

n
� is connected

and F is CR transversal on M1. We will define the geometric rank for such a
map F as follows:

First for each p ∈ M1, we associate it with a map Fp defined by

(2.2) Fp = τFp ◦ F ◦ σ0
p = (f̃p, gp) = (fp, φp, gp).

Here for each p = (z0, w0) ∈ M1, we write σ0
(z0,w0) ∈ Aut+(Hn

� ) for the map

σ0
(z0,w0)(z, w) = (z + z0, w + w0 + 2i〈z, z̄0〉�),

and define τF(z0,w0) ∈ Aut+(Hn
�,�′,n) by

τF(z0,w0)(ξ, η) = (ξ − f̃(z0, w0), η − g(z0, w0) − 2i〈ξ, f̃(z0, w0)〉�,�′,n).

Then Fp is a holomorphic map in a neighborhood of 0 ∈ C
n, which sends an

open piece of Hn
� into H

N
�,�′,n with Fp(0) = 0. Moreover, F (U ∩ S

n
� ) ⊂ S

N
�,�′,n.

Note the fundamental commutator identities hold:

[L̄j , Lj ] = 2iδj,�(
∂

∂w
+ ∂

∂w̄
) = 2iδj,�

∂

∂u
, 1 ≤ j ≤ n− 1;

[L̄j , Lk], [T, Lk], [Lj , Lk], [Lk, Lk] = 0, if 1 ≤ j �= k ≤ n− 1.
(2.3)

By the assumption that F (U ∩M1) ⊂ H
N
�,�′,n, we have

(2.4) Im g = 〈f̃ , ¯̃f〉�,�′,n on M1.
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In the following, for a holomorphic map h = (h1, · · · , hK) from C
n to C

K , we
write h′

zj = (∂h1
∂zj

, · · · , ∂hK

∂zj
), h′′

wzj = h′′
zjw = ( ∂2h1

∂w∂zj
, · · · , ∂2hK

∂w∂zj
), 1 ≤ j ≤ n− 1.

The notations h′
w, h

′′
zjzk

, h′′
ww are understood similarly. We apply L̄jLj to (2.4)

and obtain
(2.5)
λ(p) := (gp)w(0) = gw(p) − 2i〈f̃ ′

w(p), f̃(p)〉�,�′,n = δj,�〈Lj(f̃), Lj(f̃)〉�,�′,n(p),

Note this implies λ(p) is a real number. Recall that the CR-transervsality
assumption is equivalent to λ(p) �= 0 (see for example, [3]). Furthermore,
since Fp preserves the sides, we have λ(p) > 0 (see e.g. page 396 in [3]).

We apply L̄k, Lj , j �= k to (2.4) and get 〈Lj(f̃), Lk(f̃)〉�,�′,n |p= 0. Let for
1 ≤ j ≤ n− 1,

Ej(p) :=
(∂f̃p
∂zj

)
|0=

(∂fp,1
∂zj

, · · ·, ∂fp,n−1

∂zj
,
∂φp,1

∂zj
· ··, ∂φp,N−n

∂zj

)
|0= Lj(f̃)(p);

Ew(p) :=
(∂f̃p
∂w

)
|0=

(∂fp,1
∂w

, · · ·, ∂fp,n−1

∂w
,
∂φp,1

∂w
· ··, ∂φp,N−n

∂w

)
|0= T (f̃)(p).

Then
(2.6)
〈Ej(p), Ej(p)〉l,l′,n = δj,lλ(p), 〈Ej(p), Ek(p)〉�,�′,n = 0, 1 ≤ j �= k ≤ n− 1.

Write E for the (n−1)×(N−1) matrix whose jth row is Ej(p)√
λ(p)

, 1 ≤ j ≤ n−1.

Then E satisfies EI�,�′,n,N−1Ē
t = I�,n−1. Here I�,m denotes the m×m diagonal

matrix whose jth diagonal element equals to δj,�, 1 ≤ j ≤ m. Similarly, I�,�′,n,m
denotes the m × m diagonal matrix whose jth diagonal element equals to
δj,�,�′,n, 1 ≤ j ≤ m.

As in [3], we can choose (N−1)-dimensional row vectors C1(p), ···, CN−n(p)
such that if we write

A(p) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E1(p)√
λ(p)
· · ·

En−1(p)√
λ(p)

C1(p)
· · ·

CN−n(p)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
then

(2.7) A(p)I�,�′,n,N−1A(p)t = I�,�′,n,N−1, i.e., A(p) ∈ U(�, �′, n,N − 1).
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Here recall U(�, �′, n,m) = {T ∈ GL(m,C) : TI�,�′,n,mT̄ t = I�,�′,n,m}. Note
that one can choose Cj(p)’s in such a way that A(p) is smooth in p for p ≈ p0
by the standard Gram-Schmidt process.

Next note B(p) := A−1(p) = I�,�′,n,N−1A(p)tI�,�′,n,N−1 is also in U(�, �′, n,
N − 1). Write

B(p) = (B1(p), · · ·, Bn−1(p), B̂n(p), · · ·, B̂N−1(p)),

where Bj(p)′s and B̂i(p)′s are (N − 1)-dimensional column vectors. Note
B1(p), · · ·, Bn−1(p) only depend on E1(p), · · ·, En−1(p). Indeed,we have

(2.8) (B1(p), · · ·, Bn−1(p)) = I�,�′,n,N−1

(
E1(p)

t√
λ(p)

, · · ·, En−1(p)
t√

λ(p)

)
I�,n−1.

Define F ∗
p = (f̃∗

p , g
∗
p) = ((f∗

p )1, · · ·, (f∗
p )n−1, (φ∗

p)1, · · ·, (φ∗
p)N−n, g

∗
p) by

(2.9) F ∗
p = 1√

λ(p)
Fp

(
B(p) 0
0 1√

λ(p)

)
.

Then F ∗
p is a holomorphic map in a neighborhood of 0 ∈ C

n, which sends an
open piece of Hn

� into H
N
�,�′,n with F ∗

p (0) = 0 and the following holds (See [3],
[1] for more details). ⎧⎪⎪⎨⎪⎪⎩

f∗
p = z + O(|w| + |(z, w)|2)
φ∗
p = O(|w| + |(z, w)|2)

g∗p = w + O(|(z, w)|2).

Let
(2.10)

a(p) = (a1(p), ···, an−1(p), an(p), ···, aN−1(p)) :=
∂f̃∗

p

∂w
(0) = 1√

λ(p)
Ew(p)B(p).

Note

ak(p) = 1√
λ(p)

Ew(p)Bk(p) for 1 ≤ k ≤ n− 1, and

|a(p)|2�,�′,n = 1
λ(p) |Ew(p)|2�,�′,n.

(2.11)



608 Xiaojun Huang and Ming Xiao

Set for 1 ≤ k, j ≤ n− 1,

dkj(p) :=
∂2(f∗

p )k
∂zj∂w

|0=
1√
λ(p)

(f̃p)′′wzj (0)Bk(p) = 1√
λ(p)

Lj(f̃ ′
w)(p)Bk(p),

ck(p) :=
∂2g∗p
∂zk∂w

|0=
1

λ(p)(gp)′′wzk
(0) = 1

λ(p)Lk(g′w − 2i〈f̃ ′
w, f̃(p)〉�,�′,n,N ) |p,

r(p) :=1
2Re

(
∂2g∗p
∂w2

)
|0=

1
2λ(p)Re

(
(gp)′′ww(0)

)
= 1

2λ(p)Re
(
g′′ww − 2i〈f̃ ′′

ww, f̃(p)〉�,�′,n,N
)
|p .

Write (ξ, η) = (ξ1, · · · , ξN−1, η) for the coordinates of CN and define

(2.12) Gp(ξ, η) =
(
ξ − a(p)η
Qp(ξ, η)

,
η

Qp(ξ, η)

)
,

where Qp(ξ, η) = 1 + 2i〈ξ, a(p)〉�,�′,n +
(
r(p) − i〈a(p), a(p)〉�,�′,n

)
η. Then Gp ∈

Aut+0 (HN
�,�′,n). Let F ∗∗

p be the composition of F ∗
p with Gp:

(2.13) F ∗∗
p = (f̃∗∗

p , g∗∗p ) = (f∗∗
p , φ∗∗

p , g∗∗p ) := Gp ◦ F ∗
p .

Here f∗∗
p has n−1 components, and φ∗∗

p has N−n components. Next we recall
some notations (from [9, 10] and [3]) for functions of weighted degree that will
be used in the remaining context of the paper. We assign the weight of z to be
1, and assign the weight of u and w to be 2. We say a smooth function h(z, z̄, u)

on U ∩ H
n
� is of quantity Owt(s) for 0 ≤ s ∈ N, if

∣∣∣∣h(tz,tz̄,t2u)
ts

∣∣∣∣ is bounded for

(z, u) on any compact subset of U ∩H
n
l and t close to 0. Similarly, we say h

is of quantity owt(s) for 0 ≤ s ∈ N, if
∣∣∣∣h(tz,tz̄,t2u)

ts

∣∣∣∣ converges to 0 uniformly for

(z, u) on any compact subset of U ∩H
n
� as t goes to 0.

In general, for a smooth function h(z, z̄, u) on U ∩H
n
� , we denote h(k)(z, z̄

, u) the sum of terms of weighted degree k in the Taylor expansion of h at 0.
And h(k)(z, z̄, u) also sometimes denotes a weighted homogeneous polynomial
of degree k, if h is not specified. When h(k)(z, z̄, u) extends to a holomorphic
polynomial of weighted degree k, we write it as h(k)(z, w) or h(k)(z) if it
depends only on z.

Under the notations above, by Lemma 2.2 in [3], we have the follow-
ing normalization and CR Gauss-Codazzi equation. Here recall (z, w) =
(z1, · · · , zn−1, w) denotes the coordinates in C

n = C
n−1 × C.
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Lemma 2.1. For each p ∈ M , F ∗∗
p satisfies the normalization condition:⎧⎪⎪⎨⎪⎪⎩

f∗∗
p = z + i

2a
∗∗(1)
p (z)w + Owt(4)

φ∗∗
p = φ

∗∗(2)
p (z) + Owt(3)

g∗∗p = w + Owt(5),

with

(2.14) 〈z̄, a∗∗(1)
p (z)〉�|z|2� = |φ∗∗(2)

p (z)|2τ , τ = �′ − l.

By [12], if we write a
∗∗(1)
p (z) = zA(p) for any (n − 1) × (n − 1) matrix

A(p), then the geometric rank of F at p is defined as the rank of the matrix
A(p). See more details of the definition in [12].

We next recall the definition of geometric rank for maps between gener-
alized spheres. Let F be a holomorphic map from a small neighborhood U
of q ∈ ∂Bn

� to C
N . Assume F (U ∩ B

n
� ) ⊂ B

N
�′ and F (U ∩ ∂Bn

� ) ⊂ ∂BN
�′ , and

in addition F is CR-transversal along U ∩ ∂Bn
� . We can find some Cayley

transformations Φq that biholomorphically maps S
n
� and H

n
� to B

n
� \ V and

∂Bn
� \V , respectively, for some variety V with q �∈ V . Write p = Φ−1

q (q) ∈ H
n
� .

Similarly, we can find some Cayley transformation ΨF (q) that biholomor-
phically maps S

N
�,�′,n and H

N
�,�′,n to B

N
�′ \ W and ∂BN

�′ \ W , respectively, for
some variety W with F (q) �∈ W . Set F̂ = Ψ−1

F (q) ◦ F ◦ Φq and regard it as a
germ of map at p ∈ H

n
� . We then define the geometric rank of F at q, denoted

by RkF (q), to be the geometric rank RkF̂ (p) of F̂ at p. By [12], RkF (q) is
independent of the choices of Φq and ΨF (q), and thus it is well-defined.

2.2. Proof of a lemma

In the paper [9], where the first author first introduced the ideas of normal
form and moving point trick to study mappings between hyperquadrics, a
lemma (Lemma 3.2 in [9]) played a fundamental role. After the work [9],
the lemma has been widely used in the study of mapping problems in CR
geometry, as it provides an effective tool in determining the rank of Hermi-
tian polynomials. Here we recall the definition of the rank of a real polyno-
mial or more generally a real-valued real analytic function R(z, z) at some
point z0 ∈ C. Suppose R(z, z) can be written as R(z, z) =

∑p
i=1 |fi(z)|2 −∑q

j=1 |gj(z)|2, p, q ∈ Z
≥0, where f ′

is and g′js are holomorphic functions near
z0, and f1, · · · , fp, g1, · · · , gq are linearly independent over C. Then we say
R(z, z) is of finite rank and r = p+ q is called the rank of R(z, z). We remark
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that the rank of R(z, z) is independent of the choices of f ′
is and g′js. The rank

of R(z, z) is zero if and only if R(z, z) is identically zero. Lemma 3.2 in [9]
can be stated as follows:

Write z = (z1, · · · , zm) for the coordinates in C
m,m ≥ 2. Write |z| for

the Euclidean norm of z. Let A(z, z) be a real analytic function near 0 such
that

(2.15) A(z, z)|z|2 =
m−1∑
j=1

ψj(z)φj(z),

where ψj(z) and φj(z) are holomorphic functions near 0 ∈ C
m. Then A(z, z)

must have rank zero, that is, A(z, z) must be identically zero.
In this section, we prove a lemma of similar flavor, and will use it to

study the geometric rank of holomorphic mappings sending a piece of ∂Bn
�

into ∂BN
�′ .

Lemma 2.2. Let �,m, a, b be nonnegative integers such that 2 ≤ � ≤ m
2

and 0 ≤ a ≤ 2� − 2. Let ϕ1, ..., ϕa, ψ1, ..., ψb be homogeneous holomorphic
polynomials of the same degree in C

m such that

(2.16) −
a∑

j=1
|ϕj(z)|2 +

b∑
j=1

|ψj(z)|2 = A(z, z̄)|z|2� , z ∈ C
m,

where A(z, z̄) is a real polynomial. Then A(z, z̄) = ±|h(z)|2 for some holo-
morphic polynomial h.

Remark 2.3. The above lemma is optimal in the sense that the conclusion
fails if a > 2� − 2. See the following example which corresponds to the case
where � = 2,m = 4 and a = 3.

Example 2.4. Let z = (z1, · · · , z4) ∈ C
4 and thus |z|22 = −|z1|2 − |z2|2 +

|z3|2 + |z4|2. Let A(z, z) = |z1|2 + |z2|2. Then we have

A(z, z)|z|22 = − |z1|4 − 2|z1|2|z2|2 − |z2|4 + |z1|2|z3|2 + |z1|2|z4|2 + |z2|2|z3|2

+ |z2|2|z4|2.

Notice that A(z, z) is of rank two and cannot be written as |h|2 or −|h|2 for
any holomorphic function h.

Proof of Lemma 2.2: We assume ϕj(z) and ψj(z) are not all identically zero,
for otherwise the conclusion is trivial. Also the conclusion is easy by checking
the zero locus of the two sides of (2.16), if each ϕj = 0 or each ψj = 0. We will
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therefore assume a ≥ 1 and b ≥ 1. We can also make a ≤ b by adding zero
components to ψ′

js. Write ξ = [ξ0, ..., ξm−1] for the homogeneous coordinates
in P

m−1. Define a rational map from P
m−1 to P

a+b−1:

[F ]([ξ]) = [ϕ1(ξ), ..., ϕa(ξ), ψ1(ξ), ..., ψb(ξ)].

Note [F ] is a well-defined holomorphic map on P
m−1 \ V , where the variety

V = {[ξ] ∈ P
m−1 : ϕ1(ξ) = ... = ϕa(ξ) = ψ1(ξ) = ... = ψb(ξ)}. Recall that

∂BN−1
k = {[w0, ..., wN−1] ∈ P

N−1 : |w0|2+...+|wk|2 = |wk+1|2+...+|wN−1|2}.

Note |F (z)|2a := −∑a
j=1 |ϕj(z)|2 +

∑b
j=1 |ψj(z)|2 = 0 when |z|2� = 0 for z ∈

C
m. Consequently, [F ]([ξ]) gives a holomorphic map that sends an open piece

of ∂Bm−1
�−1 into ∂Ba+b−1

a−1 . We will make use of a transversality result, Theorem
1.1 of [2]. For that, we first verify the condition (1.2) in Theorem 1.1 of [2]
holds.

Note the numbers of the negative and positive eigenvalues of the Levi
form of ∂Ba+b−1

a−1 are a− 1 and b− 1. Notice by assumption, a− 1 ≤ 2�− 3 ≤
m − 3. Hence Condition (1.2) in Theorem 1.1 of [2] holds. Then it follows
from Theorem 1.1 in [2] (see also Lemma 4.1 in [3]) that one of the following
two mutually exclusive statements must hold:

(I). There exits a neighborhood V ⊆ P
m−1 of some open piece of ∂Bm−1

�−1
such that [F ](V ) ⊆ ∂Ba+b−1

a−1 ;
(II). [F ] is transversal to ∂Ba+b−1

a−1 at [F ](p) for a generic point p ∈ ∂Bm−1
�−1 .

If (I) holds, then |F (ξ)|2a ≡ 0. In this case the quantity in (2.16) equals
zero, and consequently, A(z, z) ≡ 0. It then remains to consider the case
where (II) holds. In this case, by moving to a generic point p, we assume [F ]
is CR transversal along V ∩ ∂Bm−1

�−1 for a small neighborhood V of p. By the
transversality, [F ] either preserves or interchanges the sides of ∂Bm−1

�−1 and
∂Ba+b−1

a−1 . We will apply Theorem 1.1 of [1] (we can also use Theorem 0.4) to
the two cases separately:

Case (A). Suppose [F ] preserves sides of ∂Bm−1
�−1 and ∂Ba+b−1

a−1 (i.e., [F ]
maps V ∩Bm−1

�−1 to B
a+b−1
a−1 ). Recall from §2.1 the map (z, w) → [i+w, 2z, i−w]

from C
m−1 to P

m−1 gives the Cayley transformation which biholomorphically
maps the generalized Siegel upper-half space S

m−1
�−1 to B

m−1
�−1 \ {[ξ0, · · ·, ξm−1] :

ξ0 + ξm−1 = 0}. Denote this map by ρ. Notice that

ρ−1([ξ0, ξ′, ξm−1]) = ( iξ′

ξ0 + ξm−1
,
iξ0 − iξm−1

ξ0 + ξm−1
).
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Likewise, denote by r the Cayley transformation from S
a+b−1
a−1 to B

a+b−1
a−1 . Com-

posing [F ] with an automorphism of Ba+b−1
a−1 and shrinking V if necessary, we

can assume F̂ = r−1 ◦ [F ]◦ρ is a well-defined holomorphic map in a neighbor-
hood of some piece of Hm−1

�−1 . Moreover it sends the piece of Hm−1
�−1 to H

a+b−1
a−1 ,

and maps the S
m−1
�−1 side to S

a+b−1
a−1 .

Applying part (a) of Theorem 1.1 in [1] to F̂ , we get � ≤ a and m− � ≤ b.
Furthermore, since a− 1 < 2(�− 1), there exist a local biholomorphism γ of
H

a+b−1
a−1 and an automorphism τ of Hm−1

�−1 such that

γ ◦ F̂ ◦ τ(z1, · · · , zm−2, w) = γ ◦ r−1 ◦ [F ] ◦ ρ ◦ τ
= (z1, · · · , z�−1,Φ, z�, · · · , zm−2,Ψ, w).

(2.17)

Here Φ and Ψ are holomorphic maps with a − � and b + � −m components
(In our case, we know they are rational maps), respectively. And they satisfy
|Φ| = |Ψ|.

Next note there exist an automorphism g of Bm−1
�−1 and an automorphism

G of Ba+b−1
a−1 such that γ ◦ r−1 = r−1 ◦ G and ρ ◦ τ = g ◦ ρ. Then (2.17) is

reduced to

G ◦ [F ] ◦ g
(
[ξ0, · · · , ξm−1]

)
= r ◦ (z1, · · · , z�−1,Φ, z�, · · · , zm−2,Ψ, w) ◦ ρ−1.

Using the explicit formulas of r and ρ−1, the above is reduced to

G ◦ [F ] ◦ g
(
[ξ0, ξ′, ξm−1]

)
= [ξ0, ξ1, · · · , ξ�−1, Φ̃, ξ�, · · · , ξm−2, Ψ̃, ξm−1].

Here Φ̃ and Ψ̃ are rational maps with a − � and b + � − m components,
respectively, and they satisfy |Φ̃| = |Ψ̃|.

Finally since G and g preserve the indefinite norms | · |2a and | · |2� , respec-
tively, we have in case (A) that |F (ξ)|2a = |h(ξ)|2|ξ|2� for some holomorphic
polynomial h.

Case (B). Suppose [F ] change sides of ∂Bm−1
�−1 and ∂Ba+b−1

a−1 (i.e., [F ]
maps V ∩ B

m−1
�−1 to P

a+b−1 \ B
a+b−1
a−1 ≈ B

a+b−1
b−1 ). Again composing [F ] with

an automorphism of B
a+b−1
a−1 and shrinking V if necessary, we can assume

F̂ = r−1 ◦ [F ] ◦ ρ is a well-defined holomorphic map in a neighborhood of
some piece of Hm−1

�−1 , where ρ and r are as above. Moreover F̂ sends the piece
of Hm−1

�−1 to H
a+b−1
a−1 , and maps the S

m−1
�−1 side to C

a+b−1 \ Sa+b−1
a−1 .

Applying part (b) of Theorem 1.1 in [1] to F̂ , we have a ≥ m − � and
b ≥ �. Moreover since a − 1 ≤ 2� − 3 ≤ m − 3 < m − 2, there exist a local
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biholomorphism γ of Ha+b−1
a−1 and an automorphism τ of Hm−1

�−1 such that

γ ◦ F̂ ◦ τ(z1, · · · , zm−2, w) = γ ◦ r−1 ◦ F ◦ ρ ◦ τ
= (z�, · · · , zm−2,Φ, z1, · · · , z�−1,Ψ,−w)

Here Φ and Ψ are rational maps with a + � − m and b − � components,
respectively. Moreover, they satisfy |Φ| = |Ψ|.

Similarly as above, we see there exist an automorphism g of Bm−1
�−1 and an

automorphism G of Ba+b−1
a−1 such that

G ◦ [F ] ◦ g
(
[ξ0, · · · , ξm−1]

)
= [ξm−1, ξ�, · · · , ξm−2, Φ̃, ξ1, · · · , ξ�−1, Ψ̃, ξ0].

Here Φ̃ and Ψ̃ are rational maps with a + � − m and b − � components,
respectively. Moreover, they satisfy |Φ̃| = |Ψ̃|. As above, we have in case (B)
that |F (ξ)|2a = −|h(ξ)|2|ξ|2� for some holomorphic polynomial h.

This proves Lemma 2.2.

2.3. Geometric rank of the map

In this section, we use the set up in §2.1 and Lemma 2.2 to give a proof for
Theorem 1.5.

Proof of Theorem 1.5: Composing F with automorphisms of B
n
� and B

N
�′ if

necessary, we assume that F is well-defined in a neighborhood of q0 = [1, 0, ...,
0, 1] ∈ ∂Bn

� with F (q0) = [1, 0, ..., 0, 1] ∈ ∂BN
�′ . Denote by Ψn the Cayley

transformation from S
n
� to B

n
� as described in §2.1, and ΦN the Cayley trans-

formation from SN�,�′,n to BN
�′ . Then F̃ := Φ−1

N ◦ F ◦ Ψn is well-defined in a
small neighborhood of 0 ∈ H

n
� (Recall Ψn(0) = q0). Note F̃ is side-preserving

(i.e., it maps Sn� to S
N
�,�′,n near 0). Moreover, by the definition of the geometric

rank (see Section 3 in [12]), the geometric rank of F at q ≈ q0 is equal to that
of F̃ at Ψ−1

n (q) near 0. Thus it suffices to prove the new map F̃ has geometric
rank 0 or 1 near 0. To keep notations simple, we will still write the new map
as F instead of F̃ . That is, F is now a holomorphic map from a neighborhood
V of 0 ∈ Hn

� to CN , satisfying

F (V ∩ S
n
� ) ⊆ S

N
�,�′,n and F (V ∩H

n
� ) ⊆ H

N
�,�′,n.

By shrinking V if necessary, we can additionally assume M1 := V ∩ H
n
�

is connected and F is CR transversal along M1. Fix p near 0 on M1. We
define Fp as in (2.2). We run the normalization process in §2.1 to Fp and
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obtain F ∗
p , F

∗∗
p in (2.9) and (2.13), respectively. Write F ∗∗

p = (f̃∗∗
p , g∗∗p ) =

(f∗∗
p , φ∗∗

p , g∗∗p ) as in (2.13). Then Lemma 2.1 holds, and in particular (2.14)
holds. Write a

∗∗(1)
p (z) = zA(p) and

A(z, z) = 〈z̄, a∗∗(1)
p (z)〉� = zA(p)I�,n−1z̄

t.

Let m = n− 1, a = τ = �′ − �, b = (N − �′) − (n− �) and

(ϕ1(z), · · · , ϕa(z), ψ1(z), · · · , ψb(z)) = φ∗∗(2)
p (z).

Then we have (2.16) holds:

−
a∑

j=1
|ϕj(z)|2 +

b∑
j=1

|ψj(z)|2 = A(z, z̄)|z|2� .

Note by assumption a ≤ 2�− 2. By Lemma 2.2, A(z, z̄) = ±|h(z)|2 for some
holomorphic polynomial h. Consequently, the Hermitian matrix A(p)I�,n−1
has rank either 0 or 1; and so is A(p). The conclusion of the theorem then
follows by the definition of geometric rank.
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