
Pure and Applied Mathematics Quarterly
Volume 18, Number 2, 617–637, 2022

q-effectiveness for holomorphic subelliptic multipliers
Sung-Yeon Kim

∗
and Dmitri Zaitsev
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Abstract: We provide a solution to the effectiveness problem in
Kohn’s algorithm for generating holomorphic subelliptic multipli-
ers for (0, q) forms for arbitrary q. As application, we obtain subel-
liptic estimates for (0, q) forms with effectively controlled order
ε > 0 (the Sobolev exponent) for domains given by sums of squares
of holomorphic functions (J.J. Kohn called them “special domains”
in [K79]). These domains are of particular interest due to their re-
lation with complex and algebraic geometry. Our methods include
triangular resolutions introduced by the authors in [KZ20].

1. Introduction

In his celebrated paper [K79], J.J. Kohn invented a purely algebraic approach
to subelliptic estimates to the ∂̄ problem, based on generating multiplier ide-
als that, quoting Y.-T. Siu [S17], “measure location and extent of failure of
subelliptic estimates”:

Definition 1.1. Let Ω ⊂ C
n be a domain and p ∈ ∂Ω a boundary point.

1. [K79, Definition 1.11] A subelliptic estimate of order ε > 0 for (0, q)
forms is said to hold at p if there exist an open neighborhood U of p
and C > 0 satisfying

‖u‖2
ε ≤ C(‖∂̄u‖2 + ‖∂̄∗u‖2 + ‖u‖2)

for all (0, q) forms u with compact support in U ∩ Ω which belong to
the domain of the adjoint ∂̄∗. Here ‖ · ‖ε and ‖ · ‖ are respectively the
tangential Sobolev norm of the (fractional) order ε and the standard
L2 norm on Ω.
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2. [K79, Definition 4.2] A subelliptic multiplier of order ε > 0 at p for
(0, q) forms, called here briefly a “q-multiplier”, is a germ f of a smooth
function at p, for which there is a representative in a neighborhood U
of p, also denoted by f and C > 0 satisfying

‖fu‖2
ε ≤ C(‖∂̄u‖2 + ‖∂̄∗u‖2 + ‖u‖2)

for all (0, q) forms u as in the subelliptic estimate.

In particular, a subelliptic estimate of order ε > 0 holds at p if and
only if f = 1 is a q-multiplier of order ε > 0 at p. Although multipliers are
defined in terms of the above a priori estimate, J.J. Kohn discovered in [K79]
purely algebraic procedures generating multipliers starting from the defining
equation of ∂Ω. Based on these procedures, J.J. Kohn proved for bounded
domains with real-analytic boundary of finite D’Angelo type, that the trivial
multiplier f = 1 can be generated by a finite sequence of these procedures.
[K79, Theorem 1.19]

On the other hand, the more general case of smooth boundary remains
open (also formulated by Y.-T. Siu [S17, §2]):

Conjecture 1.2 (Kohn’s conjecture). For a bounded pseudoconvex domain
with smooth boundary of finite type in C

n, the trivial multiplier f = 1 can be
generated by a finite sequence of Kohn’s procedures.

The stronger Effective Kohn’s conjecture with the additional control of
the order ε remains open even for real-analytic boundaries:

Conjecture 1.3 (Effective Kohn’s conjecture). Kohn’s conjecture holds under
the same assumptions with an additional effective estimate of the order of
subellipticity of the multiplier f = 1 as function of the finite type and the
dimension n.

The effective conjecture is known for n = 2, see [K79, §8], where it is based
on fundamental results by Hörmander [Ho65] and Rothschild-Stein [RS76]. In
higher dimension, the situation is much less understood, in fact, examples of
[He08] (§1.1 in the preprint version) and [CD10, Proposition 4.4] in dimension
3 illustrate a lack of such control, see also [S17, §4.1] for a detailed explanation
of this important phenomenon.

When n > 2, only the case q = 1 has been previously considered. To
tackle the effectiveness, Siu [S10, S17] introduced algebraic geometric tech-
niques to obtain the effectiveness in the important case of special domains
(see Definition 1.7 below) of finite type in dimension 3, with further indica-
tions of how to proceed in the more general cases of special domains in higher
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dimension, and outlining a program to treat the more general real-analytic
and smooth cases. A different effective procedure in Kohn’s algorithm was
given by D’Angelo [D95] and Catlin-D’Angelo [CD10, Section 5] for special
domains given by so-called triangular systems of holomorphic functions. In
[N14] A.C. Nicoara proposed a construction for the termination of the Kohn
algorithm in the real-analytic case with an indication of the ingredients needed
for the effectivity. More recently, the authors of this article established an-
other effective procedure for special domains in dimension n = 3 [KZ18] and
arbitrary n in [KZ20] (Y.-T. Siu also told us about his unpublished proof in
this case).

The reader is referred to [D95, DK99, S01, S02, K04, S05, S07, Ch06, S09,
CD10, S10, S17, Fa20] for more extensive details on subelliptic multipliers
and Siu’s accounts [S07, S09, S17] on their broad role and relation with other
multipliers arising in complex and algebraic geometry. See also [K00, K02,
K04, K05, Ce08, St08, CS09, Ba15, BPZ15, CZ17, S17] for multipliers in
more general settings.

1.1. Main results

The goal of this note is to provide a solution to the effectiveness problem in
Kohn’s algorithm for holomorphic subelliptic multipliers for (0, q) forms for
arbitrary 1 ≤ q ≤ n. We first recall Kohn’s multiplier generating procedures for
holomorphic multipliers [K79, §7] that can be described algebraically starting
with an abstract initial set of germs:

Definition 1.4 (Holomorphic Kohn’s procedures). For an arbitrary initial
subset S in the set On,p of holomorphic function germs in C

n at a point
p ∈ C

n and integer 1 ≤ q ≤ n, the holomorphic Kohn’s (q-)procedures consist
of:

(P1) for 0 < ε ≤ 1/2 and f1, . . . , fn−q+1 either in S or multipliers of order
≥ ε, it follows that the partial Jacobian (n− q+1)× (n− q+1) minors

∂(f1, . . . , fn−q+1)
∂(zj1 , . . . , zjn−q+1)

, 1 ≤ j1 < . . . < jn−q+1 ≤ n,

are multipliers of order ≥ ε/2;
(P2) for 0 < ε < 1, k, r ∈ N≥1, f1, . . . , fk multipliers or order ≥ ε, and g a

holomorphic function (germ) with gr ∈ (f1, . . . , fk), it follows that g is
a multiplier of order ≥ ε/r.
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Rather than directly using the finite type, we control the order of subellp-
ticity of q-multipliers in terms of the q-multiplicity defined as follows:

Definition 1.5. The q-multiplicity mult q(I) of an ideal I ⊂ On,p in the ring
On,p of germs at p of holomorphic functions in C

n is the minimum of the
dimension of the quotient space

mult q(I) := min dimOn,p/(I + (L1, . . . , Lq−1)),

where the minimum is taken over all choice of (q − 1) affine linear functions
L1, . . . , Lq−1 vanishing at p. By the q-multiplicity of a subset S ⊂ On,p we
mean the q-multiplicity of the ideal generated by the set {f − f(p) : f ∈ S}.

Note that q-multiplicity is in fact a biholomorphic invariant (§2.1). We
formulate our first result purely in terms of Kohn’s procedures (P1) and (P2):

Theorem 1.6. For every number ν > 1 and initial subset S ⊂ On,p of finite
q-multiplicity ≤ ν, there exists an effectively computable sequence f1, . . . , fm ∈
On,p, where fm = 1 and each fj is either in S or is obtained by applying to S
or multipliers from {f1, . . . , fj−1} one of the Kohn’s procedures (P1) or (P2).
Furthermore, the number of steps and the root orders in (P2) are effectively
bounded by functions depending only on (n, q, ν).

As the first application, we obtain the effectiveness for the so-called special
domains [K79, §7], [S17, §2.8]:

Definition 1.7. A special domain in C
n+1 is one defined locally near each

boundary point p by

(1) Re (zn+1) +
N∑
j=1

|Fj(z1, . . . , zn)|2 < 0

where F1, . . . , FN are holomorphic functions in a neighborhood of p. By the
q-multiplicity of domain (1) at p we mean the q-multiplicity of the set S =
{F1, . . . , FN}.

As an immediate consequence of Kohn’s theory and Theorem 1.6 applied
to S as in Definition 1.7, we obtain:

Corollary 1.8. There exists a positive function ε : N>0 ×N>0 ×N>0 → R>0
such that for integers ν, n, q ∈ N>0 and any domain (1) of finite q-multiplicity
≤ ν at a boundary point p, a subelliptic estimate for (0, q) forms holds at p
with effectively bounded order of subellipticity ≥ ε(n, q, ν).
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Remark 1.9. Since the q-multiplicity of (1) is ≤ (T/2)n−q+1 where T is the
D’Angelo q-finite type of (1) at p by a result of D’Angelo [D82, Theorem 2.7],
an effective bound in terms of the type can be obtained by substituting
(T/2)n−q+1 for ν in Theorem 1.8. See also [BS92, BHR96, FIK96, FLZ14,
MM17, D17, Fa19, Fa20, HY19, Z19] for relations of the finite type with
other invariants.

1.2. Triangular resolutions and effective meta-procedures

In this section we introduce our main tools. Recall that the crucial lack of
effectiveness in (P2) (see Definition 1.4) is due to the fact that the order of
subellipticity of the generated multiplier depends on the root order that can
be arbitrarily large in general.

To quantify this phenomenon, we call a procedure effective if the order
of the new multiplier can be effectively estimated in terms of a quantity
associated to the data that we call a complexity. We don’t seek complexities
of individual multipliers but rather of their finite tuples and tuples of their
ideals, or more precisely, their filtrations. More specifically, we shall use the
notion of triangular resolution that we defined in the earlier paper [KZ20]:

Definition 1.10 ([KZ20]). A triangular resolution of length k ≥ 1 and multi-
order (μ1, . . . , μk) ∈ N

k of a pair (Γ, I), where Γ: (Cn, 0) → (Cn, 0) is a
holomorphic map germ and I1 ⊂ . . . ⊂ Ik ⊂ On,0 a filtration I of ideals, is a
system of holomorphic function germs (h1, . . . , hk) satisfying

hj = hj(wj , . . . , wn), hj ◦ Γ ∈ Ij , ord wjhj = μj , 1 ≤ j ≤ k.

Our proof of the results from previous section is based on the following
effective meta-procedures involving triangular resolutions:

Theorem 1.11. For integers n ≥ 1, 1 ≤ q ≤ n, 0 ≤ k ≤ n − q and μ ≥ 1,
the following hold:

(MP1) (Selection of a partial Jacobian). For any collections of germs

f = (f1, . . . , fk) ∈ (On,0)k, ψ = (ψk+1, . . . , ψn−q+1) ∈ (On,0)n−k−q+1,

mult q(f, ψ) ≤ μ,

there exist linear changes of the coordinates z ∈ C
n and of the compo-

nents of ψ in C
n−k−q+1 such that for the partial Jacobian determinant

J := ∂(ψk+1, . . . , ψn−q+1)
∂(zk+1, . . . , zn−q+1)

,
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the q-multiplicity

mult q(f, J, ψk+2, . . . , ψn−q+1)

is effectively bounded by a function depending only on (n, q, μ).
(MP2) (Selection of a triangular resolution). For any collections of germs

f = (f1, . . . , fk) ∈ (On,0)k, ψ = (ψ1, . . . , ψn−q+1) ∈ (On,0)n−q+1,

with

mult q(f1, . . . , fj , ψj+1, . . . , ψn−q+1) ≤ μ for all 0 ≤ j ≤ k,

there exist a germ of a holomorphic map

Γψ := (ψ,Ln−q+2, . . . , Ln) : (Cn, 0) → (Cn, 0), Lj are linear functions,

such that
mult q(ψ) = mult (Γψ)

and a triangular resolution h = (h1, . . . , hk) of (Γψ, I), where I is the
filtration

(f1) ⊂ (f1, f2) . . . ⊂ (f1, . . . , fk),
such that orders ord wjhj are effectively bounded by functions depend-
ing only on (n, q, μ).

(MP3) (Jacobian extension in a triangular resolution). For any

Γ = (φ, ψ, zn−q+2, . . . , zn), (φ, ψ) ∈ (On,0)k × (On,0)n−k−q+1

and filtration I of ideals I1 ⊂ . . . ⊂ Ik+1 ⊂ On,0 satisfying

Ik+1 ⊂ Ik + (J),

where J is the Jacobian determinant of Γ, let h = (h1, . . . , hk+1) be a
triangular resolution with

ord zjhj ≤ μ, 1 ≤ j ≤ k.

Then hk+1 ◦Γ can be obtained by holomorphic Kohn’s procedures (P1)
and (P2) starting with the initial set consisting of components of ψ
and the ideal Ik, where the number of procedures and the root order in
(P2) are effectively bounded by a function depending only on (n, q, μ).
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The proof for each of the statements in (MP1), (MP2) and (MP3) will
be provided respectively in §3 and Propositions 4.1 and 5.1. All three meta-
procedures will be subsequently used one after another in §6 to prove the
following explicit description of q-multipliers arising from our algorithm:

Corollary 1.12. For integers n, q, ν ≥ 1, initial system ψ0 = (ψ0,1, . . . ,

ψ0,n−q+1) of q-multiplicity ≤ ν, and 1 ≤ k ≤ n− q + 1, there exist:

1. holomorphic coordinates (z1, . . . , zn) chosen among linear combinations
of any given holomorphic coordinate system;

2. systems ψk = (ψk,k+1, . . . , ψk,n−q+1) chosen among generic linear com-
bination of ψ0, and associated maps

Γk(z) := (z1, . . . , zk, ψk,k+1(z), . . . , ψk,n−q+1(z), zn−q+2, . . . , zn);

3. systems of multipliers fk = (fk,1, . . . , fk,k) obtained via effective meta-
procedures applied to (ψk−1, fk−1) (where f0 is empty);

4. integer functions νk,j(n, q, ν) > 0 and decompositions of the form fk,j =
Qk,j ◦ Γk, j = 1, . . . , k, where each Qk,j = Qk,j(wj , . . . , wn) is a holo-
morphic function depending only on the last n− j + 1 coordinates with
ord wjQk,j ≤ νk,j(n, q, ν);

5. positive functions εk,j(n, q, ν) > 0 such that the order of subellipticity
of each fk,j for (0, q) forms is ≥ εk,j(n, q, ν).

Using Corollary 1.12 for the largest k, we prove Theorem 1.6 by applying
the meta-procedure (MP3) from Theorem 1.11 one last time:

Proof of Theorem 1.6. Taking k = n− q + 1 in Corollary 1.12, we find

Γk(z) = (z1, . . . , zk, zk+1, . . . , zn) = z,

whose Jacobian determinant J = 1. Hence, using fk,j = Qk,j ◦ Γk provided
by Corollary 1.12, we can apply (MP3) from Theorem 1.11 to

Γ = Γk, Ij = (fk,1, . . . , fk,j) for j ≤ k, Ik+1 = 1 ⊂ Ik + (J),

and

hj = Qj for j ≤ k, hk+1 = 1,

to conclude that hk+1 ◦ Γ = 1 is a q-multiplier, completing the proof.
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2. Preliminaries

2.1. Multiplicity and degree

Denote by O = On,p the ring of germs at a point p of holomorphic functions
in C

n. Since our considerations are for germs at a fixed point, we shall assume
p = 0 unless specified otherwise.

Recall that an ideal I ⊂ O is of finite type if dimO/I < ∞, or equivalently
the (germ at 0 of the) zero variety V(I) is zero-dimensional at 0. In the latter
case, the classical algebraic intersection multiplicity of I (see e.g. [Fu84, §1.6,
§2.4]) is defined as

(2) multI := dimO/I.

Similarly, for a germ of holomorphic map ψ : (Cn, 0) → (Cn, 0), we have
multψ := mult (ψ), where (ψ) is the ideal generated by the components of
ψ, and the quotient O/(ψ) is the local algebra of ψ (see e.g. [AGV85]). More
generally (cf. [D93, §2.4]), for every integer 0 < q ≤ n, define the q-multiplicity
by

(3) mult qI := min dimO/(I + (L1, . . . , Lq−1)),

where the minimum is taken over sets of q − 1 linear functions Lj on C
n.

The same minimum is achieved when Lj are germs of holomorphic functions
with linearly independent differentials, as can be easily shown by a change
of coordinates linearizing the functions. In particular, the q-multiplicity of
an ideal is a biholomorphic invariant. In a similar vein, given a collection
φ = (φ1, . . . , φn−d) ∈ On of n− d function germs vanishing at 0, we write
(4)

mult (φ) = mult (φ1, . . . , φn−d) := min dimO/(φ1, . . . , φn−d, L1, . . . , Ld),

where Lj are as above. That is, we will adopt the following convention:
Convention. For every 1 ≤ k ≤ n and a k-tuple of holomorphic function

germs φ1, . . . , φk, their multiplicity mult (φ1, . . . , φk) is always assumed to be
the (n − k + 1)-multiplicity, i.e. with (n − k) generic linear functions added
to the ideal.

Further recall that the degree deg(ψ) of a germ (also called “index” in
[AGV85]) of a finite holomorphic map ψ : (Cn, 0) → (Cn, 0) is the minimum m
such that ψ restricts to a ramified m-sheeted covering between neighborhoods
of 0 in Cn. Both integers are known to coincide (see e.g. [ELT77, AGV85,
D93]):
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Theorem 2.1 ([AGV85, §4.3]). Let ψ : (Cn, 0) → (Cn, 0) be germ of finite
holomorphic map. Then

mult (ψ) = degψ.

2.2. Basic properties of multiplicity

The proofs of the following lemmas can be found in [S10] and [KZ20].

Lemma 2.2 (Semicontinuity of multiplicity). Let ψt : (Cm, 0) → (Ck, 0) be
a continuous family of germs of holomorphic maps, in the sense that all co-
efficients of the power series expansion of ψt depend continuously on t ∈ R

m.
Then mult (ψt) is upper semicontinuous in t.

In the following we keep using the notation (4).

Corollary 2.3. For every germs

(f, g) : (Cn+m, 0) → (Cn, 0) × (Cm, 0),

we have
mult f ≤ mult (f, g).

Definition 2.4 (D’Angelo, [D82]). Let S ⊂ On,0 be a subset of germs of
holomorphic functions.

1. The D’Angelo 1-type of S is

Δ1(S) := sup
γ

inf
f∈S

ord f ◦ γ
ord γ ,

where ord denotes the vanishing order, and the supremum is taken over
all nonzero germs of holomorphic maps γ : (C, 0) → (Cn, 0).

2. the D’Angelo q-type of S for q ≥ 1 is

Δq(S) := inf
L

Δ1(S ∪ L),

where the infimum is taken over all sets L of (q − 1) complex linear
functions.

Let Ω be a domain defined locally by

(5) Re (zn+1) +
N∑
j=1

|Fj(z1, . . . , zn)|2 < 0,
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where F1, . . . , FN are holomorphic functions in a neighborhood of 0. By q-
type Δq(Ω) of (5) at 0 we mean twice the q-type of F1, . . . , FN . Let p be the
smallest integer such that

|z|p ≤ A
∑
j

|Fj | + |L(z)|

holds for some linear map L : Cn → C
q−1. By following the argument in (I.2)

of [S10], we can show that

2p = Δq(Ω) ≤ mult qI(F1, . . . , FN ) =: s.

Furthermore, for the smallest integer r satisfying

mr ⊂ I(F1, . . . , FN , L1, . . . , Lq−1)

for some linear functions L1, . . . , Lq−1, where m is the maximal ideal in On,0,
we obtain

r ≤ s ≤ (n + r − 1)!/n!(r − 1)!.
An important ingredient is the following consequence from Siu’s lemma

on selection of linear combinations of holomorphic functions for effective mul-
tiplicity [S10, (III.3)] combined with effective comparison of the invariants of
holomorphic map germs [S10, (I.3-4)] (see also [D93, §2.2]):

Lemma 2.5 (q-type version of Siu’s lemma on effective mixed multiplicity).
Let 0 ≤ j ≤ n − q and f1, . . . , fj , F1, . . . , FN be holomorphic function germs
in On,0 such that

μ := mult (f1, . . . , fj) < ∞, ν := mult q(F1, . . . , FN ) < ∞.

Then
mult (f1, . . . , fj , Gj+1, . . . , G�) ≤ μν�−j , � ≤ n− q + 1

holds for generic linear combinations Gj+1, . . . , G� of Fk’s.

We shall also need the following lemma proved in [KZ20, §3]:

Lemma 2.6 (Effective Nullstellensatz, [KZ20]). Let φ1, . . . , φk, f ∈ On,0 sat-
isfy

μ := mult (φ1, . . . , φk) < ∞, f ∈
√

(φ1, . . . , φk).
Then

fnμ ∈ (φ1, . . . , φk).
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3. Multiplicity estimates for Jacobian determinants

The meta-procedure (MP1) in Theorem 1.11 is the special case of the following
proposition where one can put d = n − q − k and ψ = (ψk+1, . . . , ψn−q+1,

zn−q+2, . . . , zn) assuming that

mult q(f1, . . . , fk, ψk+1, . . . , ψn−q+1)
= mult (f1, . . . , fk, ψk+1, . . . , ψn−q+1, zn−q+2, . . . , zn) < ∞

after a suitable linear coordinate change of (z1, . . . , zn). The proof of the
proposition is given in [KZ20]. In what follows, we use the convention that
mult (f) = 1 if f has 0 components.

Proposition 3.1 ([KZ20]). Let (f, ψ) : (Cn, 0) → (Cn−d×C
d, 0), 1 ≤ d ≤ n,

be a holomorphic map germ satisfying

ν := mult (f) < ∞, μ := mult (f, ψ) < ∞.

Then after a linear change of coordinates (z1, . . . , zn) and another linear co-
ordinate change in C

d, the partial Jacobian determinant

(6) J := ∂(ψ1, . . . , ψd)
∂(z1, . . . , zd)

satisfies

(7) mult (f, J) ≤ dνμ, mult (f, J, ψ2, . . . , ψd) ≤ dνμd,

where ψj is the j-th component of ψ in the new coordinates.

4. Existence of effective triangular resolutions

The following is a more precise version of the meta-procedure (MP2) in Theo-
rem 1.11. We shall denote by ord wjh the vanishing order at 0 of h(0, . . . , 0, wj ,

0, . . . , 0) (where all variables are zero except wj).

Proposition 4.1. Let 1 ≤ k ≤ n − q + 1, f1, . . . , fk, φ1, . . . , φn−q+1 ∈ On,0,
satisfy

μj := mult q(f1, . . . , fj , φj+1, . . . , φn−q+1) < ∞, 1 ≤ j ≤ k.
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Let I be the filtration of ideals

Ij := (f1, . . . , fj), 1 ≤ j ≤ k.

Then there exist a germ of a holomorphic map

Γφ = (φ1, . . . , φn−q+1, Ln−q+2, . . . , Ln)

and a triangular resolution h = (h1, . . . , hk) of (Γφ, I) such that

(8) ord wjhj ≤ n · μj · mult (f1, . . . , fj), 1 ≤ j ≤ k.

Furthermore, each hj(wj , . . . , wn) can be chosen as Weierstrass polynomial in
wj.

Proof. Since

mult (ψ1, . . . , ψk) = mult (ψ1, . . . , ψk, Lk+1, . . . , Ln),

for generic choice of n − k linear functions Lj , we can choose a set of linear
functions Ln−q+2, . . . , Ln such that

(9) mult (f1, . . . , fj , φj+1, . . . , φn−q+1, Ln−q+2, . . . , Ln) = μj , for all j.

Let
Γφ := (φ1, . . . , φn−q+1, Ln−q+2, . . . , Ln).

Consider the coordinate projections

πj(w1, . . . , wn) = (wj , . . . , wn) ∈ C
n−j+1, 1 ≤ j ≤ k,

and let

Wj := V (f1, . . . , fj) , W̃j := (πj ◦ Γφ)(Wj) ⊂ C
n−j+1, 1 ≤ j ≤ k,

where V is the zero variety. Then Wj is of codimension ≥ k in Cn. In fact,
counting preimages and using (9), we conclude that W̃j ⊂ C

n−j+1 is a proper
subvariety of codimension 1 and

πj+1|W̃j
: W̃j → C

n−j



q-effectiveness for holomorphic subelliptic multipliers 629

is a finite holomorphic map germ of degree ≤ μj . Then there exist Weierstrass
polynomials Qj(wj , . . . , wn), j = 1, . . . , k, satisfying

Qj = w
νj
j +

∑
�<νj

bj,�(wj+1, . . . , wn)w�
j , Qj |W̃j

= 0, νj = ord wjQj ≤ μj .

Furthermore, Lemma 2.6 implies

hj ◦ Γφ ∈ (f1, . . . , fj), hj := Q
λj

j ,

for suitable λj ∈ N≥1 satisfying

λj ≤ n · mult (f1, . . . , fj).

Then (h1, . . . , hk) is a triangular resolution satisfying (8) as desired.

5. Effective Kohn’s procedures for triangular resolutions

The following is a more precise version of the meta-procedure (MP3) in The-
orem 1.11:

Proposition 5.1. Let 1 ≤ k ≤ n−q and (Q1◦Γ, . . . , Qk+1◦Γ) be a triangular
resolution of (Γ, I), where Γ: (Cn, 0) → (Cn, 0) is a holomorphic map germ
of the form

(10) Γ = (ψ1, . . . , ψn−q+1, zn−q+2, . . . , zn),

and I a filtration of ideals I1 ⊂ . . . ⊂ Ik+1 ⊂ On,0. Assume

(11) μj = ord wjQj < ∞, 1 ≤ j ≤ k,

and

(12) Ik+1 ⊂ Ik + (J),

where J is the Jacobian determinant of Γ.
Then Qk+1 ◦Γ can be obtained by applying holomorphic Kohn’s procedures

(P1) and (P2) to (Γ, Ik) and each procedure (P1) and (P2) is applied μ1 · · ·μk

number of times with the root order in (P2) being ≤ k + 1. In particular, if
Ik consists of multipliers of order ≥ ε, then Qk+1 ◦ Γ is a multiplier of order
≥ (2k + 2)−μ1···μkε.
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Proof. Since μj < ∞ for j ≤ k, multiplying by invertible holomorphic func-
tions, we may assume that

Qj = w
μj

j +
∑
�<μj

bj,�(wj+1, . . . , wn)w�
j , 1 ≤ j ≤ k,

are Weierstrass polynomials satisfying

fj := Qj ◦ Γ ∈ Ij .

In addition, (12) implies

(13) fk+1 := Qk+1 ◦ Γ ∈ Ik + (J).

For simplicity of notation, we use the remaining indices to denote the
coordinate functions in (10), i.e.

Γ = (ψ1, . . . , ψn−q+1, zn−q+2, . . . , zn) = (ψ1, . . . , ψn−q+1, ψn−q+2, . . . , ψn).

Since
(f1, . . . , fk, ψk+1, . . . , ψn) = Φ ◦ Γ,

where

(14) Φ(w) := (Q1(w), . . . , Qk(w), wk+1, . . . , wn),

we obtain the Jacobian determinants

∂(f1, . . . , fk, ψk+1, . . . , ψn−q+1)
∂(z1, . . . , zn−q+1)

= ∂(f1, . . . , fk, ψk+1, . . . , ψn)
∂(z1, . . . , zn) =: J(1,...,1).

For L = (�1, . . . , �k) ∈ N
k, define AL ∈ On,0 by

AL(w) := ∂�1
w1Q1(w) · · · ∂�k

wk
Qk(w).

Then the Jacobian factors as

J(1,...,1) = (A(1,...,1) ◦ Γ)J

and hence by (13),

(A(1,...,1) ◦ Γ)fk+1 ∈ Ik + (J(1,...,1))
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is obtained by applying Kohn’s procedure (P1) to Ik.
Now for B = (B1, . . . , Bk), where

Bj := (ALj ◦ Γ)fk+1 = (ALjQk+1) ◦ Γ

or
Bj := Qj ◦ Γ = fj

with each Bj in both cases are obtained by applying Kohn’s procedures, we
obtain

∂(B1, . . . , Bk, ψk+1, . . . , ψn−q+1)
∂(z1, . . . , zn−q+1)

= ∂(B1, . . . , Bk, ψk+1, . . . , ψn)
∂(z1, . . . , zn) =: JL.

In view of our assumption that each Qj , j ≤ k, is a Weierstrass polynomial in
wj of degree μj , each top derivative ∂

μj
wjQj is constant and hence Bj only de-

pends on (wj , . . . , wn). Then using factorization of the Jacobian determinant
and the triangular property of Bj ’s, we obtain

JL = c
((

(∂�1
w1Q1)m1 · · · (∂�k

wk
Qk)mkQ

mk+1
k+1

)
◦ Γ

)
J

for some constant c �= 0 and integers mj , j = 1, . . . , k + 1 and hence by (13),

((ALQk+1) ◦ Γ)mk+1+1 ∈ Ik + (JL).

Then (ALQk+1)◦Γ is obtained by the Kohn’s procedure (P2) with root order
≤ mk+1 + 1, and by using the lexicographic order for L = (�1, . . . , �k) as in
the proof [KZ20], we can complete the proof.

6. Proof of Corollary 1.12

We will use the induction on k. For the case k = 1, take ψ0 = (ψ0,1, . . . ,
ψ0,n−q+1) to be a (generic) linear combinations of Fj ’s such that mult q(ψ0)
is effectively bounded and assume that

mult q(ψ0) = mult (ψ0, zn−q+2, . . . , zn)

after a linear coordinate change of Cn. Such ψ0 exists by Lemma 2.5.
Now suppose that the statement of the corollary holds for k − 1. Ap-

plying Lemma 2.5 and (MP1), we obtain (generic) linear combinations ψk =
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(ψk,k+1, . . . , ψk,n−q+1) of ψk−1,j ’s such that mult q(z1, . . . , zk, ψk) and
mult q(fk−1, J, ψk) are effectively bounded, where

J := ∂(ψk−1,k, . . . , ψk−1,n−q+1)
∂(zk, . . . , zn−q+1)

.

Next apply (MP2) for the map germ

Γ(z) := (z1, . . . , zk−1, ψk−1(z), zn−q+2, . . . , zn)

and the filtration of ideals

Ij := (fk−1,1, . . . , fk−1,j), 1 ≤ j ≤ k − 1,

to obtain a triangular resolution (h1, . . . , hk−1) such that ord wjhj is effectively
bounded.

Finally, apply (MP3) for

(φ, ψ) = (z1, . . . , zk−1, ψk−1)

and a filtration I of ideals

Ĩj = (h1 ◦ Γ, . . . , hj ◦ Γ), j = 1, . . . , k − 1

and
Ĩk = Ĩk−1 + (J̃) ⊂ Ĩk−1 + (J),

where

J̃ = ∂((h1 ◦ Γ), . . . , (hk−1 ◦ Γ), ψk−1,k, . . . , ψk−1,n−q+1)
∂(z1, . . . , zn−q+1)

.

Then we obtain a new set of multipliers

fk = (fk,1, . . . , fk,k)

given by the triangular resolution (h1, . . . , hk) of (Γ, I) together with a set of
premultipliers

ψk = (ψk,k+1, . . . , ψk,n−q+1)

that satisfy the condition of the corollary, completing the proof.
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