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Abstract: In the present work, we investigate the relationship
between compact strongly pseudoconvex CR manifolds and the
singularities of their Stein fillings. We compute the dimensions of
Kohn-Rossi cohomology groups with values in holomorphic vector
bundles in terms of local cohomology groups. As an application, we
solve the classical complex Plateau problem for compact strongly
pseudoconvex CR manifold X when its Stein filling V has only
isolated complete intersection singularities. This generalizes earlier
results of Yau.
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1. Introduction

The classical complex Plateau problem is one of the fundamental questions
of complex geometry. It asks which odd dimensional real submanifolds of
C

N are boundaries of Stein manifolds. CR manifolds are abstract models
of boundaries of complex manifolds. In fact, Boutet de Monvel ([3]) proved
that any compact strongly pseudoconvex CR manifold of dimension at least
five can be CR embedded in some complex Euclidean space. A beautiful
theorem of Harvey and Lawson ([11], [12]) says that these CR manifolds
are the boundaries of Stein spaces with only isolated normal singularities.
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Throughout this paper we shall assume that X is a compact connected CR
manifold of real dimension 2n− 1 � 5 and V is the Stein filling of X. What
remains to be determined is the necessary and sufficient conditions on X for
nonexistence of singularities inside V .

One of the most important invariants in CR geometry is the so-called
Kohn-Rossi cohomology groups introduced by Kohn and Rossi in [16]. Of
course it would be of interest to compute the dimensions of these groups.
In [29], the second named author related the Kohn-Rossi cohomology group
Hp,q(X) to the local cohomology groups at the singularities of V and answered
affirmatively a conjecture of Kohn and Rossi from [16]. In case the singularities
of V are hypersurface singularities, the Kohn-Rossi cohomology groups were
computed explicitly. This allows him to solve the complex Plateau problem
in the hypersurface case.

It has been an interesting question to compute the ∂̄b-cohomology groups
of forms with values in a holomorphic vector bundle (cf. [16], [24]). In the
first part of this paper, following the ideas of Yau ([29]), we shall consider the
dimensions of these groups in terms of local cohomology.

Theorem 1.1. Let V be an n-dimensional reduced irreducible Stein space
with smooth boundary X. We assume that V is imbedded in a slightly larger
reduced irreducible complex space V ′ with V ′ smooth near X = ∂V . Suppose
F is a coherent analytic sheaf on V ′ such that F is locally free near X. If V
is strongly pseudoconvex, then the dimensions of the Kohn-Rossi cohomology
groups

dimHp,q (X,F ) =
∑

x∈Z∪S
dimHq+1

{x} (V,Ωp ⊗ F ) for 1 � q � n− 2,

where S is the singular locus of V and Z is the set of all points of V where
F is not locally free.

Corollary 1.2. Suppose that V is strongly pseudoconvex. If V is perfect (i.e.,
the stalks Ox of the structure sheaf are Cohen-Macaulay rings) and F is
locally free, then

dimH0,q (X,F ) = 0 for 1 � q � n− 2.

If V is smooth and F is locally free, then

dimHp,q (X,F ) = 0 for 1 � q � n− 2.

We next study the relationship between the vanishing of Kohn-Rossi co-
homology groups of X and the corresponding properties of V .
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Proposition 1.3. Suppose, with the above notations, that V is strongly pseu-
doconvex and n � 3. Then the following statements are equivalent:

1. H0,q (X) = 0 for 1 � q � n− 2;
2. The Stein filling V of X is perfect;
3. depthωV,x = n, x ∈ V , where ωV is the canonical sheaf of V .

Corollary 1.4. Let (V, x) be a normal isolated singularity of dimension
n � 3. If (V, x) is Cohen-Macaulay, then it is Gorenstein if and only if the
projective dimension pdOx

(ωV,x) is finite.

Proposition 1.5. Let X be a strongly pseudoconvex CR manifold of dimen-
sion 2n− 1 � 5. Suppose X is the boundary of a strongly pseudoconvex man-
ifold which is a modification of a Stein space at normal isolated singularities.
If one of the following conditions hold,

• H1,q (X) = 0 for 1 � q � n − 2 and the projective dimension of Ω∗∗

(the double dual of Ω) is finite;
• H0,q (X,Θ) = 0 for 1 � q � n − 2 and the projective dimension of the

tangent sheaf Θ is finite,

then V is smooth.

The theory of Buchsbaum-Eisenbud ([5]) gives free resolutions of the ex-
terior products of certain modules. These resolutions can be used to calculate
local cohomology groups.

Proposition 1.6. Let (V, x) be an isolated Gorenstein singularity of dimen-
sion n and F a coherent analytic sheaf on V . Suppose Fx is given by the
following exact sequence

0 −→ Om
x

φ−−→ ON
x → Fx −→ 0,

and F is locally free on V \ {x}. Then

dimHq
{x} (V,ΛpF ) =

{
0 if p + q � n− 1,
dimSp(cokerφ∗) if p + q = n.

Here φ∗ :
(
ON

x

)∗ → (Om
x )∗ is the dual map of φ, cokerφ∗ = (Om

x )∗/ Imφ∗,
and Sp(cokerφ∗) is the p-th symmetric power of the Ox-module cokerφ∗.

As a result of Theorem 1.1 and Proposition 1.6, we can obtain the follow-
ing:
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Theorem 1.7. Suppose X is the boundary of a strongly pseudoconvex mani-
fold of dimension n � 3 which is a modification of a Stein space V at isolated
singularities. Let S be the singular set of V . If the singularities (V, x) , x ∈ S
are complete intersections, then

dimHp,q(X) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if p + q � n− 2, 1 � q � n− 2,∑
x∈S

τpx if p + q = n− 1, 1 � q � n− 2,∑
x∈S

τn−p
x if p + q = n, 1 � q � n− 2,

0 if p + q � n + 1, 1 � q � n− 2, 0 � p � n,

where

τpx = dimC Sp

(
Ext1OV,x

(ΩV,x,OV,x)
)

= dimC

Sp

(
Om

U,x

)
∑m

i=1 fi · Sp

(
Om

U,x

)
+ Jp(f1, · · · , fm)

(
Sp−1

(
Om

U,x

)
⊗ Om+n

U,x

) .
Moreover, the complex space V is smooth if and only if

Hn−q−1,q(X) = 0

for some 1 � q � n− 2.

When the Stein filling V has only isolated complete intersection singular-
ities, Theorem 1.7 answers the complex Plateau problem in the affirmative
sense.

2. Preliminaries

In this section, we shall recall some basic notations and definitions.

2.1. Depth

Let R be a commutative ring with unit, M an R-module and a1, · · · , ar a
sequence of elements of R. We say a1, · · · , ar is an M -regular sequence if the
following conditions are satisfied:

• For each 1 � i � r, ai is not a zero-divisor on the module

M/(a1, · · · , ai−1)M,
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• M �= (a1, · · · , ar)M .

When all ai belong to an ideal I, we say a1, · · · , ar is an M -regular sequence
in I. If, moreover, there is no b ∈ I such that a1, · · · , ar, b is M -regular, then
a1, · · · , ar is said to be a maximal M -regular sequence in I.

If R is a noetherian ring, M is a finite R-module and I is an ideal of R
with IM �= M , we call the length of the maximal M -regular sequence in I
the I-depth of M and denote it by depthI(M). When (R,m) is a local ring
we write depthM for depthm M and call it simply the depth of M . Moreover,
if (R,m) is a noetherian local ring, then R is said to be Cohen-Macaulay if
depthR = dimR.

2.2. Projective dimensions

Given a module M , a projective resolution of M is an infinite exact sequence
of modules

· · · → Pn → · · ·P2 → P1 → P0 → M → 0
with all the Pi projective. Every module possesses a projective resolution.
The length of a finite resolution is the subscript n such that Pn is nonzero
and Pi = 0 for i greater than n. If M admits a finite projective resolution,
the minimal length among all finite projective resolutions of M is called its
projective dimension and denoted pdR(M). If M does not admit a finite
projective resolution, then by convention the projective dimension is said to
be infinite.

Theorem 2.1 (Auslander-Buchsbaum). If R is a commutative Noetherian
local ring and M is a non-zero finitely generated R-module of finite projective
dimension, then

pdR(M) + depthM = depthR.

2.3. Symmetric and exterior algebras

We follow the exposition of [5]. Let R be a commutative ring with unit. The
tensor algebra of the R-module M is the graded, noncommutative algebra

TR(M) = R⊕M ⊕ (M ⊗R M) ⊕ · · · ,

where the product of x1⊗· · ·⊗xm and y1⊗· · ·⊗yn is x1⊗· · ·⊗xm⊗y1⊗· · ·⊗yn.
The symmetric algebra of M is the algebra SR(M) obtained from TR(M)

by imposing the commutative law, that is, by factoring out the two-sided
ideal generated by the relations x⊗ y − y ⊗ x for all x, y ∈ M .
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The exterior algebra of M is the algebra ΛRM obtained from TR(M) by
imposing skew-commutativity, that is, by factoring out the two-sided ideal
generated by the elements x2 = x ⊗ x for all x ∈ M . (From the formula
(x+ y)⊗ (x+ y) = x⊗x+x⊗ y+ y⊗x+ y⊗ y we see that x⊗ y+ y⊗x goes
to 0 in ΛRM for all x, y ∈ M , so that ΛRM really is skew-commutative.)

We define the d-th symmetric power of M , written SR,d(M) or Sd(M), to
be the image in SR(M) of M ⊗ · · · ⊗M (d factors) in TR(M) and the d-th
exterior power ΛdM to be the image in ΛRM of M ⊗ · · · ⊗M (d factors) in
TR(M).

2.4. Local cohomology

Let A be a closed subset in a topological space Y and A a sheaf of abelian
groups on Y . We define ΓA (Y,A ) as the subgroup of all elements of Γ (Y,A )
whose supports are contained in A. If

0 → A → C 0 → C 1 → C 2 → · · ·

is the canonical (or any other) flabby resolution of A , we define the groups
H i

A (Y,A ) as the cohomology groups of the complex

0 → ΓA

(
Y,C 0

)
→ ΓA

(
Y,C 1

)
→ ΓA

(
Y,C 2

)
→ · · ·

and call them the groups of local cohomology with supports in A and coeffi-
cients in A .

2.5. CR manifolds and pseudoconvexity

Let X be a connected real manifold of dimension 2n − 1 and S an (n − 1)-
dimensional subbundle of CTX such that

• S ∩ S = {0}.
• If L, L′ are local sections of S, then so is [L,L].

The manifold X, together with the structure S, is called a CR manifold.
Let L1, · · · , Ln−1 be a local frame of S. Choose a purely imaginary local

section N of CTX such that L1, · · · , Ln−1, L1, · · · , Ln−1, N span CTX . Then
the matrix (cij) defined by

[Li, Lj ] =
∑

akijLk +
∑

bkijLk + cijN.
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is Hermitian, and is called Levi form. The number of non-zero eigenvalues
and the absolute value of the signature of (cij) at each point are independent
of the choice of L1, · · · , Ln−1, N . X is said to be strongly pseudoconvex if
the Levi form is definite at each point of X.

Throughout this paper, we always assume that X is a real hypersurface
of a complex manifold M . Suppose that X is locally defined by r = 0, where
r is a real smooth function on M with |dr| = 1 on X. For each point x ∈ X,
the Levi form at x is the Hermitian form on the (n − 1)-dimensional space
T 1,0
M,x ∩ CTX,x given by

(L1, L2) �→ 2
〈
∂∂̄r, L1 ∧ L2

〉
,

where T 1,0
M,x is the space of holomorphic vectors at x.

Let M be a complex manifold with smooth boundary X = ∂M such that
M = M ∪X is compact. M is said to be strongly pseudoconvex if the Levi
form is positive definite at each point of X. If M is strongly pseudoconvex,
then it is a modification of a Stein space V with isolated singularities. In this
case, we also say V is strongly pseudoconvex.

2.6. Cotangent sheaf and tangent sheaf

We shall define the sheaf of germs of holomorphic 1-forms for arbitrary com-
plex space V . Let us first consider a model space W in a domain D ⊂ C

n

with ideal I ⊂ OD. Let ΩD be the sheaf of germs of holomorphic 1-forms on
D. Then the map

I → ΩD, f → df

sends I 2 into I ΩD and hence, by passing to residue classes, a morphism

α : I /I 2 → ΩD/I ΩD.

We put ΩW = cokerα, this is a coherent sheaf on V . The case of an arbitrary
complex space is handled by gluing. Let {Ui} be an open covering of V such
that there exists a biholomorphic map τi : Ui → Vi onto a model space Vi.
Then we can define the sheaf Ωi = ΩUi

∼= ΩVi via τi. The isomorphisms
τ−1
i ◦ τj : Ui ∩ Uj → Ui ∩ Uj give rise to isomorphisms θij : Ωi|Ui∩Uj →

Ωj |Ui∩Uj such that θijθjk = θik. Hence we have an OV -sheaf ΩV on X such
that ΩV |Ui = Ωi. This sheaf is coherent on V and called the sheaf of germs
of holomorphic 1-forms on V or the cotangent sheaf of V . Note that Ω1

V is
locally free if and only if V is regular.
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We write Ωp
V = ΛpΩV (with the usual convention that Ω0 = OV ) and

refer to it as the sheaf of holomorphic p-forms. The tangent sheaf ΘV of V is
defined to be the dual sheaf of ΩV , i.e. ΘV = Ω∗

V .
If V is normal, then we can define the canonical sheaf of V as ωV =

θ∗Ωn
Vsm

, where Vsm is the regular part of V and θ : Vsm → V is the inclusion
map.

2.7. Isolated singularities

We shall often denote by (V, x) the pair of an analytic space V with a point
x ∈ V such that V \{x} is smooth and pure dimensional. We call such a pair an
isolated singularity (even in case V is smooth). Two pairs (V, x) and (W, y)
are equivalent if there exist a neighborhood V ′ ⊂ V of x, a neighborhood
W ′ ⊂ W of y and an isomorphism f : V ′ → W ′ such that f(x) = y. An
equivalent class of such pairs is called a germ of isolated singularities and
denoted also by (V, x).

The singularity (V, x) is said to be Cohen-Macaulay if the local ring OV,x

is Cohen-Macaulay. Moreover, if (V, x) is Cohen-Macaulay and the canonical
sheaf ωV is free, then we say (V, x) is a Gorenstein singularity.

2.8. Isolated complete intersection singularities

The conventions followed are those of Looijenga ([18]). Let (U, x) be a complex
manifold germ of dimension N , and (V, x) ⊂ (U, x) an analytic subgerm of
dimension n which is given by an ideal I ⊂ OU,x. We say that I defines a
complete intersection at x if I admits m = N − n generators f1, · · · , fN−n.

Moreover, if the common zero set of f1, · · · , fN−n and the N − n form
df1 ∧ · · · ∧ dfN−n is contained in {x}, then we say that (V, x) is an isolated
complete intersection singularity (this includes the case that (V, x) is regular).
Given a coordinate z1, · · · , zN for (U, x), let J be the ideal in OU,x generated
by the determinants of the (N − n) × (N − n) submatrices of the Jacobian
matrix

(
∂fj
∂zi

)
. The definition of J is independent of the choices of generators

and the singularity (V, x) is isolated if and only if J ⊃ mk
x for some k � 1,

where mx is the maximal ideal of OU,x. The number dimmx/m
2
x is called the

embedding dimension of (V, x) and dimmx/m
2
x − n is called the embedding

codimension of (V, x).
If (V, x) is a complete intersection at x, then the ring Ox = OU,x/I

is a Gorenstein ring of dimension n and the sequence f1, · · · , fN−n is Ox-
regular. Moreover, if (V, x) is an isolated complete intersection singularity,
then depthJ /IOx = n. For a proof one may refer to [19].
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3. Kohn-Rossi’s ∂̄b-complex

In this section, we shall recall the theory of Kohn and Rossi. Let M ′ be a
complex manifold and X ⊂ M ′ a real hypersurface. Assume that X is locally
defined by r = 0, where r is a real smooth function on M ′ with |dr| = 1 on
X. Let A p,q be the sheaf of germs of smooth differential forms of type (p, q)
on M ′. Let E be a holomorphic vector bundle over M ′ and O(E) the sheaf
of germs of holomorphic sections of E. Let

Ap,q (M ′, E) = {sections of A p,q ⊗ O(E) over M ′}

and
Cp,q (M ′, E) = {φ ∈ Ap,q(M ′, E); ∂̄r ∧ φ = 0 on X}.

It is easy to shown that

∂̄Cp,q (M ′, E) ⊂ Cp,q+1 (M ′, E) .

Let C p,q(E) denote the sheaves of germs of Cp,q (M ′, E) on M ′. Then there is
a natural injection

0 −→ C p,q(E) −→ A p,q ⊗ O(E).

The quotient sheaf

Bp,q(E) = (A p,q ⊗ O(E))
/
C p,q(E)

is a locally free sheaf supported on X. We have the following commutative
diagram:

0 −−−−→ C p,q(E) −−−−→ A p,q ⊗ O(E) −−−−→ Bp,q(E) −−−−→ 0⏐⏐�∂̄ ⏐⏐�∂̄ ⏐⏐�∂̄b
0 −−−−→ C p,q+1(E) −−−−→ A p,q+1 ⊗ O(E) −−−−→ Bp,q+1(E) −−−−→ 0

where ∂̄b is the quotient map which is induced by ∂̄. Let Bp,q (X,E) denote
the space of sections of Bp,q(E). Since C p,q(E) is fine, the induced sequence
of global sections

0 −→ Cp,∗ (M ′, E) −→ Ap,∗ (M ′, E) −→ Bp,∗ (X,E) −→ 0
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is exact. Since ∂̄2 = 0, it follows that ∂̄2
b = 0, so we have the boundary

complex

0 → Bp,0 (X,E) ∂̄b−→ Bp,1 (X,E) ∂̄b−→ · · · ∂̄b−→ Bp,n−1 (X,E) → 0.

In fact, following Tanaka [24], the boundary complex can be reformulated in
a way independent of the imbedding X ⊂ M ′.

Definition 3.1. The cohomology of the above boundary complex is called
Kohn-Rossi cohomology and is denoted by Hp,q (X,O(E)). In the special case
when E is a trivial line bundle, we may write Hp,q(X) for Hp,q (X,O).

Let M be a Hermitian complex manifold of complex dimension n with
smooth boundary X = ∂M such that M = M ∪ X is compact. We shall
assume, without loss of generality, that M is imbedded in a slightly larger
open manifold M ′ and that X is locally defined by the equation r = 0, where
r is a real smooth function with r < 0 inside M , r > 0 outside M , and
|dr| = 1 on X. Suppose E is a holomorphic vector bundle over M ′. Let

Ap,q (M,E) = {sections of A p,q ⊗ O(E) over M},
Ap,q

(
M,E

)
= {sections of A p,q ⊗ O(E) over M}.

Let g be a Hermitian metric on M ′ and let dV stand for the Riemannian
volume form on M ′. Then one can define a natural inner product on Λp,q

CT ∗
M ′ .

Let h be a Hermitian metric on E and we denote by 〈•, •〉 the corresponding
inner product on Λp,q

CT ∗
M ′ ⊗E. We define global scalar product for E-valued

forms by

(φ, ψ) =
∫
M
〈φ, ψ〉dV, for φ, ψ ∈ Ap,q

(
M,E

)
.

Let L(p,q) denote the Hilbert space obtained by completing Ap,q
(
M,E

)
under

the above inner product. We shall henceforth use the symbol ∂̄ to mean the
closure of ∂̄|Ap,q(M,E) with respect to L(p,q). Let ∂̄∗ be the Hilbert space adjoint
of ∂̄. Further we define the unbounded operator Δ∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄. Finally we
define the space Hp,q (M,E) by

Hp,q (M,E) = {φ ∈ Dom(Δ∂̄); Δ∂̄φ = 0} .

There are several natural cohomology groups associated to the ∂̄-complex
on the holomorphic vector bundle E over Hermitian manifold M ′. Consider
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the following two vector spaces:

Hp,q (M,E) =

{
φ ∈ Ap,q (M,E) ; ∂̄φ = 0

}
∂̄Ap,q−1 (M,E)

,

Hp,q
(
M,E

)
=

{
φ ∈ Ap,q

(
M,E

)
; ∂̄φ = 0

}
∂̄Ap,q−1

(
M,E

) .

As a consequence of his beautiful solution of the ∂̄-Neumann problem, Kohn
proved the following:

Theorem 3.2 ([15, 16]). If M is strongly pseudoconvex and q > 0, then

Hp,q
(
M,E

)
∼= Hp,q (M,E) ,

and they are finite dimensional.

On the other hand, the Dolbeault theorem asserts that

Hp,q (M,E) ∼= Hq (M,Ωp ⊗ O(E)) ,

where Ωp denotes the sheaf of germs of holomorphic p-forms on M . The
relationship between these important groups and the preceding one is the
following theorem.

Theorem 3.3 ([15, 14]). If M is strongly pseudoconvex and q > 0, then

Hp,q
(
M,E

)
∼= Hp,q (M,E) .

Proof. For the convenience of the reader, we will show that this theorem fol-
lows from Theorem 3.2 and the Andreotti-Grauert theory. Since M is strongly
pseudoconvex, one can find a single strictly plurisubharmonic defining func-
tion r for all of ∂M by Grauert [7]. So there is a neighborhood U of ∂M
in M ′ and a smooth strictly plurisubharmonic function r on U such that
U ∩M = {x ∈ U ; r(x) < 0}. Since ∂M is compact, there exists δ0 > 0 such
that {−3δ0 � r � δ0} � U . Let χ be a smooth function on M ′ such that
0 � χ � 1, χ ≡ 1 on {r � −δ0} and χ ≡ 0 on M \ {r > −2δ0}. Then

r̃ = (r + 3δ0)χ− 3δ0

is a smooth function on M ∪ U and r̃ = r on {r > −δ0}. Let

Mδ = {r̃ < δ} ⊂ M ′, 0 � δ � δ0.
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Then M0 = M and Mδ is 1-convex since r̃ = r is strictly plurisubharmonic
on {r > −δ0}.

Let us consider the restriction maps

Hp,q (Mδ, E) −→ Hp,q
(
M,E

)
−→ Hp,q (M,E) .

By Theorem 3.2, Hp,q
(
M,E

)
is finite dimensional. So we can choose ∂̄-closed

φi ∈ Ap,q
(
M,E

)
, i = 1, · · · , d, such that their cohomology classes generate

a basis of Hp,q
(
M,E

)
. If δ > 0 is small enough, then we may assume that

φi ∈ Ap,q (Mδ, E) for 1 � i � d. So we can conclude that

Hp,q (Mδ, E) −→ Hp,q
(
M,E

)
is surjective. On the other hand, the restriction map

Hq (Mδ,Ωp ⊗ O(E)) −→ Hq (M,Ωp ⊗ O(E))

is isomorphic by the Andreotti-Grauert theory ([1]) and hence

Hp,q (Mδ, E) −→ Hp,q (M,E)

is isomorphic by Dolbeault theorem. Then we can conclude that the restriction
map

Hp,q
(
M,E

)
−→ Hp,q (M,E)

is an isomorphism.

We next consider the duality theorem. Let

Cp,q
(
M,E

)
= {φ ∈ Ap,q(M,E); ∂̄r ∧ φ = 0 on X}.

Since
∂̄Cp,q

(
M,E

)
⊂ Cp,q+1

(
M,E

)
,

one can therefore form the cohomology

Hp,q
0

(
M,E

)
=

{
φ ∈ Cp,q

(
M,E

)
; ∂̄φ = 0

}
∂̄Cp,q−1

(
M,E

) .
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Theorem 3.4 ([16]). If M is strongly pseudoconvex, then

Hp,q
0

(
M,E

)
∼=
(
Hn−p,n−q

(
M,E∗

))∗
for 0 � q < n,

where E∗ is the dual bundle of E.

4. Computation of Kohn-Rossi’s ∂̄b-cohomology

In this section, we will compute Kohn-Rossi’s ∂̄b-cohomology in terms of local
cohomology. Let us fix the notations. Let V be an n-dimensional reduced
irreducible Stein space with smooth boundary X = ∂V . We assume that V
is imbedded in a slightly larger reduced irreducible complex space V ′ with V ′

smooth near X and that X is defined by the equation r = 0, where r is a real
smooth function with r < 0 inside V , r > 0 outside V , and |dr| = 1 on X.

Suppose F is a coherent analytic sheaf on V ′ and F is locally free near
X. Let Ωp denote the sheaf of germs of holomorphic p-forms on V ′. Let S be
the singular locus of V and Z the set of all points of V where the coherent
sheaf F is not locally free. Then S and Z are compact analytic sets in V .
Since V is Stein, we can conclude

W = S ∪ Z = {x1, · · · , xm}

is a finite set. For every xi ∈ W (1 � i � m), the local cohomology group

Hq
{xi} (V,Ωp ⊗ F )

is finite dimensional for 0 � q � n − 1. Note that dimHq
{xi} (V,Ωp) is the

so-called Brieskorn number of type (p, q) at the point xi.

Theorem 4.1. Suppose, with the above notations, that V is strongly pseudo-
convex, then the dimensions of the Kohn-Rossi cohomology groups

(1) dimHp,q (X,F ) =
m∑
i=1

dimHq+1
{xi} (V,Ωp ⊗ F ) for 1 � q � n− 2.

Proof. By the desingularization theorem of Hironaka, we can find a proper
modification μ : N ′ → V ′ such that N ′ is smooth, N � N ′ is strongly
pseudoconvex and μ : N \ μ−1(S) → V \ S is biholomorphic. Then the
coherent sheaf μ∗F is locally free on N \ μ−1(Z). By a theorem of Rossi (cf.
[21], Theorem 3.5), we can find another modification τ : M ′ → N ′ such that
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1. M ′ is smooth, M � M ′ is strongly pseudoconvex and ∂M ∼= X;
2. τ : M \ (μ ◦ τ)−1(Z) −→ N \ μ−1(Z) is biholomorphic;
3. The coherent sheaf

E = (μ ◦ τ)∗F
/

T ((μ ◦ τ)∗F )

is locally free on M ′, where T ((μ ◦ τ)∗F ) ⊂ (μ ◦ τ)∗F is the torsion
subsheaf. Hence there exists a holomorphic vector bundle E over M ′

such that E = O(E).

Then π = μ ◦ τ : M → V is a modification of V at the points x1, · · · , xm.
Let A = π−1 (W ) be the exceptional set of π. Then π : M \ A → V \ W is
biholomorphic and E = π∗F on M \ A. For the simplicity of notation, we
also denote by Ωp the sheaf of germs of holomorphic p-forms on M .

We claim that there exists a smooth nonnegative strictly plurisubhar-
monic exhaustion function φ on V such that W = {φ = 0}. In fact, suppose
the maximal ideal mxi ⊂ Oxi is generated by fi1, · · · , fini . We may assume
that fik ∈ O (Ui) and {x ∈ Ui; fi1(x) = · · · = fini(x) = 0} = {xi}, where Ui

is an open neighborhood of xi such that Ui ∩ Uj = ∅. Let λi, 1 � i � m be
cut-off functions such that Suppλi � Ui, 0 � λi � 1 and λi = 1 near xi.
Then the function

m∑
i=1

λi log
(∑

k

|fik|2
)

is quasi-plurisubharmonic on V . If ψ is a smooth strictly plurisubharmonic
exhaustion function on V , we may select a convex increasing function χ such
that

m∑
i=1

λi log
(∑

k

|fik|2
)

+ χ ◦ ψ

is strictly plurisubharmonic and exhaustion. Then we can take

φ = exp
{

m∑
i=1

λi log
(∑

k

|fik|2
)

+ χ ◦ ψ
}
.

It is obvious φ(x) = 0 if and only if x ∈ W . So there exists a smooth non-
negative plurisubharmonic exhaustion function ϕ = φ ◦ π on M such that
A = {ϕ = 0} and ϕ is strictly plurisubharmonic on M \ A. Put

Mr = {x ∈ M ; ϕ(x) � r} .
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Let Ap,q
c (M,E) be the space of E-valued (p, q)-forms with compact sup-

ports in M and Hp,q
c (M,E) the cohomology group with compact support.

We claim that the natural inclusion map

i : Ap,∗
c (M,E) −→ Cp,q

(
M,E

)
induce isomorphisms

(2) Hp,q
c (M,E)

∼=−−→ Hp,q
0

(
M,E

)
for 1 � q � n− 1.

In fact, our claim follows from the following commutative diagram:

Hp,q
c (M,E) −−−−→ Hp,q

0

(
M,E

)
∼=
⏐⏐�Serre duality ∼=

⏐⏐�Theorem 3.4

(Hn−p,n−q (M,E∗))∗
∼=−−−−−−−→

Theorem 3.3

(
Hn−p,n−q

(
M,E∗

))∗
.

Following Laufer [17], we consider the sheaf cohomology with support at
infinity. There is a natural exact sequence

0 −→ Ap,∗
c (M,E) −→ Ap,∗ (M,E) −→ Ap,∗

∞ (M,E) −→ 0.

Then the sheaf cohomology with support at infinity Hq
∞ (M,Ωp ⊗ E ) is the

cohomology of the quotient complex
(
Ap,∗

∞ (M,E) , ∂̄
)
.

Another natural exact sequence is

0 −→ Ap,∗
c (M,E) −→ Ap,∗

(
M,E

)
−→ Ap,∗

∞
(
M,E

)
−→ 0.

The cohomology of
(
Ap,∗

∞

(
M,E

)
, ∂̄
)

is denoted by Hq
∞

(
M,Ωp ⊗ E

)
. Con-

sider the following commutative diagram:

0 −−−−→ Ap,∗
c (M,E) −−−−→ Ap,∗

(
M,E

)
−−−−→ Ap,∗

∞

(
M,E

)
−−−−→ 0⏐⏐� ⏐⏐� ⏐⏐�

0 −−−−→ Ap,∗
c (M,E) −−−−→ Ap,∗ (M,E) −−−−→ Ap,∗

∞ (M,E) −−−−→ 0

It follows from Theorem 3.3 and the five lemma that

(3) Hq
∞

(
M,Ωp ⊗ E

)
∼= Hq

∞ (M,Ωp ⊗ E ) for q � 1.
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Now the following commutative diagram with exact rows

0 −−−−→ Ap,∗
c (M,E) −−−−→ Ap,∗

(
M,E

)
−−−−→ Ap,∗

∞

(
M,E

)
−−−−→ 0⏐⏐� ⏐⏐� ⏐⏐�

0 −−−−→ Cp,q
(
M,E

)
−−−−→ Ap,∗

(
M,E

)
−−−−→ Bp,∗ (X,E) −−−−→ 0

gives

(4) Hq
∞
(
M,Ωp ⊗ E

)
∼= Hp,q(X,E ) for 1 � q � n− 2

by (2) and the five lemma.
We need to compute the sheaf cohomology with support at infinity. By

Laufer [17],

Hq
∞ (M,Ωp ⊗ E ) ∼= lim−→

r

Hq (M \Mr,Ωp ⊗ E ) .

On the other hand, by Andreotti and Grauert [1],

Hq (M \ A,Ωp ⊗ E ) −→ Hq (M \Mr,Ωp ⊗ E )

is isomorphic for q � n− 2 and r > 0. So we have

(5) Hq
∞ (M,Ωp ⊗ E ) ∼= Hq (M \ A,Ωp ⊗ E ) for q � n− 2.

Since π : M \ A −→ V \W is biholomorphic and

Ωp ⊗ E |M ′\A = π∗
(

(Ωp ⊗ F )|V ′\W

)
,

we have

(6) Hq (M \ A,Ωp ⊗ E ) ∼= Hq (V \W,Ωp ⊗ F ) ,

and

(7) Hp,q(X,F ) = Hp,q(X,E ).

Let us consider the following local cohomology exact sequence:

→ Hq (V,Ωp ⊗ F ) → Hq (V \W,Ωp ⊗ F ) → Hq+1
W (V,Ωp ⊗ F )

→ Hq+1 (V,Ωp ⊗ F ) → Hq+1 (V \W,Ωp ⊗ F ) → · · ·



Kohn-Rossi cohomology and complex Plateau problem 699

By Cartan’s Theorem B, we have

(8) Hq (V \W,Ωp ⊗ F ) ∼= Hq+1
W (V,Ωp ⊗ F ) for q � 1.

Finally, we can conclude

(9) Hp,q(X,F ) ∼= Hq+1
W (V,Ωp ⊗ F ) for 1 � q � n− 2.

by the equations from (3) to (8), and hence

(10) dimHp,q(X,F ) =
m∑
i=1

dimHq+1
{xi} (V,Ωp ⊗ F ) for 1 � q � n− 2.

Finally, we note that the sheaf Ωp ⊗ F in (1) can be replaced by its double
dual.

To compute local cohomology groups, let us recall the following vanishing
theorem.

Proposition 4.2 (cf. [2]). Let W be a complex space and G a coherent ana-
lytic sheaf on W . Suppose x ∈ W and m is an integer. Then depth Gx � m
if and only if

Hq
{x} (V,G ) = 0 for q < m.

If V is perfect, then depth Ox = dim Ox for x ∈ V by definition. If F is
locally free, then

depth Fx = depth Ox = dim Ox.

Moreover, if V is smooth, then V is Cohen-Macaulay and Ωp is locally free.
So we have the following corollary.

Corollary 4.3. Suppose, with the above notations, that V is strongly pseu-
doconvex. If V is perfect and F is locally free, then

dimH0,q (X,F ) = 0 for 1 � q � n− 2.

If V is smooth and F is locally free, then

dimHp,q (X,F ) = 0 for 1 � q � n− 2.

Let us recall the Serre duality theorem for strongly pseudoconvex CR
manifolds. In fact, by Theorem 4.1, this theorem is equivalent to the duality
theorem of Naruki [20] for local cohomology groups.
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Theorem 4.4 ([24]). Let X be a compact strongly pseudoconvex CR manifold
of dimension 2n− 1. Then for any (p, q) we have

Hp,q(X) ∼= Hn−p,n−q−1(X).

Now we can prove the following proposition.

Proposition 4.5. The following statements are equivalent:

1. H0,q (X) = 0 for 1 � q � n− 2;
2. The Stein filling V of X is perfect;
3. depthωV,x = n, x ∈ V , where ωV is the canonical sheaf of V .

Proof. By Theorem 4.1, the condition

H0,q (X) = 0 for 1 � q � n− 2

is equivalent to

Hq
{x} (V,O) = 0 for 2 � q � n− 1, x ∈ S.

Since V is normal by assumption, we have

H0
{x} (V,O) = H1

{x} (V,O) = 0.

By Proposition 4.2, we can conclude that

H0,q (X) = 0 for 1 � q � n− 2

if and only if
depth(Ox) = n, ∀x ∈ V.

By duality theorem for strongly pseudoconvex CR manifold,

H0,q (X) ∼= Hn,n−1−q (X) for 1 � q � n− 2.

So the condition
H0,q (X) = 0 for 1 � q � n− 2

is equivalent to

Hq
{x} (V, ωV ) = 0 for 2 � q � n− 1, x ∈ S.
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However, the canonical sheaf ωV is reflexive and hence

H0
{x} (V, ωV ) = H1

{x} (V, ω) = 0.

So we can get the desired conclusion by Proposition 4.2.

Corollary 4.6. Let (V, x) be a normal isolated singularity of dimension
n � 3. If (V, x) is Cohen-Macaulay, then it is Gorenstein if and only if the
projective dimension pdOx

(ωV,x) is finite.

Proof. We have shown that (V, x) is Cohen-Macaulay iff depthωV,x = n.
If pdOx

(ωV,x) is finite, then pdOx
(ωV,x) = 0 by the Auslander–Buchsbaum

formula
pdOx

(ωV,x) + depthωV,x = depth Ox.

Thus ωV,x is a free Ox-module and hence (V, x) is Gorenstein.

Duco van Straten and Joseph Steenbrink solved Zariski–Lipman conjec-
ture in case of isolated singularities of dimension at least three.

Theorem 4.7 ([23]). If (V, x) is an isolated singularity of dimension n > 2
and Θx = Ω∗

x is free, then (V, x) is in fact smooth.

Proposition 4.8. Let X be a strongly pseudoconvex CR manifold of dimen-
sion 2n− 1 � 5. Suppose X is the boundary of a strongly pseudoconvex man-
ifold which is a modification of a Stein space at normal isolated singularities.
If one of the following conditions hold,

• H1,q (X) = 0 for 1 � q � n − 2 and the projective dimension of Ω∗∗

(the double dual of Ω) is finite;
• H0,q (X,Θ) = 0 for 1 � q � n − 2 and the projective dimension of the

tangent sheaf Θ is finite,

then V is smooth.

Proof. Let Ω[1] = Ω∗∗. The condition H1,q (X) = 0, 1 � q � n− 2 implies

Hq
{x}

(
V,Ω[1]

)
= 0 for 2 � q � n− 1, x ∈ S.

Here S is the singular locus of V . Since Ω[1] is reflexive,

H0
{x}

(
V,Ω[1]

)
= H1

{x}

(
V,Ω[1]

)
= 0.
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By Proposition 4.2, we have depth Ω[1] = n. If the projective dimension of
Ω[1] is finite, then

pdOx
(Ω[1]

x ) + depth Ω[1]
x = depth Ox, x ∈ S

by the formula of Auslander–Buchsbaum. So we can conclude that the pro-
jective dimension of Ω[1] is zero and hence Ω[1] is locally free. In this case, the
tangent sheaf Θ = Ω∗ =

(
Ω[1]
)∗

is locally free too. By Theorem 4.7, we can
conclude V is smooth. Similarly, one can prove the second statement of this
Proposition.

5. Free resolutions of the exterior powers of a module

Let R be a noetherian commutative ring with unit and M a free R-module
of finite rank N . Let Sk (Rm) be the k-th symmetric power of Rm. It is
a free module of rank

(m+k−1
m−1

)
. Let {e1, · · · , em} be a basis of Rm and let

ei1 � · · · � eik be the symmetric product of ei1 , · · · , eik . We denote by ΛpM

the p-th exterior product of M . Then any element of Sk (Rm) ⊗ Λp−kM can
be written as ∑

1�i1,··· ,ik�m

Γi1,··· ,ik ei1 � · · · � eik ,

where Γi1,··· ,ik ∈ Λp−kM and Γiτ(1),··· ,iτ(k) = Γi1,··· ,ik for every permutation τ

of the symbols {1, · · · , k}. Let ω1, · · · , ωm be given elements of M . Then we
can define a sequence Cp(ω1, · · · , ωm):

0 −→ Sp (Rm) ∂p−−→ Sp−1 (Rm) ⊗ Λ1M −→ · · ·

· · · −→ S1 (Rm) ⊗ Λp−1M
∂1−−→ ΛpM −→ 0,

where each operation ∂k is a R-linear operator defined by

∂k

⎛⎝ ∑
1�i1,··· ,ik�m

Γi1,··· ,ikei1 � · · · � eik

⎞⎠
=

∑
1�j1,··· ,jk−1�m

m∑
i=1

ωi ∧ Γi,j1,··· ,jk−1ej1 � · · · � ejk−1 .

(11)
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The sequence Cp(ω1, · · · , ωk) is a complex since

∂k ◦ ∂k+1
( ∑

1�i1,··· ,ik+1�m

Γi1,··· ,ik+1ei1 � · · · � eik+1

)

= ∂k
( ∑

1�i′1,··· ,i′k�m

m∑
i=1

ωi ∧ Γi,i′1,··· ,i′kei′1 � · · · � ei′
k

)
=

∑
1�j1,··· ,jk−1�m

∑
1�i,j�m

ωj ∧ ωi ∧ Γi,j,j1,··· ,jk−1ej1 � · · · � ejk−1

= 0.

(12)

Here, we use the fact that Γi,j,j1,··· ,jk−1 = Γj,i,j1,··· ,jk−1 .
We need to compute the homology of Cp(ω1, · · · , ωm). For this, let us

recall a beautiful theorem of Saito. Let ω1, · · · , ωm be given elements of M
and (θ1, · · · , θN ) a basis of M , then we can write

ω1 ∧ · · · ∧ ωm =
∑

1�i1<···<im�N

ai1,··· ,im θi1 ∧ · · · ∧ θim .

Let I be the ideal of R generated by the coefficients ai1,··· ,im , 1 � i1 < · · · <
im � N . (We put I = R when m = 0.) Then we define

Zk := {ω ∈ ΛkM : ω ∧ ω1 ∧ · · · ∧ ωm = 0}, k = 0, 1, 2, · · · ,

Hk := Zk
/( m∑

i=1
ωi ∧ Λk−1M

)
, k = 0, 1, 2, · · · .

In the case when m = 0, we understand Zk = 0, Hk = 0 for k = 0, 1, 2, · · · .
Now Saito’s theorem can be stated:

Theorem 5.1 ([22]).

1. There exists an integer s � 0 such that

IsHk = 0 for k = 0, 1, 2, · · · .

2. If 0 � k < depthI(R), then Hk = 0.

Now we can prove the following theorem which is due to Buchsbaum and
Eisenbud. For a generalization of this result, one can refer to [27].

Theorem 5.2 ([4]). Let R be a noetherian commutative ring with unit, and
M a free R-module of finite rank. Let ω1, · · · , ωm be given elements of M
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and I the ideal of R generated by the coefficients of ω1 ∧ · · · ∧ ωm. Then
Cp(ω1, · · · , ωm) is a free resolution of

ΛpM

/(
m∑
i=1

ωi ∧ Λp−1M

)
= Λp

(
M

/
(ω1, · · · , ωm)

)

in case of p � depthI(R).

Proof. It is obvious that H0(Cp(ω1, · · · , ωm)) = ΛpM
/(∑m

i=1 ωi ∧ Λp−1M
)
.

For higher homology, we prove it by double induction on (p,m). When p =
0, the theorem is trivially valid. Inductively, suppose the theorem holds for
p− 1 � 0 and all m. We need to prove the theorem for p and all m. For fixed
p, we again use induction on m. If m = 1, then the complex Cp(ω1) is given
by

(13) 0 −→ Λ0M
ω1∧•−−−→ Λ1M −→ · · · −→ Λp−1M

ω1∧•−−−→ ΛpM −→ 0.

So by Theorem 5.1, the homology

(14) Hk(Cp(ω1)) = {ω ∈ Λp−kM : ω ∧ ω1 = 0}
ω1 ∧ Λp−k−1M

= 0 for k � 1.

Suppose that the theorem is also valid for p and m− 1. We need to show
that the theorem holds for p and m. Let

Γ =
∑

1�i1,··· ,ik�m

Γi1,··· ,ik ei1 � · · · � eik ∈ ker ∂k, k � 1.

Then

(15)
m∑
i=1

ωi ∧ Γi,j1,··· ,jk−1 = 0 for 1 � j1, · · · , jk−1 � m.

If k = 1, then

(16)
m∑
i=1

ωi ∧ Γi = 0.

After acting by the operation ω2 ∧ · · ·ωm ∧ •, we obtain

(17) ω1 ∧ · · ·ωm ∧ Γ1 = 0.
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By assumption, p � depthI(R), Theorem 5.1 implies that there exist Γi,1 ∈
Λp−2M, 1 � i � m such that

(18) Γ1 =
m∑
i=1

ωi ∧ Γi,1.

Substituting this into (16) gives

(19)
m∑
i=2

ωi ∧ (Γi − ω1 ∧ Γi,1) = 0.

We may think
m∑
i=2

(Γi − ω1 ∧ Γi,1) ei ∈ S1
(
Rm−1

)
⊗ Λp−1M

Let Ĩ be the ideal generated by the coefficients of ω2 ∧ · · ·ωm. Then Ĩ ⊃ I
and hence

depthĨ(R) � depthI(R) � p.

By inductive assumption, the first homology of Cp(ω2, · · · , ωm) is zero. So we
can conclude that there exist Γi,j ∈ Λp−2M, 2 � i, j � m such that Γi,j = Γj,i

and

(20) Γj − ω1 ∧ Γj,1 =
m∑
i=2

ωi ∧ Γi,j for 2 � j � m.

Setting Γ1,j = Γj,1, then we have

(21) Γj =
m∑
i=1

ωi ∧ Γi,j for 1 � j � m.

The element Θ :=
∑

1�i,j�m
Γi,j ei�ej ∈ S2 (Rm)⊗Λp−2M satisfies ∂2(Θ) = Γ.

If k � 2, then we can define

Γ̃ :=
∑

1�i1,··· ,ik−1�m

Γi1,··· ,ik−1,1 ei1 � · · · � eik−1 ∈ Sk−1 (Rm) ⊗ Λp−kM.

The equations

(22)
m∑
i=1

ωi ∧ Γi,j1,··· ,jk−2,1 = 0, 1 � j1, · · · , jk−2 � m
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imply Γ̃ ∈ ker ∂̃k−1, where ∂̃k−1 is the differential of Cp−1(ω1, · · · , ωm). By
inductive assumption, the homology Hk−1(Cp−1(ω1, · · · , ωm)) = 0. Therefore,
one can find Γi1,··· ,ik,1 ∈ Λp−k−1M, 1 � i1, · · · , ik � m so that

(23) Γj1,··· ,jk−1,1 =
m∑
i=1

ωi ∧ Γi,j1,··· ,jk−1,1, 1 � j1, · · · , jk−1 � m,

and Γiτ(1),··· ,iτ(k−1),1 = Γi1,··· ,ik−1,1 for every permutation τ of the symbols
{1, · · · , k − 1}. Plugging (23) into (15), we compute that

m∑
i=1

ωi ∧ Γi,j1,··· ,jk−1

= ω1 ∧ Γ1,j1,··· ,jk−1 +
m∑
i=2

ωi ∧ Γi,j1,··· ,jk−1

= ω1 ∧ Γj1,··· ,jk−1,1 +
m∑
i=2

ωi ∧ Γi,j1,··· ,jk−1

= ω1 ∧
( m∑

i=2
ωi ∧ Γi,j1,··· ,jk−1,1

)
+

m∑
i=2

ωi ∧ Γi,j1,··· ,jk−1

=
m∑
i=2

ωi ∧
(
Γi,j1,··· ,jk−1 − ω1 ∧ Γi,j1,··· ,jk−1,1

)

(24)

for 1 � j1, · · · , jk−1 � m. If we set

Γ̂ :=
∑

2�i1,··· ,ik�m

(
Γi1,··· ,ik−ω1∧Γi1,··· ,ik,1

)
ei1�· · ·�eik ∈ Sk

(
Rm−1

)
⊗Λp−kM,

then we have Γ̂ ∈ ker ∂̂k, where ∂̂k is the differential of Cp(ω2, · · · , ωm). How-
ever, by inductive assumption, the homology Hk(Cp(ω2, · · · , ωm)) = 0. So we
can conclude that there exist Γi1,··· ,ik+1 ∈ Λp−k−1M, 2 � i1, · · · , ik+1 � m
such that

(25) Γj1,··· ,jk − ω1 ∧ Γj1,··· ,jk,1 =
m∑
i=2

ωi ∧ Γi,j1,··· ,jk for 2 � j1, · · · , jk � m

and Γiτ(1),··· ,iτ(k+1) = Γi1,··· ,ik+1 for every permutation τ of {2, · · · , k + 1}.
Finally, we can set

(26) Γi1,··· ,ik+1 = Γi1,··· ,̂is,··· ,ik+1,1
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if there exists some 1 � s � k such that is = 1. Then we have

(27) Γj1,··· ,jk =
m∑
i=1

ωi ∧ Γi,j1,··· ,jk for 1 � j1, · · · , jk � m.

If we define

Θ :=
∑

1�i1,··· ,ik�m

Γi1,··· ,ik+1 ei1 � · · · � eik+1 ∈ Sk+1 (Rm) ⊗ Λp−k−1M,

then ∂k+1(Θ) = Γ. This finish the inductive step.

For the following applications, let us consider the map

∂p : Sp (Rm) −→ Sp−1 (Rm) ⊗M

and its dual map

∂∗
p : (Sp−1 (Rm) ⊗M)∗ −→ (Sp (Rm))∗ .

Let {e1, · · · , em} be a basis of Rm and {θ1, · · · , θN} a basis of M . Then

{ei1 � · · · � eip ; m � i1 � i2 � · · · � ip � 1}

is a basis of Sp (Rm). The multi-indices (i1, · · · , ip) ≺ (i′1, · · · , i′p) if and only
if

is < i′s, and ik = i′k when k > s

for some 1 � s � p. This gives an order of the set
{
(i1, · · · , ip)

}
. Similarly,

let

{ej1 � · · · � ejp−1 ⊗ θj ; m � j1 � j2 � · · · � jp � 1, N � j � 1}

be a basis of Sp−1 (Rm)⊗M . The element ωk ∈ M, 1 � k � m can be written
as

ωk =
N∑
j=1

ωkjθj ,

where ωkj ∈ R for 1 � j � N . Under the isomorphism M ∼= RN , ωk can be
represented by the 1 ×N matrix

ωk = (ωk1, · · · , ωkN ).
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Then the map

∂p :
∑

Γi1,··· ,ip ei1 � · · · � eip �−→
∑

ωk ∧ Γk,j1,··· ,jp−1ej1 � · · · � ejp−1

can be represented by a matrix.
Let us choose the dual basis {e∗1, · · · , e∗m} for (Rm)∗ such that e∗i (ej) =

δij . Then the set
{
e∗i1 � · · · � e∗ip

}
forms a basis of (Sp (Rm))∗. Similarly, let

{θ∗1, · · · , θ∗N} be the basis of M∗ such that θ∗k (θl) = δkl. Then

{
e∗j1 � · · · � e∗jp−1 ⊗ θ∗j

}
is a basis of (Sp−1 (Rm) ⊗M)∗. Under these bases, let Jp(ω1, · · · , ωm) be the
matrix determined by

∂∗
p : (Sp−1 (Rm) ⊗M)∗ −→ (Sp (Rm))∗ .

Then Jp(ω1, · · · , ωm) is the transpose of the matrix corresponding to ∂p.
If p = 1, then

(28) J1(ω1, · · · , ωm) =

⎛⎜⎝ω1
...

ωm

⎞⎟⎠ .

If m = 1, then

(29) Jp(ω1) = ω1 for p � 1.

When m = 2, we have

(30) Jp(ω1, ω2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω1 0 0 0 · · · 0 0
ω2 ω1 0 0 · · · 0 0
0 ω2 ω1 0 · · · 0 0
0 0 ω2 ω1 · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · ω1 0
0 0 0 0 · · · ω2 ω1
0 0 0 0 · · · 0 ω2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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In general, the matrix Jp(ω1, · · · , ωm) can be given inductively by

(31) Jp (ω1, · · · , ωm) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Jp−1(ω1, · · · , ωm)

0
ω1

ω1
. . .

ω1

0 Jp(ω2, · · · , ωm)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Proposition 5.3. Under the isomorphisms

(Sp (Rm))∗ ∼= Sp (Rm) , (Sp−1 (Rm) ⊗M)∗ ∼= Sp−1 (Rm) ⊗RN ,

we have

coker ∂∗
p = (Sp (Rm))∗/ Im ∂∗

p
∼= Sp (Rm)

Jp(ω1, · · · , ωm) (Sp−1 (Rm) ⊗RN ) .

Given a module whose projective dimension is equal or less than one, the
local cohomology groups with values in the exterior products of this module
can be computed by the above resolutions given by Buchsbaum-Eisenbud.

Proposition 5.4. Let (V, x) be an isolated Gorenstein singularity of dimen-
sion n and F a coherent analytic sheaf on V . Suppose Fx is given by the
following exact sequence

0 −→ Om
x

φ−−→ ON
x → Fx −→ 0,

and F is locally free on V \ {x}. Then

(32) dimHq
{x} (V,ΛpF ) =

{
0 if p + q � n− 1,
dimC Sp(cokerφ∗) if p + q = n,

and the module
Sp(cokerφ∗) = [Sp (Om

x )]∗/ Im ∂∗
p ,

where ∂∗
p is the dual map of ∂p : Sp (Om

x ) → Sp−1 (Om
x ) ⊗ ON

x .

Proof. We may assume that M = ON
x and φ is given by (ω1, · · · , ωm), where

ω1, · · · , ωm are elements of M . Then

Fx
∼= M/ (ω1, · · · , ωm) .
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Let I be the ideal of Ox generated by the coefficients of ω1 ∧ · · · ∧ ωm. Then

depthI(Ox) = dimV = n,

since (V, x) is Cohen-Macaulay and F is locally free on V \ {x}. For a proof,
see for instance Theorem 30 and Theroem 31 of [19]. By Theorem 5.2, the
complex Cp(ω1, · · · , ωm)

0 −→ Sp (Om
x ) ∂p−−→ Sp−1 (Om

x ) ⊗ Λ1M −→ · · · ∂1−−→ ΛpM −→ ΛpFx

is a free resolution of the Ox-module ΛpFx for p � n. Then we have

(33) ExtkOx
(ΛpFx,Ox) = 0 for k > p

since the length of Cp(ω1, · · · , ωm) is p and

(34) ExtpOx
(ΛpFx,Ox) = [Sp (Om

x )]∗/ Im ∂∗
p = coker ∂∗

p .

By the right exactness of the symmetric algebra (cf. [5]), we have

(35) ExtpOx
(ΛpFx,Ox) = Sp(cokerφ∗).

Since (V, x) is Gorenstein, by local duality (cf. [9]),

(36) dimHq
{x} (V,ΛpF ) = dim Extn−q

Ox
(ΛpFx,Ox).

Then

(37) dimHq
{x} (V,ΛpF ) =

{
0 if p + q � n− 1,
dimSp(cokerφ∗) if p + q = n.

Note that Sp(cokerφ∗) = 0 iff cokerφ∗ = 0 iff Fx is free as an Ox-module.

In view of Theorem 4.1 and Proposition 5.4, we can conclude the following
result:

Theorem 5.5. Let V be an n-dimensional strongly pseudoconvex reduced ir-
reducible Stein space with smooth boundary X. We assume that V is imbedded
in a slightly larger reduced irreducible complex space V ′ with V ′ smooth near
X = ∂V . Suppose F is a reflexive sheaf (F = F ∗∗) on V ′ such that F is
locally free near X and let Z be the set of all points of V where F is not
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locally free. Let r = rank
(
F |V \Z

)
. Suppose that, for x ∈ Z, the singularity

(V, x) is Gorenstein and Fx is given by

0 −→ Om
x

φx−−→ ON
x → Fx −→ 0.

Let p � r and 1 � q � n − 2. Then the dimensions of the Kohn-Rossi
cohomology groups

dimH0,q (X,ΛpF ) =

⎧⎨⎩0 if p + q � n− 2,∑
x∈Z

dimC Sp(cokerφ∗
x) if p + q = n− 1.

Moreover, F is locally free on V if and only if H0,n−p−1 (X,ΛpF ) = 0 for
some integer 1 � p � min{n− 2, r}.

6. The complex Plateau problem

Let U be a complex manifold of dimension N and let V be a complex analytic
subvariety of U . Let I be the ideal sheaf of V in U and let Ωp

U be the sheaf
of germs of holomorphic p-forms on U . In case of p < 0, we may understand
Ωp

U = 0. Then the sheaf of germs of holomophic p-forms on V is given by

Ωp
V = Ωp

U

/{
fα + dg ∧ β : f, g ∈ I , α ∈ Ωp

U , β ∈ Ωp−1
U

}
.

It is a sheaf of OV -modules. By the construction of cotangent sheaf, there is
an exact sequence of OV -modules

N ∗
V

α−−→ ΩU |V → ΩV → 0,

where N ∗
V =

(
I /I 2) |V is the conormal sheaf of V in U , and ΩU |V =

(ΩU/I ΩU ) |V denotes the analytic restriction of ΩU to V . Call a closed com-
plex subspace V of a complex manifold U locally a complete intersection if
the ideal I can be generated, locally, by codim(V, U) holomorphic functions.
In this case I /I 2 is locally free of rank codim(V, U). If now, in addition,
the space V is reduced, then the sequence

0 → N ∗
V

α−−→ ΩU |V → ΩV → 0

is exact, cf. [8]. Note that N ∗
V and ΩU |V are locally free sheaves of OV -modules.
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Let (U, x) be a complex manifold germ of dimension N , and (V, x) ⊂ (U, x)
an isolated complete intersection singularity of dimension n. We may suppose
V is given by f1 = · · · = fm = 0 and df1 ∧ · · · ∧ dfm �= 0 on V \ {x}. Then we
have the following exact sequence of OV,x-modules

0 → Om
V,x

φ−−→ (ΩU |V )x → ΩV,x → 0

and (ΩU |V )x is a free OV,x-module of rank N . Let d̃fk be the restriction of dfk
to V . Then the map φ is given by d̃f1, · · · , d̃fm and

ΩV,x
∼= (ΩU |V )x

/(
d̃f1, · · · , d̃fm

)
.

Let us write

dfk =
(
∂fk
∂z1

, · · · , ∂fk
∂zN

)
, 1 � k � m,

and

(38) J1(f1, · · · , fm) =

⎛⎜⎝df1
...

dfm

⎞⎟⎠ =

⎛⎜⎜⎝
∂f1
∂z1

· · · ∂f1
∂zN... . . . ...

∂fm
∂z1

· · · ∂fm
∂zN

⎞⎟⎟⎠ .

As in Section 5, we can define the matrix Jp (f1, · · · , fm) inductively by

(39) Jp (f1, · · · , fm) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Jp−1 (f1, · · · , fm)

0
df1

df1
. . .

df1

0 Jp (f2, · · · , fm)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

As a consequence of Theorem 5.5 and Serre duality theorem for compact
strongly pseudoconvex CR manifolds, we have

Theorem 6.1. Suppose X is the boundary of a strongly pseudoconvex mani-
fold of dimension n � 3 which is a modification of a Stein space V at isolated
singularities. Let S be the singular set of V . If the singularities (V, x) , x ∈ S
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are complete intersections, then

dimHp,q(X) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if p + q � n− 2, 1 � q � n− 2,∑
x∈S

τpx if p + q = n− 1, 1 � q � n− 2,∑
x∈S

τn−p
x if p + q = n, 1 � q � n− 2,

0 if p + q � n + 1, 1 � q � n− 2, 0 � p � n,

where

τpx = dimC Sp

(
Ext1OV,x

(ΩV,x,OV,x)
)

= dimC

Sp

(
Om

U,x

)
∑m

i=1 fi · Sp

(
Om

U,x

)
+ Jp(f1, · · · , fm)

(
Sp−1

(
Om

U,x

)
⊗ Om+n

U,x

) .
Moreover, the complex space V is smooth if and only if Hn−q−1,q(X) = 0 for
some 1 � q � n− 2.

Proof. It suffices to compute dimHp,q(X) in case p + q � n− 1 because

dimHp,q(X) = dimHn−p,n−q−1(X)

by Theorem 4.4. In view of Theorem 4.1,

dimHp,q(X) =
∑
x∈S

dimHq+1
{x} (V,Ωp),

for 1 � q � n− 2, so we only need to compute the dimension of Hq
{x}(V,Ωp).

Now we can apply Proposition 5.4 to get the desired conclusion. For the
convenience of the reader, we give here the proof again. Let I be the ideal
of OV,x generated by d̃f1 ∧ · · · ∧ d̃fm. Then depthI(OV,x) = n, since (V, x) is
an isolated complete intersection singularity. By Theorem 5.2, the complex
Cp
(
d̃f1, · · · , d̃fm

)
:

0 −→ Sp

(
Om

V,x

)
∂p−−→ Sp−1

(
Om

V,x

)
⊗ Λ1 (ΩU |V )x −→ · · · ∂1−−→ Λp (ΩU |V )x

is a free resolution of the OV,x-module Ωp
V,x. Then we have

ExtkOV,x

(
Ωp

V,x,OV,x

)
=
{

0, if k > p;
coker ∂∗

p , if k = p,
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where
∂∗
p :
(
Sp−1

(
Om

V,x

)
⊗ Λ1 (ΩU |V )x

)∗
−→
(
Sp

(
Om

V,x

))∗
is the dual map of ∂p. By local duality,

(40) dimHq
{x} (V,Ωp) = dim Extn−q

OV,x
(Ωp

V,x,OV,x)

since isolated complete intersection singularities are Gorenstein. Thus

dimHq
{x}(V,Ω

p) =
{

0, if p + q < n;
coker ∂∗

p , if p + q = n.

Under the isomorphisms(
Sp

(
Om

V,x

))∗ ∼= Sp

(
Om

V,x

)
,(

Sp−1
(
Om

V,x

)
⊗ Λ1 (ΩU |V )x

)∗ ∼= Sp−1
(
Om

V,x

)
⊗ ON

V,x,

the map ∂∗
p can be represented by

Jp
(
d̃f1, · · · , d̃fm

)
: Sp−1

(
Om

V,x

)
⊗ ON

V,x −→ Sp

(
Om

V,x

)
.

So we have

coker ∂∗
p
∼=

Sp

(
Om

V,x

)
Im Jp

(
d̃f1, · · · , d̃fm

)
∼=

Sp

(
Om

U,x

)
∑m

i=1 fi · Sp

(
Om

U,x

)
+ Im Jp(df1, · · · , dfm)

and hence

τpx = dimC

Sp

(
Om

U,x

)
∑m

i=1 fi · Sp

(
Om

U,x

)
+ Jp(f1, · · · , fm)

(
Sp−1

(
Om

U,x

)
⊗ ON

U,x

) .
If V is smooth, then Hp,q(X) = 0 for 1 � q � n− 2 by Theorem 4.1. For

the other direction, suppose Hn−q−1,q(X) = 0 for some 1 � q � n− 2. Then
for every x ∈ S, we have

(41)
Sp

(
Om

U,x

)
∑m

i=1 fi · Sp

(
Om

U,x

)
+ Jp(f1, · · · , fm)

(
Sp−1

(
Om

U,x

)
⊗ ON

U,x

) = 0.
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So the rank of the matrix

(42) Jp (f1, · · · , fm) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Jp−1 (f1, · · · , fm)

0
df1

df1
. . .

df1

0 Jp (f2, · · · , fm)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is equal to the rank of Sp

(
Om

U,x

)
. In other words, the columns of the matrix

Jp (f1, · · · , fm) are linearly independent at x. In particular, the columns of

(43)

⎛⎝ Jp−1 (f1, · · · , fm)

0
⎞⎠

are linearly independent at x. But this implies the rank of Jp−1 (f1, · · · , fm)
is equal to the rank of Sp−1

(
Om

U,x

)
. By induction, we can conclude that the

Jacobi matrix

(44) J1(f1, · · · , fm) =

⎛⎜⎜⎝
∂f1
∂z1

· · · ∂f1
∂zN... . . . ...

∂fm
∂z1

· · · ∂fm
∂zN

⎞⎟⎟⎠
has rank m at x. So x is a smooth point of V and hence V is a smooth
manifold.

We should note that the computations of the local cohomology group
Hq

{x}(V,Ωp) is due to Naruki [20] and Vosegaard [25]. In fact, τpx is the p-th
generalized Tjurina number at x defined by Vosegaard.

By the above formula, it is obvious that the numbers τpx (0 � p � n− 1)
coincide for hypersurface singularities. However, one can find concrete exam-
ples to show these numbers are different in general. The results of Greuel ([9])
and Naruki ([20]) show that all of the these numbers coincide for weighted
homogeneous isolated complete intersection singularities. Thus we have the
following corollary:

Corollary 6.2. Suppose X is the boundary of a strongly pseudoconvex mani-
fold of dimension n � 3 which is a modification of a Stein space V at isolated
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singularities x1, · · · , xs. If there exist integers 1 � q, q′ � n − 2 and q �= q′

such that
dimHn−q−1,q(X) �= dimHn−q′−1,q′(X),

then (V, xi) is not a hypersurface singularity for some 1 � i � s.
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