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On the adjoint action of the group of symplectic
diffeomorphisms
László Lempert

∗

Abstract: We study the action of Hamiltonian diffeomorphisms of
a compact symplectic manifold (X,ω) on C∞(X) and on functions
C∞(X) → R. We describe various properties of invariant convex
functions on C∞(X). Among other things we show that continuous
convex functions C∞(X) → R that are invariant under the action
are automatically invariant under so called strict rearrangements
and they are continuous in the sup norm topology of C∞(X); but
this is not generally true if the convexity condition is dropped.

1. Introduction

Consider a connected, compact, symplectic manifold (X,ω), without bound-
ary, of dimension 2n. According to Omori [O], symplectic self–diffeomorphisms
of X form a Fréchet–Lie group Symp(ω), with Lie algebra the space v(ω) of
smooth vector fields on X that are locally Hamiltonian. In this paper we will
be interested in the action of Symp(ω), by pull back, on the Fréchet space
C∞(X) of smooth real functions

(1.1) Symp(ω) × C∞(X) � (g, ξ) �→ ξ ◦ g−1 ∈ C∞(X),

and in functions C∞(X) → R that (1.1) leaves invariant. This action is no
adjoint action, but it is close to one. The adjoint action Adg of g ∈ Symp(ω) is,
rather, push forward by g−1 of vector fields in v(ω). The subspace ham(ω) ⊂
v(ω) of globally Hamiltonian vector fields, those that are symplectic gradients
sgrad ξ of some ξ ∈ C∞(X), is invariant under Adg, and (1.1) induces via the
projection ξ �→ sgrad ξ the restriction of the adjoint action to ham(ω).

Other diffeomorphism groups of X also act on C∞(X) by pull back. Our
focus will be on the subgroup Ham(ω) ⊂ Symp(ω) of Hamiltonian diffeo-
morphisms. Hamiltonian diffeomorphisms are the time 1 maps of time depen-
dent Hamiltonian vector fields sgrad ξt, ξt ∈ C∞(X). Continuous norms—and
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also seminorms—on the Fréchet space C∞(X), invariant under Ham(ω), are
of potential interest in symplectic geometry because they give rise to bi–
invariant metrics on Ham(ω), and have been investigated in the past. An
obvious norm is ‖ξ‖∞ = maxX |ξ|. That it gives rise to a genuine metric
on Ham(ω) was proved first by Hofer and Viterbo in R

2n, and in general
by Lalonde and McDuff; see also Polterovich’s book, [Ho, LM, P, V]. Work
by Ostrover–Wagner, Han, and Buhovsky–Ostrover [BO, Ha, OW] gave the
following. Let (X,μ) and (Y, ν) be measure spaces. We say that measurable
functions ξ : X → [−∞,∞], η : Y → [−∞,∞] are equidistributed, or strict
rearrangements of each other, if

μ(ξ−1B) = ν(η−1B) for all Borel sets B ⊂ [−∞,∞].

When μ(X) = ν(Y ) < ∞, this is equivalent to μ{x ∈ X : ξ(x) > t} =
ν{y ∈ Y : η(y) > t} for all t ∈ R. We have to use the qualifier ‘strict’, since
the notion of rearrangement in harmonic analysis and Banach space theory
typically refers to the relation μ{x ∈ X : |ξ(x)| > t} = ν{y ∈ Y : |η(y)| > t}.
Back to our symplectic manifold (X,ω), we write μ for the measure on X
defined by ωn; the action (1.1) clearly sends functions on (X,μ) to their
strict rearrangements.

Theorem 1.1 ([BO, H, OW]). If ‖ ‖ is a Ham(ω) invariant continuous
seminorm on the Fréchet space C∞(X), then ‖ξ‖ = ‖η‖ whenever ξ, η ∈
C∞(X) are equidistributed. These seminorms satisfy ‖ ‖ ≤ c‖ ‖∞ with
some c ∈ (0,∞). Unless ‖ ‖ and ‖ ‖∞ are equivalent, the pseudodistance on
Ham(ω) induced by ‖ ‖ is identically 0.

One of our goals in this paper is to offer a simpler proof to the first two
statements, in fact in a slightly greater generality:

Theorem 1.2. Suppose p : C∞(X) → R is a continuous, convex function that
is invariant under the action of Ham(ω). Then p is continuous in the topology
of C∞(X) induced by ‖ ‖∞, and is invariant under strict rearrangements:
p(ξ) = p(η) whenever ξ, η are equidistributed.

The point is not the modest gain in generality, which can easily be
achieved once Theorem 1.1 is known (for example along the lines of the proof
of Theorem 4.1 below). Rather, it is the simplification of the proof. This is
how the two proofs compare. [OW] first proved that any Ham(ω) invariant
seminorm ‖ ‖ ≤ c‖ ‖∞ is invariant under volume preserving diffeomor-
phisms. Han in [Ha] subsequently strengthened this to invariance under strict
rearrangements. All this is obtained as a consequence of a lemma of Katok
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[K, Section 3]. The final step is in [BO], that takes an arbitrary continu-
ous Ham(ω) invariant seminorm ‖ ‖ on C∞(X), and proves by an involved
argument that ‖ ‖ ≤ c‖ ‖∞.

We obtain the simplification by restructuring the proof. First we prove
that p in Theorem 1.2 is a limit point of the set of Ham(ω) invariant func-
tions q : C∞(X) → R that are continuous in the L1 topology on C∞(X).
This depends on studying linear forms on C∞(X), i.e., distributions, and
regularizing them using the action of Ham(ω). Katok’s lemma now gives that
the functions q are invariant under strict rearrangements, whence so must
be their limit point p. Another application of Katok’s lemma, combined with
real analysis type arguments then gives the continuity of p with respect to
‖ ‖∞.

Continuity of p with respect to ‖ ‖∞ in Theorem 1.2 is essentially an
upper estimate of p. We will also prove a lower estimate:

Theorem 1.3. Let p : C∞(X) → R be Ham(ω) invariant, convex, and con-
tinuous. Then either

(i) p(ξ) = p1(
´
X ξωn), where p1 : R → R is convex; or

(ii) there are a ∈ R, b ∈ (0,∞) such that

p(ξ) ≥ a+b

ˆ
X

|ξ|ωn if

⎧⎪⎪⎨
⎪⎪⎩
´
X ξωn = 0, or´
X ξωn ≥ 0 and limR�λ→∞ p(λ) = ∞, or´
X ξωn ≤ 0 and limR�λ→−∞ p(λ) = ∞.

If p is positively homogeneous (p(cξ) = cp(ξ) for positive constants c), then
a = 0.

In particular, if p is a norm, then it dominates L1 norm, something that
[OW] also found (cf. Proposition 6.1 there and its proof).

Above we have insisted on the difference between rearrangements and
strict rearrangements. Nevertheless, Theorem 1.3 implies that in our setting
the difference between the two is minimal. The notion of rearrangement in-
variant Banach spaces in the next theorem is defined in [BS], see also the
Appendix, section 9; or section 7.

Theorem 1.4. Given a Ham(ω) invariant continuous norm p on C∞(X),
there is a rearrangement invariant Banach function space on X whose norm,
restricted to C∞(X), is equivalent to p.

A natural question is whether Theorem 1.2 holds for all continuous Ham(ω)
invariant functions p, independently of convexity. It does not:
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Theorem 1.5. If dimX ≥ 4, there is a smooth Ham(ω) invariant function p :
C∞(X) → R that is not invariant under volume preserving diffeomorphisms
X → X.

The last statement of Theorem 1.1 suggests that, after all, the only in-
variant norm on C∞(X) that is of interest for symplectic geometry, is Hofer’s
norm ‖ ‖∞. However, all invariant norms are of interest for Kähler geome-
try. The groups Symp(ω) and Ham(ω) can be regarded as symmetric spaces.
When (X,ω) is Kähler, Donaldson, Mabuchi, and Semmes proposed that the
infinite dimensional manifold Hω of relative Kähler potentials, endowed with
a natural connection on its tangent bundle, should be viewed as the dual
symmetric space, at least in a formal sense; see [Do, M, S1, S2]. Ham(ω)
invariant norms on C∞(X) induce Finsler metrics on Hω that are invariant
under parallel transport, and, perhaps surprisingly, all these Finsler metrics
induce genuine metrics on Hω. Mabuchi was the first to study such a metric,
associated with L2-norm ‖ξ‖ = (

´
X |ξ|2ωn)1/2; more recently, Darvas in [Da]

introduced various Orlicz norms on C∞(X) and the induced metrics on Hω.
Generalizing Darvas’s norms and metrics, in [L] we study general Ham(ω) in-
variant Lagrangians and the associated action on Hω, and most results here
are motivated by the needs of that paper.

Acknowledgement. My referee indicated places in the first version of this
paper that risked to be confusing, one outright incorrect. In addition to clar-
ifying and correcting, here I have replaced my original proof of Lemma 7.2c
by the simpler proof that s/he suggested.

2. Reduction to linear forms

In this section (X,ω) can be any 2n dimensional symplectic manifold, not
necessarily compact. The space of compactly supported smooth functions
on X will be denoted D(X), with its usual locally convex inductive limit
topology. Its dual is D′(X), the space of distributions. The group Ham0(ω),
time 1 maps of compactly supported Hamiltonian flows, acts on D(X) by pull
back and on D′(X) by push forward. We denote the pairing between D′(X)
and D(X) by 〈 , 〉. The locally convex topology of D′(X) is generated by the
seminorms ‖f‖′ξ = |〈f, ξ〉| with ξ ∈ D(X). Integration against any smooth
2n–form defines a distribution. Such distributions will be called smooth. If
h ∈ D′(X), we denote by conv(h) the closed convex hull of the Ham0(ω) orbit
of h.

The main result of this section is
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Lemma 2.1. Suppose p : D(X) → R is a Ham0(ω) invariant, continuous,
convex function. There is a family A ⊂ R× C∞(X) such that

(2.1) p(ξ) = sup
{
a +

ˆ
X

fξωn : (a, f) ∈ A
}
, for all ξ ∈ D(X).

If p is positively homogeneous as well (p(cξ) = cp(ξ) for 0 < c < ∞), then A
can be chosen in {0} × C∞(X).

For the proof we need certain regularization maps D′(X) → D′(X). Let
U ⊂⊂ X be open, and assume that on a neighborhood of U there are local
coordinates xν in which ω takes the form

∑n
1 dxν ∧ dxn+ν . Let C ⊂ X \ U

be compact. Fix ϕν ∈ D(X), ν = 1, . . . , 2n, vanishing on a neighborhood of
C, such that ϕν = xν in a neighborhood of U . Let gτν , τ ∈ R, denote the
Hamiltonian flow of ϕν for ν ≤ n and of −ϕν for ν > n; i.e., the flow of the
vector fields ±sgradϕν . If t = (t1, . . . , t2n) ∈ R

2n, put

gt = gt11 ◦ gt22 ◦ · · · ◦ gt2n2n .

Near C we have gt = id; on U , for small t, gt(x) = x − t. Let furthermore
χ ∈ D(R2n) be nonnegative,

´
R2n χ(t)dt1 . . . dt2n = 1. For λ ∈ [1,∞) define

operators Rλ : D′(X) → D′(X) by

Rλh = λ2n
ˆ
R2n

χ(λt)(gt∗h)dt1 . . . dt2n ∈ conv(h), h ∈ D′(X).

Standard properties of convolutions imply

Lemma 2.2. limλ→∞Rλh = h for h ∈ D′(X). If the support of χ is suffi-
ciently close to 0, then Rλh ∈ conv(h) is smooth on U and Rλh = h on a
neighborhood of C. Furthermore, if V ⊂⊂ W ⊂ X are open, and h is smooth
on W , then Rλh is smooth on V for sufficiently large λ.

Lemma 2.3. For any h ∈ D′(X), smooth distributions are dense in conv(h).

Proof. It will suffice to prove that given a finite Ξ ⊂ D(X) and ε > 0, there
is a smooth h′ ∈ conv(h) such that |〈h′ − h, ξ〉| ≤ ε for all ξ ∈ Ξ. To show
this latter, for each z ∈ X construct an open neighborhood V (z) ⊂⊂ X so
that in a neighborhood of V (z) we can write ω =

∑
dxν ∧ dxn+ν in suitable

local coordinates. Select a locally finite cover V (z1), V (z2), . . . of X. Thus
the V (zj) form a finite or infinite cover depending on whether X is compact
or not. For each j we can find Uj ⊃⊃ V (zj) such that {Uj}j is still locally
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finite, and ω =
∑

dxν ∧ dxn+ν is still valid in some neighborhood of Uj . Fix
furthermore open sets V i

j , i ∈ N, such that

Uj = V 1
j ⊃⊃ V 2

j ⊃⊃ · · · ⊃ V (zj),

and compact sets Cj ⊂ X \ ⋃
k>j Uk, C0 = ∅, such that Cj−1 ⊂ intCj and⋃

j Cj = X. We let h0 = h and construct hj ∈ conv(h) so that for j ≥ 1

|〈hj − h, ξ〉| < ε if ξ ∈ Ξ;
hj |V j

1 ∪ · · · ∪ V j
j is smooth;

hj = hj−1 on intCj−1.

Assuming we already have hj−1, we apply Lemma 2.2 with U = Uj ,
C = Cj−1, V = V j

1 ∪· · ·∪V j
j−1, and W = V j−1

1 ∪· · ·∪V j−1
j−1 . If λ is sufficiently

large, then hj = Rλhj−1 will do as the next distribution. Note that hj is
smooth over V ∪ Uj ⊃ V j

1 ∪ · · · ∪ V j
j−1 ∪ V j

j .
Thus hj = hj+1 = . . . on intCj and hj |V (z1) ∪ · · · ∪ V (zj) is smooth. If

X is compact, we take h′ to be the last hj ; otherwise, we take h′ = lim
j→∞

hj .

Proof of Lemma 2.1. By an affine function we mean a function D(X) → R

of the form const + linear. Clearly, if an affine function is bounded above on
a symmetric neighborhood of 0 ∈ D(X), it is bounded below as well, hence
continuous.

Let B denote a collection of affine functions β : D(X) → R such that
β ≤ p. Thus β ∈ B can be written

(2.2) β(ξ) = a + 〈h, ξ〉, with a ∈ R, h ∈ D′(X).

The Banach–Hahn separation theorem gives that p = supβ∈B β with a
suitable choice of B. If p is positively homogeneous, another version of the
Banach–Hahn theorem, see e.g. [Sc, p.317-319], gives that B can be taken to
consists of linear forms, i.e. all a will be 0.

By the invariance of p, if β in (2.2) is in B, then for any g ∈ Ham(ω)

(g∗β)(ξ) = a + 〈g∗h, ξ〉 = a + 〈h, g∗ξ〉 ≤ p(ξ).

This means that all g∗β can be adjoined to B, and in fact we can arrange that
all β′ = a + 〈h′, ·〉 are in B whenever β = a + 〈h, ·〉 ∈ B and h′ ∈ conv(h).
Therefore, if we take all β ∈ B of form (2.2) with smooth h and write h as
fωn, the family A of pairs (a, f) thus obtained will do according to Lemma
2.3.
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3. Proof of the second part of Theorem 1.2

This was the second part:

Theorem 3.1. Let (X,ω) be a connected, compact, symplectic manifold. Any
continuous, convex, and Ham(ω) invariant function p : C∞(X) → R is strict
rearrangement invariant: p(ξ) = p(η) if ξ, η are equidistributed.

As before, μ denotes the Borel measure on X that the form ωn determines.
In our integrals below we will often omit dμ and write

´
E f for

´
E f dμ; and

when E = X, we will even omit X and write
´
f for

´
X f dμ. In the same

spirit, we write Lq(X) for Lq(X,μ).
We need the following result, an equivalent of Katok’s Basic Lemma, valid

for noncompact (but connected) X as well:

Lemma 3.2. If ξ, η ∈ L1(X) are equidistributed, then there is a sequence of
gk ∈ Ham0(ω) such that

lim
k→∞

ˆ
X

|ξ − η ◦ gk|dμ = 0.

Proof. (Essentially as in [OW], [Ha, Proposition 1.12].) Given ε > 0, we will
find g ∈ Ham0(ω) such that

´
|ξ − η ◦ g| < 5ε. Assume first μ(X) < ∞.

The measures |ξ|dμ, |η|dμ are absolutely continuous with respect to dμ,
hence there is a δ > 0 such that

´
E |ξ|,

´
E |η| < ε if μ(E) < δ. Construct

disjoint intervals J1, . . . , JN ⊂ R of length < ε/μ(X) so that μ(X\⋃i ξ
−1Ji) <

δ/2, and choose compact sets Ki ⊂ ξ−1Ji so that also

(3.1) μ(X \
⋃
i

Ki) < δ/2.

By equidistribution μ(η−1Ji) = μ(ξ−1Ji), hence there are compact Li ⊂ η−1Ji
such that μ(Li) = μ(Ki). The Ki are disjoint among themselves and so are
the Li. In this situation Katok’s Basic Lemma [K, Section 3] provides a g ∈
Ham0(ω) such that

(3.2) μ(Ki \ g−1Li) < δ/(2N), i = 1, . . . , N.

If x ∈ Ki ∩ g−1Li then ξ(x), η(gx) ∈ Ji and so |ξ(x) − η(gx)| < ε/μ(X).
Conversely, |ξ(x) − η(gx)| ≥ ε/μ(X) can happen only if

x ∈ E, where E =
(
X \

⋃
i

Ki

)
∪
⋃
i

(
Ki \ g−1Li

)
.
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By (3.1), (3.2) μ(E) < δ, whence μ(gE) < δ and
ˆ

|ξ − η ◦ g| =
ˆ
X\E

|ξ − η ◦ g| +
ˆ
E

|ξ − η ◦ g| < ε +
ˆ
E

|ξ| +
ˆ
gE

|η| < 3ε.

This takes care of X of finite measure. In general, choose an a > 0 so that
the super–level sets Y1 = {|ξ| ≥ a} and Y2 = {|η| ≥ a} satisfy

´
X\Y1

|ξ| =´
X\Y2

|η| < ε. Then μ(Y1) = μ(Y2) < ∞. The functions

ξ′ =
{
ξ on Y1

0 on X \ Y1
and η′ =

{
η on Y2

0 on X \ Y2

are also equidistributed. Construct a connected open X ′ ⊂ X of finite measure
containing Y1∪Y2. By what we have proved so far, there is a g ∈ Ham0(ω|X ′)
such that

´
X′ |ξ′ − η′ ◦ g| < 3ε. Extend g to all of X by identity on X \X ′.

Denoting this extension also by g, we have
ˆ

|ξ − η ◦ g| ≤
ˆ

|ξ′ − η′ ◦ g| +
ˆ

|ξ − ξ′| +
ˆ

|η − η′| < 3ε + ε + ε = 5ε.

To finish the proof, we let ε = 1/k and g = gk, k ∈ N, and obtain the
sequence sought.

Proof of Theorem 3.1. Consider A ⊂ R× C∞(X) of Lemma 2.1:

p(ξ) = sup
{
a +

ˆ
fξ : (a, f) ∈ A

}
.

Suppose ξ, η ∈ C∞(X) are equidistributed, and let gk be as in Lemma 3.2.
With any (a, f) ∈ A

p(η) = p(η ◦ gk) ≥ a +
ˆ

(η ◦ gk)f → a +
ˆ

fξ as k → ∞.

Taking sup over (a, f) ∈ A, p(η) ≥ p(ξ) follows, and in fact p(ξ) = p(η) by
symmetry.

4. Proof of the first part of Theorem 1.2

This is what the first part says:
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Theorem 4.1. If (X,ω) is a connected compact symplectic manifold, any
continuous, convex, Ham(ω) invariant function p : C∞(X) → R is continuous
in the sup norm topology on C∞(X).

We will use the following standard fact:

Lemma 4.2. Let V be a locally convex topological vector space over R. If
p : V → R is convex and bounded above on some open U ⊂ V , then it is
continuous on U .

Proof. We can assume U is convex. Say, we want to prove continuity at 0 ∈ U .
Let s = supU p < ∞. With 0 < λ < 1 and v ∈ (λU)∩(−λU) convexity implies

p(v) − p(0) ≤ λ(p(v/λ) − p(0)) ≤ λ(s− p(0))
p(0) − p(v) ≤ λ(p(−v/λ) − p(0)) ≤ λ(s− p(0))

}
→ 0

when λ → 0, as needed.

The key to the proof of Theorem 4.1 is the following.

Lemma 4.3. Let F ⊂ L1(X) be a Ham(ω) invariant family of functions. If
for every ξ ∈ C∞(X)

(4.1) sup
f∈F

ˆ
X

fξ dμ < ∞,

then supf∈F
´
X |f | dμ < ∞.

This is not hard to show and will suffice to prove Theorem 4.1; but later we
will need a more precise statement, whose proof is just a little more involved.
Let ξ+ = max(ξ, 0) and ξ− = max(−ξ, 0) denote the positive and negative
parts of functions ξ : X → R. If E ⊂ X has positive measure, write

ffl
E ξ for

the average
´
E ξ/μ(E) of an integrable function. If μ(E) = 0, we let

ffl
E ξ = 0.

Lemma 4.4. Let f ∈ L1(X), ξ ∈ L∞(X), and S, T ⊂ X be of equal measure.
If ξ ≥ 0 on T and ξ ≤ 0 on X \ T , then

(4.2) sup
{ˆ

X

(f ◦ g)ξ : g ∈ Ham(ω)
}
≥
 
S

f

ˆ
ξ+ −

 
X\S

f

ˆ
ξ−.

First we show how this implies Lemma 4.3.

Proof of Lemma 4.3. We can assume μ(X) = 1. Let M(ξ) denote the left
hand side of (4.1). Fix a nonnegative ξ ∈ C∞(X) that is not identically
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0, but T ′ = {ξ > 0} has measure ≤ 1/2. Let f ∈ F . Suppose first that
S = {f ≥ 0} has measure ≥ 1/2, and choose T ⊃ T ′ so that μ(S) = μ(T ).
By Lemma 4.4 M(ξ) ≥

ffl
S f

´
ξ, hence

ˆ
f+ ≤ M(ξ)

/ˆ
ξ.

If, instead of S, {f ≤ 0} has measure ≥ 1/2, Lemma 4.4 implies in the
same way that

´
f− ≤ M(−ξ)/

´
ξ. Since max

(
M(1),M(−1)

)
≥ |

´
f | =

|
´
f+ −

´
f−|, in both cases we obtain a bound for

´
|f | =

´
f+ +

´
f−, as

claimed.

Given f ∈ L1(X), we will write conv1(f) for the closure, in the L1(X)
topology, of the convex hull of the orbit of f under Ham(ω). In light of Lemma
3.2 this is the same as the closed convex hull of all strict rearrangements of
f . To prove Lemma 4.4 we need the following.

Lemma 4.5. If f ∈ L1(X) and E ⊂ X has positive measure, then the
function

f ′ =
{ffl

E f on E

f on X \ E

is in conv1(f).

Proof. If two functions f, h ∈ L1(X) are at L1 distance ≤ ε, then their
Ham(ω) orbits are at Hausdorff distance ≤ ε, and so are therefore conv1(f)
and conv1(h). Hence, given E, if the lemma holds for a sequence f = fk,
k = 1, 2, . . ., and fk → f0 in L1, then the lemma will hold for f0 as well.

Now suppose that E is the disjoint union of Ej , j = 1, . . . ,m, of equal
measure, and f = cj is constant on each Ej . If σ is a permutation of 1, . . . ,m,
define fσ ∈ L1(X) by

fσ = cσ(j) on Ej , fσ = f on X \ E.

As a strict rearrangement of f , by Lemma 3.2 fσ is in the closure of the
Ham(ω) orbit of f . Therefore

f ′ =
∑
σ

fσ/m!

is indeed in conv1(f). Since any f ∈ L1(X) is the limit of functions of the
above type, the claim follows.
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Proof of Lemma 4.4. Write χA for the characteristic function of a set A. By
Lemma 3.2 there is a sequence gk ∈ Ham(ω) such that χS ◦ gk → χT in L1.
Two applications of Lemma 4.5 give that

f ′ =
{ffl

S f on Sffl
X\S f on X \ S

and so f ′′ = lim
k

f ′ ◦ gk =
{ffl

S f on Tffl
X\S f on X \ T

are in conv1(f). Lemma 4.4 follows, since the left hand side in (4.2) is

≥
ˆ

f ′′ξ =
 
S

f

ˆ
T

ξ +
 
X\S

f

ˆ
X\T

ξ =
 
S

f

ˆ
ξ+ −

 
X\S

f

ˆ
ξ−.

Proof of Theorem 4.1. If a function is continuous in the sup norm topology,
we will say it is ‖ ‖∞–continuous, and use similar terminology for other topo-
logical notions. First assume that p of the theorem is positively homogeneous
as well. By Lemma 2.1 there is a family F ⊂ L1(X) such that

(4.3) p(ξ) = sup
{ˆ

fξ : f ∈ F
}
.

If we replace F by its Ham(ω) orbit, the supremum in (4.3) will not change,
forˆ

(f ◦ g)ξ =
ˆ

(ξ ◦ g−1)f ≤ p(ξ ◦ g−1) = p(ξ) if f ∈ F , g ∈ Ham(ω).

Therefore we may assume that the family F in (4.3) is already invariant
under Ham(ω). Hence Lemma 4.3 gives supF

´
|f | < ∞. This implies p is

bounded on ‖ ‖∞–bounded subsets of C∞(X), and by Lemma 4.2 it is ‖ ‖∞–
continuous.

For general p, pick a number c > p(0) and consider the Minkowski func-
tional q of the convex set {p < c} (see e.g. [Sc, pp. 315-317]),

q(ξ) = inf{λ ∈ (0,∞) : p(ξ/λ) < c} ∈ [0,∞).

This is a convex, positively homogeneous, strict rearrangement invariant func-
tion, that is continuous—because locally bounded—in the topology of C∞(X).
By what we have already proved, it is ‖ ‖∞–continuous, in particular, the set
Uc = {q < 1} ⊃ {p < c} is ‖ ‖∞–open. If ξ ∈ Uc then p(ξ/λ) < c with
some λ < 1. Also p(0) < c. As ξ is a point on the segment connecting 0,
ξ/λ, convexity implies p(ξ) < c. Thus p is bounded above on the ‖ ‖∞–open
set Uc, and by Lemma 4.2 it is continuous there. The theorem follows since⋃

c Uc = C∞(X).



668 László Lempert

5. Extending convex functions

The above ideas can be developed to prove that p can be extended to C(X)
and, under an additional assumption, to the Banach space B(X) of bounded
Borel functions, with the supremum norm. (Thus L∞(X) is a quotient of
B(X), but B(X) is more natural to use in our setting.) In this section, X is
compact and connected.

Definition 5.1. If V ⊂ B(X) is a vector subspace, we say that a function
p : V → R is strongly continuous if p(ξk) is convergent whenever ξk ∈ V is
an almost everywhere convergent sequence of uniformly bounded functions.

The limit lim p(ξk) depends only on lim ξk = ξ, since two such sequences
can be combined into one sequence, converging to ξ.

Theorem 5.2. Any continuous, convex, Ham(ω) invariant p : C∞(X) → R

has a unique continuous extension to C(X); this extension is convex and
Ham(ω) (hence strict rearrangement) invariant. If p is strongly continuous,
then it has a unique strongly continuous extension q : B(X) → R. This
extension is convex, and invariant under strict rearrangements.

Since C∞(X) is dense in C(X), and p is known to be continuous in
supremum norm, for the first part of Theorem 5.2 one only needs to prove
that a continuous extension exists. This is a special case of the following:

Lemma 5.3. Let W be a locally convex topological vector space over R, V ⊂
W a dense subspace. Any continuous, convex p : V → R can be extended to a
continuous q : W → R.

Proof. First we show that any w ∈ W has a convex neighborhood U such
that p is bounded on V ∩ U . By continuity, there certainly is a symmetric,
convex neighborhood U0 ⊂ W of 0 such that p is bounded on V ∩ 4U0. Now
w + 2U0 is a neighborhood of w, and if v1 ∈ V is sufficiently close to w, then
U = v1 + 2U0 is also. For any v ∈ V ∩ U convexity implies

2p(v) ≤ p(2v1) + p
(
2(v − v1)

)
.

Since v− v1 ∈ 2U0, the right hand side is bounded as v varies in V ∩U . Thus
p is bounded above on V ∩U . But then p(v) + p(2v1 − v) ≥ 2p(v1) gives that
p is also bounded below. Set s = supU |p|.

We let U ′ = v1 + U0 and show that p is uniformly continuous on V ∩ U ′.
For suppose λ ∈ (0,∞). If u, v ∈ V ∩U ′ and v−u ∈ U0/λ, then v+λ(v−u) ∈
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v1 + U0 + U0 = U , hence by convexity

p(v) − p(u) ≤ p
(
v + λ(v − u)

)
− p(u)

1 + λ
≤ 2s

1 + λ
.

Since the roles of u, v are symmetric, this indeed proves locally uniform con-
tinuity; which in turn implies continuous extension.

Proof of Theorem 5.2. We have already seen that the first half of the theorem
follows from Lemma 5.3. As to the uniqueness of extension to B(X), we note
that Lusin’s theorem implies that any ξ ∈ B(X) is the a.e. limit of a uniformly
bounded sequence of continuous, hence also of smooth functions ξk. Therefore
at ξ the extension of p must take the value limk p(ξk), so it is unique. What
remains is to construct the required extension q.

If ξ ∈ B(X), predictably we let q(x) = limk p(ξk), where the uniformly
bounded sequence ξk ∈ C∞(X) converges to ξ a.e., cf. Definition 5.1. As we
saw, this is independent of the choice of the sequence ξk. Clearly p = q on
C∞(X). If uniformly bounded ηk ∈ C∞(X) converge to η ∈ B(X) a.e., and
λ ∈ [0, 1], then

q
(
λξ + (1 − λ)η

)
= lim

k
p
(
λξk + (1 − λ)ηk

)
≤ lim

k
λp(ξk) + (1 − λ)p(ηk) = λq(ξ) + (1 − λ)q(η),

i.e., q is convex. It is also strongly continuous. For this it suffices to show that
if uniformly bounded ξk ∈ B(X) converge to ξ a.e., then a subsequence of
q(ξk) tends to q(ξ). By dominated convergence,

(5.1) lim
k

ˆ
|ξk − ξ| = 0.

Let each ξk be the a.e. limit of a uniformly bounded sequence ξik ∈ C∞(X),
as i → ∞. We can arrange that the double sequence ξik is also uniformly
bounded. Thus limi→∞ p(ξik) = q(ξk). For each k choose i = ik so that ηk = ξik
satisfies

(5.2) |p(ηk) − q(ξk)| < 1/k,
ˆ

|ηk − ξk| < 1/k.

In view of (5.1) limk

´
|ηk − ξ| = 0, so a subsequence ηk(j) converges to ξ a.e.

Hence, by (5.2)
q(ξ) = lim

j
p(ηk(j)) = lim

j
q(ξk(j)),

as needed.
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Finally, to show that q is invariant under strict rearrangements, consider
equidistributed ξ, η ∈ B(X). By Lemma 3.2 there are gk ∈ Ham(ω) such
that

´
|η − ξ ◦ gk| → 0 as k → ∞. Choose uniformly bounded ξk ∈ C∞(X)

converging to ξ a.e. In particular, limk

´
|ξk − ξ| = 0. Then

lim
k

ˆ
|ξk ◦ gk − η| ≤ lim sup

k

ˆ
|(ξk − ξ) ◦ gk| + lim sup

k

ˆ
|ξ ◦ gk − η| = 0.

Again, this means that a subsequence of ξk ◦ gk converges a.e. to η, whence

q(ξ) = lim
k

p(ξk) = lim
k

p(ξk ◦ gk) = q(η),

which proves that q is indeed invariant under strict rerrangements.

Here is the last theorem in this section.

Theorem 5.4. If a strict rearrangement invariant convex p : B(X) → R is
strongly continuous, then it is Lipschitz continuous on bounded sets.

Lemma 5.5. There is a continuous θ : X → [0, μ(X)] that is smooth away
from the preimage of finitely many t ∈ [0, μ(X)], and that preserves measure
(the target is endowed with Lebesgue measure).

Proof. If ζ ∈ C∞(X) is a Morse function, its reverse distribution function

λ(t) = μ(ζ < t), t ∈ [min ζ,max ζ],

is continuous, strictly increasing, and smooth away from the set C of crit-
ical values of ζ. It is a homeomorphism [min ζ,max ζ] → [0, μ(X)], and a
diffeomorphism away from C. The function θ = λ ◦ ζ will therefore do, as

μ(θ < s) = μ(ζ < λ−1(s)) = λ(λ−1(s)) = s, s ∈ [0, μ(X)].

We will need the notion of decreasing rearrangement of a measurable
ξ : X → R. It is the decreasing, say, upper semicontinuous function ξ	 :
(0, μ(X)] → R that is equidistributed with ξ. Thus μ(s ≤ ξ ≤ t) is equal to
the length of the maximal interval on which s ≤ ξ	 ≤ t. In particular,

(5.3) μ(ξ ≥ ξ	(s)) ≥ s ≥ μ(ξ > ξ	(s)).

The upper semicontinuity requirement translates to left continuity of the de-
creasing function ξ	, which differs from the more usual convention of right
continuity, but the difference is inconsequential. We can extend ξ	 to 0 to be
continuous there. Obviously, with θ of Lemma 5.5 ξ and ξ	 ◦ θ are equidis-
tributed.
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Lemma 5.6. If ξ ∈ C(X), then ξ	 is continuous.

Proof. Since ξ	 is always u.s.c., i.e., left continuous, all we need to show is
that α = limt→s+ ξ	(t) cannot be less than β = ξ	(s), s ∈ (0, μ(X)]. If it were,
then ξ−1(α, β) ⊂ X would be a nonempty open subset, of positive measure.
But with t > s

μ(α < ξ < β) = μ(ξ > α) − μ(ξ ≥ β) ≤ μ(ξ > ξ	(t)) − μ(ξ ≥ ξ	(s)) ≤ t− s,

see (5.3). Letting t → s+ gives a contradiction.

Proof of Theorem 5.4. Let θ be as in Lemma 5.5. We start by showing that
p is bounded on bounded sets. Otherwise there would be a bounded sequence
ξk ∈ B(X) such that |p(ξk)| → ∞. The decreasing rearrangements ξ	k are
uniformly bounded, hence by Helly’s theorem contain a pointwise conver-
gent subsequence. But along that subsequence ξ	k ◦ θ converges pointwise and
therefore by strong continuity

p(ξk) = p(ξ	k ◦ θ)

also converges, a contradiction.
Now boundedness on bounded sets implies Lipschitz continuity on bounded

sets. For suppose ξ �= η have norm ≤ R, and let ρ be the unit vector in the
direction of ξ − η. With M = sup||ζ||∞≤R+1 |p(ζ)|, by convexity

p(ξ) − p(η)
||ξ − η||∞

≤ p(ξ + ρ) − p(η)
||ξ + ρ− η||∞

≤ 2M.

The roles of ξ, η being symmetric, we obtain Lipschitz continuity.

6. Proof of Theorem 1.3

To simplify notation, we will assume μ(X) = 1. By Lemma 2.1 a Ham(ω)
invariant convex, continuous, p : C∞(X) → R can be written

(6.1) p(ξ) = sup
{
a +

ˆ
fξ : (a, f) ∈ A

}

with a family A ⊂ R × C∞(X), that can be chosen convex and invariant
under Ham(ω). The possible behaviors of p described in Theorem 1.3 are
determined by whether all functions f that occur in A are constant or not.

If in A only constant functions occur, then (6.1) gives p(ξ) = p(
´
ξ)

(viewing
´
ξ itself as a constant function on X). Henceforward we will assume



672 László Lempert

A contains a pair (a, f) with a nonconstant function f . According to (ii)
of Theorem 1.3, we must estimate p(ξ) from below with the L1 norm of
ξ ∈ C∞(X). We do this in a somewhat greater generality, of relevance in the
next section.

Lemma 6.1. Suppose A ⊂ R×L1(X) is convex and invariant under Ham(ω).
For ξ ∈ L∞(X) let q(ξ) = sup(a,f)∈A a+

´
fξ. If A contains a pair (a, f) with

f nonconstant, then there are a0 ∈ R and b ∈ (0,∞) such that

q(ξ) ≥ a0 + b

ˆ
|ξ| if

⎧⎪⎪⎨
⎪⎪⎩
´
ξ = 0, or´
ξ ≥ 0 and limR�λ→∞ q(λ) > q(0), or´
ξ ≤ 0 and limR�λ→−∞ q(λ) > q(0).

If A ⊂ {0} × L1(X), then a0 can be chosen 0.

Proof. It will suffice to prove when A ⊂ R×L∞(X) for the following reason.
If we enlarge A of the lemma to contain all pairs (a, limj→∞ fj)—limit in
L1—with (a, fj) ∈ A, q will not change. Once so enlarged, we can replace in
A each (a, f) by pairs (a, fk), k ∈ N,

fk(x) =
{ffl

|f |>k f if |f(x)| > k

f(x) if |f(x)| ≤ k.

By Lemma 4.5 (a, fk) ∈ A, and clearly fk → f in L1. Hence q will not
change if we make all these modifications to A; but now the new A will be
in R× L∞(X).

Next fix (a, f) ∈ A with f nonconstant. If α ∈ (0, 1] let

(6.2) sα = sα(f) = sup
μ(E)=α

 
E

f, iα = iα(f) = inf
μ(E)=α

 
E

f,

and let s0 = ess sup f , i0 = ess inf f . For every α > 0 there is an S = Sα ⊂ X
of measure α for which

ffl
S f = sα. Indeed, consider

u = inf
{
t ∈ R : μ{f > t} ≤ α

}
.

Since μ{f > u} ≤ α ≤ μ{f ≥ u}, any set S of measure α sandwiched between
{f > u} and {f ≥ u} will provide the sup in (6.2). Similarly, S′ = X \ S,
of measure 1 − α, satisfies i1−α =

ffl
S′ f . This implies that sα > i1−α. From

the absolute continuity of fdμ with respect to dμ we deduce that sα, iα are
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continuous functions of α > 0; continuity trivially holds at α = 0 as well.
Hence
(6.3)
2c = 2c(f) = min

0≤α≤1
(sα− i1−α) > 0, 2m = 2m(f) = max

0≤α≤1
|sα|+ |i1−α| < ∞.

Consider a ξ ∈ L∞(X) and let T = {ξ ≥ 0}. With α = μ(T ) and S = Sα

as above, Lemma 4.4 implies

(6.4) q(ξ) ≥ a+sα

ˆ
ξ+− i1−α

ˆ
ξ− = a+ sα − i1−α

2

ˆ
|ξ|+ sα + i1−α

2

ˆ
ξ

(even if α = 0). When
´
ξ = 0, by (6.3) we obtain q(ξ) ≥ a + c

´
|ξ|.

Next suppose that limλ→∞ q(λ) > q(0). There are λ > 0 and (a1, f1) ∈ A
with a1 +

´
f1λ > q(0) ≥ a1; hence

´
f1 > 0. Because A is convex, we

can arrange that our fixed (a, f) ∈ A already satisfies
´
f > 0. Let b =

s1c/(s1+m). We will show that if
´
ξ ≥ 0, then q(ξ) ≥ a+b

´
|ξ|. Note that the

constant function f ′ =
´
f is in conv1(f) according to Lemma 4.5, and (a, f ′)

is in A. Hence q(ξ) ≥ a+
´
f ′ξ = a+s1

´
ξ. By (6.4) q(ξ) ≥ a+c

´
|ξ|−m

´
ξ.

Combining these two we can eliminate
´
ξ and obtain

mq(ξ) + s1q(ξ) ≥ (m + s1)a + s1c

ˆ
|ξ|,

as needed. Finally, if limλ→−∞ q(λ) > q(0), we choose (a, f) ∈ A such that f
is nonconstant and

´
f < 0. Letting b = c(f)|s1(f)|/(|s1(f)| + m(f)) we can

similarly prove q(ξ) ≥ a+ b
´
|ξ| whenever

´
ξ ≤ 0. This completes the proof

of the lemma, and also of the theorem.

7. Proof of Theorem 1.4

This was the theorem:

Theorem 7.1. Given a Ham(ω) invariant continuous norm p on C∞(X),
there is a rearrangement invariant Banach function space on X whose norm,
restricted to C∞(X), is equivalent to p.

We will get to the notion of rearrangement invariant Banach spaces shortly
(or see the Appendix), but first we formulate a few auxiliary results that we
will need. Let us say that two functions φ, ψ : X → R are similarly ordered if(
φ(x)−φ(y)

)(
ψ(x)−ψ(y)

)
≥ 0 for all x, y ∈ X. Put it differently, φ(x) > φ(y)

should imply ψ(x) ≥ ψ(y). In spite of what the language may suggest, this is
not an equivalence relation (all functions are similarly ordered as a constant).
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However, it is true that if φ and ψ are similarly ordered, and U : R → R is
increasing, then φ and U ◦ ψ are also similarly ordered.

We will write φ ∼ ψ for measurable functions X → R if they are equidis-
tributed. The following lemma in one form or another is known and, like
Lemmas 7.3, 7.4, 7.5, holds in any finite measure space (X,μ) without atoms.

Lemma 7.2. Let φ0 ∈ L1(X) be bounded below and ψ0 ∈ L∞(X).
(a) supφ∼φ0

´
φψ0 = supψ∼ψ0

´
φ0ψ.

(b) The suprema in (a) are attained, by φ and ψ that are similarly ordered
as ψ0 and φ0.

(c)
´
φψ is independent of the choice of φ ∼ φ0, ψ ∼ ψ0, as long as φ, ψ

are similarly ordered.

Proof. (b) That the suprema are attained, at least when φ0, ψ0 ≥ 0, is proved
in [BS, Chapter 2, Theorems 2.2 and 2.6]. The general result follows upon
adding a constant to the functions. The proof in [BS, pp. 49-50], say, for the
first supremum in (a), proceeds by first considering a simple φ0 (i.e., one that
takes only finitely many values), and representing the maximizing φ by an
explicit formula, then passing to a limit. The formula shows that φ and ψ0 are
similarly ordered when φ0 is simple; but similar ordering is preserved under
pointwise limits, and must hold in general.

(c) (Borrowed from the referee’s report.) We can assume that φ0 and ψ0
are similarly ordered. We will show that the vector valued functions (φ, ψ)
and (φ0, ψ0) are equidistributed, in the sense that for any Borel set S ⊂ R

2

μ{(φ, ψ) ∈ S} = μ{(φ0, ψ0) ∈ S} or, equivalently,(7.1)
μ{φ > a, ψ > b} = μ{φ0 > a, ψ0 > b} for all a, b ∈ R.(7.2)

Indeed, given a, b, let A = {φ > a}, B = {ψ > b}, A0 = {φ0 > a}, B0 =
{ψ0 > b}. The point is that one of A \ B and B \ A must be empty, since if
x were in the former and y in the latter, then φ(x) > a ≥ φ(y) but ψ(x) ≤
b < ψ(y) would contradict the similar order. It follows that A ⊂ B or B ⊂ A,
and

μ(A ∩B) = min
(
μ(A), μ(B)

)
.

Similarly,

μ(A0 ∩B0) = min
(
μ(A0), μ(B0)

)
= min

(
μ(A), μ(B)

)
= μ(A ∩B),

which is the same as (7.2). Therefore (7.1) also holds, whence φψ, φ0ψ0 are
equidistributed, and have the same integral.

(a) now follows from (b) and (c).
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Lemma 7.3. If φ ∈ L1(X) and ψ ∈ L∞(X) are similarly ordered, then´
φψ ≥

ffl
φ
´
ψ.

Proof. This is Chebishev’s integral inequality. See for the discrete version of
the inequality—from which the lemma follows—p. 43 in [HLP], and also p.
168.

Lemma 7.4. If φ0, ψ ∈ L∞(X), then

(7.3) sup
φ∼φ0

ˆ
|φ|ψ ≤ sup

φ∼φ0

ˆ
φψ + sup

φ∼φ0

ˆ
(−φ)ψ +

 
|φ0|

ˆ
ψ.

Proof. First we estimate
´
φ+ψ. By Lemma 7.2 we can choose φ1 ∼ φ0,

similarly ordered as ψ, that realizes supφ∼φ0

´
φψ. It follows that φ+

1 , a com-
position of φ1 with an increasing function, is also similarly ordered as ψ. Using
Lemma 7.2 once more we obtain

sup
φ∼φ0

ˆ
φ+ψ =

ˆ
φ+

1 ψ =
ˆ

φ1ψ +
ˆ

φ−
1 ψ.

As −φ−
1 and ψ are similarly ordered, Lemma 7.3 gives −

´
φ−

1 ψ ≥ −
ffl
φ−

1
´
ψ,

and so

(7.4) sup
φ∼φ0

ˆ
φ+ψ ≤

ˆ
φ1ψ +

 
φ−

1

ˆ
ψ = sup

φ∼φ0

ˆ
φψ +

 
φ−

0

ˆ
ψ.

Replacing φ0 with −φ0,

(7.5) sup
φ∼φ0

ˆ
φ−ψ ≤ sup

φ∼φ0

ˆ
(−φ)ψ +

 
φ+

0

ˆ
ψ,

and (7.3) follows by adding (7.4) and (7.5).

Lemma 7.5. If f0, ξ ∈ L∞(X) then supf∼f0

´
|fξ| ≤ 4 supf∼f0 |

´
fξ| +

3
ffl
|f0|

´
|ξ|.

Proof. Let us start with a simple ξ. Lemma 7.4, with φ0 = f0, ψ = |ξ| gives

(7.6) sup
f∼f0

ˆ
|fξ| ≤ 2 sup

f∼f0

∣∣∣
ˆ

f |ξ|
∣∣∣ +

 
|f0|

ˆ
|ξ|.

By Lemma 7.2

(7.7) sup
f∼f0

ˆ
f |ξ| = sup

ζ∼|ξ|

ˆ
f0ζ.
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Any ζ ∼ |ξ| can be written as ζ = |η| with η ∼ ξ. Indeed, suppose ξ takes
distinct values a1, . . . , ak. If for some i there is no j with ai = −aj , we let
η ≡ ai on the set (ζ = |ai|). If for some i there is a (necessarily unique) j with
ai = −aj , for each such pair we divide the set (ζ = |ai| = |aj |) in two parts,
of measures μ(ξ = ai), μ(ξ = aj), and define η ≡ ai on the former, η ≡ aj on
the latter.

Hence, applying Lemma 7.4 again, this time with φ0 = ξ, ψ = f0, we
obtain

sup
ζ∼|ξ|

ˆ
f0ζ = sup

η∼ξ

ˆ
f0|η| ≤ 2 sup

η∼ξ

∣∣∣
ˆ

f0η
∣∣∣ +

 
f0

ˆ
|ξ|.

In light of (7.7) and Lemma 7.2 therefore

sup
f∼f0

ˆ
f |ξ| ≤ 2 sup

f∼f0

∣∣∣
ˆ

fξ
∣∣∣ +

 
|f0|

ˆ
|ξ|.

Substituting this, and its counterpart with f0 replaced by −f0, into (7.6) gives
the lemma, when ξ is simple. A general ξ can be uniformly approximated by
simple functions ξm, and knowing the estimate for each ξm gives the estimate
for ξ in the limit.

Proof of Theorem 7.1. By Lemma 2.1 p(ξ) = sup{
´
fξ : f ∈ F} with a family

F ⊂ L∞(X), that we can choose to be invariant under Ham(ω). Because of
Lemma 3.2 we can even choose it to be invariant under strict rearrangements.
For any measurable ζ : X → [−∞,∞] define

q(ζ) = sup
{ˆ

|fζ| : f ∈ F
}
∈ [0,∞],

and let B = {ζ : q(ζ) < ∞}, ‖ ‖ = q|B. Some obvious properties of q are: it
is positively homogeneous, q(η + ζ) ≤ q(η) + q(ζ), and |η| ≤ |ζ| a.e. implies
q(η) ≤ q(ζ). If q(ζ) = 0 then ζ = 0 a.e. on any set where some f ∈ F is
nonzero; since F is invariant under strict rearrangements, this simply means
ζ = 0 a.e. By Lemma 4.3 supf∈F

´
|f | < ∞, hence L∞(X) ⊂ B. Furthermore,

q is invariant under all rearrangements, strict or not; this also implies by
Lemma 6.1, with a suitable b > 0,

(7.8) q(ζ) ≥ b

ˆ
|ζ|

if ζ ∈ L∞(X).
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Following Bennett–Sharpley’s definition [BS, pp. 2, 3, 59], (B, ‖ ‖) is a
rearrangement invariant Banach space if, in addition to the properties above,
(7.8) holds for all measurable ζ, and

(7.9) lim
k→∞

q(ζk) = q(ζ)

for every increasing sequence ζk ≥ 0 converging to ζ. We start with the latter.
On the one hand, since q is monotone, the limit in (7.9) exists, and is ≤ q(ζ).
On the other, the monotone convergence theorem implies that with any f ∈ F

ˆ
|fζ| = lim

k→∞

ˆ
|fζk| ≤ lim

k→∞
q(ζk).

Taking the sup over all f ∈ F we obtain q(ζ) ≤ limk q(ζk), which proves (7.9).
That (7.8) holds for all measurable ζ now follows because |ζ| is the limit of
an increasing sequence of functions in L∞(X).

It remains to verify that p and ‖ ‖ are equivalent on C∞(X). Clearly
p ≤ ‖ ‖. By Lemma 7.5

‖ξ‖ = sup
f∈F

ˆ
|fξ| ≤ 4 sup

f∈F

∣∣∣
ˆ

fξ
∣∣∣ + 3 sup

f∈F

 
|f |

ˆ
|ξ|, ξ ∈ C∞(X).

Equivalence follows, because the first supremum on the right is p(ξ) and the
last term is ≤ Cp(ξ) by Lemma 4.3 and Theorem 1.3.

8. Proof of Theorem 1.5

The construction of a smooth, Ham(ω) invariant function p : C∞(X) → R

that is not invariant under volume preserving diffeomorphisms is based on
symplectic rigidity; but linear rigidity, the easy kind, suffices. Let V be a
2n ≥ 4 dimensional symplectic vector space over R, and Q the vector space
of quadratic forms Q : V → R. Linear maps of V act on Q by composition.
It is easy to construct a smooth function t : Q → R that is invariant under
the symplectic group Sp(V ), but not under SL(V ). For Poisson bracket { , }
turns Q into a Lie algebra, and induces the adjoint action adQ : Q → Q,

adQ(R) = {Q,R} = (sgradQ)R, Q,R ∈ Q.

We let t(Q) = tr ad2
Q. Thus t is a polynomial on Q. If V → V ′ is an iso-

morphism of symplectic vector spaces under which quadratic forms Q,Q′

correspond, then t(Q) = t(Q′).
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For example, suppose that V is R2n with coordinates xν , yν and symplectic
form

∑n
1 dxν ∧ dyν . Consider

Q(x, y) =
∑

qνxνyν , qν ∈ R.

As sgradQ =
∑

ν qν(xν∂xν − yν∂yν ), monomials xλxμ, xλyμ, and yλyμ form
an eigenbasis of adQ, with eigenvalues qλ + qμ, resp. qλ − qμ, resp. −qλ − qμ.
Hence

t(Q) =
∑
λ≤μ

(qλ + qμ)2 +
∑
λ,μ

(qλ − qμ)2 +
∑
λ≥μ

(qλ + qμ)2

=
∑
λ=μ

(2qλ)2 +
∑
λ,μ

(
(qλ + qμ)2 + (qλ − qμ)2

)

= 4
∑
λ

q2
λ + 2

∑
λ,μ

(q2
λ + q2

μ) = (4n + 4)
∑
λ

q2
λ.

(8.1)

Note that Q and R =
∑

rνxνyν are on the same SL(V ) orbit whenever∏
qν =

∏
rν . We conclude t is not SL(V ) invariant.

We need to introduce one more player. If a general quadratic form Q :
V → R is written in linear symplectic coordinates zν , ν = 1, . . . , 2n, as
Q(z) =

∑
aλνzλzν , with aλν = aνλ, we let

DetQ = det(aλν).

Thus DetQ is independent of the choice of the coordinates, and is even SL(V )
invariant.

Fix a smooth function ϕ : R → R such that ϕ(s) = 0 for |s| ≤ 1/2 and
ϕ(s) = s for |s| ≥ 1. If ξ ∈ C∞(X) and x is a critical point of ξ, let Qx = Qξ,x

stand for the quadratic Taylor polynomial of ξ − ξ(x) at x, a quadratic form
on the symplectic vector space TxX (the Hessian). Given ε > 0, critical points
x of ξ for which |DetQx| ≥ ε form a discrete and compact, hence finite set.
In particular ξ has countably many nondegenerate critical points, that we
denote xi. Define p : C∞(X) → R by letting

(8.2) p(ξ) =
∑
i

ϕ(DetQxi)t(Qxi);

we are summing over all nondegenerate critical points xi of ξ, or only over
those for which |DetQxi | > 1/2. We claim that p is smooth.

Indeed, given η ∈ C∞(X), let C consist of its critical points y for which
|DetQy| ≤ 1/4, a compact subset of X, and let yi, 1 ≤ i ≤ k denote the
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rest of its critical points. It is possible that k = 0, and even that η has no
nondegenerate critical point at all. About each yi construct a neighborhood
Ui so that the only critical point within U i is yi. About each y ∈ C construct
a neighborhood V ⊂ X with local coordinates z1, . . . , z2n so that ω|V =∑

ν dzν ∧ dzn+ν . Let U ⊂⊂ V be a neighborhood of y consisting of x such
that the quadratic form Q(z) =

∑
∂λ∂νη(x)zλzν has determinant |DetQ| <

1/3. Choose a finite cover {Uk+1, . . . , Ul} of C by such neighborhoods U . If
ξ ∈ C∞(X) is in a sufficiently small neighborhood of η,

in each U j , j ≤ k, ξ has a single critical point, which depends smoothly
on ξ;

all critical points x of ξ in
⋃

j>k U j satisfy |DetQξ,x| < 1/2; and
ξ has no critical points outside

⋃l
1 U j .

Therefore p in (8.2) is a smooth function in this neighborhood of η, hence
everywhere.

Invariance of Det and t implies that p is Ham(ω) invariant. It is, how-
ever, not invariant under general volume preserving diffeomorphisms for the
following reason. Fix a coordinate system xν , yν on an open W ⊂ X, centered
at some o ∈ W , such that ω|W =

∑
dxν ∧ dyν . Let ξ ∈ C∞(X) be given by

ξ = 2
∑

xνyν on W .
The local flow of a vector field v =

∑
aν(x, y)∂xν + bν(x, y)∂yν preserves

ωn if and only if div v = 0; that is, if the (2n− 1)–form

α =
∑
ν

(aνdxν − bνdyν) ∧
∧
λ�=ν

dxλ ∧ dyλ

is closed, or if locally α = dβ. This shows that the germ of any volume
preserving flow at o can be continued to a volume preserving flow on all of X,
that will be supported in our coordinate neighborhood. With cν ∈ R consider
the germ of a diffeomorphism at o

(8.3) (x, y) �→ (ecνxν , ecνyν)1≤ν≤n.

This is the time 1 map of a volume preserving flow if
∑

cν = 0. If so, there
is a volume preserving diffeomorphism g : X → X, supported in W , whose
germ at o is (8.3). Now ξ and η = ξ ◦ g have the same critical points, and
even their germs agree at all critical points except possibly at o. Hence the
contributions to p(ξ) and p(η) of critical points different from o are the same.
At o

Qξ,o = ξ = 2
∑

xνyν , Qη,o = η = 2
∑

e2cνxνyν .
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This means that DetQξ,o = DetQη,o = ±1, while in general, in view of (8.1)

t(Qξ,o) = 4(4n + 4)n �= 4(4n + 4)
∑

e4cν = t(Qη,o).

Therefore p(ξ) �= p(η), as claimed.
Note also that p is discontinuous in the sup norm topology, since arbi-

trarily ‖ ‖∞–close to 0 ∈ C∞(X) there are ξ with a unique nondegenerate
critical point x, where the Hessian Qξ,x can be arbitrarily prescribed.

9. Appendix

Here we reproduce the definition of rearrangement invariant Banach spaces
from [BS, pp. 2–3, 59], in the case of finite measure spaces.

Let (X,μ) be a finite measure space and M+ the space of measurable
functions X → [0,∞]. A map q : M+ → [0,∞] is a rearrangement invariant
function norm if with some c, C ∈ (0,∞) the following hold for all a ∈ [0,∞)
and f, g, fj ∈ M+:

q(f) = 0 if and only if f = 0 a.e; q(af) = aq(f); q(f + g) ≤ q(f) + q(g);

if f ≤ g then q(f) ≤ q(g); c

ˆ
X

f dμ ≤ q(f) ≤ C ess sup f ;

if f1 ≤ f2 ≤ . . . ≤ fj ≤ . . . → f a.e, then q(fj) → q(f);
if f, g are equidistributed, then q(f) = q(g).

Given such q, the collection of measurable functions f that satisfy q(|f |) <
∞, modulo a.e. equivalence, form a Banach space with norm ‖f‖ = q(|f |).
These are the rearrangement invariant Banach spaces.

For example, Lp spaces are rearrangement invariant, but Sobolev spaces
W k,p on a compact manifold are not if the order k > 0..

References

[BO] Lev Buhovsky, Yaron Ostrover, On the uniqueness of Hofer’s
geometry, Geom. Funct. Anal. 21 (2011) 1296–1330. MR2860189

[BS] Colin Bennett, Robert Sharpley, Interpolation of operators,
Academic Press, Inc., Boston, MA 1988 MR0928802

[Da] Tamás Darvas, The Mabuchi geometry of finite energy classes, Adv.
Math. 285 (2015) 182–219. MR3406499

http://www.ams.org/mathscinet-getitem?mr=2860189
http://www.ams.org/mathscinet-getitem?mr=0928802
http://www.ams.org/mathscinet-getitem?mr=3406499


The group of symplectic diffeomorphisms 681

[Do] Simon Donaldson, Symmetric spaces, Kähler geometry and Hamil-
tonian dynamics, Northern California Symplectic Geometry Seminar,
Amer. Math. Soc. Transl. Ser. 2, vol. 196, Amer. Math. Soc., Provi-
dence, RI, 1999 pp. 13–33. MR1736211

[Ha] Zhigang Han, Bi–invariant metrics on the group of symplectomor-
phisms, Trans. Amer. Math. Soc 361 (2009) 3343–3357. MR2485430

[HLP] Godfrey H. Hardy, John E. Littlewood, George Pólya, In-
equalities, 2nd edition, Cambridge University Press, 1952 MR0046395

[Ho] Helmut Hofer, On the topological properties of symplectic maps,
Comment. Math. Helv. 68 (1990) 25–38. MR1059642

[K] Anatole Katok, Ergodic perturbations of degenerate integrable
Hamiltonian systems (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 37
(1973) 539–576. MR0331425

[LM] Francois Lalonde, Dusa McDuff, The geometry of symplectic
energy, Ann. Math. (2) 141 (1995) 364–386. MR1324138

[L] László Lempert, The principle of least action in the space of Kähler
potentials, Math. Res. Letters, to appear, arXiv:2009.09949

[M] Toshiki Mabuchi, Some symplectic geometry on compact Kähler
manifolds, I. Osaka J. Math. 24 (1987) 227–252. MR0909015

[O] Hideki Omori, Groups of diffeomorphisms and their subgroups.
Trans. Amer. Math. Soc. 179 (1973) 85–122. MR0377975

[OW] Yaron Ostrover, Roy Wagner, On the extremality of Hofer’s
metric on the group of Hamiltonian diffeomorphisms, Int. Math. Res.
Not. no. 35 (2005) 2123–2141. MR2181789

[P] Leonid Polterovich, The geometry of the group of symplectic
diffeomorphisms, Lectures in Mathematics ETH Zürich, Birkhäuser,
Basel 2001. MR1826128

[Sc] Eric Schechter, Handbook of analysis and its foundations, Aca-
demic Press, San Diego CA, 1997. MR1731414

[S1] Stephen Semmes, Complex Monge–Ampère and symplectic mani-
folds, Amer. J. Math. 114 (1992) 495–550. MR1165352

[S2] Stephen Semmes, The homogeneous complex Monge–Ampère equa-
tion and the infinite–dimensional versions of classic symmetric
spaces, The Gelfand Mathematical Seminars, 1993–1995, 225–242,
Birkhäuser, Boston MA, 1996. MR1398924

http://www.ams.org/mathscinet-getitem?mr=1736211
http://www.ams.org/mathscinet-getitem?mr=2485430
http://www.ams.org/mathscinet-getitem?mr=0046395
http://www.ams.org/mathscinet-getitem?mr=1059642
http://www.ams.org/mathscinet-getitem?mr=0331425
http://www.ams.org/mathscinet-getitem?mr=1324138
http://arxiv.org/abs/2009.09949
http://www.ams.org/mathscinet-getitem?mr=0909015
http://www.ams.org/mathscinet-getitem?mr=0377975
http://www.ams.org/mathscinet-getitem?mr=2181789
http://www.ams.org/mathscinet-getitem?mr=1826128
http://www.ams.org/mathscinet-getitem?mr=1731414
http://www.ams.org/mathscinet-getitem?mr=1165352
http://www.ams.org/mathscinet-getitem?mr=1398924


682 László Lempert

[V] Claude Viterbo, Symplectic geometry as the geometry of generat-
ing functions, Math. Ann. 292 (1992) 685–710. MR1157321

László Lempert
Department of Mathematics
Purdue University
West Lafayette
IN 47907-2067
USA
E-mail: lempert@purdue.edu

http://www.ams.org/mathscinet-getitem?mr=1157321
mailto:lempert@purdue.edu

	Introduction
	Reduction to linear forms
	Proof of the second part of Theorem 1.2
	Proof of the first part of Theorem 1.2
	Extending convex functions
	Proof of Theorem 1.3
	Proof of Theorem 1.4
	Proof of Theorem 1.5
	Appendix
	References

