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Symmetry algebras of polynomial models in complex
dimension three.
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Abstract: We consider the Lie algebra of infinitesimal CR auto-
morphisms of a real hypersurface at a point of Levi degeneracy.
As a main result, we give a complete classification of symmetry
algebras of dimension at least six for polynomial models of finite
Catlin multitype in C

3. As a consequence, this also provides under-
standing of “exotic” higher order symmetries, which violate 2-jet
determination.
Keywords: Infinitesimal CR automorphisms, Levi degenerate
manifolds, Catlin multitype.

1. Introduction

The Lie algebra of infinitesimal CR automorphisms aut(M, p) is a fundamen-
tal local holomorphic invariant of a real hypersurface M ⊆ C

N at a point
p ∈ M . For suitably invariantly defined polynomial models, this algebra is
in one to one correspondence with the kernel of the generalized Chern-Moser
operator, as defined in [12]. A classification of such algebras is thus an essen-
tial step before addressing the local equivalence problem by the normal form
approach ([5, 15, 16, 17]).

Since the work of Poincaré ([19]), the study of invariants and symmetries
of Levi nondegenerate hypersurfaces played fundamental role in the develop-
ment of CR geometry. In his pioneering work [9], J. J. Kohn started to investi-
gate the case of Levi degenerate manifolds – weakly pseudoconvex boundaries
of domains. He introduced an integer valued higher order invariant at points
where the Levi form vanishes – the type of the point, measuring the maximal
order of contact between complex curves and the given manifold ([6, 9]).
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The subsequent works of Kohn, D’Angelo, Catlin and others proved that
the existence, or nonexistence, of complex varieties in the boundary is re-
flected in a fundamental way in the analytic properties of the ∂̄ operator.
By Kohn’s ideas, complex algebraic varieties in C

n can be realized as subsets
of smooth weakly pseudoconvex CR manifolds in C

n+1 and the invariants of
these smooth manifolds thus carry information about the original varieties.

Given the importance of weakly pseudoconvex manifolds in complex anal-
ysis, it became an important problem to find a local biholomorphic classifi-
cation of such manifolds.

As a serious obstruction, one cannot hope to extend the differential geo-
metric approach of Cartan, Chern, Tanaka ([3, 5, 20]), since the structure is
not uniform anymore, the rank of the Levi form could change from point to
point.

The first complete normal form in the Levi degenerate case was obtained
in [15], which applies the normal form approach to the class of hypersurfaces of
finite type in C

2. Combining this result with a convergence result of Baouendi-
Ebenfelt-Rothschild [1] solves the Poincaré local equivalence problem for this
class.

Later, Kolář, Meylan and Zaitsev ([12]) generalized the Chern-Moser the-
ory to the Levi degenerate case in arbitrary dimension. Instead of quadratic
models from the Chern-Moser case, it permits considering general, invariantly
defined, polynomial models.

An essential inevitable step in extending the Chern-Moser theory in the
Levi degenerate setting is to classify the appropriate polynomial models ac-
cording to the form of the Lie algebra of infinitesimal automorphisms. The
normal form construction then has to be carried out for each of the possible
cases separately.

In dimension two, such a classification is rather simple. There are three
different cases, two exceptional ones and one generic. The two exceptional ones
are the circular model {Imw = |z|2k} with a 4-dimensional symmetry algebra,
and the tubular model {Imw = (Re z)k}, which has a three dimensional
symmetry algebra. All other models fall into the generic case, which admits
a two dimensional algebra of infinitesimal symmetries.

Our aim in this paper is to establish such a classification in complex
dimension three. We completely classify polynomial models of finite Catlin
multitype according to the type of their symmetry algebra of dimension at
least six.

The crucial starting point is the structure result obtained in [12], which
shows that hypersurfaces of finite Catlin multitype provide a natural class
of manifolds for which a generalization of the Chern-Moser operator is well
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defined. Using this operator, it is proven that the Lie algebra of infinitesimal
automorphisms g = aut(MP , 0) admits the weighted grading given by

g = g−1 ⊕
n⊕

j=1
g−μj ⊕ g0 ⊕

⊕
η∈E

gη ⊕ g1,

where E is the set of integer combinations of the multitype weights, which
lie between zero and one (see Section 2 for notation and definitions). As a
consequence, it is proven that the automorphisms of M at p are uniquely
determined by their weighted 2-jets.

A new phenomenon here is the existence of a component that we shall
call gc of nonlinear vector fields with coefficients independent of w, which has
no analog in the nondegenerate case. Our first result gives a description of
manifolds with nontrivial gc in our setting. Note that in complex dimension
three, the dimension of gc is at most one ([14]).

In the following, we will assume that MP is a holomorphically nondegen-
erate model of finite Catlin multitype.

Theorem 1.1. Let dim gc = 1 and dim g ≥ 6. Then MP is biholomorphically
equivalent to the polynomial model

Imw = |z1|2k|z2|2l(Re zα1 z
β
2 )m

for some nonnegative integers k, l,m and a pair of integers (α, β), such that
α ≥ −1, β ≥ −1.

Further we give a complete classification according to dimension up to
dimension 6. It is known ([14]) that there exist three kinds of models with

dim g ≥ 9.

The Levi nondegenerate models, hyperquadrics of the two possible signatures,
possess a 15-dimensional symmetry algebra. Dimension 10 is realized for the
model

(1) Imw = Re z1z̄
l
2,

and dimension 9 is realized for

(2) Imw = |z1|2 ± |z2|2l

for some l > 1. Moreover, it was proved in [14] that there is a “secondary”
gap in dimension eight. The following result describes all models with a seven
dimensional symmetry algebra.
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Theorem 1.2. Let dim g = 7. Then either MP is biholomorphic to

(3) Imw = |z2|2l(Re z1)m

for some positive integers l and m, or to

Imw = (|z1|2 ± |z1|2)m

for some integer m > 1.

For polynomial models with symmetry algebras of dimension six we obtain
three additional types of exceptional models.

Theorem 1.3. Let dim g = 6. Then MP is biholomorphic to one of the
following models:

Imw = |z1|2k|z2|2l(Re zα1 z
β
2 )m

for some nonnegative integers m, k, l and a pair of integers (α, β) such that
α ≥ −1, β ≥ −1, different from those which lead to (3) or (1),

(4) Imw = (z1z̄2 + z̄1z2)α|z2|2k

for positive integers α and k, or

(5) Imw = (Re z1)2 + (Re z2)p

for an integer p > 2.

Let us remark that if the dimension of the symmetry algebra is five, then
moduli (parameters) start to appear. A complete description of this case is
left open. Let us also remark that very little is known about symmetries of
hypersurfaces of infinite multitype ([7, 10, 18]).

The structure of the paper is as follows. In Section 2 we recall some needed
definitions. In Section 3 we consider models with nontrivial gc. In Section 4
models with nontrivial gNil

0 are described. In Section 5 we treat the remaining
cases of models with nontrivial g1. Section 6 deals with models, which admit
none of these three types of symmetries. Section 7 proves Theorem 1.1–1.3.

2. Preliminaries

In this section we introduce notation and recall briefly some needed definitions
and results (for more details, see e.g. [12]).
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Consider a smooth real hypersurface M ⊆ C
3 and let p ∈ M be a point

of finite type m ≥ 2 (in the sense of Kohn and Bloom-Graham, [2], [9]).
Let (z, w) be local holomorphic coordinates centered at p, where z =

(z1, z2), zj = xj+iyj , j = 1, 2, and w = u+iv. We assume that the hyperplane
{v = 0} is tangent to M at p, so M is described near p as the graph of a
uniquely determined real valued function

(6) v = Ψ(z1, z2, z̄1, z̄2, u),

with dΨ(0) = 0. We can assume that (see e.g. [2])

(7) Ψ(z1, z2, z̄1, z̄2, u) = Pm(z, z̄) + o(u, |z|m),

where Pm(z, z̄) is a nonzero homogeneous polynomial of degree m without
pluriharmonic terms.

The type is the first nontrivial local invariant of M . A more refined invari-
ant, which captures the behaviour of the defining function in all tangential
directions was introduced by Catlin in [4].

The Catlin multitype is defined in terms of rational weights associated
to the variables w, z1, z2. Initially, the complex normal variable w, and its
components u and v are assigned weight one. The complex tangential variables
(z1, z2) are treated in the following way.

By a weight we understand a pair of nonnegative rational numbers Λ =
(λ1, λ2), where 0 ≤ λj ≤ 1

2 , and λ1 ≥ λ2. Let Λ = (λ1, λ2) be a weight,
and α = (α1, α2), β = (β1, β2) be multiindices. The weighted degree κ of a
monomial

q(z, z̄, u) = cαβlz
αz̄βul, l ∈ N,

is then

κ := l +
2∑

i=1
(αi + βi)λi.

A polynomial Q(z, z̄, u) is weighted homogeneous of weighted degree κ if
it is a sum of monomials of weighted degree κ.

Analogously, a holomorphic vector field with polynomial coefficients of
the form

(8)
2∑

j=1
f j(z, w)∂zj + g(z, w)∂w
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is weighted homogeneous of weighted degree κ, provided g(z, w) is weighted
homogeneous of degree κ + 1, and each f j(z, w) is weighted homogeneous of
degree κ + λj .

For a weight Λ, the weighted length of a multiindex α = (α1, α2) is defined
by

|α|Λ := λ1α1 + λ2α2.

Similarly, if α = (α1, α2) and α̂ = (α̂1, α̂2) are two multiindices, the
weighted length of the pair (α, α̂) is

|(α, α̂)|Λ := λ1(α1 + α̂1) + λ2(α2 + α̂2).

Definition 2.1. A weight Λ will be called distinguished for M if there exist
local holomorphic coordinates (z, w) in which the defining equation of M
takes form

(9) v = PC(z, z̄) + oΛ(1),

where PC(z, z̄) is a nonzero Λ – homogeneous polynomial of weighted degree
1 without pluriharmonic terms, and oΛ(1) denotes a smooth function whose
derivatives of weighted order less than or equal to one vanish.

As we see from (7), there always exist distinguished weights. In (7), we
can take Λ =

( 1
m
,

1
m

)
. In the following we shall consider the standard lex-

icographic order on the set of pairs. We recall the following definition (see
[4, 11]).

Definition 2.2. Let ΛM = (μ1, μ2) be the infimum of all possible distin-
guished weights Λ with respect to the lexicographic order. The multitype of
M at p is defined to be the pair

(m1,m2),

where

mj =

⎧⎨
⎩

1
μj

if μj �= 0
∞ if μj = 0.

If both mj are finite, we say that M is of finite multitype at p. Since
the definition of multitype includes all distinguished weights, the infimum is
clearly a biholomorphic invariant.

Coordinates corresponding to the multitype weight ΛM , in which the local
description of M has form (9), with PC being ΛM -homogeneous, are called
multitype coordinates.
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Definition 2.3. Let M be given by (9). We define a model hypersurface MP

associated to M at p by

(10) MP = {(z, w) ∈ C
3 | v = PC(z, z̄)}.

We will write for simplicity P = PC , when there is no danger of confusion.
Let w = u+ iv and let W be the vector field of weighted degree −1 given by

W = ∂w = ∂u − i∂v.

Then we have ReW (Im (w) − P (z, z̄)) = 0, hence W is a symmetry.
Recall that, as was proved in [12], the Lie algebra g of infinitesimal au-

tomorphisms aut(MP , 0) at 0 ∈ MP ⊂ C
3 admits a weighted decomposition,

which we rewrite now as

g = g−1 ⊕
2⊕

j=1
g−μj ⊕ g0 ⊕ gc ⊕ gn ⊕ g1,(11)

where the vector fields in gc commute with W , the non-zero vector fields in gn

do not commute with W and their weights are between 0 and 1. In particular,
W = ∂w is contained in g−1, which has real dimension one (for more details,
see [12], [14]).

Let E be the weighted Euler field, given by

E = w∂w +
2∑

j=1
μjzj∂zj .(12)

Then it is immediate that

ReE(Imw − P (z, z̄)) = 0,(13)

which implies E ∈ g0 and hence dim g0 ≥ 1 for an arbitrary model MP .

3. Exotic nonlinear symmetries

In this section we consider in detail the component gc consisting of vector
fields with nonlinear coefficients, which are independent of the variable w.
Let us recall that such symmetries do not exist in the Levi nondegenerate
case.

We recall some definitions and results from [13].
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Definition 3.1. Let Y be a weighted homogeneous holomorphic vector field.
A pair of finite sequences of holomorphic weighted homogeneous polynomials
{U1, . . . , Un} and {V 1, . . . , V n} is called a symmetric pair of Y−chains if

(14) Y (Un) = 0, Y (U j) = cjU
j+1, j = 1, . . . , n− 1,

(15) Y (V n) = 0, Y (V j) = djV
j+1, j = 1, . . . , n− 1,

where cj , dj are non zero complex constants, which satisfy

(16) cj = −d̄n−j .

If the two sequences are identical we say that {U1, . . . , Un} is a symmetric
Y -chain.

The following theorem shows that in general the elements of gc arise from
symmetric pairs of chains (see [13]).

Theorem 3.2. Let MP be a holomorphically nondegenerate hypersurface
given by (10), which admits a nontrivial Y ∈ gc. Then PC can be decom-
posed in the following way

(17) PC =
M∑
j=1

Tj ,

where each Tj is given by

(18) Tj = Re (
Nj∑
k=1

Uk
j V

Nj−k+1
j ),

where {U1
j , . . . , U

Nj

j } and {V 1
j , . . . , V

Nj

j } are a symmetric pair of Y− chains.
Conversely, if Y and PC satisfy (14) – (18), then Y ∈ gc.

The simplest example of this situation is given by

(19) Imw = Re z1z̄
l
2,

where U2 = zl2 and U1 = iz1. In this case, Y = izl2∂z1 and dim g = 10.

Definition 3.3. If PC satisfies (14) – (18), the associated hypersurface MP

is called a chain hypersurface.
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Lemma 3.4. Let dim gc = 1 and dim g ≥ 6. Then MP is biholomorphically
equivalent to

(20) Imw = |z1|2k|z2|2l(Re zα1 z
β
2 )m

for some nonnegative integers k, l,m and a pair of integers (α, β) such that
α ≥ −1, β ≥ −1. Moreover, if k = 0, α = 1, β = 0, or l = 0, α = 0, β = 1,
then

dim g = 7.

In all other cases of holomorphically nondegenerate polynomial models defined
by (20), except for (19), dim g = 6.

Proof. We start by analyzing the structure of g0 under the assumptions of
the lemma. We will show that g0 has real dimension three. Let Z ∈ g0 be a
rotation and Y ∈ g1 be a nonzero vector field. By Theorem 4.7 in [12], Y has
the form up to a real multiple,

(21) Y =
2∑

j=1
φj(z)w∂zj + 1

2w
2∂w,

where the first term gives a complex reproducing field, i.e.,

(22) 2
2∑

j=1
φj(z)Pzj (z, z̄) = P (z, z̄).

It follows that the Jordan normal form of the vector field
∑2

j=1 φj(z)∂zj is
diagonal with real coefficients. Hence we consider multitype coordinates such
that

Y = (λ1z1∂z1 + λ2z2∂z2)w + 1
2w

2∂w.

We will show that in such coordinates, Z is diagonal. Let X ∈ gc be a nonzero
vector field. We obtain [X, Y ] = 0, since otherwise the commutator is of
weight bigger than one. As a consequence, (λ1, λ2) is linearly independent
with the multitype weights (μ1, μ2), by the grading property of the Euler
field. If μ1 �= μ2, then any rotation is diagonal. Hence we may assume that
μ1 = μ2, which gives λ1 �= λ2. The commutator of Z and Y has to be a real
multiple of Y . By computing directly the commutator, we obtain that Z is
diagonal.

From now on we use the above coordinates, in which all rotations are
diagonal. By the reproducing property, there is a real rotation with coefficients
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given by λ1−μ1 and λ2−μ2. In addition, there is an imaginary rotation with
coefficients iλ1, iλ2.

On the other hand, if there exist two linearly independent imaginary
rotations, writing P as

P (z1, z2, z̄1, z̄2) =
∑

|α,α̂|ΛM
=1

Cα.α̂z
αz̄α̂

we have α1 = α̂1, α2 = α̂2 whenever Aα.α̂ �= 0. From the real rotation and
weighted homogeneity we obtain a unique solution for α1, α2, α̂1, α̂2. That
contradicts holomorphic nondegeneracy of MP . Hence there are two linearly
independent rotations, and therefore dim g0 = 3.

Next, consider again the nonzero vector field X ∈ gc. The commutator
with Y has to vanish, since otherwise its weight exceeds one. It follows that
X is of weight zero with respect to the weights λ1, λ2.

If λ1 = λ2, we obtain a contradiction with nonlinearity of X. Without
any loss of generality, we can assume that λ1 < λ2. First assume that λ1 > 0.
Then the coefficient of ∂z2 has to vanish, and the coefficient of ∂z1 has to be
a power of z2, hence

(23) X = izm1 ∂z2 ,

where mλ1 − λ2 = 0.
Now let λ1 ≤ 0. Then we obtain

(24) X = izα1 z
β
2 (σ1z1∂z1 + σ2z2∂z2),

where λ1α+λ2β = 0. Note that (23) is a special case of (24), for β = −1 and
σ1 = 0.

We compute the general form of chains corresponding to such vector fields.
Let us first assume that the hypersurface is defined by one chain, and let n
denote the lenght of that chain. We obtain

Un = zp1z
q
2

where σ1p + σ2q = 0, and

Uj = 1
(n− j)!z

p−(n−j)α
1 z

q−(n−j)β
2 .

We verify directly that this gives the model of the form

(25) Imw = |z1|2k|z1|2l(Re zα1 z
β
2 )m.
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We also verify that

X = izα1 z
β
2 (σ1z1∂z1 + σ2z2∂z2)

is a symmetry of (25), provided that

(26) σ1k + σ2l + m(σ1α + σ2β) = 0.

Indeed, X(P ) is equal to

(27)
izα1 z

β
2 |z1|2k|z1|2l(Re zα1 z

β
2 )m−1

[
(σ1k + σ2l)(Re zα1 z

β
2 ) + m

2 (σ1α + σ2β)zα1 z
β
2

]
.

Further

(28) ReX(P ) = Re
[
izα1 z

β
2 ((σ1k + σ2l)(Re zα1 z

β
2 ) + m

2 (σ1α + σ2β)(zα1 z
β
2 ))

]
.

Hence

(29) ReX(P ) = Re izα1 z
β
2
σ1k + σ2l

2 z̄α1 z̄
β
2 = 0.

Now we verify that if k = 0, α = 1, β = 0, or l = 0, α = 0, β = 1, then M
admits an additional tubular symmetry. Hence dim g = 7. In all other cases
we obtain dim g = 6.

If the chain hypersurface is given by a pair of chains, or is composed from
several such chains, or pairs of chains, it is immediate to verify that g1 is
trivial and also there is no real rotation. It follows that in this case dim g ≤ 5.
That proves the statement of the lemma.

4. Nilpotent rotations

Let X be an infinitesimal CR automorphism in g0. By results of [12], X is a
linear vector field in suitable multitype coordinates. Its Jordan normal form
can be decomposed into XRe + XIm + XNil, where XRe is the real diagonal
of the Jordan normal form, XIm is the imaginary diagonal and XNil is the
nilpotent part. As was proved in [12], each of the components itseft is a
symmetry.

In this section we will consider models which admit a nilpotent rotation.
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Lemma 4.1. Let MP admit a nilpotent rotation and dim g ≥ 6. Then MP is
equivalent to

(30) (z1z̄2 + z̄1z2)αQ(z2, z̄2),

where Q is a real valued homogeneous polynomial. Moreover,

• dim g = 7 if and only if Q is constant
• dim g = 6 if and only if Q(z2, z̄2) = |z2|2k.

Proof. Let X = z2∂z1 be a nilpotent rotation in Jordan normal form. Since
X is a symmetry of MP , we have μ1 = μ2. Let MP be given by

(31) Imw = P (z, z̄),

where P is homogeneous of degree d. Consider the bihomogeneous expansion
of P ,

(32) P (z, z̄) =
d∑

m=0
Pm(z, z̄)

and expand each of the polynomials Pm as

Pm(z, z̄) =
m∑
j=0

d−m∑
l=0

Am
jl z

j
1z

m−j
2 z̄l1z̄

d−m−l
2 .

Hence

X(Pm) =
m∑
j=0

d−m∑
l=0

jAm
jl z

j−1
1 zm−j+1

2 z̄l1z̄
k−m−l
2 .

We have Pm = P̄k−m. Hence from ReX(P ) = 0 we obtain

X(Pm) = −X(P̄m),

which leads to the recurence

jAm
jl = −(l + 1)Am

j−1,l+1.

It follows that the coeffients Am
0j are arbitrary, which gives the term

Am
0j z̄

j
1z

m
2 z̄d−m−j

2 . Note that for j > l the recurrence forces Am
jl = 0. We verify
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that the solution is given by

(33)
m∑
j=0

(z1z̄2 + z̄1z2)jAm
0jz

m−j
2 z̄d−m−j

2 .

P is then obtained by summation over m, which leads to

P (z, z̄) =
m∑
j=0

(z1z̄2 + z̄1z2)jQd−2j(z2, z̄2)

for some real valued polynomials Qj of degree j. Further, if the sum contains
more than one term, the resulting MP does not admit a real rotation and has
trivial g1. It follows that dim g ≤ 5.

It remains to consider polynomials of the form (30). If Q is constant and
α > 0, g0 is identical to the case of the hyperquadric with indefinite signature,
hence dim g0 = 5. Since there are no tubular symmetries and gc is trivial, we
obtain dim g = 7.

If Q(z, z̄) = |z2|2k, then all symmetries remain, except for z1∂z2 and we
obtain dim g = 6.

If Q is not circular, the imaginary rotation is not present and at the same
time dim g1 = 0. Thus dim g ≤ 5.

Lemma 4.2. Let g0 be non-abelian. Then either MP admits a nilpotent ro-
tation, or P is of the form

P (z, z̄) = (|z1|2 + |z2|2)l

for some integer l ∈ N. As a consequence, in the latter case, dim g0 = 5.

Proof. If μ1 �= μ2, then g0 is obviously abelian. Hence we assume that μ1 =
μ2 and that MP does not admit any nilpotent rotation. Let the defining
polynomial P (z, z̄) be a homogeneous polynomial of degree d. Let us consider
a real or imaginary rotation in normal form, X = σ1z1∂z1 + σ2z2∂z2 ∈ g0 for
some σ1, σ2 ∈ C which are both real or both purely imaginary and satisfy
σ1 �= σ2. Assume that

(34) Y = az1∂z1 + bz1∂z2 + cz2∂z1 + dz2∂z2

also belongs to g0 for some a, b, c, d ∈ C with |b| + |c| > 0.
Let first X be real. We have

[X, Y ] = (σ1 − σ2)(bz1∂z2 − cz2∂z1) ∈ g0
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and
[X, [X, Y ]] = (σ1 − σ2)2(bz1∂z2 + cz2∂z1) ∈ g0.

Hence, by a suitable linear combination of these two commutators we obtain
a nilpotent rotation in g0, which is a contradiction.

We may further assume that MP admits only imaginary rotations, and
use an argument from [8]. Since the Jordan normal form of [X, Y ] only has
purely imaginary part, the second-order equation x2 − (σ1 − σ2)2bc = 0 has
to have purely imaginary solution, and therefore bc < 0 and c = −b̄ up to
positive scalar. After re-scaling the z2-axis with a positive scalar if necessarily,
let c = −b̄. Note that z2∂z2 is stable under the re-scaling of z2-axis and so is
X. Then

[X, Y ] = i(σ1 − σ2)(bz1∂z2 + b̄z2∂z1)

and
[X, [X, Y ]] = −(σ1 − σ2)2(bz1∂z2 − b̄z2∂z1)

for some b ∈ C. Hence, Z1 = z1∂z2 − z2∂z1 ∈ g0 and Z2 = iz1∂z2 + iz2∂z1 ∈ g0.
It follows that away from the origin, MP admits three linearly independent

vector fields, Y , Z1, Z2, which are also tangent to the spherical model

(35) Imw =
2∑

j=1
|zj |2.

It follows that the level sets of P (z, z̄) are the same as those for the function∑2
j=1 |zj |2. By homogeneity, we obtain

(36) P (z, z̄) = (
2∑

j=1
|zj |2)l

for some l.

5. Nonvanishing g1

In this section, we will assume that dim g1 = 1, dim gc = 0 and g0 is abelian.
We will denote by G the element of g1 whose z-part has the complex repro-
ducing property.

Lemma 5.1. Let dim g1 = 1, dim gc = 0 and g0 be abelian. Then dim g ≤ 5.



Symmetry algebras of polynomial models in complex dimension three 653

Proof. The argument splits into two cases. Either the complex reproducing
field is the Euler field itself, in which case [G,W ] = E, or it is a different field
and [G,W ] �= E. We start by considering the latter case, [G,W ] �= E. We
will show that P takes the form

(37) P (z, z̄) = |z1|2k|z1|2lQ(zγ1 zδ2, z̄
γ
1 z̄

δ
2)

for some real valued homogeneous polynomial Q(ζ, ζ̄) and nonzero integer
pair (γ, δ).

Note that Q(ζ, ζ̄) = |ζ|2k leads to a holomorphically degenerate model.
Also note that the integers γ, δ are allowed to assume negative values. The
only restriction is that the resulting product is a holomorphic polynomial P .

We have dim gRe
0 = 1. Since in suitable multitype coordinates X =

λ1z1∂z1 +λ2z2∂z2 gives a complex reproducing field, in such coordinates each
monomial za1zb2 appearing in the expansion of P satisfies aλ1 + bλ2 = C for a
fixed constant C.

We will assume that λ1λ2 �= 0. Let us denote by (a, b) the smallest pair in
lexicographic order of nonnegative integers that solve this equation, and let
(γ, δ) be the smallest pair in Euclidean norm of integers such that γλ1+δλ2 =
0 with γ > 0.

It follows that P is of the form (37). The case when one of the λj vanishes
is completely analogous.

As in the proof of Lemma 3.4, we obtain that all rotations are diagonal in
the coordinates which diagonalize the complex reproducing field determined
by G. Combining this fact with the above form of P gives dim g0 ≤ 3. Fur-
ther, if MP admits a tubular symmetry, then γ = 0, δ = 1, or vice versa,
and Q(ζ, ζ̄) = (Re ζ)k. It then follows by Lemma 3.4 that dim gc = 1, a
contradiction. It follows that dim g ≤ 5.

It remains to consider the case [G,W ] = E. We claim that in this case,
dim g = 5 if either

(38) P (z, z̄) =
∑

μ1k+μ2l= 1
2

Bk|z1|2k|z2|2l

for some real constatants Bk, or

P (z, z̄) = Re
∑

μ1j+μ2l= 1
2

Ajz
j
1z

l
2z̄

K−j
1 z̄L−l

2 ,

where μ1K + μ2L = 1 for some complex constants Aj . In all other cases,
dim g = 4.
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Indeed, the first form corresponds to the case dim gIm0 = 2. The second
form corresponds to case dim gIm0 = dim gRe

0 = 1. Using commutativity of
g0, it is immediate to verify that in all other cases MP admits only a one
dimensional space of imaginary rotations as a consequence of nontriviality of
g1. That proves the statement of the lemma.

6. Remaining cases

In this section we will analyze the remaining cases. Thus we assume dim g1 =
dim gc = dim gNil

0 = 0. We start by describing models which admit two
complex dependent tubular symmetries.

Lemma 6.1. Let MP admit two tubular symmetries, which are linearly inde-
pendent at 0 over R, but dependent over C. Then in suitable modified multitype
coordinates

(39) P (z, z̄) = (Re z1)2 + Q(z2, z̄2).

If Q(z2, z̄2) = (Re z2)l, then dim g = 6. In all other cases, dim g = 5.

Proof. The proof follows from Lemma 5.1 in [14].

It remains to consider all possible combinations of tubular symmetries
with real or imaginary rotations. Since under our assumption, g0 is abelian,
we can use modified multitype coordinates in which the rotations are diagonal
and the tubular symmetry is straightened. It is immediate to verify that in
this case dim g ≤ 5.

7. Proof of the main results

Theorem 1.1 now follows from Lemma 3.4. In order to prove Theorem 1.2,
we first consider the case dim gc �= 0 and use Lemma 3.4, which leads to the
models (3). Then we apply Lemma 4.1 in the case of existence of a nilpotent
rotation, and 4.2 in the case of non-abelian g0, which together provide the
second type of models. Finally, Lemmas 5.1 and 6.1 guarantee that there are
no other models with dim g = 7. The proof of Theorem 1.3 follows the same
steps. In addition to the models described in Lemmas 4.1 and 4.2, Lemma
6.1 provides the third class of models with dim g = 6.
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