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Abstract: In 1979 J.J. Kohn gave an indirect argument via the
Diederich-Fornæss Theorem showing that finite D’Angelo type im-
plies termination of the Kohn algorithm for a pseudoconvex domain
with real-analytic boundary. We give here a direct argument for
this same implication using the stratification coming from Catlin’s
notion of a boundary system as well as algebraic geometry on the
ring of real-analytic functions. We also indicate how this argument
could be used in order to compute an effective lower bound for
the subelliptic gain in the ∂̄-Neumann problem in terms of the
D’Angelo type, the dimension of the space, and the level of forms
provided that an effective Łojasiewicz inequality can be proven in
the real-analytic case and slightly more information obtained about
the behavior of the sheaves of multipliers in the Kohn algorithm.
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1. Introduction

Joseph J. Kohn’s solution to the ∂̄-Neumann problem in [21] and [22] for
smooth strongly pseudoconvex domains showed subellipticity held with a gain
of ε = 1

2 . Establishing a similar result for pseudoconvex domains proved more
elusive. The breakthrough came in Kohn’s 1979 Acta Mathematica paper
[23] where he had the insight of inserting a smooth function, a multiplier, in
the subelliptic estimate for the ∂̄-Neumann problem and investigating what
properties the set of such multipliers had. It led to Kohn stating an algebraic
algorithm for gauging the subellipticity of the ∂̄-Neumann problem nowadays
known as the Kohn algorithm. This algorithm yields sheaves of smooth germs,
and since algebraic geometry on rings of C∞ functions is notoriously tricky,
Kohn only proved termination of this algorithm for domains with real-analytic
boundary. More specifically, Kohn established the equivalence of the follow-
ing three conditions for a pseudoconvex domain Ω in Cn with real-analytic
boundary:

(i) subellipticity of the ∂̄-Neumann problem for (p, q) forms;
(ii) termination of the Kohn algorithm on (p, q) forms (known as Kohn finite

ideal type);
(iii) finite order of contact of holomorphic varieties of complex dimension q

with the boundary of the domain Ω (finite D’Angelo q-type)

After developing a fair amount of machinery, including a notion of mul-
titype that gives more geometric information about domains satisfying con-
dition (iii), finite D’Angelo type, David Catlin was able to prove the equiv-
alence of conditions (i) and (iii) in a series of three papers, [6], [7], and [8]
for a smooth pseudoconvex domain in Cn. Catlin did not, however, investi-
gate the behavior of the Kohn algorithm as it had no obvious relationship
to the machinery he had developed. For any pseudoconvex domain, implica-
tion (ii) → (i) is already a byproduct of how Kohn set up his algorithm in
[23], which leaves implication (iii) → (ii) as the only one where not enough
is understood. For smooth pseudoconvex domains, it is open and came to
be called the Kohn Conjecture. Even for real-analytic pseudoconvex domains
to which Kohn’s result applies, there is no quantitative answer known, i.e.,
no known computation of an effective lower bound for the subelliptic gain in
the ∂̄-Neumann problem in terms of the D’Angelo type, the dimension of the
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space, and the level of forms. Kohn established the implication (iii) → (ii)
indirectly by proving the contrapositive, namely that if the Kohn algorithm
does not terminate, it means the boundary contains a real-analytic variety of
holomorphic dimension at least q, which by the Diederich-Fornæss Theorem
in [14] implies a holomorphic manifold of dimension at least q also sits in the
boundary thus violating finite D’Angelo type.

The main result of this paper is to give a direct argument for the impli-
cation (iii) → (ii) using the stratification of the boundary into level sets of
the Catlin multitype defined in [7]:

Main Theorem 1.1. Let Ω in Cn be a pseudoconvex domain with real-
analytic boundary. Let x0 ∈ bΩ be any point on the boundary of the domain,
and let the order of contact of holomorphic varieties of complex dimension q
with the boundary of Ω at x0 be finite, i.e., Δq(bΩ, x0) = t < ∞. If Ux0 is
an appropriately small neighborhood around x0, then the Kohn algorithm on
(p, q) forms terminates at step 1 densely in Ux0 ∩ bΩ and by step min{2n,N}
otherwise, where N is the number of level sets of the Catlin multitype in Ux0 .

N ≤ (�2tn−q� − 1)�2tn−q�
(n−q)(n−q+1)

2 −1,

where �2tn−q� is the ceiling of 2tn−q, i.e., the least integer greater than or
equal to 2tn−q.

As we will explain in this paper, the termination of the Kohn algorithm
at step 1 densely in bΩ under the assumption of finite D’Angelo type follows
from work of D’Angelo in [11] and Catlin in [7]. Kohn’s 1979 result for real-
analytic domains in [23] specifies an upper bound of 2n for the number of
steps until the Kohn algorithm terminates. In general, N can be considerably
larger, and yet good lower bounds for the subelliptic gain in the ∂̄-Neumann
problem can be obtained from this construction for domains with a small
number of levels of the Catlin multitype in a neighborhood compared to the
dimension n.

The crucial idea in this work is bringing together geometric information
deduced by Catlin in [7] for pseudoconvex domains of finite D’Angelo type
with real algebraic geometry on the ring of real-analytic functions. Catlin’s
notion of boundary system yields Tougeron-Whitney elements, namely real-
analytic functions with non-zero gradients that vanish on the variety corre-
sponding to the top level of the Catlin multitype. Fortunately, the multi-
type is upper semi-continuous as defined, so one can inductively employ the
Łojasiewicz inequality for real-analytic functions to capture these Tougeron-
Whitney elements inside one of the ideals of multipliers in the Kohn algorithm
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one level set of the Catlin multitype at a time. Once the Kohn algorithm is
shown to have ended on a level set of the Catlin multitype, that information is
transferred to the next step of the induction by aggregating multipliers. The
latter step uses the author’s result in [28] that sheaves of subelliptic multipli-
ers corresponding to steps of the real-analytic version of the Kohn algorithm
are quasi-coherent. As there are only N level steps of the Catlin multitype,
the Kohn algorithm will end by the N th step.

Some part of the argument given here is effective, so it does keep track of
the lower bound for the subelliptic gain in the ∂̄-Neumann problem in terms of
the D’Angelo type, the dimension of the space, and the level of forms through
the progression of the Kohn algorithm. No effective bound can be given at
this time, however, due to the fact that two crucial ingredients are missing:

1. An effective Łojasiewicz inequality, which we will state as a Conjectured
Nullstellensatz below;

2. More information about the behavior of sheaves of subelliptic multi-
pliers beyond the quasi-coherence proved by the author in [28], which
allows for the aggregation of subelliptic multipliers that eliminated level
sets corresponding to lower values of the Catlin multitype but says noth-
ing about the subelliptic gain corresponding to these multipliers away
from the eliminated level sets.

Given two real-analytic functions f and g defined on some open set U
of Rm and satisfying that the zero set of g contains the zero set of f , the
Łojasiewicz inequality we will employ states that for every compact subset
K of U there exist a constant C > 0 and some α ∈ Q+ such that |g(x)|α ≤
C|f(x)| for all x ∈ K. It follows via the Mean Value Theorem from the
classical Łojasiewicz inequality with respect to the distance function in [25].
For the rationality of the best exponent, see [2]. For the statements of all three
known Łojasiewicz inequalities, see Theorem 6.3 on p. 19 of [1]. When f is
a real polynomial, effective Nullstellensatz results are known that compute α
in terms of the degree of f ; see [24] and [32]. When f is real-analytic, no such
results are known. We conjecture the following:

Conjectured Nullstellensatz 1.2. Let f be a R-valued real-analytic func-
tion on a neighborhood U of 0 ∈ Rm. Let x = (x1, . . . , xm), Z = {x ∈
U

∣∣ f(x) = 0}, and 1 ≤ μ < m. Let M ∈ N, M > 0 be given. If the following
two conditions are satisfied:

(a) For every j such that 1 ≤ j ≤ μ, there exists a derivative Dαf such that
Dαf 	= 0 for every x ∈ Z and the multi-index α = (α1, . . . , αm) ∈ Nm

satisfies that αj 	= 0 and |α| ≤ M ;
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(b) Z ⊂ {xj = 0} for every 1 ≤ j ≤ μ < n.

Then there exist P ∈ N∗ (computed in terms of M and m) and positive
constants C1, C2, . . . , Cμ such that

|xj |P ≤ Cj |f(x)|

on some potentially smaller neighborhood V , 0 ∈ V ⊂ U for every j such that
1 ≤ j ≤ μ.

The Conjectured Nullstellensatz 1.2 is the simplest effective Łojasiewicz
inequality that can be formulated in the real-analytic case as the role of the
function g in the classical statement is taken by xj , a function that defines
a hypersurface and has only one non-zero derivative, the one given by ∂

∂xj
.

This simpler Nullstellensatz suffices as it is only needed to capture Tougeron-
Whitney elements coming from Catlin’s boundary systems that define hy-
persurfaces. At first glance, condition (a) may seem over-technical, but it
is actually completely natural as it postulates f has a non-zero derivative
transversal to {xj = 0} of a controlled order, namely a controlled transversal
vanishing order. Note that using just the vanishing order of f does not work
as the example f(x, y) = x6 + y2 shows: |x|6 ≤ |f(x)|, where the power 6 is
not related to the vanishing order of f , which is 2. Fortunately, condition (a)
can be obtained for the (n − q) minors of the Levi form that kick-start the
Kohn algorithm by refining the author’s argument from [27]. It is entirely pos-
sible that more transversality conditions need to be added to the Conjectured
Nullstellensatz 1.2 in order for it to hold, but luckily methods such as those
in [27] can be further refined in order to prove these additional conditions for
the Levi minors.

In [8] Catlin obtained a lower bound for the subelliptic gain

ε ≥ τ−n2 τn2

that holds for any smooth pseudoconvex domain in Cn and is exponential in
τ = Dq, his notion of finite type. If the Conjectured Nullstellensatz 1.2 can
be proven and the other sheaf theoretic issue can be sorted out, one would
immediately be able to compare the effective bound yielded by our method
to Catlin’s effective bound via the correspondence between Catlin type and
D’Angelo type derived in [3], [4], and [5]. Other important effective results
or discussions of effectivity can be found in [9], [10], [13], [16], [17], [18], [19],
[20], [30], and [31].

This paper is organized as follows: Section 2 is devoted to the Kohn al-
gorithm and the behavior of the sheaves it generates. Section 3 surveys the
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results needed here that pertain to finite D’Angelo type and finite Catlin
type as well as their correspondence. Section 4 introduces Catlin’s boundary
systems as well as his multitype and commutator multitype. Section 5 then
defines the notion of a Tougeron-Whitney element and links it to the Kohn
algorithm via a stratification theorem. Section 6 carries out effective com-
putations of upper bounds for the number of level sets N that appears in
Theorem 1.1 as well as for the transversal orders of vanishing of Levi minors
that appear in condition (a) of the Conjectured Nullstellensatz 1.2. Finally,
Section 7 proves Theorem 1.1 and sketches the proof of the effective version of
Theorem 1.1 subject to the resolution of the two missing ingredients outlined
above.

I am very much indebted to Charles Fefferman who checked this work
with input from David Catlin and whose comments and suggestions greatly
influenced its trajectory. I am also very grateful to David Catlin for many dis-
cussions about his multitype that I had the pleasure of holding with him over a
number of years. Additionally, I would like to thank Francesca Acquistapace,
Jason Bandlow, Vasile Brinzanescu, Fabrizio Broglia, John D’Angelo, and
Pierre Milman for various useful insights.

2. The Kohn algorithm

We direct the reader to [23] for full details of what we will be describing in
this section. Let us begin with Kohn’s definition of a subelliptic multiplier:

Definition 2.1. Let Ω be a domain in Cn and let x0 ∈ Ω. A C∞ function
f is called a subelliptic multiplier at x0 for the ∂̄-Neumann problem on Ω if
there exist a neighborhood U of x0 and constants C, ε > 0 such that

(1) || fϕ ||2ε ≤ C ( || ∂̄ ϕ ||20 + || ∂̄∗ϕ ||20 + ||ϕ ||20 )

for all (p, q) forms ϕ ∈ C∞
0 (U∩Ω)∩Dom(∂̄∗), where || · ||ε is the Sobolev norm

of order ε and || · || 0 is the L2 norm. Let Iq(x0) be the set of all subelliptic
multipliers at x0.

We need two more definitions:

Definition 2.2. To each x0 ∈ Ω and q ≥ 1 we associate the module M q(x0)
defined as the set of (1, 0) forms σ for which there exist a neighborhood U of
x0 and constants C, ε > 0 such that

(2) || int(σ̄)ϕ ||2ε ≤ C ( || ∂̄ ϕ ||20 + || ∂̄∗ϕ ||20 + ||ϕ ||20 )
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for all (p, q) forms ϕ ∈ C∞
0 (U)∩Dom(∂̄∗), where int(σ̄)ϕ denotes the interior

multiplication of the (0, 1) form σ̄ with the (p, q) form ϕ.

The motivation for this somewhat non-standard interior multiplication of
two forms is described on p.87 of [23].

Definition 2.3. Let J ⊂ C∞(x0), the ring of germs of smooth functions at
x0, then the real radical of J denoted by R

√
J is the set of g ∈ C∞(x0) such

that there exists some f ∈ J and some positive natural number m ∈ N∗ such
that

|g|m ≤ |f |
on some neighborhood of x0.

The ∂̄-Neumann problem is subelliptic inside the domain Ω, so we are
only interested in the case x0 ∈ bΩ. Theorem 1.21 of [23] gives the properties
of Iq(x0):

Theorem 2.4. If Ω is a smooth pseudoconvex domain and if x0 ∈ Ω, then
we have:

(a) Iq(x0) is an ideal.
(b) Iq(x0) = R

√
Iq(x0).

(c) If r = 0 on bΩ, then r ∈ Iq(x0) and the coefficients of ∂r∧ ∂̄r∧(∂∂̄r)n−q

are in Iq(x0).
(d) If f1, . . . , fj ∈ Iq(x0), then the coefficients of ∂r∧ ∂̄r∧ ∂f1 ∧ · · · ∧ ∂fj ∧

(∂∂̄r)n−q−j are in Iq(x0) for j ≤ n− q.

Examining the proof of Proposition 4.7 in Section 4 of [23] yields all
the necessary information about the cost in terms of the reduction in the
subelliptic gain in the ∂̄-Neumann problem of performing each operation that
gives rise to new subelliptic multipliers:

Proposition 2.5. If Ω is a smooth pseudoconvex domain and if x0 ∈ Ω, then
Iq(x0) and M q(x0) have the following properties:

(i) If x0 ∈ Ω, then r ∈ Iq(x0) satisfies (1) with ε = 1.
(ii) If x0 ∈ bΩ and θ is any smooth (0, 1) form such that 〈θ, ∂̄r〉 = 0 on bΩ,

then int(θ) ∂∂̄r ∈ M q(x0) satisfies (2) with ε = 1
2 .

(iii) If f ∈ Iq(x0) satisfies (1) with some ε > 0 and if g ∈ C∞(x0) is such
that |g| ≤ |f | in a neighborhood of x0, then g ∈ Iq(x0) satisfies (1) with
the exact same ε.

(iv) If f ∈ Iq(x0) satisfies (1) with some ε > 0 and if g ∈ C∞(x0) is such
that |g|m ≤ |f | for an integer m ∈ N∗ in a neighborhood of x0, then
g ∈ Iq(x0) satisfies (1) with ε

m .
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(v) If f ∈ Iq(x0) satisfies (1) with some ε > 0, then ∂f ∈ M q(x0) satisfies
(2) with ε

2 , where ∂f is the complex gradient of f .
(vi) If σ1, . . . , σn+1−q ∈ M q(x0) satisfy (2) with ε1, . . . , εn+1−q respectively,

then the coefficients of their wedge product detn−q+1(σ1, . . . , σn+1−q) ∈
Iq(x0) satisfy (1) with ε = min1≤j≤n+1−q εj.

Remarks 2.6. (1) Pseudoconvexity is essential for (ii) and (vi) and irrelevant
for the rest.

(2) The motivation for using the notation detn−q+1(σ1, . . . , σn+1−q) for
the coefficients of the wedge product σ1 ∧ · · · ∧ σn+1−q appears at the top of
p.103 of [23] when M1(x0) is described.

(3) None of the operations in this proposition require a shrinking of neigh-
borhood as it can be seen by carefully reading Section 4 of [23], but the
neighborhood needs to be small enough that special frames of vector fields
and dual forms can be defined. We will describe this construction below.

The Kohn Algorithm:

Step 1

Iq1(x0) = R

√
( r, coeff{∂r ∧ ∂̄r ∧ (∂∂̄r)n−q} )

Step (k+1)

Iqk+1(x0) = R

√
( Iqk(x0), Aq

k(x0) ),

where
Aq

k(x0) = coeff{∂f1 ∧ · · · ∧ ∂fj ∧ ∂r ∧ ∂̄r ∧ (∂∂̄r)n−q−j}

for f1, . . . , fj ∈ Iqk(x0) subelliptic multipliers at step k and j ≤ n−q. As usual
( · ) stands for the ideal generated in the ring C∞(x0) and coeff{∂r ∧ ∂̄r ∧
(∂∂̄r)n−q} is the determinant of the Levi form for q = 1, whereas for q > 1
it consists of all (n − q) minors of the Levi form. The algorithm terminates
when a unit is captured inside Iqk(x0).

In the setting of Theorem 1.1, the domain Ω we consider is defined by a
real-analytic function r. Therefore, just like Kohn does in section 6 of [23],
we can consider the following modification of the algorithm:

Ĩq1(x0) = R

√
( r, coeff{∂r ∧ ∂̄r ∧ (∂∂̄r)n−q} )Cω(x0)

and
Ĩqk+1(x0) = R

√
( Ĩqk(x0), Ãq

k(x0) )Cω(x0),
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where
Ãq

k(x0) = coeff{∂f1 ∧ · · · ∧ ∂fj ∧ ∂r ∧ ∂̄r ∧ (∂∂̄r)n−q−j}

for f1, . . . , fj ∈ Ĩqk(x0) and j ≤ n− q. Here Cω(x0) is the ring of real-analytic
germs at x0 ∈ bΩ, and the algebraic operations of the algorithm, generating
ideals and taking real radicals, are taking place just in Cω(x0) as the subscript
indicates. Obviously, the termination of the modified algorithm implies the
termination of the original algorithm. By its very definition, the modified
Kohn algorithm generates an increasing chain of ideals

Ĩq1(x0) ⊂ Ĩq2(x0) ⊂ · · ·

in the Noetherian ring Cω(x0), so we know this chain of ideals stabilizes.
Our task is showing it stabilizes at the ring itself. At certain points of the
argument, we will consider the behavior of the algorithm on a neighborhood
U � x0, i.e., we will be examining Ĩqk(U). To relate the behavior of Ĩqk(x0) with
that of Ĩqk(U), we need to understand the properties of sheaves of subelliptic
multipliers. For all k ≥ 1, we denote by Ĩ

q
k the sheaf of real-analytic subelliptic

multipliers obtained at step k of this modification of the Kohn algorithm and
by Ĩq the sheaf of real-analytic subelliptic multipliers for the ∂̄-Neumann
problem on (p, q) forms. We recall from [28] the main result governing the
behavior of the sheaves Ĩ

q
k proved via the concept of a quasi-flasque sheaf

that Jean-Claude Tougeron defined in [34]:

Theorem 2.7. Let Ω in Cn be a domain with real-analytic boundary bΩ. Let
Ũ be any open subset of bΩ such that Ũ is contained in a compact semianalytic
subset Y of bΩ. If Ω is bounded, bΩ itself may be taken as Ũ . The ideal
sheaf Ĩq of real-analytic subelliptic multipliers for the ∂̄-Neumann problem on
(p, q) forms defined on Ũ is coherent. Additionally, if Ω is pseudoconvex, the
multiplier ideal sheaf Ĩqk given by the modified Kohn algorithm on Ũ at step k

for each k ≥ 1 is also coherent. In other words, Ĩq and Ĩ
q
k for all k ≥ 1 are

quasi-coherent sheaves.

As promised in the second remark after Proposition 2.5, we now recall the
standard type of neighborhood used by Kohn in [23] except that we exchange
indices 1 and n in order to be consistent with [7] whose boundary system
construction comes into our argument later on. We choose a defining function
r for the domain Ω such that |∂r|x = 1 for all x in a neighborhood of bΩ. Let
U be a neighborhood of x0 small enough that the previous condition holds
on U . We choose (1, 0) forms ω1, . . . , ωn on U satisfying that ω1 = ∂r and
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〈ωi, ωj〉 = δij for all x ∈ U . We define by duality (1, 0) vector fields L1, . . . , Ln

such that 〈ωi, Lj〉 = δij for all x ∈ U . Thus, on U ∩ bΩ,

Lj(r) = L̄j(r) = δ1j .

We define a vector field T on U ∩ bΩ by

T = L1 − L̄1.

The collection of vector fields L2, . . . , Ln, L̄2, . . . , L̄n, T gives a local basis for
the tangent space T (U ∩ bΩ). A (p, q) form ϕ can be expressed in terms of
the corresponding local basis of dual forms on U as

ϕ =
∑

|I|=p, |J |=q

ϕIJ dωI ∧ dω̄J ,

for I and J multi-indices in Nn. As Kohn shows in [23], ϕ ∈ Dom(∂̄∗) means
precisely that

ϕIJ(x) = 0
when 1 ∈ J and x ∈ bΩ. The Levi form is also computed in this local basis.

The neighborhood U described above is not yet the same as the neigh-
borhood Ux0 that appears in the statement of the Main Theorem 1.1. Two
other conditions we will impose later on that may shrink U further, one con-
dition will ensure Theorem 2.7 holds on Ux0 and the other condition will force
D’Angelo type to be finite and effectively bounded on all of Ux0 . The latter
will be discussed in Section 3.

Following [23] let us now define the notion of Zariski tangent space to
an ideal and to a variety, which will allow us to introduce the notion of
holomorphic dimension of a variety. We will then recall from [7] Catlin’s
definition of the holomorphic dimension of a variety, which is slightly different
from Kohn’s. These concepts will be used in Section 5.

Definition 2.8. Let I be an ideal in C∞(U) and let V(I) be the variety
corresponding to I. If x ∈ V(I), then we define Z 1,0

x (I) the Zariski tangent
space of I at x to be

Z 1,0
x (I) = {L ∈ T 1,0

x (U) | L(f) = 0 ∀ f ∈ I },

where T 1,0
x (U) is the (1, 0) tangent space to U ⊂ Cn at x. If V is a variety,

then we define
Z 1,0
x (V) = Z 1,0

x (I(V)),
where I(V) is the ideal of all functions in C∞(U) vanishing on V .
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The next lemma relates Z 1,0
x (I) with Z 1,0

x (V(I)) and follows from trivial
algebraic geometric considerations:

Lemma 2.9. If I is an ideal in C∞(U) and x ∈ V(I), then

(3) Z 1,0
x (V(I)) ⊂ Z 1,0

x (I).

Equality holds in (3) if the ideal I satisfies the Nullstellensatz, namely I =
I(V(I)).

In the real-analytic case, namely if I is an ideal in Cω(U), then I(V(I))
is computed in Cω(U) for the purposes of both Definition 2.8 and Lemma 2.9.
This version of Lemma 2.9 appears as Lemma 6.10 of [23].

Let
Nx = {L ∈ T 1,0

x (bΩ) | 〈 (∂∂̄r)x , L ∧ L̄ 〉 = 0 }.
Nx is the subspace of T 1,0

x (bΩ) consisting of the directions in which the Levi
form vanishes. We can now give the definition of the holomorphic dimension
of a variety sitting in the boundary of the domain Ω first according to Kohn
in [23] and then according to Catlin in [7]:

Definition (Kohn) 2.10. Let V be a variety in U that corresponds to an
ideal I in C∞(U) or Cω(U) and satisfies V ⊂ bΩ. We define the holomorphic
dimension of V in the sense of Kohn by

hol. dim (V) = min
x∈V

dimZ 1,0
x (V) ∩Nx.

Definition (Catlin) 2.11. Let V be a variety in U that corresponds to an
ideal I in C∞(U) or Cω(U) and satisfies V ⊂ bΩ. We define the holomorphic
dimension of V in the sense of Catlin by

hol. dim (V) = max
x∈V

dimZ 1,0
x (V) ∩Nx.

We can now state the Diederich-Fornæss Theorem in [14] mentioned in
the introduction:

Theorem 2.12. Let W be a smooth pseudoconvex real-analytic hypersurface
in Cn. Suppose S ⊂ W is a not necessarily closed real-analytic subvariety
with hol. dim (S) = q. Let z0 ∈ S be an arbitrary point and U = U(z0) an
open neighborhood of z0. Then there exists a complex submanifold V ⊂ U ∩W
of dimension at least q. The manifold V can always be chosen in such a way
that S ∩ V 	= ∅ and that in fact hol. dim (S ∩ V ) = q.
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Remark 2.13. In the Diederich-Fornæss Theorem, the holomorphic dimension
is meant in the sense of Kohn.

Kohn’s Proposition 6.12 of [23] provides an equivalent condition to the
Kohn algorithm not advancing at a particular point:

Proposition 2.14. If x ∈ V(Iqk(x0)), then

x ∈ V(Iqk+1(x0)) ⇔ dim(Z 1,0
x (Iqk(x0)) ∩ Nx) ≥ q.

Remark 2.15. Kohn’s proof of this proposition also applies to the real-analytic
version of the Kohn algorithm, i.e., if x ∈ V(Ĩqk(x0)), then

x ∈ V(Ĩqk+1(x0)) ⇔ dim(Z 1,0
x (Ĩqk(x0)) ∩Nx) ≥ q.

Kohn uses this result in a fundamental way in [23] in order to show that
if the Kohn algorithm does not terminate, then the boundary bΩ cannot
have finite D’Angelo type at x0. By contrast, we will simply point out in the
proof of Theorem 1.1 where this proposition could be used and show that
our method yields more information. We now close the section with a result,
which is informally known as the Łojasiewicz Nullstellensatz:

Theorem 2.16. If J is an ideal of Cω(x0), then I(V(J )) = R
√
J .

Remark 2.17. In his paper [23], J. J. Kohn attributes this result to Łojasiewicz
in [26]. While not explicitly stated there, it easily follows from the classical
Łojasiewicz inequality with respect to distance, which constitutes a major
topic of [26]. Details of this argument can be found on pp. 77-78 of [29].

3. Notions of finite type

We will define finite D’Angelo type Δq here but not finite Catlin type Dq.
The reader is directed to [11] and [12] for comprehensive discussions of Δq,
to [8] where Dq is introduced, and to [3], [4], and [5] that relate the two. The
reader should consult [15] for examples of hypersurfaces where Δq(bΩ, x0) 	=
Dq(bΩ, x0).

Let C = C(n, x0) be the set of all germs of holomorphic curves

ϕ : (U, 0) → (Cn, x0),

where U is some neighborhood of the origin in C1 and ϕ(0) = x0. Let ord0 ϕj

be the order of vanishing of the jth component of ϕ at 0. We set ord0 ϕ =
min1≤j≤n ord0 ϕj .
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Definition 3.1. Let W be a real hypersurface in Cn and r a defining function
for W . The D’Angelo 1-type at x0 ∈ W is given by

Δ1(W,x0) = sup
ϕ∈C(n,x0)

ord0 ϕ
∗r

ord0 ϕ
,

where ϕ∗r is the pullback of r under ϕ. If Δ1(W,x0) is finite, we call x0 a
point of finite D’Angelo 1-type.

Definition 3.2. Let W be a real hypersurface in Cn and r a defining function
for W . The D’Angelo q-type at x0 ∈ W for q > 1 is given by

Δq(W,x0) = inf
φ

sup
ϕ∈C(n−q+1,x0)

ord0 ϕ
∗φ∗r

ord0 ϕ
= inf

φ
Δ1(φ∗r, x0),

where φ : Cn−q+1 → Cn is any linear embedding of Cn−q+1 into Cn and we
have identified x0 with φ−1(x0). If Δq(W,x0) is finite, we call x0 a point of
finite D’Angelo q-type.

We only need one result involving the D’Angelo type in what follows,
namely Theorem 6.2 from p.634 of [11]:

Theorem 3.3. Let W be a smooth real hypersurface in Cn. Let Δq(W,x0) be
finite at some x0 ∈ W , then there exists a neighborhood V of x0 on which

Δq(W,x) ≤ 2(Δq(W,x0))n−q.

Properties of the neighborhood Ux0 3.4. The neighborhood Ux0 � x0 in
which we will run the Kohn algorithm satisfies:

1. Ux0 ⊂ U , where U is the neighborhood of x0 described after the state-
ment of Theorem 2.7;

2. Theorem 2.7 holds on Ux0 ;
3. bΩ ∩ Ux0 satisfies Theorem 3.3;
4. The closure Ux0 is compact in Cn.

4. Catlin’s multitype and boundary systems

We will briefly recall here Catlin’s concepts of boundary system, multitype
M(x0), and commutator multitype C(x0) from [7]. The reader is directed to
[7] or [27] for more details. M(x0) and C(x0) are n-tuples of rational numbers
satisfying certain properties. Catlin called all such n-tuples weights.
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Definition 4.1. Let Γn denote the set of n-tuples of rational numbers Λ =
(λ1, . . . , λn) with 1 ≤ λi ≤ +∞ satisfying the following two properties:

(i) λ1 ≤ λ2 ≤ · · · ≤ λn.
(ii) For each k such that 1 ≤ k ≤ n, either λk = +∞ or there exists a set

of integers a1, . . . , ak such that aj > 0 for all 1 ≤ j ≤ k and

k∑
j=1

aj
λj

= 1.

The set Γn is ordered lexicographically, i.e., given Λ′,Λ′′ ∈ Γn such that
Λ′ = (λ′

1, . . . , λ
′
n) and Λ′′ = (λ′′

1, . . . , λ
′′
n), then Λ′ < Λ′′ if there exists k with

1 ≤ k ≤ n such that λ′
j = λ′′

j for all j < k and λ′
k < λ′′

k. The set Γn is called
the set of weights.

Remark 4.2. At times we may work with truncated weights, which are ν-
tuples of rational numbers (λ1, . . . , λν) satisfying this definition. We denote
by Γν the set of such weights.

Let Γ′ be a set of weights. A weight Λ is said to dominate all weights in
Γ′ if Λ ≥ Λ′ for every Λ′ ∈ Γ′. Catlin defined distinguished weights to be all
elements of Γn that dominate the vanishing of the defining function r of the
domain Ω in various directions. The multitype M(x0) is then the smallest
weight in Γn that dominates all the distinguished weights. By its very defini-
tion, M(x0) does not depend on the coordinate system chosen. Remarkably
enough, Catlin was able to construct another weight C(x0), the commutator
multitype, by differentiating the defining function r in a controlled manner
and to show M(x0) = C(x0) when the domain Ω is pseudoconvex. The notion
of boundary system Bν(x0) is a byproduct of the construction of C(x0).

The commutator multitype C(x0) = (c1, . . . , cn) ∈ Γn always satisfies that
c1 = 1 because as explained in the construction of the special neighborhood
that follows the statement of Theorem 2.7, L1(r) = 1. Set r1 = r. Let p be
the rank of the Levi form of bΩ at x0. Set ci = 2 for i = 2, . . . , p + 1. In
the same construction of the special neighborhood, choose the smooth vector
fields of type (1, 0) L2, . . . , Lp+1 such that Li(r) = ∂r(Li) ≡ 0 and the p× p
Hermitian matrix ∂∂̄r(Li, Lj)(x0) for 2 ≤ i, j ≤ p + 1 is nonsingular. Round
parentheses denote the evaluation of forms on vector fields. If p + 1 ≥ ν,
Cν(x0) = (1, 2, . . . , 2), and we are done.

If p + 1 < ν, consider the (1, 0) smooth vector fields in the kernel of the
Levi form at x0. Let T

(1,0)
p+2 be the bundle consisting of (1, 0) vector fields L

such that ∂r(L) = 0 and ∂∂̄r(L, L̄j) = 0 for j = 2, . . . , p + 1, and let Tp+2 be



Direct proof of termination of the Kohn algorithm 733

the set of germs of sections of T (1,0)
p+2 . It is obvious we now have to consider

lists of vector fields of length at least 3 in order to pinpoint other directions
in which the defining function vanishes to finite order besides those involved
in the non-singular part of the Levi form. Let l ∈ N be such that l ≥ 3, and
let L be a list of vector fields L = {L1, . . . , Ll} with Lj = L or L̄j = L̄ for
every j, 1 ≤ j ≤ l, where L ∈ T

(1,0)
p+2 is a fixed, non-vanishing vector field. Let

L∂r be the function

L∂r(x) = L1 · · ·Ll−2 ∂r ([Ll−1, Ll])(x)

for x ∈ bΩ. Note that one of Ll−1 and Ll needs to be a (1, 0) vector field
and the other one a (0, 1) vector field for their bracket not to be identically
zero. If L∂r(x0) = 0 for every such list L, we set cp+2 = ∞; otherwise, there
exists at least one list L such that L∂r(x0) 	= 0. In the latter case, choose L
of minimal length l and set cp+2 = l. Note that L = X + iY for X and Y
R-valued vector fields, and define functions

f(x) = Re{L2 · · ·Ll−2 ∂r ([Ll−1, Ll])(x)}

and
g(x) = Im{L2 · · ·Ll−2 ∂r ([Ll−1, Ll])(x)}.

The condition L∂r(x0) 	= 0 implies at least one of Xf(x0), Xg(x0), Y f(x0),
and Y g(x0) cannot vanish. Without loss of generality, let us assume Xf(x0) 	=
0. We set rp+2(x) = f(x) and Lp+2 = L, the vector field from which we
constructed the list L. Inductively, assume that for integer ν−1 with p+2 ≤
ν − 1 < n, we have already constructed entries c1, . . . , cν−1; functions r1,
rp+2, . . . , rν−1; and vector fields L2, . . . , Lν−1. Denote by T

(1,0)
ν the set of

(1, 0) smooth vector fields L such that ∂∂̄r(L, L̄j) = 0 for j = 2, . . . , p + 1
and L(rk) = 0 for k = 1, p + 2, p + 3, . . . , ν − 1. Just as before, let Tν be the
set of germs of sections of T (1,0)

ν . Fix a vector field L in Tν , and consider the
list L = {L1, . . . , Ll} satisfying that each Li is one of the vector fields from
the set {Lp+2, L̄p+2, . . . , Lν−1, L̄ν−1, L, L̄}. Let li denote the total number of
times both Li and its conjugate L̄i occur in L for p + 2 ≤ i ≤ ν − 1, and let
lν denote the total number of times both L and L̄ occur in the list L. We will
only consider lists L that satisfy the following two definitions:

Definition 4.3. A list L = {L1, . . . , Ll} is called ordered if

(i) Lj = L or Lj = L̄ for 1 ≤ j ≤ lν
(ii) Lj = Li or Lj = L̄i for 1 +

∑ν
k=i+1 lk ≤ j ≤ ∑ν

k=i lk.
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Definition 4.4. A list L = {L1, . . . , Ll} is called j-admissible if

(i) lj > 0;
(ii)

j−1∑
i=p+2

li
ci

< 1,

where Cj−1 = (c1, . . . , cj−1) is the (j − 1)th commutator multitype.

See [27] or [7] for more motivation regarding these definitions. The content
of Catlin’s Theorem 6.3 from p.552 of [7] works perfectly as a definition of a
boundary system except for the assumption of pseudoconvexity, which is not
necessary:

Definition 4.5. Let Bν(x0) = {r1, rp+2, . . . , rν ;L2, . . . , Lν} be a set of real-
valued smooth functions and vector fields in a neighborhood of a point x0 in
Cn, where p + 1 ≤ ν ≤ n. Assume that the following properties are satisfied:

1. Near x0, r1 is the defining function of a smoothly bounded domain. If we
set aij(x) = ∂∂̄r1(Li, Lj)(x), then the p× p Hermitian matrix (aij(x0))
for 2 ≤ i, j ≤ p + 1 is nonsingular. If either i or j is greater than p + 1,
then aij(x0) = 0.

2. If k < j, then Ljrk ≡ 0. Also, the vector fields L2, . . . , Lν are linearly
independent.

3. Let (c1, . . . , cν) be a given weight in Γν with c1 = 1, c2 = · · · = cp+1 = 2,
and ci ≥ 3 for p + 2 ≤ i ≤ ν. For every j = p + 2, . . . , ν, there is a
j-admissible ordered list Lj = {L1, . . . , Ll} with L1 = Lj or L̄j such
that Lj∂r1(x0) 	= 0. If lji equals the number of times Li and L̄i occur
in Lj , then

∑j
i=p+2

lji
ci

= 1. Moreover, if L′
j is defined by {L2, . . . , Ll},

then rj equals either Re{L′
j∂r1} or Im{L′

j∂r1}.
4. Let L be any ordered list. If li equals the number of times Li and L̄i

occur in L for p + 2 ≤ i ≤ ν and if
∑ν

i=p+2
li
ci
< 1, then L∂r1(x0) = 0.

Then under these assumptions, Bν(x0) = {r1, rp+2, . . . , rν ;L2, . . . , Lν} is a
boundary system of rank p and codimension n − ν about the point x0. The
νth commutator multitype of the boundary system Bν at x0 is the ν-tuple
Cν = (c1, . . . , cν), and vector fields L2, . . . , Lν are called the special vector
fields associated to the boundary system Bν .

Remarks 4.6. (1) As explained in the paragraph preceding Definition 4.3, cp+2
is a positive integer, and Lp+2 only consists of Lp+2 and L̄p+2.

(2) Note that Ljrj 	= 0 for every j = p + 2, . . . , ν follows from part (3) of
Definition 4.5.
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We will now put the Levi form around x0 in as close to a diagonalized form
as this setting allows. The following lemma is an argument communicated to
the author by David Catlin, although in a less transparent way it already
appears on pp.539-540 of [7] and is listed among the properties of a boundary
system on p.552 of the same paper:

Lemma 4.7. If Bν(x0) = {r1, rp+2, . . . , rν ;L2, . . . , Lν} is a boundary system
of rank p and codimension n − ν about the point x0 ∈ bΩ, then there exists
another boundary system B̃ν(x0) = {r1, r̃p+2, . . . , r̃ν ; L̃2, . . . , L̃ν} at x0 that is
also of rank p and codimension n− ν and furthermore satisfies that ãij(x) =
∂∂̄r1(L̃i, L̃j)(x) ≡ 0 in a neighborhood of x0 whenever 2 ≤ i ≤ p + 1 and
j ≥ p + 2.

Proof: The argument proceeds in two steps.

Step 1: Since Bν(x0) = {r1, rp+2, . . . , rν ;L2, . . . , Lν} is a boundary system
of rank p at x0, the Levi form has rank p at x0, so there exist vector fields
L̃2, . . . , L̃p+1 in a neighborhood U of x0 in bΩ such that the p× p Hermitian
matrix (ãij(x)) for ãij(x) = ∂∂̄r1(L̃i, L̃j)(x) and 2 ≤ i, j ≤ p+1 is nonsingular
at every x ∈ U and furthermore equals the identity matrix Ip at x0 itself.

Step 2: Complete L̃2, . . . , L̃p+1 to a basis L̃2, . . . , L̃p+1, L
′
p+2 . . . , L

′
n of the

(1, 0) tangent space T (1,0)(U ∩ bΩ). We claim that for every k, l with p+ 2 ≤
k ≤ n and 2 ≤ l ≤ p+1, there exist smooth functions ck,l ∈ C∞(U) such that
the vector fields L̃k = L′

k +
∑p+1

l=2 ck,l L̃l satisfy ãik(x) = ∂∂̄r1(L̃i, L̃k)(x) ≡ 0
for 2 ≤ i ≤ p + 1 on the neighborhood U of x0 from Step 1 up to perhaps a
shrinking.

Proof of claim: ãik(x) = ∂∂̄r1(L̃i, L̃k)(x) ≡ 0 for all x ∈ U is equivalent to

∂∂̄r1

(
L̃i, L

′
k +

p+1∑
l=2

ck,l L̃l

)
(x) ≡ 0,

which is in turn equivalent to

(4) ∂∂̄r1

(
L̃i,

p+1∑
l=2

ck,l L̃l

)
(x) = −∂∂̄r1(L̃i, L

′
k)(x).

Set bi,k = −∂∂̄r1(L̃i, L
′
k)(x) for 2 ≤ i ≤ p + 1 and p + 2 ≤ k ≤ n. Obviously,

these bi,k’s are smooth functions in C∞(U). By the linearity of the pairing
of forms and vector fields that defines the Levi form, for every k such that
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p+2 ≤ k ≤ n, equation (4) can be rewritten as the linear system of equations

(5)
(
∂∂̄r1(L̃i, L̃l)

)⎛⎜⎝ ck,2
...

ck,p+1

⎞⎟⎠ =

⎛⎜⎝ b2,k
...

bp+1,k

⎞⎟⎠ ,

where the p × p Hermitian matrix
(
∂∂̄r1(L̃i, L̃l)

)
is the identity matrix Ip

at x0 by Step 1 and a small perturbation of the identity in a neighborhood
of x0. Shrink the neighborhood U from Step 1 as necessary to ensure that
by Cramer’s rule, the linear system of equations in (5) has smooth solutions
ck,2, . . . , ck,p+1 ∈ C∞(U) for every k such that p + 2 ≤ k ≤ n. The claim is
proven.

Note that while the defining function r1 does not change in the new
boundary system with respect to vector fields L̃2, . . . , L̃ν , we will be obtaining
different functions r̃p+2, . . . , r̃ν . Additionally, a quick glance at the definition
of the tangent bundle T

(1,0)
p+2 shows that however we choose L′

p+2 . . . , L
′
n ∈

T
(1,0)
p+2 to complete L̃2, . . . , L̃p+1 to a basis of T (1,0)(U ∩ bΩ), the new vector

fields given by L̃k = L′
k +

∑p+1
l=2 ck,l L̃l also satisfy L̃k ∈ T

(1,0)
p+2 for every k

such that p + 2 ≤ k ≤ n.
From now on, we can assume our boundary system

Bν(x0) = {r1, rp+2, . . . , rν ;L2, . . . , Lν}

satisfies the conclusion of Lemma 4.7 whenever it is useful to do so.
We summarize in the next theorem two of the most important properties

of Cν , which are contained in Proposition 2.1 on p.536 and Theorem 2.2 on
p.538 of [7]:

Theorem 4.8. Let the domain Ω = {z ∈ Cn
∣∣ r(z) < 0} be pseudoconvex

in a neighborhood of a point x0 ∈ bΩ. The νth commutator multitype Cν =
(c1, . . . , cν) of the boundary system Bν satisfies the following two properties:

(i) Cν is upper semi-continuous with respect to the lexicographic ordering,
i.e., there exists a neighborhood U � x0 such that for all x ∈ U ∩ bΩ,
Cν(x) ≤ Cν(x0).

(ii) Cν(x0) = Mν(x0), where Mν = (m1, . . . ,mν) consists of the first ν
entries of the multitype M = (m1, . . . ,mn).

Remarks 4.9. (1) Pseudoconvexity is not necessary for part (i) but is essential
for part (ii) of this theorem.
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(2) By its very definition, Mν does not depend on the coordinate system
that is chosen. When the domain is pseudoconvex so Cν(x0) = Mν(x0) for
every x0 ∈ bΩ, Cν is likewise well-defined, i.e., independent of coordinate
system and choices of rp+2, . . . , rν , L2, . . . , Lν . In other words, the lengths
of the admissible lists stay the same, but we may choose the vector fields
L2, . . . , Lν slightly differently, which in turns would yield different functions
rp+2, . . . , rν in the boundary system.

We will now state only part of the main theorem on p.531 of [7] containing
the properties of the multitype M(x0):

Theorem 4.10. Let Ω ⊂ Cn be a pseudoconvex domain with smooth bound-
ary. Let x0 ∈ bΩ. The multitype M(x0) has the following properties:

1. If M(x0) = (m1, . . . ,mn), there exist coordinates (z1, . . . , zn) around
x0 such that x0 is mapped to the origin and if

∑n
i=1

αi+βi

mi
< 1, then

DαD̄βr(0) = 0. If one of the entries mi = +∞ for some 1 ≤ i ≤ n,
then these coordinates should be interpreted in the sense of formal power
series.

2. If M(x0) = (m1, . . . ,mn), then for each q = 1, . . . , n,

mn+1−q ≤ Δq(bΩ, x0),

where Δq(bΩ, x0) is the D’Angelo q-type of the point x0.

In Section 6, we will need to truncate the defining function of the domain
in a way that retains finite D’Angelo type but may lose pseudoconvexity so
that we can understand more about what types of derivatives of the Levi
determinant are non-zero. Therefore, some machinery from [7] that works in
the absence of pseudoconvexity will be very useful. We recall it here starting
with a definition that introduces a measurement of the vanishing order of a
function with respect to a given weight:

Definition 4.11. Let the weight Λ = (λ1, . . . , λn) ∈ Γn be given. We will
denote by M(t; Λ) the set of germs of smooth functions f defined near the
origin such that

DαD̄βf(0) = 0 whenever
n∑

i=1

αi + βi
λi

< t.

We will now state Catlin’s Proposition 3.6 from page 542 of [7]. Given a
boundary system at x0,

Bν(x0) = {r1, rp+2, . . . , rν ;L2, . . . , Lν},
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this result shows in which sets M(t; Λ) we can place the additional functions
rp+2, . . . , rν obtained by differentiating r and relates this information to the
νth commutator multitype Cν(x0). Without loss of generality, we can translate
the point x0 to the origin in Cn.

Proposition 4.12. Let Bν(0) = {r1, rp+2, . . . , rν ;L2, . . . , Lν} be a boundary
system of rank p and codimension n− ν about the origin in Cn. Suppose that
the νth commutator multitype of Bν(0) at the origin is Cν(0) = (λ1, . . . , λν).
Let Λ = (λ1, . . . , λn) be a weight in Γn that agrees with Cν(0) up to the νth

entry and also satisfies that λ1 = 1, λ2 = · · · = λp+1 = 2, and λj ≥ 3 for
j ≥ p + 2. If r1 ∈ M(1; Λ), then rk ∈ M

(
1
λk

; Λ
)

for all k = p + 2, . . . , ν.
Moreover, if cν+1 denotes the (ν + 1)th entry of Cν+1(0), then cν+1 ≥ λν+1.

As Proposition 4.12 shows, the ν-tuple Cν(0) is associated to the boundary
system Bν(0), but the space M(t; Λ) requires a weight Λ ∈ Γn, which is an
n-tuple. We thus need to manufacture a weight starting with an ν-tuple. The
most natural way to do so is contained in the next definition:

Definition 4.13. Let Γn,ν+1 be the set of weights (λ1, . . . , λn) in Γn such
that λν+1 = · · · = λn, i.e., all entries from the (ν+1)th entry forward coincide.

Definition 4.13 will become relevant in Section 6, if it turns out that
M(x0) has some infinite entries as it could be the case if Δq(bΩ, x0) < ∞,
but q > 1.

We can finally prove now the lemma that will be used in Section 6 to
identify the non-zero derivatives of the Levi determinant from which condition
(a) in the Conjectured Nullstellensatz 1.2 can be derived. The proof of this
lemma is part of the proof of Catlin’s Proposition 3.2 on p.539 of [7], which
we simply employ here for a different purpose compared to Catlin:

Lemma 4.14. Let Bν(0) = {r1, rp+2, . . . , rν ;L2, . . . , Lν} be a boundary sys-
tem of rank p and codimension n − ν about the origin in Cn. Suppose that
the νth commutator multitype of Bν(0) at the origin is Cν(0) = (λ1, . . . , λν),
and let Λ = (λ1, . . . , λn) be a weight in Γn that agrees with Cν(0) up to the
νth entry and also satisfies that λ1 = 1, λ2 = · · · = λp+1 = 2, and λj ≥ 3 for
j ≥ p + 2. If rk ∈ M

(
1
λk

; Λ
)

for all k = 1, p + 2, . . . , ν, then there exists a
coordinate change w = ψ(z) in a neighborhood of the origin in Cn such that
ρk = (ψ−1)∗rk, the pullbacks of the functions rk under this coordinate change
for k = 1, p + 2, . . . , ν, satisfy ρk ∈ M

(
1
λk

; Λ
)

and for p + 2 ≤ k ≤ ν,

ρk(w) = 2Re{wk} + O(|w|2).
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Furthermore, if B̃ν(0) = {ρ1, ρp+2, . . . , ρν ; L̃2, . . . , L̃ν} is the boundary system
of rank p and codimension n−ν about the origin in Cn in the new coordinates
corresponding to Bν(0), then for each k such that p+2 ≤ k ≤ ν, the coefficient
of ∂

∂wk
in the vector field L̃k is non-zero at the origin.

Proof: Parts (2) and (3) of Definition 4.5 imply that the (ν−p−1)×(ν−p−1)
matrix (Lirj(0)), where p + 2 ≤ i, j ≤ ν, is upper triangular and that its
diagonal entries are all non-zero. Therefore, we conclude that at the origin
the differentials

∂rk(0) =
n∑

j=1
akj dzj

are linearly independent for k = p + 2, . . . , ν. Furthermore, the assumption
rk ∈ M

(
1
λk

; Λ
)

for all k = p + 2, . . . , ν implies akj = 0 if λj > λk. We now
choose additional complex numbers akj for ν + 1 ≤ k ≤ n and 1 ≤ j ≤ n such
that akj = 0 if λj > λk and the matrix (akj ) has rank n−p−1 for p+2 ≤ k ≤ n

and 1 ≤ j ≤ n. To obtain a full rank matrix (akj ) for 1 ≤ j, k ≤ n, we set
akj = δjk whenever 1 ≤ k ≤ p+1 and 1 ≤ j ≤ n. We use this matrix to define
a linear change of variables around the origin in Cn as follows: w = ψ(z),
where for every k = 1, . . . , n,

ψk(z) =
n∑

j=1
akj zj .

Consider now ρk = (ψ−1)∗rk, the pullbacks of the functions rk under this
coordinate change for k = 1, p + 2, . . . , ν. The condition we imposed that
akj = 0 if λj > λk ensures ρk ∈ M

(
1
λk

; Λ
)

for k = 1, p + 2, . . . , ν. The inverse
ψ−1 is a linear map represented by the matrix that is the inverse of (akj ),
whose rows p+2 through ν were exactly the differentials ∂rp+2(0), . . . , ∂rν(0).
Therefore, ∂ρk(0) = dwk and ρk(w) = 2Re{wk}+O(|w|2) in a neighborhood
of the origin for k = p + 2, . . . , ν. To the original boundary system Bν(0) =
{r1, rp+2, . . . , rν ;L2, . . . , Lν}, there corresponds a boundary system B̃ν(0) =
{ρ1, ρp+2, . . . , ρν ; L̃2, . . . , L̃ν} also of rank p and codimension n− ν about the
origin in Cn. Therefore, L̃kρk(0) 	= 0 for every k = p + 2, . . . , ν, which given
the form of ρk around the origin means the coefficient of ∂

∂wk
in the vector

field L̃k must be non-zero at the origin.
We conclude this section with a lemma that follows easily from Catlin’s

construction of a boundary system but is essential for the proof of Theo-
rem 1.1:
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Lemma 4.15. Let the domain Ω = {z ∈ Cn
∣∣ r(z) < 0} be smooth in a

neighborhood of a point x0 ∈ bΩ, and let

Bn+1−q(x0) = {r1, rp+2, . . . , rn+1−q;L2, . . . , Ln+1−q}

be a boundary system of rank p and codimension n − (n + 1 − q) = q − 1 at
x0, then

∂r ∧ ∂̄r ∧ (∂∂̄r)p ∧ ∂rp+2 ∧ · · · ∧ ∂rn+1−q(x0) 	= 0.

Remark 4.16. If we show rp+2, . . . , rn+1−q are multipliers in the ideal Iqk(x0)
at some step k of the Kohn algorithm, then

coeff{∂r ∧ ∂̄r ∧ (∂∂̄r)p ∧ ∂rp+2 ∧ · · · ∧ ∂rn+1−q} ∈ Aq
k(x0)

because n+1− q− (p+1)+ p = n− q. Thus coeff{∂r∧ ∂̄r∧ (∂∂̄r)p∧∂rp+2 ∧
· · · ∧∂rn+1−q} would be a unit in the ideal Iqk+1(x0), and the Kohn algorithm
would terminate at step k + 1.

Proof: From parts (2) and (3) of Definition 4.5, for i = 1, p+2, p+3, . . . , n+
1 − q and j = 2, . . . , n + 1 − q, we have

Lj(ri)

⎧⎪⎪⎨⎪⎪⎩
= 0 if j > i

	= 0 if j = i

no information if j < i

.

The vector fields L2, . . . , Ln+1−q are linearly independent and belong to the
(1, 0) tangent space T (1,0)(bΩ∩U) for U � x0 an open set around x0. We now
complete these to a basis of T (1,0)(bΩ) in accordance with the setup of the
special neighborhood constructed after the statement of Theorem 2.7. Since
the imaginary part of L1 is T and its real part is the normal direction to bΩ,
it follows that at x0 the coefficients of the wedge product ∂r ∧ ∂̄r ∧ (∂∂̄r)p ∧
∂rp+2 ∧ · · · ∧ ∂rn+1−q are given by all the (n − q) × (n − q) minors of the
(n− 1) × (n− q) matrix: (

Ap 0
� B

)
,

where Ap is a p × p nonsingular matrix coming from the fact that the Levi
form has rank p at x0, 0 is a (n − 1 − p) × p matrix of all zero entries, �
is a p × (n − q − p) matrix for which we have no information, and B is the
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following lower triangular (n− 1 − p) × (n− q − p) matrix:⎛⎜⎜⎜⎜⎜⎜⎝
Lp+2(rp+2) 0 · · · 0 0 0 · · · 0

∗ Lp+3(rp+3) · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

...
∗ ∗ · · · Ln−q(rn−q) 0 0 · · · 0
∗ ∗ · · · ∗ Ln+1−q(rn+1−q) 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎠
Notation ∗ denotes an entry for which we have no information. Note that the
right side block of zero entries occurs only if q > 1. Given the location of the
zero entries, it is clear that the wedge product

(
∂r ∧ ∂̄r ∧ (∂∂̄r)p ∧ ∂rp+2 ∧

· · · ∧ ∂rn+1−q

)
(x0) contains

(detAp)Lp+2(rp+2) · · ·Ln+1−q(rn+1−q) 	= 0

as one of its coefficients by construction.

5. Tougeron-Whitney elements and the stratification
theorem

The aim of this section is to define Tougeron-Whitney elements, relate these
Tougeron-Whitney elements to Catlin’s functions r1, rp+2, . . . , rn+1−q in a
boundary system Bn+1−q, and then prove a stratification theorem that high-
lights the importance of the observation contained in Lemma 4.15. The author
also utilized ideas related to the stratification induced by the Catlin multitype
in order to investigate the behavior of the Levi determinant in [27].

Whitney is said to have first used the objects we will be defining shortly,
and they subsequently appear in work by Malgrange and others. In particular,
in Proposition 4.6 of subsection V.4 of [35], Tougeron employed these objects
to simplify the proof of Thom’s result in [33] that a variety corresponding to
a Łojasiewicz ideal of smooth functions has an open and dense set of smooth
points. Tougeron’s use is closest to the situation at hand, so we have decided
to call these objects Tougeron-Whitney elements. Since these elements are
R-valued smooth functions, if k = (k1, . . . , kn) ∈ Nn is a multi-index, then
Dk means the differentiation ∂

∂x
k1
1

· · · ∂
∂xkn

n
in this context.

Definition 5.1. Consider f ∈ C∞(Rn) and V = {x ∈ Rn | f(x) = 0} =
V
(
(f)

)
. If x0 ∈ V and there exist an open set U ⊂ Rn, x0 ∈ U , and a multi-

index k ∈ Nn with |k| = d ≥ 1 such that Dkf(x0) 	= 0 but Dhf(x) = 0 for all
h ∈ Nn such that |h| < |k| = d and all x ∈ U∩V, then we call g(x) = Dk′

f(x)



742 Andreea C. Nicoara

a Tougeron-Whitney element corresponding to f(x) provided that the multi-
index k′ ∈ Nn arises from the multi-index k by splitting off a factor of ∂

∂xj
,

i.e., ∂
∂xj

Dk′
f(x0) = Dkf(x0) 	= 0 for some 1 ≤ j ≤ n.

Remark 5.2. By construction, the gradient of the Tougeron-Whitney element
g(x) satisfies that ∇g(x0) 	= 0, so there exists a perhaps smaller open set
Ũ ⊂ U with x0 ∈ Ũ such that V

(
(g)

)
∩ Ũ is a hypersurface, where V

(
(g)

)
is

the vanishing set of g(x).
Tougeron’s setup in [35] was the author’s motivation for looking at the

boundary system construction in [7] in the hope of finding distinguished el-
ements with nonzero gradients that vanished on the varieties correspond-
ing to the ideals Iqk(x0) in the Kohn algorithm. We shall thus call functions
r1, rp+2, . . . , rn+1−q in the boundary system Bn+1−q(x0) Tougeron-Whitney
elements for the Kohn algorithm. A consequence of Lemma 4.15 in the pre-
vious section is that functions r1, rp+2, . . . , rn+1−q have linearly independent,
nonzero gradients. We now have to show that indeed r1, rp+2, . . . , rn+1−q van-
ish on the variety corresponding to the first ideal of multipliers Iq1(U), pro-
vided we subtract certain level sets of the (n+1−q)th commutator multitype
Cn+1−q and U is an appropriately small neighborhood around x0. This result
is the stratification theorem mentioned at the beginning of this section.

To use the stratification given by Catlin’s multitype, just like in [27], we
need a beefed-up version of Proposition 2.1 on p.536 of [7]. This is Proposition
4.8 from [27]:

Proposition 5.3. Let x0 ∈ bΩ be such that the Levi form has rank p at x0.
For p + 2 ≤ ν ≤ n, let Bν be a boundary system of rank p and codimension
n − ν at x0. There exists a neighborhood U of x0 such that all the following
conditions hold on its closure U :

(i) For all x ∈ U ∩ bΩ, Cν(x) ≤ Cν(x0), where Cν = (c1, . . . , cν) is the νth

commutator multitype;
(ii)

Mν = {x ∈ U ∩ bΩ
∣∣ rj(x) = 0, j = 1, p + 2, . . . , ν}

is a submanifold of U ∩ bΩ of holomorphic dimension n−ν in the sense
of Catlin;

(iii) The level set of the commutator multitype at x0 satisfies that

{x ∈ U ∩ bΩ
∣∣ Cν(x) = Cν(x0)} ⊂ Mν ;

(iv) For all x ∈ U ∩ bΩ, the Levi form has rank at least p at x;
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(v) For all x ∈ U ∩ bΩ, Lj∂r1(x) 	= 0 for all j = p + 2, . . . , ν, where
Lp+2, . . . ,Lν are the ν-admissible, ordered lists used in defining the
boundary system Bν .

Now let x0 ∈ bΩ be a point of finite D’Angelo q-type, and assume Ω is
pseudoconvex. By D’Angelo’s result, Theorem 3.3, there exists a neighbor-
hood U of x0 in bΩ so that for every x ∈ U , the D’Angelo q-type is finite
at x. We can shrink U if necessary to ensure Proposition 5.3 also holds on
U . By Remark 1.2 on p.532 of [7], the (n + 1 − q)th commutator multitype
Cn+1−q can assume only finitely many values Cn+1−q

1 , . . . ,Cn+1−q
N at all points

of U ∩ bΩ, where C
n+1−q
1 < C

n+1−q
2 < · · · < C

n+1−q
N and N is some positive

natural number. We will give an effective upper bound for N in terms of the
D’Angelo q-type, n, and q later on in the paper. Let

Sj = {x ∈ U ∩ bΩ
∣∣ Cn+1−q(x) = C

n+1−q
j }

be the level sets of the (n + 1 − q)th commutator multitype for 1 ≤ j ≤ N .
We are working here with the open set U rather than its closure, unlike in
Proposition 5.3. We now have the stratification

U ∩ bΩ =
N⋃
j=1

Sj

since Si ∩ Sj = ∅ for i 	= j.
Let us recall Lemmas 4.9 and 4.10 from [27] by combining them into one

statement:

Lemma 5.4. Let Ω ⊂ Cn be a smooth pseudoconvex domain, and let x0 ∈ bΩ
be a boundary point of finite D’Angelo q-type. Let U be a neighborhood of
x0 such that on U ∩ bΩ, bΩ has finite D’Angelo q-type everywhere and the
(n + 1 − q)th commutator multitype Cn+1−q takes only finitely many values
C
n+1−q
1 < · · · < C

n+1−q
N for some natural number N ≥ 1. The lowest (n+ 1−

q)th commutator multitype C
n+1−q
1 = (1, 2, . . . , 2) and its level set S1 is open

in bΩ.

Corollary 5.5. Let Ω ⊂ Cn be a smooth pseudoconvex domain, and let x0 ∈
bΩ be a boundary point of finite D’Angelo q-type. There exists a neighborhood
U of x0 such that the Kohn algorithm terminates at step 1 densely in U ∩ bΩ
in the induced topology of bΩ.

Proof: By Lemma 5.4, Cn+1−q
1 = (1, 2, . . . , 2) and its level set S1 is open.

Therefore, ∂r ∧ ∂̄r ∧ (∂∂̄r)n−q 	= 0 densely in U ∩ bΩ, but coeff{∂r ∧ ∂̄r ∧



744 Andreea C. Nicoara

(∂∂̄r)n−q} ∈ Iq1 , the first ideal of multipliers in the Kohn algorithm. Thus
Iq1(x) = C∞(x) for a dense set in U ∩ bΩ, i.e., the Kohn algorithm terminates
at step 1 at each of the points in this dense set.

We are finally ready to state and prove the most important result in this
section, the stratification theorem:

Stratification Theorem 5.6. Let Ω ⊂ Cn be a smooth pseudoconvex do-
main, and let x0 ∈ bΩ be a boundary point of finite D’Angelo q-type. Let

Bn+1−q(x0) = {r1, rp+2, . . . , rn+1−q;L2, . . . , Ln+1−q}

be the boundary system at x0. There exists a neighborhood U of x0 such that

r1, rp+2, . . . , rn+1−q ∈ I

⎛⎝V(Iq1(U)) −
N−1⋃
j=2

Sj

⎞⎠ ,

i.e., the functions r1, rp+2, . . . , rn+1−q vanish on the zero set of the first ideal
of multipliers Iq1(U) of the Kohn algorithm on the neighborhood U after we
remove from the zero set all the level sets of the commutator multitype except
for the lowest one and the highest one, which is the one at the point x0 itself.

Remark 5.7. By the upper semi-continuity of the commutator multitype, the
level set SN corresponding to the top commutator multitype in U is a closed
set in bΩ. When working over C∞(U), any closed set is a variety, which implies
that

V(Iq1(U)) −
N−1⋃
j=2

Sj = V(Iq1(U)) ∩ SN

is a variety as well, and therefore the notation

r1, rp+2, . . . , rn+1−q ∈ I

⎛⎝V(Iq1(U)) −
N−1⋃
j=2

Sj

⎞⎠
makes sense. Assume now that Ω is real-analytic. It will be easy to see in the
proof of Theorem 1.1 that in fact

V(Iq1(U)) −
N−1⋃
j=2

Sj = V(Iq1(U)) ∩ SN

is a real-analytic variety. Furthermore, since the domain is real-analytic, both
generators of Iq1 are real-analytic and so are r1, rp+2, . . . , rn+1−q. It follows
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that the notation

r1, rp+2, . . . , rn+1−q ∈ I

⎛⎝V(Iq1(U)) −
N−1⋃
j=2

Sj

⎞⎠
makes sense for the ideal of the variety V(Iq1(U)) − ⋃N−1

j=2 Sj in Cω(U) and
even more correctly,

r1, rp+2, . . . , rn+1−q ∈ I

⎛⎝V(Ĩq1(U)) −
N−1⋃
j=2

Sj

⎞⎠ .

Proof: We distinguish two cases:

Case 1: The Levi form has rank n − q at x0. In this case, the commuta-
tor multitype Cn+1−q(x0) = (1, 2, . . . , 2) and the boundary system does not
contain any other rj ’s besides the defining function r1:

Bn+1−q(x0) = {r1;L2, . . . , Ln+1−q}.

We choose U to be the neighborhood guaranteed by Lemma 5.4. Since r1 = r,
by the very definition of Iq1 , r1 ∈ Iq1(U). No level sets of Cn+1−q need to be
removed because by the upper semi-continuity of Cn+1−q, it stays the same
on all of U , and it is the lowest one.

Case 2: The Levi form has rank p with p < n − q at x0. This means
Cn+1−q(x0) > (1, 2, . . . , 2). Let U be a neighborhood of x0 such that Proposi-
tion 5.3 holds and the D’Angelo q-type is finite for all x ∈ U ∩ bΩ.

U ∩ bΩ =
N⋃
j=1

Sj ,

where C
n+1−q
1 < C

n+1−q
2 < · · · < C

n+1−q
N and

Sj = {x ∈ U ∩ bΩ
∣∣ Cn+1−q(x) = C

n+1−q
j }

are the level sets of the (n + 1 − q)th commutator multitype for 1 ≤ j ≤ N .
By part (i) of Proposition 5.3, x0 ∈ SN . By part (iii) of Proposition 5.3,
SN ⊂ Mn+1−q, where

Mn+1−q = {x ∈ U ∩ bΩ
∣∣ rj(x) = 0, j = 1, p + 2, . . . , n + 1 − q}.
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When x ∈ S1, coeff{∂r ∧ ∂̄r ∧ (∂∂̄r)n−q} 	= 0, so S1 ∩ V(Iq1(U)) = ∅. For all
2 ≤ j ≤ N and all x ∈ Sj , coeff{∂r ∧ ∂̄r ∧ (∂∂̄r)n−q}(x) = 0. Therefore,

V(Iq1(U)) =
N⋃
j=2

Sj ,

which is equivalent to

V(Iq1(U)) −
N−1⋃
j=2

Sj = SN ⊂ Mn+1−q

since Si∩Sj = ∅ if i 	= j. Given the definition of Mn+1−q, this means precisely
that

r1, rp+2, . . . , rn+1−q ∈

⎛⎝V(Iq1(U)) −
N−1⋃
j=2

Sj

⎞⎠ .

6. Effective computations

When x0 ∈ bΩ is a point of finite D’Angelo q-type Δq(bΩ, x0) = t ∈ Q+, we
would like to give an effective upper bound for N , the number of level sets of
the (n + 1 − q)th commutator multitype Cn+1−q in a neighborhood of x0, in
terms of t, the dimension n, and the level of forms q:

Lemma 6.1. Let Ω ⊂ Cn be a smooth pseudoconvex domain, and let x0 ∈ bΩ
be a boundary point where Δq(bΩ, x0) = t. Let U be a neighborhood of x0 such
that for every x ∈ U ∩bΩ Δq(bΩ, x) ≤ 2tn−q and the (n+1−q)th commutator
multitype Cn+1−q takes only finitely many values C

n+1−q
1 < · · · < C

n+1−q
N in

U ∩ bΩ for some natural number N ≥ 1.

N ≤ (�2tn−q� − 1)�2tn−q�
(n−q)(n−q+1)

2 −1,

where �2tn−q� is the ceiling of 2tn−q, i.e., the least integer greater than or
equal to 2tn−q.

Proof: As D’Angelo proved in [11], Δq(bΩ, x) may jump in a neighborhood of
x0. We can control this jump by Theorem 3.3, namely there exists a neighbor-
hood U of x0 such that for every x ∈ U ∩ bΩ, Δq(bΩ, x) ≤ 2tn−q. Shrink U if
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necessary in order to ensure that part (i) of Theorem 4.8 holds. Since the do-
main is pseudoconvex, by Theorem 4.8 (ii) and Theorem 4.10 (2), at all points
of U ∩ bΩ the (n + 1 − q)th commutator multitype Cn+1−q takes only finitely
many values C

n+1−q
1 < · · · < C

n+1−q
N and Cn+1−q = (c1, . . . , cn+1−q) ∈ Γn+1−q

with
2 ≤ c2 ≤ · · · ≤ cn+1−q ≤ 2tn−q.

We will now compute an upper bound for N . The commutator multitype is
ordered lexicographically, so even if its entries at x0 are bounded above by t
and Cn+1−q(x0) = C

n+1−q
N , the top value, it can still happen that away from

x0 some entries of a lower commutator multitype are bounded above not by t
but by the D’Angelo type at that point, which may be higher. This is why we
must work with the jump in D’Angelo type as our upper bound. In order not
to have to write the quantity 2tn−q at every step of the effective computation
of N , we set t′ = 2tn−q, and we will substitute back for t′ at the end of the
argument. By Definition 4.1, c1 = 1 and the ci’s are defined recursively to
satisfy that ∃ a1, . . . , ak ∈ N = {0, 1, 2, . . . } such that

(6)
k∑

j=1

aj
cj

= 1,

where the top coefficient ak > 0. We know c1 = 1. We would like to estimate
the number of possibilities for c2:

a1

c1
+ a2

c2
= 1.

If a1 = 1, then a1
c1

= 1 and a2 = 0, which contradicts the requirement that
a2 > 0. Therefore, a1 = 0, and we have that c2 = a2. Now, since 2 ≤ c2 ≤
t′ ∈ Q+ and c2 ∈ N, we estimate there are at most �t′� − 1 possibilities for
a2, where �t′� is the least integer greater than or equal to t′. Let us go one
step further and look at c3. Now,

a1

c1
+ a2

c2
+ a3

c3
= 1.

As above, a1 = 0. There are at most �t′� possibilities for a2, namely all
integers from 0 to �t′� − 1 and at most �t′� possibilities for a3, namely the
integers from 1 to �t′�. This makes a total of at most �t′�2 possibilities for c3.
If n = 3, we have at most (�t′� − 1)�t′�2 3-tuples (c1, c2, c3) given what we
got for c2 and c3.
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Note that our method here only counts the number of possible equations
for cj for j ≥ 3 without taking into account the fact that several equations
might yield the same cj or the fact that the entries cj are increasing.

In general, we expect at most �t′�j−1 possibilities for cj for 3 ≤ j ≤ n+1−q

and �t′�− 1 possibilities for c2, which gives at most (�t′�− 1)�t′�
(n−q)(n−q+1)

2 −1

(n+1−q)-tuples (c1, c2, . . . , cn+1−q). We substitute D’Angelo type jump value
for t′ to obtain

N ≤ (�2tn−q� − 1)�2tn−q�
(n−q)(n−q+1)

2 −1.

Clearly, this is a very generous an upper bound, which could be improved,
but it will do for our purposes here.

Let us now recall from [27] the effective bound on the vanishing order of
coeff{∂r ∧ ∂̄r ∧ (∂∂̄r)n−q}:
Theorem 6.2. Let x0 ∈ bΩ be a point on the boundary of the domain such
that Δq(bΩ, x0) = t < ∞. At x0 coeff{∂r ∧ ∂̄r ∧ (∂∂̄r)n−q} vanishes to order
at most (�t� − 2)n−q.

We would like to sharpen this result using the truncation methods from
[27] in order to derive the kind of derivative condition that appears in part
(a) of the Conjectured Nullstellensatz 1.2.

Proposition 6.3. Let x0 ∈ bΩ be a point on the boundary of a smooth pseu-
doconvex domain such that Δq(bΩ, x0) = t < ∞ and the rank of the Levi form
at x0 equals p. Let

Bn+1−q(x0) = {r1, rp+2, . . . , rn+1−q;L2, . . . , Ln+1−q}

be any boundary system of rank p and codimension q − 1 about the point x0.
There exists a local change of variables w = ψ(z) mapping x0 to the origin in
Cn such that the corresponding boundary system of rank p about the origin in
Cn in the new coordinates

B̃n+1−q(0) = {ρ1, ρp+2, . . . , ρn+1−q; L̃2, . . . , L̃n+1−q}

satisfies the following:

(a) ρk = (ψ−1)∗rk, the pullbacks of the functions rk under this coordinate
change, are given by ρk(w) = 2Re{wk} + O(|w|2) in a neighborhood of
the origin for k = p + 2, . . . , n + 1 − q;

(b) For each k such that 2 ≤ k ≤ n + 1 − q, the coefficient of ∂
∂wk

in the
vector field L̃k is non-zero at the origin;



Direct proof of termination of the Kohn algorithm 749

(c) For every k satisfying p+2 ≤ k ≤ n+1−q, the Levi determinant in the
new coordinates coeff{∂ρ ∧ ∂̄ρ ∧ (∂∂̄ρ)n−q} for ρ = ρ1 = (ψ−1)∗r1 has
a non-zero derivative at the origin of order at most (�t� − 2)n−q that
involves at least one differentiation in ∂

∂wk
or ∂

∂w̄k
.

Proof: Translate x0 to the origin in Cn. Thus, Δq(bΩ, 0) = t < ∞. Let
C(0) = M(0) = (m1, . . . ,mn) be the multitype at 0. Here we have used the
pseudoconvexity of the domain Ω and part (ii) of Theorem 4.8. By part (2) of
Theorem 4.10, mn+1−q ≤ Δq(bΩ, 0) = t < ∞. If q > 1, it is still possible that
mk = ∞ for n + 2 − q ≤ k ≤ n. Before we can apply Proposition 4.12 and
Lemma 4.14, we must construct an appropriate weight Λ ∈ Γn all of whose
entries are finite. We distinguish two cases:

Case 1: mn < ∞. Then we set Λ = M(0).

Case 2: There exists mk = ∞ for n + 2 − q ≤ k ≤ n among the entries of
M(0). Let k be the smallest integer such that n+2− q ≤ k ≤ n and mk = ∞
in M(0). If k = n + 2 − q, then set Λ = (m1, . . . ,mn+1−q, . . . ,mn+1−q) ∈
Γn,n+1−q according to Definition 4.13. If k > n + 2 − q, then set Λ =
(m1, . . . ,mn+1−q,mn+2−q, . . . ,mk−1, . . . ,mk−1) ∈ Γn,k−1.

Now take any boundary system

Bn+1−q(0) = {r1, rp+2, . . . , rn+1−q;L2, . . . , Ln+1−q}

of rank p and codimension q − 1 about the origin in Cn. We have that
r = r1 ∈ M(1; Λ) as a consequence of how we constructed Λ. By Proposi-
tion 4.12, r1 ∈ M(1; Λ) implies rk ∈ M

(
1
λk

; Λ
)

for all k = p+2, . . . , n+1−q.
By Lemma 4.14, there exists a coordinate change w = ψ(z) in a neighbor-
hood of the origin in Cn such that ρk = (ψ−1)∗rk, the pullbacks of the func-
tions rk under this coordinate change for k = p + 2, . . . , n + 1 − q, satisfy
ρk(w) = 2Re{wk}+O(|w|2) in a neighborhood of the origin. Let B̃n+1−q(0) =
{ρ1, ρp+2, . . . , ρn+1−q; L̃2, . . . , L̃n+1−q} be the corresponding boundary system
of rank p about the origin in Cn in the new coordinates. We know that for
each k such that p+2 ≤ k ≤ n+1−q, the coefficient of ∂

∂wk
in the vector field

L̃k is non-zero at the origin. Furthermore, it is also evident from the frame
of the special neighborhood described after the statement of Theorem 2.7
and the fact that the Levi form has rank p at 0 that without loss of gener-
ality we can take w1, . . . , wp+1 such that ∂ρ1

∂w1
(0) 	= 0 and L̃2, . . . , L̃p+1 satisfy

that the coefficient of ∂
∂wk

in the vector field L̃k is non-zero at the origin for
2 ≤ k ≤ p + 1. We have already shown parts (a) and (b) of the conclusion of
this proposition hold.
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We just need to derive part (c). Evidently, our coordinate system w1, . . . ,
wn was constructed above so that all the information about the boundary
system of rank p and codimension q − 1 about the point x0 is encapsulated
in variables w1, . . . , wn+1−q, hence we can project Φ : Cn → Cn+1−q via
Φ(w1, . . . , wn) = (w1, . . . , wn+1−q). Let ρ̃1 be the push forward of the defining
function ρ = ρ1 under Φ, and let Ω′ be the projection of Ω under Φ, i.e., the
domain defined by ρ̃1. We claim that Δ1(bΩ′, 0) = Δq(bΩ, 0) = t. The reason is
that the (w1, . . . , wn+1−q) space is the image of the embedding φ that realizes
the infinum in Definition 3.2. Essentially, we have constructed the special
coordinates guaranteed by Theorem 4.10 part (1) up to the (n + 1 − q)th
coordinate, and Theorem 4.10 part (2) ensures the 1-type of the projected
domain has to equal the q-type of the original domain. The reader should
consult Catlin’s original proof of the assertions in Theorem 4.10 that can
be found on p.555-6 of [7]. Note also that the rank of the Levi form is still
p at 0 for bΩ′. As in the proof of Theorem 1.1 on p.1244 of [27], consider
now the truncation ˜̃ρ1 of order �t� of the Taylor expansion at 0 of ρ̃1 for
t = Δ1(bΩ′, 0) = Δq(bΩ, 0). Pseudoconvexity is not a finitely determined
condition, whereas D’Angelo type is. As a result, the domain Ω′′ defined by˜̃ρ1 might not be pseudoconvex, but it has the same D’Angelo 1-type t at 0
as the original domain Ω′, and obviously the rank of the Levi form of Ω′′

at 0 is still p. Consider coeff{∂˜̃ρ1 ∧ ∂̄˜̃ρ1 ∧ (∂∂̄˜̃ρ1)n−q}, which is the full Levi
determinant at 0 of bΩ′′. Now, let us assume there exists some k, where
p+ 2 ≤ k ≤ n+ 1− q, such that coeff{∂˜̃ρ1 ∧ ∂̄˜̃ρ1 ∧ (∂∂̄˜̃ρ1)n−q} is independent
of both wk and w̄k. The variety V

((
coeff{∂˜̃ρ1 ∧ ∂̄˜̃ρ1 ∧ (∂∂̄˜̃ρ1)n−q}

))
thus

contains a complex line, which contradicts the finite type assumption on bΩ′′.
We have obtained the needed contradiction that shows coeff{∂˜̃ρ1 ∧ ∂̄˜̃ρ1 ∧
(∂∂̄˜̃ρ1)n−q} contains at least one polynomial of degree at most (�t� − 2)n−q,
which has at least one term depending on either wk or w̄k for every k such
that p+ 2 ≤ k ≤ n+ 1− q. This argument proves part (c) of Proposition 6.3
at 0 ∈ bΩ′′. We now retrace our steps. Clearly, if the conclusion of part (c) of
Proposition 6.3 holds for coeff{∂˜̃ρ1 ∧ ∂̄˜̃ρ1 ∧ (∂∂̄˜̃ρ1)n−q}, it must also hold for
the Levi determinant coeff{∂ρ̃1 ∧ ∂̄ρ̃1 ∧ (∂∂̄ρ̃1)n−q} at 0 ∈ bΩ′ corresponding
to the defining function ρ̃1 before the truncation of the its Taylor expansion
at 0 took place. Furthermore, part (c) of Proposition 6.3 must also hold for
coeff{∂ρ1∧∂̄ρ1∧(∂∂̄ρ1)n−q} at 0 ∈ bΩ since we obtained ρ̃1 from ρ1 by setting
wn+2−q = · · · = wn = 0, so the terms we want depending on wk or w̄k for
every k in k = p+2, . . . , n+1− q are present in coeff{∂ρ1 ∧ ∂̄ρ1 ∧ (∂∂̄ρ1)n−q}
as well.
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7. Proof of Theorem 1.1

We start with a natural definition that allows us to work with as small a
number of level sets of the Catlin multitype as possible:

Definition 7.1. Let Ω ⊂ Cn be a smooth pseudoconvex domain, and let
x0 ∈ bΩ be a boundary point of finite D’Angelo q-type. Let

Bn+1−q(x0) = {r1, rp+2, . . . , rn+1−q;L2, . . . , Ln+1−q}

be the boundary system at x0. A neighborhood U of x0 in bΩ is called optimal
for the (n + 1 − q)th commutator multitype Cn+1−q if there does not exist a
smaller neighborhood U ′ � U such that x0 ∈ U ′ and U ′ contains a strictly
smaller number of level sets of Cn+1−q than U .

Remark 7.2. For any neighborhood U on which the D’Angelo q-type is finite,
the number of level sets of the (n + 1 − q)th commutator multitype Cn+1−q

is finite, so U =
⋃N

j=1 Sj for some N . We know that x0 ∈ SN and S1 is open
in bΩ. It follows that if U is an optimal neighborhood for the (n + 1 − q)th
commutator multitype Cn+1−q, then for every j such that 2 ≤ j ≤ N − 1,
there exists a sequence {y(j)

i }i=1,2,... satisfying that {y(j)
i }i=1,2,... ⊂ Sj and

limi→∞ y
(j)
i = x0, i.e., the level sets S2, . . . , SN−1 accumulate at x0.

Recall that at the first step of the modified Kohn algorithm

Ĩq1(x0) = R

√
( r, coeff{∂r ∧ ∂̄r ∧ (∂∂̄r)n−q} )Cω(x0).

Since the defining function r is identically zero on bΩ, the modified Kohn
algorithm is controlled by the behavior of coeff{∂r ∧ ∂̄r ∧ (∂∂̄r)n−q}. This
object is the Levi determinant only when q = 1; otherwise, coeff{∂r ∧ ∂̄r ∧
(∂∂̄r)n−q} is a collection of

(n−1
n−q

)
×

(n−1
n−q

)
complex-valued functions as we

look at all (n − q)th order minors of the (n − 1) × (n − 1) matrix whose
determinant is the Levi determinant. Let s =

(n−1
n−q

)
×

(n−1
n−q

)
, and let these

complex-valued Levi minors in the collection coeff{∂r ∧ ∂̄r ∧ (∂∂̄r)n−q} be
f1, . . . , fs. For the purposes of proving Theorem 1.1, we can simply consider
f = f1f̄1 + f2f̄2 + · · · + fsf̄s and note that Ĩq1(x0) = R

√
( r, f )Cω(x0). The

function f might exhibit cancellation of derivatives, but we know it cannot be
identically zero since we are assuming Δq(bΩ, x0) = t < ∞, so Theorem 6.2
tells us that coeff{∂r ∧ ∂̄r ∧ (∂∂̄r)n−q} vanishes to order at most (�t� −
2)n−q at x0, hence in a neighborhood Ux0 of x0 as well, i.e., at least one
of f1, . . . , fs has a non-zero derivative on all of Ux0 of order at most (�t� −
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2)n−q. We will now prove Theorem 1.1. Afterward, we will sketch how it can
be strengthened subject to the Conjectured Nullstellensatz 1.2 being true
and subject to obtaining slightly more information about the behavior of the
sheaves of multipliers so that an effective lower bound for the subelliptic gain
in the ∂̄-Neumann problem can be computed in terms of n, t, and q for a
real-analytic pseudoconvex domain.

Proof of Theorem 1.1: The assertion that the modified Kohn algorithm
finishes at step 1 densely in bΩ is a consequence of Corollary 5.5. Kohn’s
result from [23] that the modified Kohn algorithm in the real-analytic case
finishes by step 2n is Proposition 6.20 on p.113. What we must prove here is
that the number of level sets of the Catlin multitype in a neighborhood of x0
acts as a counter for the Kohn algorithm.

Δq(bΩ, x0) = t < ∞. By Theorem 3.3, we can shrink Ux0 around x0 to
ensure that Δq(bΩ, x) ≤ 2(Δq(bΩ, x0))n−q = 2tn−q. Since the D’Angelo q-type
is finite at x ∈ Ux0 and bΩ is pseudoconvex, the (n + 1 − q)th commutator
multitype Cn+1−q(x) = (c1, . . . , cn+1−q) has only finite entries by part (2) of
Theorem 4.10 and part (ii) of Theorem 4.8. Therefore, a boundary system
Bn+1−q(x) of codimension q − 1 can be constructed at every x ∈ Ux0 . It is
also obvious that since the boundary is real-analytic, we can take vector fields
with real-analytic coefficients in the boundary system at every x ∈ Ux0 , so
the functions in the boundary system will also be real-analytic. Now consider
the point x0 ∈ bΩ. If the Levi form does not have rank at least n − q at x0,
let

Bn+1−q(x0) = {r1, rp+2, . . . , rn+1−q;L2, . . . , Ln+1−q}
be a boundary system at x0 of rank p and codimension q − 1. We apply the
Stratification Theorem, Theorem 5.6, to conclude that there exists a neigh-
borhood U of x0 such that

r1, rp+2, . . . , rn+1−q ∈ I

⎛⎝V(Ĩq1(U)) −
N−1⋃
j=2

Sj

⎞⎠ ,

where S1, . . . , SN are the level sets for Cn+1−q in U corresponding to increasing
values of Cn+1−q in the lexicographic ordering. We shrink U , if necessary, in
order to ensure the following are simultaneously satisfied:

(1) U ⊂ Ux0 , where Ux0 is the neighborhood constructed above so that the
D’Angelo type is finite and effectively bounded and coeff{∂r ∧ ∂̄r ∧
(∂∂̄r)n−q} vanishes to order at most (�t� − 2)n−q on Ux0 ;

(2) U is optimal for the (n + 1 − q)th commutator multitype;
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(3) Statement 3.4 holds on U for k = 1, . . . , N in Theorem 2.7 (take inter-
section of neighborhoods guaranteed by Theorem 2.7 for each of the k
values);

(4) Lemma 6.1 holds on U ;
(5) All parts of Proposition 5.3 are satisfied on U (in particular, the Levi

form at every x ∈ U has rank at least p, its rank at x0.)

Let us look at all the points x ∈ S2 ⊂ U . We choose for each of these a neigh-
borhood Ux ⊂ U such that x ∈ Ux and Ux is the neighborhood guaranteed
by part (i) of Proposition 5.3. Therefore, Ux contains only two level sets S1
and S2 of the commutator multitype Cn+1−q. Consider a boundary system

Bn+1−q(x) = {r1, r
′
p′+2, . . . , r

′
n+1−q;L′

2, . . . , L
′
n+1−q}

at x defined such that on the neighborhood Ux all parts of Proposition 5.3 are
satisfied (shrink Ux, if necessary), where its rank p′ ≥ p by our assumption
that the rank of the Levi form is at least p at every point of the big neigh-
borhood U . Note the change in notation compared to Bn+1−q(x0). Since
Ux contains only two level sets of the Catlin multitype Cn+1−q and since
r′1, r

′
p′+2, . . . , r

′
n+1−q are real-analytic, r′1, r′p′+2, . . . , r

′
n+1−q ∈ I(V(Ĩq1(Ux))) ⊂

Cω(Ux). Recall the function f = f1f̄1+f2f̄2+· · ·+fsf̄s defined above from the
Levi minors. The function f is itself real-analytic, and its zero set is precisely
V(Ĩq1(Ux)). We can thus apply the Łojasiewicz Nullstellensatz, Theorem 2.16,
to conclude r′p′+2, . . . , r

′
n+1−q ∈ Ĩq1(Ux) = R

√
Ĩq1(Ux). By Lemma 4.15,

∂r ∧ ∂̄r ∧ (∂∂̄r)p′ ∧ ∂r′p′+2 ∧ · · · ∧ ∂r′n+1−q(x) 	= 0.

Consider the collection of functions

coeff{∂r ∧ ∂̄r ∧ (∂∂̄r)p′ ∧ ∂r′p′+2 ∧ · · · ∧ ∂r′n+1−q} ∈ Ĩq2(Ux).

There is thus at least one function in this collection that does not vanish
at the point x. Let g be such a function. Then g ∈ Ĩq2(Ux) and g(x) 	= 0.
Furthermore, there exists some neighborhood U ′

x such that x ∈ U ′
x ⊂ Ux and

g(y) 	= 0 for every y ∈ U ′
x. Therefore, at each x ∈ S2, the Kohn algorithm

finishes at step 2 since we have shown there exists a non-zero subelliptic
multiplier g at each of those points. We conclude V(Ĩq2(U)) ⊂ ⋃N

j=3 Sj . We
might no longer have strict equality as in the proof of Theorem 5.6 because
termination of the Kohn algorithm at a point is an open condition, so step 2
could remove not just the neighborhoods Ux of each of the points x ∈ S2 but
neighborhoods of other points that may be sitting in S3, . . . , SN . Note that
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U was chosen so that Theorem 2.7 applies on it for k = 2. Therefore, each
function g that eliminates a neighborhood U ′

x from V(Ĩq1(U)) is generated
by elements of Ĩq2(x0). Note also that because the commutator multitype
of the level set S2 is strictly lower than that of S3, . . . , SN , at least one of
r′p′+2, . . . , r

′
n+1−q in a boundary system at a point of S2 is generated by a

shorter list than at least one of the functions in the boundary system at each
point of S3, . . . , SN , which implies

∂r ∧ ∂̄r ∧ (∂∂̄r)p′ ∧ ∂r′p′+2 ∧ · · · ∧ ∂r′n+1−q(x) = 0 ∀x ∈ S3 ∪ · · · ∪ SN .

Therefore, for each x ∈ S2, the function g(x) chosen above that eliminates the
neighborhood U ′

x from V(Ĩq1(U)) vanishes on S3, . . . , SN . Finally, we should
emphasize here that our elimination of S2 provides more information beyond
Kohn’s Proposition 2.14. The existence of a boundary system of codimension
q − 1 at every x ∈ S2 means that V(Ĩq1(x)) has holomorphic dimension at
most q − 1 in the sense of Kohn at every such x, so Proposition 2.14 in
conjunction with the Łojasiewicz Nullstellensatz, Theorem 2.16, as well as
Theorem 2.7 already guarantees that all points of S2 should be eliminated
at the second step of the modified Kohn algorithm. Our method, however,
explicitly constructs the elements that eliminate S2. We should note that the
same will be true as we eliminate level sets S3, . . . , SN as well.

We now have to bring the information from the level set S2 forward in
order to modify the zero set of f = f1f̄1 + f2f̄2 + · · ·+ fsf̄s. For each x ∈ S2,
we have the multiplier g ∈ Ĩq2(Ux) satisfying that g(y) 	= 0 for every y ∈ U ′

x.
As explained above, g(x) = 0 on S3, . . . , SN and g(x) is generated by elements
of Ĩq2(x0). Now consider the collection of such functions g(x) for every x ∈ S2.
Since Cω(x0) is Noetherian, the ideal generated by all the elements of Ĩq2(x0)
that generate g(x) for every x ∈ S2 is finitely generated. Let h1, . . . , hβ be its
generators. Let f (2) = h1h̄1 + · · · + hβh̄β. The real-analytic function f (2) ∈
Ĩq2(x0) is now real-valued and non-negative. Note that f (2) 	= 0 for every
x ∈ S2, f (2) ≡ 0 on S3, . . . , SN by construction, and f (2) is a subelliptic
multiplier on all of U since Theorem 2.7 holds on U for k = 2.

Next we look at the points x ∈ S3. We are going to recycle the nota-
tion from the previous step as all the information from S2 is already being
transferred via the real-analytic function f (2). We choose for each of these a
neighborhood Ux ⊂ U such that x ∈ Ux and Ux is the neighborhood guaran-
teed by part (i) of Proposition 5.3. Therefore, Ux contains only three level sets
S1, S2, and S3 of the commutator multitype Cn+1−q. Consider a boundary
system

Bn+1−q(x) = {r1, r
′
p′+2, . . . , r

′
n+1−q;L′

2, . . . , L
′
n+1−q}
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at x defined such that on the neighborhood Ux all parts of Proposition 5.3
are satisfied (up to a shrinking of Ux), where its rank is p′ ≥ p just as it was
the case above for S2. Since there are only three level sets of the commutator
multitype in Ux, it follows that Theorem 5.6 applied to Ux yields that

r′1, r
′
p+2, . . . , r

′
n+1−q ∈ I

(
V(Ĩq1(Ux)) − S2

)
,

where S1, S2, S3 are the level sets for Cn+1−q in Ux. We may have to shrink Ux

a little for the previous assertion to hold. Note that r′p+2, . . . , r
′
n+1−q vanish

on the zero set of f + f (2), which is just the piece of S3 residing in our neigh-
borhood Ux by construction. Therefore, by the Łojasiewicz Nullstellensatz,
Theorem 2.16, r′p′+2, . . . , r

′
n+1−q ∈ Ĩq2(Ux) = R

√
Ĩq2(Ux). By Lemma 4.15,

∂r ∧ ∂̄r ∧ (∂∂̄r)p′ ∧ ∂r′p′+2 ∧ · · · ∧ ∂r′n+1−q(x) 	= 0,

where x ∈ S3. Consider then the collection of functions

coeff{∂r ∧ ∂̄r ∧ (∂∂̄r)p′ ∧ ∂r′p′+2 ∧ · · · ∧ ∂r′n+1−q} ∈ Ĩq3(Ux).

There is thus at least one function in this collection that does not vanish
at the point x. Let g be such a function. Then g ∈ Ĩq3(Ux) and g(x) 	= 0.
Furthermore, there exists some neighborhood U ′

x such that x ∈ U ′
x ⊂ Ux

and g(y) 	= 0 for every y ∈ U ′
x. Clearly, the algorithm finishes at step 3 for

every x ∈ S3. We now use the functions g(x) for every x ∈ S3 to construct
a multiplier f (3) ∈ Ĩq3(U) in the same manner we constructed f (3) using the
Noetherian property of Cω(x0) of which Ĩq3(x0) is a subideal.

Inductively, we have thus constructed f (2), f (3), . . . , f (N−1) ∈ ĨqN−1(U) all
of which are real-analytic and eliminate S2, . . . , SN−1. Let us now look back
at the boundary system at x0 with which we started,

Bn+1−q(x0) = {r1, rp+2, . . . , rn+1−q;L2, . . . , Ln+1−q}.

The functions rp+2, . . . , rn+1−q vanish on the zero set of f +f (2) +f (3) + · · ·+
f (N−1), and f + f (2) + f (3) + · · · + f (N−1) is a multiplier in ĨqN−1(U). There-
fore, by the Łojasiewicz Nullstellensatz, Theorem 2.16, rp+2, . . . , rn+1−q ∈
ĨqN−1(x0) = R

√
IqN−1(x0). By Lemma 4.15,

∂r ∧ ∂̄r ∧ (∂∂̄r)p ∧ ∂rp+2 ∧ · · · ∧ ∂rn+1−q(x0) 	= 0.



756 Andreea C. Nicoara

Furthermore,

∂r ∧ ∂̄r ∧ (∂∂̄r)p ∧ ∂rp+2 ∧ · · · ∧ ∂rn+1−q ∈ ĨqN (x0).

All other points of SN in U are handled in a similar manner. Clearly, the
Kohn algorithm finishes by step N everywhere.

Sketch of an effective version of Theorem 1.1: Recall the real-analytic
function f = f1f̄1 + f2f̄2 + · · · + fsf̄s constructed above and the neighbor-
hood Ux0 of x0 such that at least one of f1, . . . , fs has a non-zero derivative
of order at most (�t� − 2)n−q on all of Ux0 . As mentioned above, f could
exhibit cancellation of derivatives, so it might not have a non-zero derivative
of order at most 2(�t� − 2)n−q on all of Ux0 . As a result, we must modify
its definition. Generically, we can choose real-valued polynomials b1, . . . , bs
such that bj(x) > 0 on Ux0 for every 1 ≤ j ≤ s and there exists at least
one non-zero derivative of order up to 4(�t� − 2)n−q (twice the bound with
which we started) for f = b1f1f̄1 + b2f2f̄2 + · · · + bsfsf̄s on all of Ux0 . The
function f is real-valued and non-negative on Cn, which we can view as R2n.
Obviously, coeff{∂r ∧ ∂̄r ∧ (∂∂̄r)n−q} = 0 ⇐⇒ f = 0. We can thus take
M = 4 (�t� − 2)n−q in the statement of the Conjectured Nullstellensatz 1.2.

We now need to derive condition (a) in the statement of the Conjectured
Nullstellensatz 1.2 for f at any x ∈ Ux0 . Without loss of generality, translate
x to the origin. Since the domain Ω is pseudoconvex and of finite D’Angelo
type, we use Proposition 6.3 to deduce that for any boundary system

Bn+1−q(0) = {r1, rp+2, . . . , rn+1−q;L2, . . . , Ln+1−q}

of rank p at 0, there exists a local change of variables at 0 such that for every k
satisfying p+2 ≤ k ≤ n+1−q, rk(w) = 2Re{zk}+O(|z|2) in a neighborhood
of the origin and there is a derivative of f of order at most 4(�t�−2)n−q = M
involving at least one of Lk or L̄k, which does not vanish at 0 itself, hence
in a neighborhood Vk of 0. Note that by part (b) of Proposition 6.3 the
coefficient of ∂

∂zk
in the vector field Lk is non-zero at the origin. Since the

functions rp+2, . . . , rn+1−q describe hypersurfaces, we can apply a real change
of variables on Cn viewed as R2n on a neighborhood Vp+2 ∩ · · · ∩ Vn+1−q of
the origin, where the derivatives obtained from Proposition 6.3 do not vanish,
so that rp+2, . . . , rn+1−q become x1, . . . , xn−q−p, and condition (a) stays valid.
Let U = Ux0∩Vp+2 · · ·∩Vn+1−q, M = 4 (�t�−2)n−q, and μ = n−q−p. For each
x ∈ Ux0 , we have constructed a neighborhood U of x on which condition (a) of
the Conjectured Nullstellensatz 1.2 holds. Condition (b) of the Conjectured
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Nullstellensatz 1.2 naturally arises in the induction that proves Theorem 1.1
as we saw above.

We now follow the outline of the proof of Theorem 1.1. Shrink U so that
condition (a) of the Conjectured Nullstellensatz 1.2 holds on U with respect
to the boundary system at x0

Bn+1−q(x0) = {r1, rp+2, . . . , rn+1−q;L2, . . . , Ln+1−q}.

This condition is added to the list of conditions on U above and amounts to
at most one more shrinking of the neighborhood. Now consider all the points
x ∈ S2. Choose neighborhoods Ux such that condition (a) of the Conjectured
Nullstellensatz 1.2 holds. If the Conjectured Nullstellensatz 1.2 is true, then
there is an effective P computed from M = 4(�t� − 2)n−q and n. In fact,
to use the same P at all levels of the induction, it is better to compute P
from M = 2N (�t� − 2)n−q and n bearing in mind that U was chosen so that
Lemma 6.1 held on it, so we have an effective bound for N in terms of t,
n, and q. Let us use the information in Proposition 2.5 to calculate the cost
in loss of subelliptic gain in eliminating S2. Parts (ii) and (vi) of Proposi-
tion 2.5 imply f is a multiplier with ε = 1

2 . Capturing r′p′+2, . . . , r
′
n+1−q via

the Conjectured Nullstellensatz 1.2 comes at a cost of dividing the gain by at
most P , so we have ε ≥ 1

2P for each of them by part (iv) of Proposition 2.5.
Note that the M is effectively computed in terms of t, n, and q and universal
on U , so P will also be a function of M and n, hence of t, n, and q. The
application of Lemma 4.15, costs another factor of 1

2 , so complex gradients
∂r′p′+2, . . . , ∂r

′
n+1−q correspond to a gain of ε ≥ 1

4P by part (v) of Proposi-
tion 2.5. Finally, taking the determinant ∂r∧∂̄r∧(∂∂̄r)p′∧∂r′p′+2∧· · ·∧∂r′n+1−q

still leaves us with a gain of ε ≥ 1
4P by part (vi) of Proposition 2.5. Therefore,

for every point x ∈ S2 and the corresponding g(x), we have the lower bound
for subelliptic gain ε ≥ 1

4P that works on the neighborhood Ux. Now we hit
the next significant issue that was listed in the introduction. While we know
from Theorem 2.7 that g(x) is generated by elements of Ĩq2(x0), Theorem 2.7
is a qualitative result. It does not tell us to what subelliptic gain those ele-
ments that generate g(x) correspond in a neighborhood of x0 or even better
on U . In other words, we would need a quantitative version of Theorem 2.7 in
order to compute the subelliptic gain corresponding to f (2) even if it involved
a shrinking of the neighborhood U . After all, U was chosen to be optimal,
so no shrinking of it can diminish the number N of level sets of the Catlin
multitype.

If such a quantitative version of Theorem 2.7 could be proven, then there
would be no further roadblocks to an effective computation of subelliptic
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gain. Assume that f (2) corresponded to subelliptic gain P2 effectively com-
puted, then we would consider all points x ∈ S3 and take generic real-valued
polynomials b̃1 and b̃2 such that b̃j(x) > 0 on U and there exists at least
one non-zero derivative of order up to 8(�t� − 2)n−q for b̃1f + b̃2f

(2) on U .
Neighborhoods Ux would thus be chosen so that condition (a) in the Con-
jectured Nullstellensatz 1.2 holds. The sum b̃1f + b̃2f

(2) would be a subel-
liptic multiplier with gain bounded below by the minimum of the gain for
each of the pieces, i.e., ε ≥ min{ 1

4P , P2}. As a result of the Nullstellen-
satz, r′p′+2, . . . , r

′
n+1−q would then correspond to subelliptic gain satisfying

ε ≥ min{ 1
4P 2 ,

P2
P }. The subelliptic gain of the functions g(x) that eliminate S3

would then be ε ≥ min{ 1
8P 2 ,

P2
2P }. Continuing the process under the assump-

tion a quantitative version of Theorem 2.7 could be proven, if f (3), . . . , f (N−1)

came with subelliptic gain P3, . . . , PN−1 respectively, then in the end we would
get ε ≥ min{ 1

2(2P )N−1 ,
P2

(2P )N−2 , . . . ,
PN−1
2P }.
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