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The sharp Gevrey Kotake-Narasimhan theorem with an
elementary proof
David S. Tartakoff

Abstract: We study the regularity of Gevrey vectors for Hörman-
der operators

P =
m∑
j=1

X2
j + X0 + c

where the Xj are real, smooth vector fields and c(x) is a smooth
function, all in Gevrey class Gs. P is assumed to satisfy a subel-
liptic estimate in an open set Ω0: for some ε > 0 there exists a
constant C such that

‖v‖2
ε ≤ C

(
|(Pv, v)| + ‖v‖2

0
)

∀v ∈ C∞
0 (Ω0).

We prove directly that for s ≥ 1,Gs(P,Ω0) ⊂ Gs/ε(Ω0), i.e.,

∀K � Ω0, ∃CK : ‖P ju‖L2(K) ≤ Cj+1
K (2j)!s, ∀j

=⇒ ∀K ′ � Ω0, ∃C̃K′ : ‖D�u‖L2(K′) ≤ C̃�+1
K′ �!s/ε, ∀�.

In other words, Gevrey growth of derivatives of u as measured by
iterates of P yields Gevrey regularity for u in a larger Gevrey class
dictated by the size of ε in the a priori estimate.

When ε = 1, P is elliptic and so we recover the original Kotake-
Narasimhan theorem ([9]), which has been studied in many other
classes, including the class of ultradifferentiable functions ([1]).

Our result has appeared previously ([17]) but with a proof that
one colleague referred to as ‘incomplete’, perhaps recalling their
initial reaction that our approach would be ‘very long’ if written
out in all detail. We have chosen to come up with a less ‘detailed’
but more intuitive proof, in the last section, that should leave no
doubt of the complete adequacy of this approach.

We are indebted to the referee for insightful observations.
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1. Background

In 1972, Derridj and Zuily [5] proved Gs hypoellipticity (Pu ∈ Gs =⇒ u∈Gs)
for

P =
m∑
j=1

X2
j + X0 + c

satisfying

(1.1) ‖v‖2
ε ≤ C

(
|(Pv, v)| + ‖v‖2

0

)
∀v ∈ C∞

0 ,

whenever s > 1/ε ∈ Q and very recently, for P with Gk coeffients, k ∈ N+,
by studying Gevrey vectors for such operators (see below), Derridj was able
to sharpen this result to include s = 1/ε ∈ Q, but still with rational ε and
Gk coefficients, k ∈ N+ (announced in [4] and proven in [3]).

Consider a linear partial differential operator P of order 2 with real an-
alytic coefficients. An analytic vector for P is a distribution u such that
u behaves analytically when differentiated by powers of P alone: locally,
‖P ju‖ ≤ Cj(2j)! that is, not all derivatives of u are assumed to behave
as though u were analytic, only those sums occurring together precisely as in
P .

Similarly a Gevrey-s vector u for P (with P only assumed to have Gevrey-
s coefficients now) satisfies (locally) ‖P ju‖ ≤ Cj(2j)!s, or more precisely,

∀K � Ω0, ∃CK : ‖P ju‖L2(K) ≤ Cj+1
K (2j)!s, ∀j.

Derridj proved that Gevrey-s vectors for P under (1.1) belong to Gs/ε

(for s > 1/ε with ε rational) and, to accomplish this, followed the classical
method of adding a variable and showing (local) Gevrey hypoellipticity in
G

1,s/ε
t,x for the operator

(1.2) Q = −D2
t − P.

This yields the result since the (convergent) homogeneous solution

U(t, x) =
∑
�≥0

(−1)� t2�

(2�)!P
�u(x)

for Q just above has trace U(0, x) = u(x).
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Slightly earlier, N. Braun Rodrigues, G. Chinni, P. D. Cordaro and M. R.
Jahnke [11] had obtained a global result on a torus for a restricted subclass
of such operators P .

The methods we use also apply to prove the anisotropic hypoellipticity
for (1.2) even for non-rational ε.

Gs functions are always Gevrey-s vectors for any P .

2. General considerations

There are two main results of this paper. First, the subellipticity index ε will
no longer need to be rational, and, secondly, we are able to let s equal 1/ε.
From a technical point of view, the proof is no harder for Gevrey-k coefficients
than for analytic coefficients, so we shall take the vector fields to have analytic
coefficients.

And from a more personal point of view, in reading Derridj’s preprint ([4])
we could not find a reason why the result should not follow from the direct
lines we have established over many decades and which in fact avoid the need
to add a variable and deal with (1.2), despite the historical significance of
that approach which in some sense deals with iterates of P in a less obvious
way.

In the elliptic case (ε = 1 in (2.3) just below), we recover the original
Kotake-Narasimhan theorem ([9]).

The only hypothesis, aside from Gevrey smoothness of the coefficients of
P in Ω0, is the subelliptic estimate: for some ε ∈ (0, 1],

(2.3) ‖v‖2
ε (+

n∑
1

‖Xjv‖2
L2) ≤ C{|(Pv, v)L2 | + ‖v‖2

L2}, ∀v ∈ C∞
0 (Ω0)

3. Smoothness

From the basic a priori estimate (2.3) and those that will follow from it, we
have u ∈ C∞: given u ∈ Gs(P,Ω0) with Pu ∈ L2

loc it will follow from (2.3)
that u ∈ Hε

loc. From our estimate (4.5) below (for ‖u‖2
2ε), it will follow that

Pu ∈ Hε
loc, (since P 2u ∈ L2

loc) and hence that u ∈ H2ε
loc, and similarly from

P nu ∈ L2
loc, that P n−1u ∈ Hε

loc, . . . , and finally that u ∈ H
(n+1)ε
loc (for all n,

and hence u ∈ C∞). Thus we will assume that u is smooth.
And since the proof is unchanged if one assumes that the coefficients of

P are real analytic functions instead of merely belonging to a Gevrey class,
we will not mention their precise smoothness again.
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4. Estimates

Unless otherwise specified, norms and inner products will be in L2 and we
will frequently employ a fractional power of the Laplacian Λ

Λ̂μw(ξ) = (1 + |ξ|2)μ/2ŵ(ξ),

so that λμ(ξ) = (1 + |ξ|2)μ/2 is the symbol of Λμ.
In order to obtain estimates at higher levels, we want to replace v by

ϕ(x)Λεv above, with ϕ ∈ C∞
0 (Ω0), ϕ ≡ 1 on Ω′ � Ω0 so that we are inserting

suitably supported functions into the norm, and we denote by the special
notation 〈A|B〉 both AB and BA (i.e., the order of A and B is unspecified).
In all cases we will add the two terms and then explicitly include their bracket
on the right hand side. Using the common expression � for ≤ C0 when C0 will
only take on a finite, fixed number of values (involving the spatial dimension
and the number of vector fields in P ), (2.3) now may be written, omitting
the ‘junk’ (L2) term ‖ϕΛεv‖2

L2 on the right:

(4.4) ‖ϕΛεv‖2
ε + ‖〈X|ϕΛε〉v‖2

L2 � |(PϕΛεv, ϕΛεv)L2 | + ‖[X,ϕΛε]v‖2
L2 .

We will never need to distinguish between the various Xj , j = 1, . . .m or
explicitly sum over them so we have dropped that index. Finally, a right hand
side as above will be taken to include a uniformly ‘junk’ term, in this case
‖ϕΛεv‖2

L2 , arising from the last term in (2.3).
For starters, we keep both norms and inner products in the estimate (this

is crucial) as we try to estimate 2ε derivatives instead of just ε:

‖ϕΛεv‖2
ε + ‖〈X|ϕΛε〉v‖2

L2 ≤(4.5)
� |(ϕΛεPv, ϕΛεv)| + |([P, ϕΛε]v, ϕΛεv)| + ‖[X,ϕΛε]v‖2

L2 .

We shall write ϕ′ for any first derivative of ϕ (such as Xϕ):

[P, ϕΛε] = [X2, ϕΛε] = X[X,ϕΛε] + [X,ϕΛε]X =
= X[X,ϕΛε] + ϕ′ΛεX + ϕ[X,Λε]X

and (this is the essential but tricky step)

ϕ[X,Λε]X = Xϕ[X,Λε] + ϕ[[X,Λε], X] − ϕ′[X,Λε],

so that expanding the second term on the right in (4.5), integrating by parts,
using X∗ ∼ −X (since the Xj are real) and swapping the order of ϕ and ϕ′
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since they are functions and hence commute,

([P, ϕΛε]v, ϕΛεv) ∼ ±([X,ϕΛε]v,XϕΛεv) ± (ϕΛεXv, ϕ′Λεv)
±(ϕ[X,Λε]v,XϕΛεv) ± (ϕ[X,Λε]v, ϕ′Λεv) ± (ϕ[[X,Λε], X]v, ϕΛεv)

and thus, after a usual weighted Schwarz inequality to absorb (a small mul-
tiple of) ‖〈X|ϕΛε〉v‖2 on the left, estimate (4.5) becomes

‖ϕΛεv‖2
ε + ‖〈X|ϕΛε〉v‖2

L2 � |(ϕΛεPv, ϕΛεv)|

(4.6) (+‖[X,ϕΛε]v‖2
L2) + ‖ϕ′Λεv‖2

L2 + ‖ϕΛε
1v‖2

L2 + ‖ϕΛε
2v‖2

−ε

where
Λε

1 = [X,Λε]
and

Λε
2 = [[X,Λε], X],

both fairly elementary pseudodifferential operators of order ε. We have sup-
pressed the term ‖ϕ[X,Λε]‖2

L2 , since ϕ[X,Λε] = [X,ϕΛε] − X(ϕ)Λε both of
which already appeared above. And we could have omitted the term ‖[X,
ϕΛε]v‖2

L2 since the two next terms contain it, but we will preserve it for now
because it is suggestive and helps make sense of the second term on the left.

The essential feature of (4.6) is that a gain of ε results in at most one
derivative on ϕ, and it is for this reason that we have retained the inner
product with P in the estimate, since when an extra derivative threatens, we
are able to exchange the ϕ’s on the two sides of the inner product and avoid
an extra derivative on ϕ when we have gained only one ε power of Λ.

And a small note: while v is a test function of compact support, our
‘solution’ u will not have compact support. Thus we will introduce a ‘largest’
localizing function, denoted Ψ, equal to 1 near the supports of all the other
localizing functions, which will sit beside u everywhere but in the end be
removable modulo infinitely smoothing brackets with precise bounds since
there will be other functions of smaller support, such as ϕ, to render this Ψ
superfluous.

5. Personal heuristics

This paper has an unusual formulation, but one that I hope will make it un-
usually readable, and I have written it this way because the proof is somewhat
intricate and could surely benefit from any available help.
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It has become my conviction over the years that a mathematical pa-
per that contains every symbol, and every derivative of a localizing function
explicitly notated becomes unreadable. I personally require more sense of
reader-friendly ‘flow’ in reading a technical paper to render the formulas ac-
cessible. Perhaps, to paraphrase Frege in [8], anyone who understands the
flow of the argument and the justification of the flow well enough probably
does not actually need all the detailed calculations. 1

I would not go that far. But the challenge of following every bracket and
every derivative and writing it down would test the strongest stomach and
I prefer to omit that much detail and ask the reader to honor the author’s
honesty and track record and precision and to let the flow suffice in a few
places.

I took this approach in a recent paper [16] and in fact the referee wrote
that “I guess the author is trying to explain the ideas in his technical calcula-
tions by describing them in words with a minimum of symbols, but the words
pile on to the point where one needs to be almost as familiar with the calcula-
tions as the author himself for them to make sense. A reader might wonder if
the author is trying to pull a fast one by substituting a lot of hand-waving for
honest computation - if it weren’t for some of the subsequent pages where the
symbols swamp the words. Can’t one strike a better balance?” I have tried
for many years to find a better balance and concluded that in this material,
and for this author, the answer is “Sadly, no.”

6. Derivatives in terms of powers of P

The algorithm we will use to achieve estimates in terms of pure powers of
P on u is as follows: essentially as above, although now of higher order β,
modulo uniform, lower order errors, with

‖〈X|ϕΛβ〉v‖2
L2

≡
def ‖XϕΛβv‖2

L2 + ‖ϕΛβXv‖2
L2 ,

1In Frege’s work, when trying to define the concept of number, he went to great
lengths to define the number “n” as the equivalence class of all sets whose elements
could be put in one to one correspondence with the first n natural numbers (which
he defined carefully). To a mathematician this is not a difficult concept (a set with
n cows is in the same equivalence class as a collection of n objects of any sort, and
it is this ‘equivalence’ class of sets that is the ‘number’ n.) It is roughly at this
point where Frege declares that anyone who has understood what he has written
to that point (though few would have in his day) wouldn’t have needed to read his
somewhat lengthy but beautiful philosophical works.
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where now the notation �β will be used if there is any dependence on β and
� alone will be independent of β,

(1) First we estimate, as above, for arbitrary β and all v ∈ C∞
0 (Ω),

‖ϕΛβv‖2
ε + ‖〈X|ϕΛβ〉v‖2

L2

� |(PϕΛβv, ϕΛβv)L2 | (+ ‖[X,ϕΛβ]v‖2
L2)

(2) Then we commute P past ϕΛβ until it lands beside v, to obtain (ϕΛβPv,
ϕΛβv)L2 , thus requiring treatment of the bracket

([P, ϕΛβ]v, ϕΛβv)L2 .

(3) To expand this bracket, we write P = X2 generically, so that with
ϕ′ = ±[X,ϕ],

[P, ϕΛβ] = [P, ϕ] Λβ + ϕ[P,Λβ] =
= ϕ′XΛβ + Xϕ′Λβ + 2ϕX[X,Λβ] + ϕ[[X,Λβ], X]

and thus, integrating X by parts and/or switching ϕ and ϕ′, and using
a weighted Schwarz inequality, uniformly in β, and modulo a small
constant times the LHS in (1),

|([P, ϕΛβ]v, ϕΛβv)| ∼ ‖ϕ′Λβv‖2
L2 + ‖ϕΛβ

1v‖2
L2 + ‖ϕΛβ

2v‖2
−ε

where we recall the notation

Λβ
1 = [X,Λβ] and Λβ

2 = [[X,Λβ], X],

both of which are of order β.
(4) We gather these steps and freely move ϕ past powers of Λ, since any

bracket (whether applied to v or Pv) will introduce N � k ≥ 1 deriva-
tives on ϕ but also decrease the power of Λ by at least k (and not merely
by ε× k), i.e., create junk terms, (together with the corresponding re-
mainders - see the next section):

‖ϕΛβ+εv‖2
L2 + ‖〈X|ϕΛβ〉v‖2

L2 ∼ ‖ϕΛβv‖2
ε + ‖〈X|ϕΛβ〉v‖2

L2

≤ C‖ϕΛβ−εPv‖2
L2 + ‖ϕ′Λβv‖2

L2 + ‖ϕΛβ
1v‖2

L2 + ‖ϕΛβ
2v‖2

−ε.

(5) Both Λβ
1 and Λβ

2 are of order β and will be expanded in the next section
(Expanding the Brackets). Looking ahead to (7.8) below, however, for
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the moment with μ = β and any r, and (abusively) writing (Λβ)(�) for
the operator with symbol (λβ)(�),

ϕΛβ
1v = ϕ[X,Λβ]v = ϕ

r−1∑
�=1

1
�!a

(�)(Λβ)(�)Dv + 1R rv

since X = aD,

ϕΛβ
1v = ϕ[X,Λβ]v =

r−1∑
�=1

ϕ
a(�)

�! (Λβ)(�)Dv + 1R rv

and so

‖ϕΛβ
1v‖L2 �

β−1∑
�=1

C�
a β

�‖ϕ(Λβ−�)Dv‖L2 + ‖1R rv‖L2

and the similar but slightly more complicated expression for

ϕΛβ
2v = ϕ[[aD,Λβ], aD]v = ϕ[[a,Λβ]D, aD]v

= ϕ([a,Λβ]a′D + [[a,Λβ], aD]D)v
= ϕ([a,Λβ]a′D + [[a,Λβ], a]D2 + a[a′,Λβ]D)v

∼ ϕ([[a,Λβ], a]D2 + 2a[a′,Λβ]D)v

∼ ϕ
r−1∑
�=1

r′−1∑
�′=1

1
�! �′!a

(�)a(�′)(Λβ)(�+�′)
D2v

+ϕ
r−1∑
�=1

1
�!a

(�+1)a(Λβ)(�)Dv

so that, and bringing the coefficients out of the norm,

ϕΛβ
2v ∼

r−1∑
�̃=2

C �̃
aβ

�̃ϕΛβ−�̃D2v +
r−1∑
�=1

C�
aβ

�ϕΛβ−�Dv

or

‖Λ−εϕΛβ
2v‖2

L2 ≤
r−1∑
�=0

C�
aβ

�‖ϕΛβ−�v‖2
−ε.

As always with pseudodifferential operators, there will be a sum of terms
of lower and lower order as dictated by Leibniz’ formula for brackets,
and remainders.
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(6) We repeat the above steps by applying the estimate in (4) to the terms
on the right in (4) producing ϕΛβ−3εP 2v, ϕ′Λβ−2εPv and ϕ′′Λβ−εv, etc.
On the right hand side each of the four terms will lead to a ‘spray’ of
additional more terms, about four times as many at each next step. The
resulting paradigm may be simplified to read

‖ϕΛβ+εv‖2
L2 � ‖ϕΛβ−εPv‖2

L2 + ‖ϕ′Λβv‖2
L2

� ‖ϕΛβ−3εP 2v‖2
L2 + ‖ϕ′Λβ−2εPv‖2

L2 + ‖ϕ′′Λβ−εv‖2
L2 ,

and in general, after k iterations, there will be Ck terms of the form

‖ϕ(k1)Λβ+ε−(k1+2k2)εP k2v‖2
L2

with k = k1 + k2.
(7) We continue each iteration until we just get to β + ε− (k1 + 2k2)ε ≤ 0,

(but at the previous step, β+ε−(k1+2k2)ε ≥ 0, i.e., k1+2k2 = �β+ε
ε �),

so that
‖ϕΛβ+εv‖2

L2 ≤ Ck‖ϕ(k1)Λβ+ε−(k1+2k2)εP k2v‖2
L2

where the power of Λ in each term on the right is non-positive.
(8) It remains to apply all of this to our ‘solution’ u, which is subject to

the growth of P ku, not functions like v which are ‘test’ functions and
have compact support:

‖P ju‖L2(K) ≤ C2j+1
K (2j)!s, ∀j for suitable CK .

But in the estimate in item (7) we are free to replace v by Ψu where
Ψ ≡ 1 near the support of ϕ, since any error committed in then bringing
Ψ out of the norm will be of order −∞. Modulo this error, then,

‖ϕΛβ+εΨu‖2
L2 ≤ Ck‖ϕ(k1)Λβ+ε−(k1+2k2)εP k2u‖2

L2(K)

Our conclusion is that for any K ′ � Ω0, ∃CK′ : ‖Dmu‖L2(K′) ≤
C̃m+1m!s/ε, ∀m. Indeed, taking β + ε = m, we have, (since β + ε −
(k1 + 2k2)ε ≤ 0)

‖Dmu‖L2(K′) ≤ C̃m+1 sup
k1+2k2=�m

ε
�
‖ϕ(k1)‖∞‖P k2u‖L2(K);

in particular, with ϕ ∈ Gs, and different constants in each instance, but
independent of everything but u,

‖Dmu‖L2(K′) ≤ C̃m+1 sup
k1+2k2=�m

ε
�
k1!s‖P k2u‖L2(K)
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≤ C̃m+1�m
ε
�!s ≤ Cm(m

ε
+ 1)!s ≤ C

m/ε
1 (m

ε
)!s

7. Expanding the brackets

In order to write out the above brackets of the previous section concretely,
we use a Taylor expansion of the symbol λμ(ξ) of Λμ: ∀μ, r, and write, with
f = a (a coefficient of one of the X’s, which will always be accompanied by
ϕ) or by f = ϕ(x) itself,

([f,Λμ]v)∧(ξ) =
∫

f̂(ξ − η)
r−1∑
�=1

(ξ − η)�λμ(�)(η)
�! v̂(η)dη + f̂R rv(ξ)

=
r−1∑
�=1

∫
f̂ (�)(ξ − η)

�! λμ(�)(η)v̂(η)dη + f̂R rv(ξ)

where

f̂R rv(ξ) =
∫

f̂ (r)(ξ − η)
r!

∫ 1

0
dp · · ·

∫ 1

0
dt︸ ︷︷ ︸

r

λμ(r)(η + t · · · p(ξ − η))v̂(η)dη

so that, writing (Λμ)(�) for the operator with symbol (λμ)(�)(·) and taking
f = ϕ we have

(7.7) ‖[ϕ(x),Λμ]v‖L2 ≤
r−1∑
�=1

1
�!‖ϕ

(�)(Λμ)(�)v‖L2 + ‖ϕR rv‖L2 .

Recalling that we write X = aD, with f = a (localized):

(7.8) ‖ϕ[a,Λμ]Dv‖L2 ≤
r−1∑
�=1

1
�!‖ϕa

(�)(Λμ)(�)Dv‖L2 + ‖ϕaR rv‖L2 .

For the last term in (4) above, ‖ϕΛβ
2v‖2

−ε, we write

Λ−εϕΛμ
2v = Λ−εϕ[[a,Λμ]D, aD]v

= Λ−εϕ([a,Λμ]a′D + [[a,Λμ], aD]D)v
= Λ−εϕ([a,Λμ]a′D + [[a,Λμ], a]D2 + a[a′,Λμ]D)v

∼ Λ−εϕ([[a,Λμ], a]D2 + 2a[a′,Λμ]D)v
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∼ Λ−εϕ
r−1∑
�=1

1
�!

r′−1∑
�′=1

1
�′!a

(�)a(�′)(Λμ)(�+�′)D2v

+Λ−εϕ
r−1∑
�=1

1
�!a

(�+1)a(Λμ)(�)Dv

and then take the L2 norms.
To treat the remainders, we divide up the region of integration as we did

in ([13]) into two parts, the first where |ξ − η| ≤ 1
10 |η|, and hence the action

of R r is bounded by the L1 norm of derivatives of the coefficients of total
order r times ‖Λμ−rv‖L2 and the region where |ξ| (and hence |η|) is bounded
by a multiple of |ξ − η| and so that |λμ(ξ)− λμ(η)| ≤ Cμ|ξ − η|μ, whence for
any M ,

|([Λμ, a(x)]v)∧(ξ)| = |((λμâ) ∗ v̂)(ξ) − (â ∗ (λμv̂))(ξ)|

=
∣∣∣∣λμ(ξ)

∫
â(ξ − η)v̂(η)dη −

∫
â(ξ − η)λμ(η)v̂(η) dη

∣∣∣∣
=

∣∣∣∣∫ â(ξ − η)[λμ(ξ) − λμ(η)]v̂(η)dη
∣∣∣∣

≤ CM

∣∣∣∣∫ â(M+μ)(ξ − η)(1 + |η|2)−M/2v̂(η)dη
∣∣∣∣ .

8. Calculations of (λμ)(�)

We devote the rest of the paper to obtaining transparent expressions for
derivatives of powers of the symbol of λ, which will render the expressions
in the previous section utterly standard, since in the usual treatment of the
algebra of pseudo-differential operators, their brackets, adjoints, etc and com-
position of properly supported operators depends on accurate expressions for
derivatives of their symbols which are well known in the familiar classes but
we find that easy bounds may not suffice in our case or be that ‘easy’ to
compute.

We have, since λ(ρ) = (1 + |ρ|2)1/2,

(8.9) λ′ = ρλ−1

(8.10) (λa)′ = aρλa−2

and, since ρ2 = λ2 − 1, for any integral value of b,

(8.11) (ρλb)′ = (1 + b)λb − bλb−2.
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Thus (using (8.10) and (8.11),

(λa)(′′) = ((λa)′)′ = a
(
ρλa−2

)′
= a{(1 + (a− 2))λa−2 − (a− 2)λa−4}

or

(8.12) (λa)(′′) = a(a− 1)λa−2 − a(a− 2)λa−4

which will form the pattern for higher derivatives of powers of λ.
Evidently, products of monomials involving μ− aj with aj ∈ N+ ∪ 0 and

will pile up and will use the notation A = (a1, a2, . . . , a|A|) and

(8.13) [A]μ = (μ− a1)(μ− a2) . . . (μ− a|A|).

Thus simplified, we may write

(8.14) (λa)(′′) = [0, 1]μλa−2 − [0, 2]μλa−4.

For the third derivative we have at once, from (8.10),

(8.15) (λμ)(′′′)(ρ) = ρ{[0, 1, 2]μλμ−4 − [0, 2, 4]μλμ−6}

But the fourth derivative is a bit more complicated, since new λμ−6 terms
come from both terms in the third derivative. (And in computing higher
derivatives many terms come into play, which became very hard to estimate
together and led to the following, explicit, expressions.)

Using (8.11) and our notation (μ− d)[a, b, c]μ = [a, b, c, d]μ,

(λμ)(iv)(ρ) = {(1 + (μ− 4))[0, 1, 2]μ λμ−4 − (μ− 4)[0, 1, 2]μ λμ−6}(8.16)
−{(1 + (μ− 6))[0, 2, 4]μ λμ−6 − (μ− 6)[0, 2, 4]μ λμ−8}

= [0, 1, 2, 3]μ λμ−4 − [0, 1, 2, 4]μ λμ−6

− [0, 2, 4, 5]μ λμ−6 + [0, 2, 4, 6]μ λμ−8

= [0, 1, 2, 3]μ λμ−4 − 2[0, 2, 3, 4]μ λμ−6 + [0, 2, 4, 6]μ λμ−8.

Here the coefficients of the first and last terms are transparent, but the
middle one is less so, resulting from the somewhat mysterious fact that the
two coefficients of λμ−6 may be combined:

−[0, 1, 2, 4]μ − [0, 2, 4, 5]μ = −(μ− 1)[0, 2, 4]μ − (μ− 5)[0, 2, 4]μ
= −2(μ− 3)[0, 2, 4]μ = −2[0, 2, 3, 4]μ.
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Thus [0, 1, 2, 4]μ and [0, 2, 4, 5]μ have a ‘common factor’ of [0, 2, 4]μ. We will
exploit similar relationships below. Continuing, with (8.10),

(λμ)(v)(ρ) =
= ρ{[0, 1, 2, 3, 4]μ λμ−6 − 2[0, 2, 3, 4, 6]μ λμ−8 + [0, 2, 4, 6, 8]μ λμ−10}

and so, using (8.11) as we did in (8.16) above,

(λμ)(vi)(ρ) =
= (1 + (μ− 6))[0, 1, 2, 3, 4]μ λμ−6 − (μ− 6)[0, 1, 2, 3, 4]μ λμ−8

−2
{
(1 + (μ− 8))[0, 2, 3, 4, 6]μ λμ−8 − (μ− 8)[0, 2, 3, 4, 6]μ λμ−10

}
+(1 + (μ− 10))[0, 2, 4, 6, 8]μ λμ−10 − (μ− 10)[0, 2, 4, 6, 8]μ λμ−12

= [0, 1, 2, 3, 4, 5]μ λμ−6

− ([0, 1, 2, 3, 4, 6]μ + 2[0, 2, 3, 4, 6, 7]μ )λμ−8

+ (2[0, 2, 3, 4, 6, 8]μ + [0, 2, 4, 6, 8, 9]μ )λμ−10

−[0, 2, 4, 6, 8, 10]μ λμ−12

so that, after gathering (μ− 1) + 2(μ− 7) = 3(μ− 5), we have

−([0, 1, 2, 3, 4, 6]μ + 2[0, 2, 3, 4, 6, 7]μ) = −3[0, 2, 3, 4, 5, 6]μ

and similarly, gathering 2(μ− 3) + (μ− 9) = 3(μ− 5), we have

2[0, 2, 3, 4, 6, 8]μ + [0, 2, 4, 6, 8, 9]μ = 3[0, 2, 4, 5, 6, 8]μ

and so

(λμ)(vi)(ρ) =
= [0, 1, 2, 3, 4, 5]μ λμ−6

−3[0, 2, 3, 4, 5, 6]μ λμ−8

+3[0, 2, 4, 5, 6, 8]μ λμ−10

−[0, 2, 4, 6, 8, 10]μ λμ−12.

Notice that the digit 5 appears in each ‘gathering’ (as a factor) and was
the smallest digit initially missing from each coefficient in the expansion of
(λμ)(vi)(ρ) = above and which, in the end, seems to ‘migrate’ from the right-
most position (in the coefficient of (λμ)(vi) above) one position to the left
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in each line until there is no room in the last line, which will always be the
product of monomials with even values of a.

Thus the seventh derivative, using (8.9):

(λμ)(vii)(ρ)
= ρ [0, 1, 2, 3, 4, 5, 6]μ λμ−8

−3 ρ [0, 2, 3, 4, 5, 6, 8]μ λμ−10

+3 ρ [0, 2, 4, 5, 6, 8, 10]μ λμ−12

−ρ [0, 2, 4, 6, 8, 10, 12]μ λμ−14.

And for the eighth derivative, using (8.9) and recalling (8.13), we get

(λμ)(viii) = (1 + (μ− 8))λμ−8[0, 1, 2, 3, 4, 5, 6]μ
−(μ− 8)λμ−10[0, 1, 2, 3, 4, 5, 6]μ

−3
(
(1 + (μ− 10))λμ−10 − (μ− 10)λμ−12

)
[0, 2, 3, 4, 5, 6, 8]μ

+3
(
(1 + (μ− 12))λμ−12 − (μ− 12)λμ−14

)
[0, 2, 4, 5, 6, 8, 10]μ

−
(
(1 + (μ− 14))λμ−14 − (μ− 14)λμ−16

)
[0, 2, 4, 6, 8, 10, 12]μ

= (μ− 7)[0, 1, 2, 3, 4, 5, 6]μλμ−8

−{(μ− 8)[0, 1, 2, 3, 4, 5, 6]μ + 3(μ− 9)[0, 2, 3, 4, 5, 6, 8]μ}λμ−10

+3{(μ− 10)[0, 2, 3, 4, 5, 6, 8]μ + (μ− 11)[0, 2, 4, 5, 6, 8, 10]μ}λμ−12

−{3(μ− 12)[0, 2, 4, 5, 6, 8, 10]μ + (μ− 13)[0, 2, 4, 6, 8, 10, 12]μ}λμ−14

+(μ− 14)[0, 2, 4, 6, 8, 10, 12]μλμ−16

or

(λμ)(viii)(ρ) =
= [0, 1, 2, 3, 4, 5, 6, 7]μλμ−8

−4[0, 2, 3, 4, 5, 6, 7, 8]μλμ−10

+6[0, 2, 4, 5, 6, 7, 8, 10]μλμ−12

−4[0, 2, 4, 6, 7, 8, 10, 12]μλμ−14

+[0, 2, 4, 6, 8, 10, 12, 14]μλμ−16

after bringing (μ− 1) out of the first λμ−10 term and inserting (μ− 8) to get
−4(μ − 7)[0, 2, 3, 4, 5, 6, 8]μλμ−10 = −4[0, 2, 3, 4, 5, 6, 7, 8]μλμ−10 as coefficient
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of λμ−10, then bringing (μ − 3) out of the first λμ−12 term and inserting
(μ−10) to get 6[0, 2, 4, 6, 7, 8, 10]μ as coefficient of λμ−12, and finally inserting
the (μ−12) and ‘factoring out’ (μ−5), together with (μ−13), yields (−3(μ−
5)−(μ−13)) = −4(μ−7)) times [0, 2, 4, 6, 8, 10, 12]μ or −4[0, 2, 4, 6, 7, 8, 10, 12]
as the coefficient of λμ−14.

Once again the pattern seems to be that after μ − 7 is introduced, it
migrates to the left as lower odds factors vanish and are replaced by successive
evens on the right. Thus we might expect that for the tenth derivative, with
9 taking the place of 7, we would have the following series of coefficients of
powers of {λ}

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]μ,
−5[0, 2, 3, 4, 5, 6, 7, 8, 9, 10]μ,
10[0, 2, 4, 5, 6, 7, 8, 9, 10, 12]μ,

−10[0, 2, 4, 6, 7, 8, 9, 10, 12, 14]μ,
5[0, 2, 4, 6, 8, 9, 10, 12, 14, 16]μ,
−[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]μ.

This turns out to be the case and also for all higher (even) derivatives, the
odd ones following at once from the evens. Note that the ‘coefficients’ (here
0,-5,10,-10,5,-1) result from sums of analogous coefficients at the previous
level.

The general formulas for the derivatives of λμ, are

(λμ)(2h)(ρ) =
h−1∑
k=0

(−1)k
(
h

k

)
h+k−1∏
s=0

(μ− 2s)
h−1∏
σ=k

(μ− 2σ − 1)λμ−2h−2k

+
2h−1∏
s=0

(μ− 2s)λμ−4h

and

(λμ)(2h+1)(ρ) = ρ
h−1∑
k=0

(−1)k
(
h

k

)
h+k∏
s=0

(μ− 2s)
h−1∏
σ=k

(μ− 2σ − 1)λμ−2h−2k−2

+ρ
2h∏
s=0

(μ− 2s)λμ−4h−2.

These formulas may be proved by induction on h by using (8.10), (8.11),
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the well-known relation (
h− 1
k − 1

)
+

(
h− 1
k

)
=

(
h

k

)

and the equality(
h− 1
k − 1

)
(2k − 1) +

(
h− 1
k

)
(2h + 2k − 1) =

(
h

k

)
(2h− 1)

which can be easily proved by direct calculation.
Indeed, the second formula above follows immediately from the first by

(8.10). Computing then (λμ)(2h+2) from the second by (8.11) we get

(λμ)(2h+2) =
h−1∑
k=0

(−1)k
(
h

k

)
h+k∏
s=0

(μ− 2s)
h−1∏
σ=k

(μ− 2σ − 1)

·{[1 + (μ− 2h− 2k − 2)]λμ−2h−2k−2 − (μ− 2h− 2k − 2)λμ−2h−2k−4}

+
2h∏
s=0

(μ− 2s){[1 + (μ− 4h− 2)]λμ−4h−2 − (μ− 4h− 2)λμ−4h−4}.

At each level λμ−α we have two terms coming from two different steps:
the term −(μ− 2h− 2k− 2)λμ−2h−2k−4 of step k goes together with the term
[1+(μ−2h−2k−4)]λμ−2h−2k−4 of step k+1, and hence, collecting common
factors and using the binomial identities just above we have:

−(−1)k
(
h

k

)
h+k∏
s=0

(μ− 2s)
h−1∏
σ=k

(μ− 2σ − 1)(μ− 2h− 2(k + 1))λμ−2(h+1)−2(k+1)

+(−1)k+1
(

h

k + 1

)
h+k+1∏
s=0

(μ− 2s)
h−1∏

σ=k+1
(μ− 2σ − 1)

·[1 + (μ− 2h− 2(k + 1) − 2)]λμ−2(h+1)−2(k+1)

= (−1)k+1
h+k+1∏
s=0

(μ− 2s)
h−1∏

σ=k+1
(μ− 2σ − 1)

·
{(

h

k

)
(μ− 2k− 1) +

(
h

k+ 1

)
[μ− (2(h+ 1) + 2(k+ 1)− 1)]

}
λμ−2(h+1)−2(k+1)

= (−1)k+1
h+k+1∏
s=0

(μ− 2s)
h−1∏

σ=k+1
(μ− 2σ − 1) ·

{[(
h

k

)
+

(
h

k + 1

)]
μ
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−
[(

h

k

)
(2(k + 1) − 1) +

(
h

k + 1

)
(2(h + 1) + 2(k + 1) − 1)

]}
λμ−2(h+1)−2(k+1)

= (−1)k+1
h+k+1∏
s=0

(μ− 2s)
h−1∏

σ=k+1
(μ− 2σ − 1)

·
{(

h + 1
k + 1

)
μ−

(
h + 1
k + 1

)
(2h + 1)]

}
λμ−2(h+1)−2(k+1)

= (−1)k+1
(
h + 1
k + 1

)
h+k+1∏
s=0

(μ− 2s)
h∏

σ=k+1
(μ− 2σ − 1)λμ−2(h+1)−2(k+1),

obtaining the term that must appear in the formula for (λμ)2(h+1)(ρ). Lastly,
with such transparent expressions for these derivatives, the needed bounds
to handle the brackets with remainders in the previous section are easy to
establish.

9. Adding a variable

Previous proofs concerning Gevrey vectors have often, as in Derridj’s paper,
proven and then used the Gevrey hypoellipticity of the operator

Q = − ∂2

∂t2
− P.

The proof that a homogeneous solution for Q satisfies U ∈ G1,s
t,x locally for

s ≥ 1/ε follows using the above techniques and the evident a priori inequality

‖W (t, x)‖2
L2(t), ε(x) +

∑
‖XjW (t, x)‖2

L2(t,x) + ‖W (t, x)‖2
1(t), L2(x)

≤ C{|(QW,W ))|L2 + ‖W (t, x)‖2
L2(t,x)}

for W of small support and smooth since the variables are completely sepa-
rated.

Then observing that under our hypothesis on the iterates of P on u, the
homogeneous convergent series

U(t, x) =
∑
�≥0

(−1)� t2�

(2�)!P
�u(x)

satisfies the above equation in some interval about t = 0, and hence, restricted
to t = 0 where it is equal to u, will have the desired regularity in Gevrey class.
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Finally, since the variables t and x are totally separated in the problem,
localizing functions may be taken as products ϕ1(t)ϕ2(x) with ϕ1 of Ehren-
preis type or using nested open sets in t while in x Gevrey localization is
familiar (and the fact that coefficients now depend on t as well as x presents
no new obstacles, even in brackets with Dt or Λβ

2 ).
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