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Abstract: Let (M,h) be a Hermitian manifold and ψ a smooth
weight function on M . The ∂-complex on weighted Bergman spaces
A2

(p,0)(M,h, e−ψ) of holomorphic (p, 0)-forms was recently studied
in [10] and [9]. It was shown that if h is Kähler and a suitable
density condition holds, the ∂-complex exhibits an interesting holo-
morphicity/duality property when (∂̄ψ)� is holomorphic (i.e., when
the real gradient field gradhψ is a real holomorphic vector field.)
For general Hermitian metrics, this property does not hold without
the holomorphicity of the torsion tensor Tp

rs.
In this paper, we investigate the existence of real-valued weight

functions with real holomorphic gradient fields on Kähler and con-
formally Kähler manifolds and their relationship to the ∂-complex
on weighted Bergman spaces. For Kähler metrics with multi-radial
potential functions on Cn, we determine all multi-radial weight
functions with real holomorphic gradient fields. For conformally
Kähler metrics on complex space forms, we first identify the metrics
having holomorphic torsion leading to several interesting examples
such as the Hopf manifold S2n−1 × S1 and the “half” hyperbolic
metric on the unit ball. For some of these metrics, we further de-
termine weight functions ψ with real holomorphic gradient fields.
They provide a wealth of triples (M,h, e−ψ) of Hermitian non-
Kähler manifolds with weights for which the ∂-complex exhibits
the aforementioned holomorphicity/duality property. Among these
examples, we study in detail the ∂-complex on the unit ball with
the half hyperbolic metric and derive a new estimate for the ∂-
equation.
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1. Introduction

Let (M,h) denote a manifold of complex dimension n with a Hermitian metric
h, and let ψ be a smooth real-valued function on M . Consider the Segal–
Bargmann spaces of (p, 0)-forms

A2
(p,0)(M,h, e−ψ)

=

⎧⎨⎩u =
∑
|J |=p

′uJ dz
J :
∫
M

|u|2he−ψdvolh < ∞, uJ holomorphic

⎫⎬⎭ .

Here J = (j1, . . . , jp) are multiindices of length p and the summation is taken
over increasing indices; in holomorphic coordinates, the metric h has the
form hjk̄dz

j ⊗ dzk̄, where [hjk̄] is a positive definite Hermitian matrix with
smooth coefficients; the volume element induced by the metric is denoted by
dvolh := det(hjl̄) dλ; the metric h induces a metric on tensors of each degree,
so for (1, 0)-forms u = ujdz

j and v = vjdz
j one has 〈u, v〉h = hjk̄ujvk̄ and

|u|2h = 〈u, u〉h, where [hjk̄] is the transpose of the inverse matrix of [hjk̄].
Under suitable conditions (see [9], [10]) the complex derivative

∂u :=
∑
|J |=p

′
n∑

j=1

∂uJ
∂zj

dzj ∧ dzJ

is a densely defined, in general unbounded operator

∂ : A2
(p,0)(M,h, e−ψ) −→ A2

(p+1,0)(M,h, e−ψ), 0 ≤ p ≤ n− 1.

In order to determine the adjoint operator

∂∗ : A2
(p+1,0)(M,h, e−ψ) −→ A2

(p,0)(M,h, e−ψ)

it is necessary to consider the nonvanishing Christoffel symbols for the Chern
connection in local coordinates z1, . . . , zn:

(1.1) Γi
jk = hil̄∂jhkl̄, Γī

j̄k̄ = Γi
jk.

For a general Hermitian metric, the torsion tensor T i
jk may be nontrivial; it

is defined by

(1.2) T i
jk = Γi

jk − Γi
kj , T ī

j̄k̄ = T i
jk,
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the torsion (1, 0)-form is then obtained by taking the trace:

(1.3) τ = T i
jidz

j .

We use hjk̄ and its inverse hk̄l to lower and raise indices. For example, raising
and lowering indices of the torsion, we have

(1.4) Tq
pr := T ī

j̄k̄hqīh
pj̄hrk̄.

In particular, for a (0, 1) form w = wk̄ dz̄
k, raising indices gives the “musical”

operator � acting on w and produces a (1, 0) vector field w� := hkj̄wj̄ ∂k.
Now, if (∂̄ψ − τ̄)� is a holomorphic vector field, the adjoint operator ∂∗ on
dom(∂∗) ⊂ A2

(1,0)(M,h, e−ψ) can be expressed in the form

(1.5) ∂∗u = 〈u, ∂ψ − τ〉h,

see [10] for more details. If, in addition, the metric h is Kählerian one has
τ = 0 and thus

(1.6) ∂∗u = hjk̄uj
∂ψ

∂z̄k
,

which means the complex vector field

(1.7) X := hjk̄ ∂ψ

∂z̄k
∂

∂zj

is holomorphic. In this case, the gradient field gradhψ is a real holomorphic
vector field in the terminology of [13]. There are important classes of Kähler
manifolds admitting a function with real holomorphic gradient vector field,
for instance the gradient Kähler–Ricci solitons, see [2] and [13]. The existence
of real holomorphic gradient vector fields is also related to Calabi’s extremal
Kähler metric [1] and to strong hypercontractivity of the weighted Laplacian
[6]. In [13] it is shown that the real holomorphicity of the gradient vector field
of a weight function implies Liouville theorems for weighted holomorphic,
or more generally, weighted harmonic functions and mappings. We shall see
quickly that the holomorphicity of the gradient field of a conformal factor is
also related to the holomorphicity of the torsion of the conformally Kähler
metric.

Here we continue our investigation of the ∂-complex

(1.8) A2(M,h, e−ψ) ∂−→
←−
∂∗

A2
(1,0)(M,h, e−ψ) ∂−→

←−
∂∗

A2
(2,0)(M,h, e−ψ),
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and the corresponding complex Laplacian

(1.9) �̃p = ∂∂∗ + ∂∗∂ : A2
(1,0)(M,h, e−ψ) −→ A2

(1,0)(M,h, e−ψ),

which, under suitable assumptions, will be a densely defined self-adjoint op-
erator, see [10] and [9], where the classical case of the Segal–Bargmann space
with the Euclidean metric is treated.

For (p, 0)-forms with p � 2, the holomorphicity of (∂̄ψ− τ̄)� is not enough
for the adjoint ∂∗ to have a simple formula analogous to (1.5). In order to
describe the formula for ∂∗ on (2, 0)-forms, we write

(1.10) v = 1
2
∑
j,k

vjkdz
j ∧ dzk =

∑
j<k

vjkdz
j ∧ dzk,

where vjk = −vkj . Define an operator T � : Λ2,0(M) → Λ1,0(M) by

(1.11) T �(v) = 1
2Tp

rsvrsdz
p,

where Tp
rs is given by (1.4). If u = ujdz

j , then

(1.12) ∂u = 1
2
∑
j,k

(
∂uk
∂zj

− ∂uj
∂zk

)
dzj ∧ dzk.

Moreover, since vpq = −vqp, we find that

〈∂u, v〉h =
∑

j,k,p,q

vpqh
kp̄hjq̄

(
∂uk
∂zj

)
.(1.13)

The formula for ∂∗ is then given by

(1.14) ∂∗v = Ph,ψ

(
−(ψj̄ − τj̄)vpqhqj̄dzp + T �(v)

)
.

Here, Ph,ψ is the orthogonal projection from L2
(1,0)(M,h, e−ψ) ontoA2

(1,0)(M,h,

e−ψ), see [10]. If h is Kähler and (∂̄ψ)� is holomorphic then, as in the case of
1-forms,

(1.15) ∂∗v = −ψj̄vpqh
qj̄dzp.

In this case, the non-local orthogonal projection Ph,ψ plays no role and ∂∗

reduces essentially to a “multiplication” operator. In the non-Kähler case, by
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inspecting (1.14), we find that the relevant condition is the holomorphicity of
the torsion tensor; the precise definition is as follows.

Definition 1.1. Let h be a Hermitian metric on a complex manifold. We say
that h has holomorphic torsion if

(1.16) ∇l̄Tp
rs = 0,

where ∇ is the Chern connection.

Clearly, h has holomorphic torsion if and only if the components of the
torsion Tp

rs (in any holomorphic coordinate system) are holomorphic. More-
over, it implies that τ̄ � is a holomorphic (1, 0)-vector field.

Let D∗
p and ∂∗

p be the Hilbert space adjoints of ∂ in the Lebesgue space
L2

(p+1,0)(M,h, e−ψ) and the weighted Begman space A2
(p+1,0)(M,h, e−ψ), re-

spectively. In summary, we have the following theorem which generalizes [10,
Theorem 1.1].

Theorem 1.2. Let (M,h) be a complete Hermitian manifold with weight
e−ψ. Assume that the torsion Tp

rs of the Chern connection is holomorphic.
If (∂̄ψ)� is holomorphic, then for η ∈ dom(D∗

p), p � 0, that is holomorphic
in an open set U ⊂ M , D∗

pη is also holomorphic in U . In particular, if ∂p is
densely defined in the Bergman space A2

(p,0)(M,h, e−ψ), then

(1.17) D∗
pη = ∂∗

pη

for η ∈ dom(∂∗
p).

In the following, we give two examples when the theorem applies. The first
example shows that in some situations it is necessary to consider non-Kähler
Hermitian metrics.

Example 1.3 (Hopf manifolds). The simplest examples of Hermitian non-
Kähler metrics with holomorphic torsion are conformal flat metrics. On Cn,
these metrics are described explicitly in Proposition 3.3. They are of the form
gjk̄ = φ−1δjk in the standard coordinates of Cn, where φ is given in (3.7). For
example, in (3.7), if we take cjk̄ to be 1

4× the identity matrix and γ = 0, then
we obtain the following metric on Cn \ {0} with holomorphic torsion:

(1.18) gjk̄ = 4δjk
|z|2 .

Let M := S2n−1 × S1 be the standard n-dimensional Hopf manifold. It is
diffeomorphic to (Cn \ {0}) /G, where G is the infinite cyclic group generated
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by z �→ 1
2z acting freely and properly discontinuously on Cn \ {0}, and has

the induced complex structure; see, e.g., [11] for more details. The Hermitian
metric gjk̄ in (1.18) is invariant under the action of G and descents to a natural
locally conformal Kähler metric with holomorphic torsion on the standard
compact Hopf manifold. It is well-known that for n � 2 the first Betti number
b1(M) = 1 and hence M admits no Kähler metric; see [11].

Example 1.4. We revisit the following example in [10]. Let M = Bn be the
unit ball in Cn and let hjk̄ = (1− |z|2)−1δjk be a conformally flat metric. By
direct computations, we find that the torsion

(1.19) Tq
pr = zpδrq − zrδpq

is nontrivial (unless n = 1) and holomorphic. Let ψ = α log(1 − |z|2). Then

(1.20) (∂̄ψ)� = −α
n∑

j=1
zj

∂

∂zj

is a holomorphic vector field. The triple (M,h, e−ψ) satisfies the hypothesis of
Theorem 1.2, except that h is not complete. The ∂-complex on the Bergman
spaces A2

(p,0)(M,h, e−ψ) of holomorphic (p, 0)-forms exhibits an interesting
holomorphicity/duality property similar to that on the Segal-Bargmann space;
see [10].

In this paper, we investigate conformally Kähler manifolds with holomor-
phic torsion and weight functions whose gradients are real holomorphic vector
fields. The first part is devoted to Kähler metrics with multi-radial potential
functions. It is also shown that in many cases the real holomorphic vector
field is of the form

(1.21) Z =
n∑

j=1
Cjzj

∂

∂zj
,

where Cj are real constants. In addition, we exploit an example where some
constants Cj are zero, which means that the adjoint of ∂ “forgets” some of
the variables.

In the second part we consider conformally Kähler metrics. Let (M,h) be a
Kähler manifold and let g = φ−1h be a conformal metric. We study the condi-
tion on φ such that g has holomorphic torsion. This is the case precisely when
gradhφ is a real holomorphic vector field. We determine all conformally Kähler
metrics having holomorphic torsion on Kähler spaces of constant holomorphic
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sectional curvature. We thus obtain a wealth of examples of Hermitian mani-
folds with holomorphic torsion. On some of these examples, we also determine
all real-valued functions ψ whose real gradient fields gradgψ are real holomor-
phic. On such a triple (M, g, e−ψ), the ∂-complex on the weighted Bergman
spaces exhibits an interesting holomorphicity/duality property. We analyze
the ∂-complex on the unit ball Bn := {z ∈ Cn : |z|2 < 1} endowed with the
“half” hyperbolic metric,

(1.22) hjk̄ = δjk + z̄jzk
1 − |z|2 ,

and obtain the following result.

Theorem 1.5 (= Theorem 4.2). Let h be the half hyperbolic metric on the
unit ball Bn, α < 0, and ψ(z) = α log(1−|z|2). Then the complex Laplacian �̃1
has a bounded inverse Ñ1, which is a compact operator on A2

(1,0)(Bn, h, e−ψ)
with discrete spectrum. If

(1.23) ν =

⎧⎪⎪⎨⎪⎪⎩
−α, if n = 1,
min{1 − α,−2α}, if n = 2,
n− α− 1, if n � 3,

then

(1.24)
∥∥∥Ñ1u

∥∥∥ � 1
ν
‖u‖,

for each u ∈ A2
(1,0)(Bn, h, e−ψ). In fact, the first positive eigenvalue of �̃1 is

λ1 = ν.
Consequently, if η = ηjdzj ∈ A2

(1,0)(Bn, h, e−ψ) with ∂η = 0, then f :=
∂∗Ñ1η is the canonical solution of ∂f = η, this means ∂f = η and f ∈
(ker ∂)⊥. Moreover,

(1.25)
∫
Bn

|f |2 (1 − |z|2)−α−1dλ

� 1
ν

∫
Bn

⎛⎝ n∑
j=1

|ηj |2 −

∣∣∣∣∣∣
n∑
j

ηjzj

∣∣∣∣∣∣
2⎞⎠ (1 − |z|2)−α−1dλ.

We also consider U(n)-invariant metrics on Cn in a conformal class of a
given U(n)-invariant Kähler metric. It is shown that there exists essentially
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a 2-parameter family of U(n)-invariant conformal metrics with holomorphic
and nontrivial torsion. Moreover, with respect to such a metric, there exists
essentially a 2-parameter family of weight functions with real holomorphic
gradient fields.

2. Kähler metrics with multi-radial potential functions

We consider Kähler metrics on Cn with multi-radial potential functions

(2.1) χ(z1, z2, . . . , zn) = χ̃(r1, r2, . . . , rn)

where rj = |zj |2, j = 1, . . . , n. For these metrics, we can determine explicitly
the multi-radial weight functions ψ such that (∂̄ψ)� is holomorphic.

Theorem 2.1. Let χ(z) = χ̃(|z1|2, . . . , |zn|2) be a multi-radial potential func-
tion for a Kähler metric in Cn. If ψ(z) = ψ̃(|z1|2, . . . , |zn|2) is a multi-radial
weight function such that (∂̄ψ)� is holomorphic, then

(2.2) (∂̄ψ)� =
n∑

j=1
Cjzj

∂

∂zj
,

where Ck’s are real constant and

(2.3) ψ̃ = C0 +
n∑

j=1
Cjrj

∂χ̃

∂rj
.

Proof. By direct computation, we find that

(2.4) hjk̄ = ∂χ̃

∂rj
δjk + z̄jzk

(
∂2χ̃

∂rj∂rk

)
.

Observe that ∂χ̃/∂rj and ∂2χ̃/∂rj∂rk are real-valued. Observe that ∂χ̃/∂rj >
0 for all j near the origin.

We claim that the inverse transpose matrix has the form

(2.5) hjk̄ =
(
∂χ̃

∂rj

)−1

δjk + Vjkzj z̄k

for some matrix Vjk with real-valued entries. Indeed, consider the system of
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equations with unknowns Vjk,

(2.6)

⎛⎝( ∂χ̃

∂rj

)−1

δjk + Vjkzj z̄k

⎞⎠hlk̄ = δjl ,

which is equivalent to a system with real coefficients

(2.7)
(
∂χ̃

∂rj

)−1(
∂2χ̃

∂rj∂rl

)
+
(
∂χ̃

∂rj

)
Vjl +

n∑
k=1

Vjkrk

(
∂2χ̃

∂rk∂rl

)
= 0.

For fixed j, the system of equation for Vjk, k = 1, 2, . . . , n, can be written as

(2.8)

⎛⎜⎜⎜⎜⎝
aj + r1b11 r2b21 · · · rnbn1

r1b12 aj + r2b22 · · · rnbn2
...

... . . . ...
r1b1n r2b2n · · · aj + rnbnn

⎞⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎝
Vj1
Vj2
...

Vjn

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
−a−1

j bj1
−a−1

j bj2
...

−a−1
j bjn

⎞⎟⎟⎟⎟⎠ ,

where

(2.9) aj = ∂χ̃

∂rj
> 0, bkl = ∂2χ̃

∂rk∂rl
,

all are real-valued. Clearly, at the origin r1 = r2 = · · · = rn = 0, the determi-
nant of the coefficient matrix is anj > 0. Thus, this system of linear equations
is uniquely solvable near the origin and the solution is real. The claim follows.

On the other hand, since ψ is multi-radial, we have

(2.10) ∂ψ

∂z̄k
= ∂ψ̃

∂rk
zk.

This and (2.5) imply that

(2.11) (∂̄ψ)� =
n∑

j=1

⎛⎝( ∂χ̃

∂rj

)−1(
∂ψ̃

∂rj

)
+

n∑
k=1

rkVjk

(
∂ψ̃

∂rk

)⎞⎠ zj
∂

∂zj
.

Since for each j the expression in the parenthesis is real-valued, it is holomor-
phic if and only if it is a constant. Thus

(2.12) (∂̄ψ)� =
n∑

j=1
Cjzj

∂

∂zj
,



802 Friedrich Haslinger and Duong Ngoc Son

where C1, C2, . . . , Cn are real constants. Thus, (2.2) holds. Applying the flat
“musical” operator � to both sides, we find that ψ̃ must satisfy the PDE

(2.13) zl
∂ψ̃

∂rl
= ∂ψ

∂z̄l
=

n∑
j=1

Cjzjhjl̄ = zlCl
∂χ̃

∂rl
+ zl

n∑
j=1

Cjrj
∂2χ̃

∂rj∂rl

= zl
∂

∂rl

⎛⎝ n∑
j=1

Cjrj
∂χ̃

∂rj

⎞⎠
whose general solution is

(2.14) ψ̃ = C0 +
n∑

j=1
Cjrj

∂χ̃

∂rj
.

The proof is complete.

For example, let χ̃ have the following form

χ̃(r1, r2, . . . , rn) = F1(r1) + F2(r2) + · · · + Fn(rn),

where rj = |zj |2, j = 1, . . . , n, with smooth real valued functions Fj , j =
1, . . . , n. Then we have a diagonal matrix

hjk̄ = δjk(F ′
j + rjF

′′
j ).

We have to suppose that all entries satisfy F ′
j+rjF

′′
j > 0. For the determinant

we get

δ =
n∏

j=1
(F ′

j + rjF
′′
j ).

For hjk̄ we get

(2.15) (hjk̄)

= 1/δ

⎛⎜⎜⎜⎝
∏

j �=1(F ′
j + rjF

′′
j ) 0 . . . 0

0
∏

j �=2(F ′
j + rjF

′′
j ) . . . 0

. . . . . . . . . . . .
0 0 . . .

∏
j �=n(F ′

j + rjF
′′
j )

⎞⎟⎟⎟⎠ .

For this metric, we can always find a weight function ψ such that (∂̄ψ)� is holo-
morphic. In fact, we can determine all such multi-radial weight functions ψ.
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Corollary 2.2. Let h be a Kähler metric on Cn with a potential function

(2.16) χ(z1, z2, . . . , zn) =
n∑

j=1
Fj(|zj |2).

If ψ(z1, . . . , zn) = ψ̃(|z1|2, . . . , |zn|2) is a multi-radial weight, then (∂̄ψ)� is
holomorphic if and only if

(2.17) ψ(z1, . . . , zn) = C0 +
n∑

j=1
Cj |zj |2F ′

j(|zj |2).

If this is the case, then we obtain the real holomorphic vector field

(2.18) hjk̄ ∂ψ

∂z̄k
∂

∂zj
=

n∑
j=1

Cjzj
∂

∂zj
.

Proof. Using (2.15), we find that

(2.19) hjk̄ψk̄ =
n∑

j=1
zj
ψ̃rj (r1, r2, . . . , rn)

F ′
j + rjF ′′

j

.

Then (∂̄ψ)� is holomorphic if and only if

(2.20)
ψ̃rj (r1, r2, . . . , rn)

F ′
j + rjF ′′

j

= Cj

for some real constant Cj . This PDE can be solved easily and the solutions
are given as in (2.17). The proof is complete.

Example 2.3. We consider the polydisk

Dn :=
{
z ∈ Cn : |zj |2 < 1, j = 1, 2, . . . , n

}
.

The Bergman metric on Dn is the Kähler metric with potential function

(2.21) χ(z) = logK(z, z) = −2
n∑

j=1
log(1 − |zj |2),

which is decoupled and multi-radial. Applying Corollary 2.2 with Fj(r) =
− log(1− r), we see that all multi-radial weight functions ψ with (∂̄ψ)� holo-
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morphic are of the form

(2.22) ψ = γ0 +
n∑

j=1

γj
1 − |zj |2

.

Under a suitable condition on γj , the ∂-complex on the Bergman spaces
A2(Dn,
h, e−ψ) is similar to that on the Bergman spaces on the unit ball with complex
hyperbolic metric, studied earlier in [10].

Another interesting decoupled multi-radial potential function is given in
the form

(2.23) χ̃(r1, r2, . . . , rn) =
n∏

j=1
Gj(rj),

where Gj(r)’s are real-valued function of a real variable. We have

hjj̄ = ∂j∂j̄χ(z1, z2, . . . , zn)
= G1 · · ·Gj−1(G′

j + rjG
′′
j )Gj+1 · · ·Gn

= χ
G′

j + rjG
′′
j

Gj

and for k �= j, we have

(2.24) hjk̄ = ∂j∂k̄χ(z1, z2, . . . , zn) = χ
G′

j z̄jG
′
kzk

GjGk
.

Thus, the Kähler metric is given by a rank-1 perturbation of a diagonal metric.
Precisely,

(2.25) hjk̄ = χ

(
GjG

′
j + rjGjG

′′
j − (G′

j)2rj
G2

j

δjk +
G′

j z̄jG
′
kzk

GjGk

)
.

Theorem 2.1 gives the following:

Corollary 2.4. Let h be a Kähler metric on Cn with a potential function

(2.26) χ(z1, . . . , zn) =
n∏

j=1
Gj(|zj |2).
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Then a multi-radial weight function ψ(z1, . . . , zn) = ψ̃(|z1|2, . . . , |zn|2) has the
property that (∂̄ψ)� is holomorphic if and only if

(2.27) ψ(z) = C0 +
n∑

j=1
Cj|zj |2G′

j(|zj |2)
∏
k �=j

Gk(|zk|2),

where C0, C1, . . . , Cn are real constants, and G′
j = ∂Gj/∂rj. In this case, the

holomorphic vector field is

(2.28) hjk̄ ∂ψ

∂z̄k
∂

∂zj
=

n∑
j=1

Cjzj
∂

∂zj
.

In the rest of this section, we study in detail an example of Kähler metric
given by a multi-radial non-decoupled function, yet the weight function can
be chosen so that the adjoint ∂∗-operator “forgets” one variable.

Example 2.5. In the following we consider a non-decoupled example on C2

with potential function

(2.29) χ(z1, z2) = 1
4 |z1|4 + |z1|2|z2|2 + |z1|2 + |z2|2.

In the standard coordinates of C2, the metric is given by the matrix

(2.30)
[
hjk̄

]
=
(
|z1|2 + |z2|2 + 1 z̄1z2

z1z̄2 |z1|2 + 1

)
,

with the determinant

(2.31) δ = det
[
hjk̄

]
= |z1|4 + 2|z1|2 + |z2|2 + 1.

Therefore,

(2.32)
[
hjk̄
]

= 1
δ

(
|z1|2 + 1 −z1z̄2
−z̄1z2 |z1|2 + |z2|2 + 1

)
.

If ψ(z1, z2) = ψ̃(r1, r2) is a multi-radial weight with real holomorphic
gradient field, then Theorem 2.1 shows that

(2.33) (∂̄ψ)� = C1z1
∂

∂z1
+ C2z2

∂

∂z2
,
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where C1 and C2 are two constants, and

(2.34) ψ(z1, z2) = C1|z1|2 + C2|z2|2 + (C1 + C2)|z1z2|2 + 1
2C1|z1|4.

We consider the case C1 = 1 and C2 = 0 so that

(2.35) ψ(z1, z2) = |z1|4
2 + |z1|2|z2|2 + |z1|2

and the corresponding Bergman spaces

(2.36) A2
(0,0)(C2, h, e−ψ) =

{
f : C2 −→ C entire :

∫
C2

|f |2e−ψδ dλ < ∞
}

and

(2.37) A2
(1,0)(C2, h, e−ψ)

=
{
u = u1 dz1 + u2 dz2, u1, u2 entire :

∫
C2

|u|2he−ψδ dλ < ∞
}
,

where |u|2h = hjkujuk. It is easily seen that these spaces are non-trivial.
We claim that A2

(0,0)(C2, h, e−ψ) does not contain monomials in z2: con-
sider the function f(z1, z2) = zm2 , for m ∈ N. Using polar coordinates we
get

‖f‖2 = 4π2
∫ ∞

0

∫ ∞

0
r2m
2 (r4

1 + 2r2
1 + r2

2 + 1) e−r4
1/2−r2

1r
2
2−r2

1r1r2 dr1dr2

= 4π2
∫ ∞

0

(∫ ∞

0
r2m+3
2 e−r2

1r
2
2 dr2

)
(r5

1 + 2r3
1 + r1)e−r4

1/2−r2
1 dr1,

for the inner integral we substitute s = r2
1r

2
2 and get

(2.38) 1
2r2m+4

1

∫ ∞

0
sm+1 e−s ds,

which shows that integration with respect to r1 is divergent and hence the
claim follows.

In a similar way, we show that all functions zk1z
�
2, for k ∈ N, k ≥ 2 and

� ∈ Z, 0 ≤ � ≤ k−2, belong to A2
(0,0)(C2, h, e−ψ). They even belong to dom(∂).

Here, we have to take care for the slightly different norm in A2
(1,0)(C2, h, e−ψ):
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We have to consider the integral∫ ∞

0

∫ ∞

0
r2k
1 r2�

2 (r4
1 + 2r2

1 + r2
2 + 1) e−r4

1/2−r2
1r

2
2−r2

1r1r2 dr1dr2;

the critical summand is∫ ∞

0

∫ ∞

0
r2k
1 r2�+2

2 e−r4
1/2−r2

1r
2
2−r2

1r1r2 dr1dr2;

integration with respect to r2 gives∫ ∞

0
r2k+1
1 r2�+2

2 e−r2
1r

2
2r2dr2 = 1

2

∫ ∞

0
r2k−1
1 r−2�−2

1 s�+1e−s ds

= 1
2

∫ ∞

0
r2k−2�−3
1 s�+1e−s ds,

and we observe that 2k − 2�− 3 ≥ 0, whenever � ≤ k − 2.
In order to show that the functions zk1z�2, for k ∈ N, k ≥ 2 and � ∈ Z, 0 ≤

� ≤ k − 2 belong to dom(∂), we first have to consider

(2.39) ∂(zk1z�2) = kzk−1
1 z�2 dz1 + �zk1z

�−1
2 dz2,

now we compute

|∂(zk1z�2)|2h = |z1|2 + 1
δ

|kzk−1
1 z�2|2 −

z1z2

δ
kzk−1

1 z�2 (�zk1z�−1
2 )

− z1z2

δ
(kzk−1

1 z�2) (�zk1z�−1
2 ) + |z1|2 + |z2|2 + 1

δ
|�zk1z�−1

2 |2

and observe that in the first term the exponent for r1 after integration with
respect to r2 is again 2k − 2� − 3 and in the last term we have the right
exponents for z1 and z2, namely |z1|2k|z2|2�. Hence the functions zk1z

�
2, for

k ∈ N, k ≥ 2 and � ∈ Z, 0 ≤ � ≤ k − 2 belong to dom(∂).
It is clear that

{
zk1z

�
2 : k ∈ N, k ≥ 2, � ∈ Z, 0 ≤ � ≤ k − 2

}
is an orthog-

onal system in A2
(0,0)(C2, h, e−ψ).

Let f ∈ A2
(0,0)(C2, h, e−ψ). Then f can be written as its Taylor series

(2.40) f(z1, z2) =
∑
α,β

cα,βz
α
1 z

β
2 ,

which is uniformly convergent on compact subsets of C2. Hence, using polar
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coordinates we get

(2.41) 1
4π2

∫ 2π

0

∫ 2π

0
f(r1e

iφ1 , r2e
iφ2) e−iαφ1e−iβφ2 dφ1dφ2 = cα,β r

α
1 r

β
2 ,

and by Parseval’s formula

(2.42)
∫ 2π

0

∫ 2π

0
|f(r1e

iφ1 , r2e
iφ2)|2 dφ1dφ2 = 4π2∑

α,β

|cα,β|2r2α
1 r2β

2 .

Computing the norm of f in A2
(0,0)(C2, h, e−ψ), we see that

‖f‖2 =4π2
∫ ∞

0

∫ ∞

0

∑
α,β

|cα,β|2r2α
1 r2β

2 (r4
1+2r2

1+r2
2+1) e−r4

1/2−r2
1r

2
2−r2

1r1r2 dr1dr2,

and Lebesgue’s dominated convergence theorem implies that we can inter-
change integration and summation, so we have

‖f‖2 =4π2∑
α,β

∫ ∞

0

∫ ∞

0
|cα,β|2r2α

1 r2β
2 (r4

1+2r2
1+r2

2+1) e−r4
1/2−r2

1r
2
2−r2

1r1r2 dr1dr2.

This implies that the system {zk1z�2 : k ∈ N, k ≥ 2, � ∈ Z, 0 ≤ � ≤ k − 2}
is an orthogonal basis of A2

(0,0)(C2, h, e−ψ), as all other functions zk1z�2 do not
belong to A2

(0,0)(C2, h, e−ψ). In addition we have that the operator ∂ is densely
defined.

Since (∂̄ψ)� = z1∂/∂z1, we have for u = u1 dz1 + u2 dz2 ∈ dom(∂∗)

(2.43) ∂∗u = z1u1.

Thus, the adjoint ∂∗ “forgets” the z2-variable, although the weight and the
metric both depend on z2.

Now let u = u1dz1 + u2dz2 ∈ A2
(1,0)(C2, h, e−ψ). Then

(2.44) |∂u|2h =
∣∣∣∣∂u2

∂z1
− ∂u1

∂z2

∣∣∣∣2 1
δ
,

therefore

(2.45) ∂ : A2
(1,0)(C2, h, e−ψ) −→ A2

(2,0)(C2, h, e−ψ)

is also densely defined.
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Let

(2.46) v = v12 dz1 ∧ dz2 ∈ A2
(2,0)(C2, h, e−ψ).

Then, by the same computation as above, we get

(2.47) ∂∗v = Ph,ψ

(
−ψjv12h

2j
)
dz1 + Ph,ψ

(
−ψjv21h

1j
)
dz2 = z1v12 dz2.

So we obtain for �̃ = ∂∗∂ + ∂∂∗ and u ∈ A2
(1,0)(C2, h, e−ψ) ∩ dom(�̃) that

(2.48) �̃u =
(
u1 + z1

∂u1

∂z1

)
dz1 + z1

∂u2

∂z1
dz2.

Proposition 2.6. The operator

(2.49) �̃ : A2
(1,0)(C2, h, e−ψ) −→ A2

(1,0)(C2, h, e−ψ)

is densely defined and its spectrum consists of point eigenvalues with finite
multiplicities. Precisely, for k = 1, 2, . . . , the eigenvalues are λk = k+1, with
multiplicity 2k − 1.

Proof. In order to determine the eigenvalues of �̃, we consider the basis ele-
ments zk1z

�
2, for k ∈ N, k ≥ 2 and � ∈ Z, 0 ≤ � ≤ k − 2 and define

(2.50) v1
k,� = zk1z

�
2 dz1 and v2

k,� = zk1z
�
2 dz2.

Then we have

(2.51) �̃v1
k,� = (k + 1)v1

k,� and �̃v2
k,� = kv2

k,�.

Since � ∈ Z, 0 ≤ � ≤ k−2, the eigenvalues k and k+1 are of finite multiplicity
and as the functions zk1z�2, for k ∈ N, k ≥ 2 and � ∈ Z, 0 ≤ � ≤ k−2 constitute
an orthogonal basis in the components of A2

(1,0)(C2, h, e−ψ) the operator �̃
has a compact resolvent.

3. Conformally Kähler metrics

Let (M,h) be a Kähler manifold and let g = φ−1h be a conformal met-
ric. In this section, we study the question when g has holomorphic torsion.
Our motivation comes from Theorem 1.2 which says essentially that if g has
holomorphic torsion and if ψ is a weight function such that (∂̄ψ)� is holomor-
phic, then the ∂-complex on the Bergman spaces A2

(p,0)(M,h, e−ψ) exhibits an
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interesting holomorphicity/duality property, provided that some additional
density conditions hold; see also [10]. We first consider the case when (M,h)
is a complex space form of constant (negative, zero, or positive) curvature.
Using a result in [7], we determine all conformal metrics with holomorphic
torsion. We further determine the real-valued function whose gradient with
respect to the conformal metrics are real holomorphic. These results provide
several interesting examples in which the ∂-complex has the aforementioned
holomorphicity property.

Proposition 3.1. Let (M,h) be a Kähler manifold of dimension n � 2 and
let g = φ−1h be a conformally Kähler metric. Let τ g be the torsion form of g
and �g the sharp “musical” operator associated to g. Then the following are
equivalent.

(i) g has holomorphic torsion,
(ii) (τ g)�g is holomorphic,
(iii) (∂̄φ)� is holomorphic.

Proof. “(i) =⇒ (ii)” is simple and explained in the introduction. Now let Γ̂j
kl

and T̂ j
kl be the Christoffel symbols and the components of the torsion of g and

let σ = − log φ. Then by direct calculation, we have Γ̂j
kl = Γj

kl + σkδ
j
l . Thus,

T̂ j
kl = σkδ

j
l − σlδ

j
k,(3.1)

τ g = (n− 1)
n∑

k=1
σkdzk.(3.2)

Lowering and raising the indices using gjk̄ = eσhjk̄ and its inverse

(3.3) T̂p
rs = T̂ j̄

k̄l̄g
rk̄gsl̄gpj̄ = e−σ

(
σk̄h

rk̄δsp − σl̄h
sl̄δrp

)
and

(3.4) (τ g)�g = (n− 1)e−σhjk̄σk̄
∂

∂zj
= (n− 1)(∂̄φ)�.

This shows that “(ii) ⇐⇒ (iii)”. Finally, from (3.3), T̂p
rs is holomorphic if

and only if for each r, e−σσk̄h
rk̄ = φk̄h

rk̄ is holomorphic. This shows that (iii)
implies (i). The proof is complete.

Thus, the existence of a conformal metric with holomorphic torsion is
equivalent to that of a nonvanishing real-valued solution φ to the equation
∇j∇kφ = 0. In many cases considered in this paper, non-constant solutions
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exist locally or globally on open manifolds. However, we point out that for
compact manifolds, the existence of global conformally Kähler metrics with
nontrivial holomorphic torsion is related to the geometry of the manifolds. In
fact, as an application of the “Bochner technique” in differential geometry,
we have the following

Corollary 3.2. Let (M,h) be a compact Kähler manifold, and let Rjk̄ be the
Ricci curvature:

(3.5) Rjk̄ = − ∂2

∂zj∂z̄k
log det(h�m̄).

Suppose that (Rjk̄) is non-positive. If g = φ−1h is a conformally Kähler metric
having holomorphic torsion, then g is homothetic to h.

For example, there is no conformally flat metric with holomorphic torsion
on complex flat tori Cn/Λ, Λ being a lattice in Cn, other than the flat metrics.

Proof. If g has holomorphic torsion, then by Proposition 3.1, (∂̄φ)� is holo-
morphic. By a result of Bochner (see [5, Theorem 2.4.1]), (∂̄φ)� is parallel. In
particular, ∂̄∂φ = 0 and hence φ is pluriharmonic. But M is compact and the
maximum principle implies that φ is a constant.

Remark 1. The proof of Proposition 3.1 above is purely local. Thus, we can
state a version of “(i) ⇐⇒ (ii)” for locally conformally Kähler manifolds as
follows. Recall that if (M, g) is locally conformally Kähler, then there exists
a closed 1-form θ, the Lee form, that satisfies

(3.6) dω = θ ∧ ω,

where ω = igjk̄dzj ∧ dz̄k is the fundamental (1, 1)-form in local coordinates
(see [12]). Condition (ii) is equivalent to the real holomorphicity of the Lee
field θ�. Thus, g has holomorphic torsion if and only if the Lee vector field
θ� is holomorphic. This property was studied in, e.g., [12], which also gives
an abundance of conformally Kähler metrics on a Hopf manifold (as in Ex-
ample 1.3) with holomorphic Lee field and hence they all have holomorphic
torsion.

3.1. Conformal flat metrics on Cn

Proposition 3.3. Let φ be a smooth function such that the set {φ > 0}
is a nonempty open set in Cn. Then, a conformally flat Hermitian metric
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gjk̄ = φ−1δjk on {φ > 0} has holomorphic torsion if and only if

(3.7) φ =
n∑

j,k=1
cjk̄zj z̄k + Re

n∑
k=1

αkzk + γ,

where cjk̄ is a Hermitian matrix, αk ∈ C and γ ∈ R.

Proof. From Proposition 3.1, the metric g has holomorphic torsion if and only
if ∂φ/∂z̄k is holomorphic for each k, or equivalently,

(3.8) ∂2φ

∂zj∂zj
= 0.

This PDE has been solved explicitly by Gross and Qian in [7]. Real-valued
solutions to this equation are known to have the form (3.7). The proof is
complete.

Example 3.4. In (3.7), if we take cjk̄ to be the identity matrix, αk = 0, and
γ = 1, then we obtain on Cn a conformally flat Hermitian metric

(3.9) gjk̄ = δjk
1 + |z|2 .

On the other hand, if we take cjk̄ to be minus the identity matrix, αk = 0,
and γ = 1, then we obtain the metric

(3.10) gjk̄ = δjk
1 − |z|2 ,

which is a conformally flat Hermitian metric on the unit ball Bn := {|z| < 1},
cf. [10]. Both metrics have holomorphic torsion.

Theorem 3.5. Let M = Bn and let

(3.11) gjk̄ = δjk
1 − |z|2

be a conformally flat metric on Bn. If ψ is a real-valued function on Bn such
that (∂̄ψ)� is holomorphic, then

(3.12) ψ(z) = A + B log(1 − |z|2)

for some real constants A and B.
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Proof. Let ψ be a weight function on the Hermitian manifold (Bn, g) such
that (∂̄ψ)� is holomorphic. Since gk̄l = (1 − |z|2)δkl, we have

(3.13) (∂̄ψ)� = (1 − |z|2)
n∑

k=1
ψk̄∂k.

Thus, the holomorphicity of (∂̄ψ)� is equivalent to

(3.14) f (k) := (1 − |z|2)ψk̄

is holomorphic for each k. Now, we compute

(3.15) ∂(zkψ)
∂z̄k

= zkf
(k)

1 − |z|2 = ∂

∂z̄k

(
−f (k) log(1 − |z|2)

)
.

Therefore,

(3.16) zkψ = −f (k) log(1 − |z|2) + v(k),

where v(k) is holomorphic in zk. Thus, both sides of (3.16) are real-analytic
in zk. Expanding in power series at zk = 0 (keeping other variables fixed), we
obtain

(3.17) f (k)(z) =
∞∑
l=0

Alz
l
k, v(k)(z) =

∞∑
s=0

Csz
s
k, ψ(z) =

∞∑
p,q=0

cpqz
p
k z̄

q
k.

Plugging these into equation (3.16) above, we get

(3.18)
∑
p,q

cpqz
p+1
k z̄qk = −

( ∞∑
l=0

Alz
l
k

)( ∞∑
m=0

Bmz
m
k z̄mk

)
+

∞∑
s=0

Csz
s
k,

where

(3.19) log(1 − |z|2) =
∞∑

m=0
Bmz

m
k z̄mk , B0 = log

⎛⎝1 −
∑
j �=k

|zj |2
⎞⎠ .

For each set (zj : j �= k) fixed, the series involved in equation (3.18) above are
uniformly and absolutely convergent in a small disc {|zk| < r}. In particular,
we can expand the product of infinite sums on the right-hand side and equate
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the coefficients of monomials zpk z̄
q
k. Thus, comparing the terms with bi-degree

(p + 1, 0), we have

(3.20) cp,0 = −Ap+1B0 + Cp+1, p = 0, 1, 2, . . . .

Comparing terms of bi-degree (1, q) we get

(3.21) c0,0 = −A1B0 + C1, c0,1 = −A0B1, c0,q = 0 for q � 2.

Thus, by the reality of ψ, we have

(3.22) cp,0 = c0,p = 0, ∀ p � 2.

Then we find that

(3.23) Cp = B0Ap for p = 0 and p � 3.

Hence,

(3.24) v(k) = B0f
(k) + c0,0zk + c1,0z

2
k.

Plugging this into the original equation (3.16), we find that

(3.25) − A0B1|zk|2 +
∑

p+q�2
cp,qz

p+1
k z̄qk = −

( ∞∑
l=0

Alz
l
k

)( ∞∑
m=1

Bmz
m
k z̄mk

)
.

Equating the terms of bi-degree (p + 1, p) we have

(3.26) cp,p = −A1Bp, p � 1.

Equating the terms of bi-degree (p, p) we have

(3.27) cp−1,p = −A0Bp, p � 1.

Taking the conjugate, we have

(3.28) cp+1,p = cp,p+1 = −A0Bp+1.

There are no terms of bi-degree (p, q) if p < q in (3.25). Thus, A3 = A4 =
· · · = 0. On the other hand, equating the terms of bi-degree (p+2, p), we find
that

(3.29) − A2Bp = cp+1,p = −A0Bp+1.
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This holds for all p if and only if A0 = A2 = 0 and hence c0,1 = c1,0 = 0.
Consequently,

(3.30) zk(ψ − c0,0) = −f (k)(z)
[
log(1 − |z|2) −B0

]
.

By the reality of ψ, c0,0, and log(1 − |z|2), and holomorphicity of f (k)(z) in
all variables, we must have

(3.31) f (k)(z) = A1zk,

where A1 does not depend on z1, z2, . . . , zn. Thus,

(3.32) ψ(z) = c0,0 + A1B0 + A1 log(1 − |z|2) = C1 + A1 log(1 − |z|2),

where C1 does not depend on zk. To show that C1 is a constant, we assume
that l �= k. By the same argument with k is replaced by l, we have

(3.33) ψ(z) = C̃1 + Ã1 log(1 − |z|2)

for Ã1 a constant and C̃1 does not depend on zl. We have

(3.34) C̃1 − C1 = (A1 − Ã1) log(1 − |z|2).

Applying ∂2/∂zl∂zk to both sides, we have

0 = ∂2

∂zl∂zk

(
C̃1 − C1

)
= ∂2

∂zl∂zk

(
(A1 − Ã1) log(1 − |z|2)

)
= (A1 − Ã1)z̄kz̄l(1 − |z|2)−2.

This shows that A1 = Ã1 and C1 = C̃1. In particular, C1 does not depend on
zl, for any l. This completes the proof.

In Section 5.2 of [10], the authors studied the ∂-complex on the weighted
Bergman spaces A2

(p,0)(Bn, gjk̄, e
−ψ) where g is given in (3.11) above and

ψ(z) = α log(1 − |z|2). Theorem 3.5 shows that this choice of the weight
function is essentially the only one that makes the ∂-complex having the
holomorphicity/duality property.
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3.2. Conformal metrics on the complex projective space

The complex projective space CPn is the quotient space

(3.35) CPn =
(
Cn+1 \ {0}

)
/ ∼

where ∼ is the equivalent relation

(3.36) (Z0, Z1, . . . , Zn) ∼ (Z ′
0, Z

′
1, . . . , Z

′
n)

if and only if Zj = λZ ′
j for some λ ∈ C. We denote by [Z0 : Z1 : · · · : Zn] the

equivalence class of (Z0, Z1, . . . , Zn) and by π : Cn+1 \{0} → CPn the canoni-
cal projection. Then π induces a natural complex manifold structure on CPn.
Moreover, CPn is covered by n+1 coordinate charts Uj :={[Z0 : Z1 : · · · : Zn] ∈
CPn : Zj �= 0}, j = 0, 1, . . . , n, each of which is biholomorphic to Cn via the
map

(3.37) φj([Z0 : Z1 : · · · : Zn]) →
(
Z0/Zj , Z1/Zj , . . . , Ẑj/Zj , . . . , Zn/Zj

)
,

where the jth coordinate in the right-hand side is removed. The Fubini–Study
metric on CPn can be described in each coordinate chart Uj

∼= Cn. For ex-
ample, on U0 the Fubini–Study metric hFS reduces to the Kähler metric on
Cn given by

(3.38) hjk̄ = ∂j∂k̄ log(1 + |z|2), zk = Zk/Z0, k = 1, 2, . . . , n.

Then hFS is a Kähler metric of constant holomorphic sectional curvature
K = 2; see [11].

Proposition 3.1 and a result of Gross–Qian [7, §3.3] give the following

Proposition 3.6. Let φ be a smooth function such that the set {φ > 0} is
a nonempty open set in Cn. Then, a conformally Fubini–Study Hermitian
metric gjk̄ = φ−1hjk̄ on {φ > 0} has holomorphic torsion if and only if

(3.39) (1 + |z|2)φ =
n∑

j,k=1
cjk̄zj z̄k + Re

n∑
k=1

αkzk + γ,

where cjk̄ is a Hermitian matrix, αk ∈ C and γ ∈ R.

Remark 2. Each function φ in (3.39) gives rise to a Hermitian metric con-
formal to the Fubini–Study metric on a subset Ω = {φ > 0} of Cn ⊂ CPn.
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Depending on the choice of coefficients, Ω may be bounded, unbounded, or
the whole Cn. All conformal metrics on the whole CPn with holomorphic tor-
sion can be found using a result of Futaki [5]. They arise as φ−1hFS (hFS is
the Fubini–Study metric) where φ = φ0+C, where φ0 is in the first eigenspace
of the Laplacian, and C is a real constant, C > −minφ0.

A particularly interesting case is when cjk̄ = 0, αk = 0 and γ = 1. In this
case we have

(3.40) gjk̄ = δjk̄ −
z̄jzk

1 + |z|2

is a Hermitian non-Kähler metric on Cn with holomorphic torsion. This metric
is analogous to the “half” hyperbolic metric on the unit ball discussed in the
next section. In the special case n = 1, this is the same as (3.9) and the metric
is the well-known Hamilton’s “cigar” soliton (a.k.a. the Witten’s blackhole.)

Theorem 3.7. Let gjk̄ be as in (3.40). If ψ is real-valued function on (Cn, gjk̄)
such that (∂̄ψ)� is holomorphic, then

(3.41) ψ(z) = A + B log(1 + |z|2)

for A and B are two real constants.

The proof of this theorem is similar to that of Theorem 3.9 below. We
omit the details.

3.3. Conformally complex hyperbolic metrics

Combining Proposition 3.1 and Gross and Qian [7, Theorem 3.4], we have the
following

Proposition 3.8. Let Bn be the unit ball in Cn and let

(3.42) hjk = (1 − |z|2)−1
(
δjk + z̄jzk

1 − |z|2
)

be the complex hyperbolic metric on Bn. Let g = φ−1h be a conformal metric
on Bn. Then g has holomorphic torsion if and only if

(3.43) (1 − |z|2)φ =
∑
j,k

cjk̄z
j z̄k + Re

(∑
k

αkz
k

)
+ γ,

where cjk̄ is a Hermitian matrix, αk ∈ C, and γ ∈ R.
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Remark 3. In [7], the following example was briefly discussed. For each
β ∈ R, put

(3.44) hjk = (1 − |z|2)β−1
(
δjk + z̄jzk

1 − |z|2
)
.

By the Sherman–Morrison formula, we find that the inverse transpose is

(3.45) hkl̄ = (1 − |z|2)1−β
(
δkl − z̄lzk

)
.

Thus, the torsion tensor takes the following form

(3.46) T l
jk = Γl

jk − Γl
kj =

β(z̄kδlj − z̄jδ
l
k)

1 − |z|2

and h is not Kähler, unless β = 0 or n = 1. Tracing over the indices l and k,
we find that

(3.47) τj = −β(n− 1)z̄j
1 − |z|2 .

Thus, h has holomorphic torsion if and only if β = 0 (Kähler case) or β = 1.
In the latter case, h is the “half” hyperbolic metric, which is the only one in
this family having holomorphic torsion.

Theorem 3.9. Let ψ be a function on Bn with the half hyperbolic metric,
then (∂̄ψ)� is holomorphic if and only if

(3.48) ψ(z) = A + B log(1 − |z|2),

where A and B are real constants.

Proof. Let Z = Zk∂k = (∂̄ψ)�. Since

(3.49) hkl̄ = δkl − z̄lzk,

we have

(3.50) Zk = hkl̄ψl̄ = ψk̄ − zk

n∑
l=1

z̄lψl̄.

If Z is holomorphic, then

(3.51) 0 = ∂j̄Z
k = ψk̄j̄ − zkψj̄ − zk

n∑
l=1

z̄lψl̄j̄ .



The ∂-operator and real holomorphic vector fields 819

Thus,

(3.52) ψk̄j̄ = zkψj̄ + zk

n∑
l=1

z̄lψl̄j̄ .

Multiplying both sides with z̄k and summing over k, we obtain

(3.53)
n∑

l=1
z̄kψk̄j̄ = |z|2ψj̄ + |z|2

n∑
l=1

z̄lψl̄j̄ .

Therefore,

(3.54) (1 − |z|2)
n∑

l=1
z̄kψk̄j̄ = |z|2ψj̄ .

Combining this with (3.52), we obtain

(3.55) ψk̄j̄ = zk

(
ψj̄ + |z|2

1 − |z|2ψj̄

)
=

zkψj̄

1 − |z|2 .

Equivalently,

(3.56) ∂

∂z̄k

[
(1 − |z|2)ψj̄

]
= 0.

Thus, ψ satisfies the conditions in Theorem 3.5. Consequently,

(3.57) ψ(z) = A + B log(1 − |z|2),

where A and B are real constants. The proof is complete.

3.4. Conformally U(n)-invariant Kähler metrics

In the sequel, we consider U(n)-invariant Kähler metrics and radial weights.
Suppose that hjk̄ is a Kählerian metric induced by a radial potential h(z) =
h̃(|z|2), where h̃(r) is a real-valued function of a real variable. Precisely, we
have

(3.58) hjk = ∂j∂k h̃(|z|2) = h̃′(|z|2) δjk + h̃′′(|z|2) zjzk.
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Thus, hjk̄ is a rank-one perturbation of a multiple of the identity matrix. For
hjk to be positive definite, we assume that h̃′(r) > 0 and rh̃′′(r) + h̃′(r) > 0.
The Sherman–Morrison formula give the formula for the (transposed) inverse

(3.59) hkj = 1
h′

(
δjk −

h̃′′zkzj

h̃′ + rh̃′′

)
, r = |z|2,

so that hlkh
kj = δj

l
, the Kronecker symbol.

Proposition 3.10. Let g be the conformally U(n)-invariant Kähler metric

(3.60) gjk̄ = eσ̃(|z|2)∂j∂k̄h̃(|z|2)

and ψ(z) = ψ̃(|z|2) is a real-valued radial weight function. Then (∂̄ψ − τ̄)� is
holomorphic if and only if

(3.61) ψ̃(r) = (n− 1)σ̃(r) + C1

∫ r

0
eσ̃(s)(h̃′(s) + sh̃′′(s)) ds + C̃.

where C and C1 are real constants.

Proof. We have

(3.62) T i
jk = σjδ

i
k − σkδ

i
j = σ̃′

(
z̄jδ

i
k − z̄kδ

i
j

)
.

Then it follows that the torsion (1, 0)-form of gjk is

(3.63) τ = τkdz
k = (n− 1)σ̃′zkdz

k.

If ψ(z) = ψ̃(r), r = |z|2, is a radial weight, then ∂jψ = ψ̃′(r)zj . For

(3.64) (∂̄ψ − τ̄)� = gjk̄ (ψk̄ − τk̄)
∂

∂zj

we get

(3.65) gjk̄ (ψk̄ − τk̄) = ψ̃′ − (n− 1)σ̃′

eσ̃(h̃′ + rh̃′′)
zj .

Therefore (∂̄ψ − τ̄)� is holomorphic if and only if

(3.66) ψ̃′ = (n− 1)σ̃′ + C1e
σ̃(h̃′ + rh̃′′),
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for some constant C1. So for another constant C̃ we have

ψ̃(r) = (n− 1)σ̃(r) + C1

∫ r

0
eσ̃(s)(h̃′(s) + sh̃′′(s)) ds + C̃.

The proof is complete.

Example 3.11. Considering the unit ball in Cn and the hyperbolic metric
induced by the potential function h̃(r) = − log(1−r), we get h̃′(r)+rh̃′′(r) =
(1 − r)−2 and

(3.67) ψ̃(r) = (n− 1)σ̃(r) + C

∫ r

0

eσ̃(s)

(1 − s)2 ds + C1.

Take, for example, σ̃(r) = α log(1 − r), with α > 1 and

(3.68) ψ̃(r) = α(n− 1) log(1 − r) − A(1 − r)α−1 + B.

If D∗ denote the L2(M,h, e−ψ)-space adjoint of ∂, then D∗u is holomorphic
if u is a holomorphic (1, 0)-form. However, if α �= 0 and n � 3, then for a
holomorphic (2, 0)-form v, D∗v need not be holomorphic.

Proposition 3.12. Let φ be a radial positive function on Cn (n � 2), φ(z) =
φ̃(|z|2). The Hermitian metric gjk̄ := φ−1(|z|2)∂j∂k̄h̃(|z|2) has holomorphic
torsion if and only if

(3.69) φ̃(r) = A + Brh̃′(r),

where A and B are two real constants.

Proof. From Proposition 3.1, g has holomorphic torsion if and only if (∂̄φ)�
is holomorphic. By direct computation,

(3.70) hjk̄φk̄ = φ̃′(r)zj
h̃′(r) + rh̃′′(r)

, r = |z|2.

This is holomorphic for all l if and only if φ̃′(r)/(h̃′(r) + rh̃′′(r)) is constant:

(3.71) φ̃′ = B(h̃′ + rh̃′′) = B(rh̃′)′.

Integrating this we complete the proof.
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Hence, the conformally U(n)-invariant Kähler metric

(3.72) gjk̄ = eσ̃(|z|2)∂j∂k̄h̃(|z|2)

has holomorphic torsion if and only if

(3.73) σ̃(r) = − log(C2rh̃
′(r) + C3),

where the constant C3 has to be chosen such that C2rh̃
′(r) + C3 > 0.

This also determines the weight function ψ: we use (3.61) and get

(3.74) ψ̃(r) = −C4 log(C2rh̃
′(r) + C3) + C5,

where C4 = n− 1 − (C1/C2).
With this choice of σ̃ and ψ̃ we get for a (1, 0)-form u = ujdz

j ∈ dom(∂∗)
that

(3.75) ∂∗u = C1

n∑
j=1

zjdz
j ,

and for a (2, 0)-form v = vpqdz
p ∧ dzq ∈ dom(∂∗) that

(3.76) ∂∗v = −(C1 − C2)
n∑

q=1
zqvpqdz

p.

Finally we have shown the following

Theorem 3.13. Let g be the conformally U(n)-invariant Kähler metric given
as in (3.72) together with a radial real-valued weight function ψ(z) = ψ̃(|z|2).
The vector field (∂̄ψ − τ̄)� and the torsion operator T � are holmorphic if and
only if

(3.77) σ̃(r) = − log(C2rh̃
′(r) + C3)

and

(3.78) ψ̃(r) = −C4 log(C2rh̃
′(r) + C3) + C5,

where C4 = n− 1 − (C1/C2) and the constant C3 has to be chosen such that
C2rh̃

′(r) + C3 > 0.
In this case we have for the vector field (∂̄ψ− τ̄)� = C1

∑n
j=1 z

j∂j and for
the torsion operator

T �(v) = −C2

n∑
q=1

zqvpqdz
p.
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4. The ∂-complex on the unit ball with the
half hyperbolic metric

4.1. The half hyperbolic metric on the unit ball

Consider the half hyperbolic metric on the unit ball Bn ⊂ Cn given in the
“standard” coordinate by

(4.1) hjk̄ = δjk + z̄jzk
1 − |z|2 .

If gjk̄ = −∂j∂k̄ log(1 − |z|2) is the complex hyperbolic metric, then hjk̄ =
(1 − |z|2)gjk̄, i.e., h is conformally Kähler.

For some motivations, we list several basic curvature properties of this
metric as follows. We have,

(4.2) ∂ihjl̄ = z̄j
1 − |z|2

(
δil + z̄izl

1 − |z|2
)
,

and therefore,

(4.3) Γk
ij = hkl̄∂ihjl̄ = z̄jδik

1 − |z|2 .

Thus, the curvature of h is

Rij̄kl̄ = −hpl̄∂j̄Γ
p
ik

= − 1
1 − |z|2

(
δilδjk + δjkz̄izl

1 − |z|2 + δilz̄kzj
1 − |z|2 + z̄izj z̄kzl

(1 − |z|2)2
)

= −
hil̄hkj̄

1 − |z|2 .(4.4)

Thus, the half hyperbolic metric has negative pointwise constant holomorphic
sectional curvature

(4.5) K(ξ)
∣∣
z
=

Rij̄kl̄ξ
iξ j̄ξkξ l̄

|ξ|4
∣∣∣∣
z

= − 1
1 − |z|2 , for ξ = ξj∂j ∈ T (1,0)

z (M),

which is unbounded on Bn. The curvature satisfies additional symmetry

(4.6) Rij̄kl̄ = Rkl̄ij̄ ,
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and thus the first two Chern–Ricci curvatures are equal:

R
(1)
ij̄

:= hkl̄Rij̄kl̄ = − 1
1 − |z|2hij̄ ,(4.7)

R
(2)
kl̄

:= hij̄Rij̄kl̄ = − 1
1 − |z|2hkl̄,(4.8)

and the third Chern-Ricci curvature is

R
(3)
kj̄

:= hil̄Rij̄kl̄ = − n

1 − |z|2hkj̄ .(4.9)

The half hyperbolic metric is (weak) Chern-Einstein with two different un-
bounded and negative Chern scalar curvatures

(4.10) s := hij̄R
(1)
ij̄

= − n

1 − |z|2 , ŝ := hkj̄R
(3)
kj̄

= − n2

1 − |z|2 .

Using (3.3), we find that

(4.11) Tp
rs = zsδ

r
p − zrδ

s
p

is holomorphic. Furthermore,

(4.12) τ̄ � = −(n− 1)
n∑

k=1
zk

∂

∂zk

is also holomorphic.

4.2. The ∂-complex

Theorem 3.9 suggests that we should choose the weight function

(4.13) ψ(z) = α log(1 − |z|2),

whose gradient is real holomorphic. Since

(4.14) det[hjk̄] = 1
1 − |z|2

the weighted measure is

(4.15) e−ψdvolh = (1 − |z|2)−α−1dλ.
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Then the corresponding Bergman space
(4.16)
A2

(0,0)(Bn, h, e−ψ) :=
{
f ∈ O(Bn) : ‖f‖2 :=

∫
Bn

|f |2(1 − |z|2)−α−1dλ < ∞
}

is the “usual” Bergman space A2
−α−1(Bn) in the ball with parameter −α− 1,

which is of infinite dimension if α < 0. We thus assume that α < 0 from now
on.

For u =
∑n

k=1 ukdzk, we have

(4.17) |u|2h := ujuk̄h
jk̄ =

n∑
k=1

|uk|2 −
∣∣∣∣∣

n∑
k=1

zkuk

∣∣∣∣∣
2

.

The Bergman space A2
(1,0)(Bn, h, e−ψ) consists of (1, 0)-forms with holomor-

phic coefficients u =
∑n

j=1 ujdzj such that

(4.18) ‖u‖2 :=
∫
Bn

⎛⎝ n∑
k=1

|uk|2 −
∣∣∣∣∣

n∑
k=1

zkuk

∣∣∣∣∣
2
⎞⎠ (1 − |z|2)−α−1dλ < ∞.

Since the restrictions of polynomials onto Bn are dense in each Bergman
spaces A2(Bn, (1− |z|2)γ) for γ > −1, the polynomials as well as (p, 0)-forms
with polynomial coefficients are dense in the respective Bergman spaces. Thus
∂-operator is densely defined in A2

(p,0)(Bn, h, e−ψ) for each 0 � p � n.
Observe that

(4.19) (∂̄ψ)� = −α
n∑

k=1
zk

∂

∂zk
,

is holomorphic, and by (4.12) we have that

(4.20) (∂̄ψ − τ̄)� = (n− 1 − α)
n∑

j=1
zj∂j .

This, together with an integration by parts argument, gives the formula for
∂∗:

Proposition 4.1. Let u = ujdzj ∈ A2
(1,0)(Bn, h, e−ψ). If

∑n
k=1 ukzk belongs

to A2
(0,0)(Bn, h, e−ψ), then u ∈ dom(∂∗) and

(4.21) ∂∗u = (n− 1 − α)
n∑

j=1
zjuj .
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Proof. The proof is essentially an integration by parts argument. But the
metric h is not complete and thus we need to verify the vanishing of the
“boundary” term directly. Let χR (0 < R < 1) be a family of smooth functions
of a real variable such that χR ≡ 1 on (−∞, R], the support of χR is contained
in (−∞, 1), and |χ′

R| < 2/(1 − R). By abuse of notation we write χR(z) =
χR(|z|2), so that ∂χR/∂z̄k = χ′

R(|z|2)zk.
Let v ∈ A2

(0,0)(Bn, h, e−ψ), then by integration by parts,

(χRu, ∂v)L2(Bn,h,ψ) =
∫
Bn

hjk̄χRujvke
−ψdvolh

(4.22)

=
∫
Bn

n∑
k=1

vk

⎛⎝uk − z̄k

n∑
j=1

ujzj

⎞⎠χR(|z|2)(1 − |z|2)−1−αdλ

=
∫
Bn

v
n∑

k=1

∂

∂z̄k

⎛⎝⎛⎝uk − z̄k

n∑
j=1

ujzj

⎞⎠χR(|z|2)(1 − |z|2)−1−α

⎞⎠ dλ

= (n− α− 1)
∫
Bn

(∑
k

ukzk

)
χR(|z|2)v(1 − |z|2)−α−1dλ

−
∫
Bn

v

(∑
k

ukzk

)
χ′
R(|z|2)(1 − |z|2)−αdλ.

Since χ′
R(|z|2) = 0 for |z|2 < R and χ′

R(|z|2) < 2(1 − |z|2)−1 for 0 � |z| < 1,
we can estimate the last integral as follows:

(4.23)

∣∣∣∣∣∣
∫
Bn

v

(∑
k

ukzk

)
χ′
R(|z|2)(1 − |z|2)−αdλ

∣∣∣∣∣∣
� 2

∫
R<|z|<1

∣∣∣∣∣∑
k

ukzk

∣∣∣∣∣ |v|(1 − |z|2)−α−1dλ.

On the other hand, since both
∑

k ukzk and v belong to A2
(0,0)(Bn, h, e−ψ) =

A2
−α−1(Bn), the “standard” weighted Bergmann space in the ball with weight

(1 − |z|2)−α−1, the Hölder inequality implies that

(4.24)
∫
Bn

∣∣∣∣∣∑
k

ukzk

∣∣∣∣∣ |v|(1 − |z|2)−α−1dλ
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�
∥∥∥∥∥∑

k

ukzk

∥∥∥∥∥
A2

−α−1(Bn)

· ‖v‖A2
−α−1(Bn) < ∞.

This implies that the right-hand side (and hence both sides) of (4.23) tends
to 0 as R → 1−. Letting R → 1− in (4.22), using the denominated Lebesgue
convergence theorem, we obtain

(u, ∂v)h,ψ = (n− α− 1)
∫
Bn

v

(∑
k

ukzk

)
(1 − |z|2)−α−1dλ(4.25)

=
(

(n− α− 1)
∑
k

ukzk, v

)
h,ψ

.

Consequently, the map v �→ (u, ∂v)h,ψ is continuous and thus u ∈ dom(∂∗).
Moreover,

(4.26) ∂∗u = (n− α− 1)
∑
k

ukzk.

The proof is complete.

For two-form vrsdzr ∧ dzs, with vrs = −vsr, we have by (4.11),

(4.27) T �(v) := 1
2Tp

rsvrsdzp =
n∑

s=1
zsvpsdzp.

Therefore, by (1.14), we can verify as in Proposition 4.1 that

(4.28) ∂∗v = −(n− α− 2)
n∑

s=1
zsvrsdzr.

For u = ujdzj , we have

∂u = 1
2
∑
j,k

(
∂uk
∂zj

− ∂uj
∂zk

)
dzj ∧ dzk,

and thus

(4.29) ∂∗∂u = (n− α− 2)
n∑

k=1

n∑
j=1

(
∂uk
∂zj

− ∂uj
∂zk

)
zjdzk.
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On the other hand,

(4.30) ∂∂∗u = (n− α− 1)
n∑

k=1

⎛⎝uk +
n∑

j=1
zj
∂uj
∂zk

⎞⎠ dzk.

Consequently,

(4.31) �̃1u = (n− α− 1)u +
n∑

k=1

n∑
j=1

(
(n− α− 2)∂uk

∂zj
+ ∂uj

∂zk

)
zjdzk.

Unlike the cases of Segal-Bargmann space [9] and weighted Bergman space
with hyperbolic metric [10], this is not a diagonal operator. Nevertheless we
can apply the methods from Theorem 5.4 of [10] to get the following

Theorem 4.2. Let h be the half hyperbolic metric on the unit ball Bn, α < 0,
and ψ(z) = α log(1 − |z|2). Then the complex Laplacian �̃1 has a bounded
inverse Ñ1, which is a compact operator on A2

(1,0)(Bn, h, e−ψ) with discrete
spectrum. In addition, if

(4.32) ν =

⎧⎪⎪⎨⎪⎪⎩
−α, if n = 1,
min{1 − α,−2α}, if n = 2,
n− α− 1, if n � 3.

then

(4.33)
∥∥∥Ñ1u

∥∥∥ � 1
ν
‖u‖,

for each u ∈ A2
(1,0)(Bn, h, e−ψ).

Consequently, if η = ηjdzj ∈ A2
(1,0)(Bn, h, e−ψ) with ∂η = 0, thenf :=

∂∗Ñ1η is the canonical solution of ∂f = η, this means ∂f = η and f ∈
(ker ∂)⊥. Moreover,

(4.34)∫
Bn

|f |2 (1−|z|2)−α−1dλ � 1
ν

∫
Bn

⎛⎝ n∑
j=1

|ηj |2 −

∣∣∣∣∣∣
n∑
j

ηjzj

∣∣∣∣∣∣
2⎞⎠ (1−|z|2)−α−1dλ.

Remark 4. If n = 1 or n � 3, then the first positive eigenvalue of �̃1 is
λ1 = n − 1 − α with the multiplicity n. If n = 2, there are three subcases:
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If −1 < α < 0, then λ1 = −2α is a simple eigenvalue and the corresponding
eigenspace E1 is spanned by z1dz2 − z2dz1; if α = −1, then λ1 = 2 with
multiplicity 3 and E1 is spanned by dz1, dz2, and z1dz2 − z2dz1; if α < −1,
then λ1 = 1 − α with multiplicity 2 and E1 is spanned by dz1 and dz2.

Proof. The subspaces

(4.35) A2
(1,0)(m) := span

{
cJz

Jdzl : , |J | = m, l = 1, 2, . . . , n
}
,

m = 0, 1, 2, . . . , are invariant under the action of �̃1. Using a standard result
in spectral theory (see Lemma 5.1 of [10] or [3]), we can study the spectrum of
�̃1 by studying the spectra of its restrictions onto finite dimensional subspaces
A2

(1,0)(m). If n = 1, then each subspace is one-dimensional. Moreover, write
z1 = z, we have

(4.36) �̃1(zkdz) = −(k + 1)αzkdz.

We find that, when n = 1, �̃1 has simple eigenvalues −α,−2α, · · · → +∞
since α < 0.

Consider the case n � 2. When m = 0, A2
(1,0)(0) is spanned bydz1, dz2, . . .

, dzn and �̃1(dzk) = (n − α − 1) dzk and hence n − α − 1 is an eigenvalue
for �̃1. When m = 1, A2

(1,0)(1) has dimension n2 and is spanned by zjdzk,
j, k = 1, . . . n. For example, if n = 2 then the matrix representation of �̃1 in
the basis e1 := z1dz1, e2 := z1dz2, e3 := z2dz1, and e4 := z2dz2 is the following
constant column-sum matrix

(4.37)

⎛⎜⎜⎜⎝
2 − 2α 0 0 0

0 1 − 2α 1 0
0 1 1 − 2α 0
0 0 0 2 − 2α

⎞⎟⎟⎟⎠
whose eigenvalues are −2α and 2(1 − α), the latter has multiplicity 3, and
the matrix is diagonalizable. Observe that −2α is an eigenvalue for all n � 2.

Consider the case m = 2 and n = 2, A2
(1,0)(2) has a basis of 6 vectors:

e1 = z2
1dz1, e2 = z2

1dz2, e3 = z1z2dz1, e4 = z1z2dz2, e5 = z2
2dz1, ande6 =
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z2
2dz2. The matrix representation of �̃1 in this basis is

(4.38)

⎛⎜⎜⎜⎜⎜⎜⎜⎝

3 − 3α 0 0 0 0 0
0 1 − 3α 1 0 0 0
0 2 2 − 3α 0 0 0
0 0 0 2 − 3α 2 0
0 0 0 1 1 − 3α 0
0 0 0 0 0 3 − 3α

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The eigenvalues of this matrix are 3(1 − α) (multiplicity 4) and −3α (multi-
plicity 2).

Let Λ = (λ1, λ2, . . . , λn) be a multi-index and let |Λ| = λ1 +λ2 + · · ·+λn.
If k �= l, we define the multi-index

(4.39) Λj,l = (λ1, . . . , λl−1, λl + 1, λl+1, . . . , λj−1, λj − 1, λj+1, . . . , λn),

when j > l and similarly for l < j. That is, the operation Λ �→ Λj,l adds 1 to
lth-index and subtracts 1 from jth-index. Clearly, |Λj,l| = |Λ|.

If u = zΛdzl where Λ = (λ1, λ2, . . . , λn) is a multi-index, then

�̃1u = ((|Λ| + 1)(n− α− 1) − |Λ| + λl) zΛdzl +
∑
j �=l

λjz
Λj,ldzj .(4.40)

Suppose that eγ = zΛγ
dzlγ ,Λγ = (λγ

1 , . . . , λ
γ
n), |Λγ | = m, γ = 1, 2, . . . , N ,

be a basis for the space A2
(1,0)(m). Write

(4.41) �̃1(eβ) =
∑
γ

aγβeγ .

The matrix representation for �̃1 on A2
(1,0)(m)) is a constant sum column

matrix; the sum of the entries of each column is

(4.42)
N∑
β

aγβ = (m + 1)(n− α− 1), N = n

(
n + m− 1

n− 1

)
,

while the diagonal entries are of the form

(m + 1)(n− α− 1) + λl −m.(4.43)
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Take γ �= β. Clearly, if lγ = lβ then aγβ = 0. If lγ �= lβ and if Λβ
lγ ,lβ

�= Λγ ,
then aγβ = 0. Finally, if lγ �= lβ and Λβ

lγ ,lβ
= Λγ , then

(4.44) aγβ = λβ
lγ

= λγ
lγ

+ 1.

Thus, we have for each fixed γ,

(4.45)
∑
β

aγβ =
∑

β,lγ �=lβ ,Λβ
lγ ,lβ

=Λγ

(λγ
lγ

+ 1) = qγ(λγ
lγ

+ 1).

where qγ equals the number of nonzero indices in the multi-index Λγ other
than λlγ ; in particular, qγ � n − 1. We first consider the case λγ

lγ
� m − 2.

Then (4.43) shows that

δγ := aγγ −
∑
β �=γ

aγβ(4.46)

� ((m + 1)(n− α− 1) + λγ
lγ
−m) − (n− 1)(λγ

lγ
+ 1)

= −α(m + 1) + (n− 2)(m− λγ
lγ

)
� −α(m + 1) + 2(n− 2)
� 2(n− α− 2).

If λγ
lγ

= m − 1, then qγ = 1 and in this case δγ = (m + 1)(n − α − 2). If
λγ
lγ

= m, then qγ = 0 and δγ = (m + 1)(n− α− 1). Thus, in any case

(4.47) δγ � 2(n− α− 2).

By theorem of Geršgorin [4], the eigenvalues of [aαβ] must be in the union
of the circles centered at aγγ with radius Rγ = aγγ − δγ , γ = 1, 2, . . . , N .
Consequently, the eigenvalues must be larger than 2(n−α−2). Moreover, for
m � 2, these eigenvalues of �̃1 on A2

1,0(m) are larger than −α(m + 1) → ∞.
This shows that the inverse operator Ñ1 is bounded and compact.

When n = 2, 2(n− α− 2) = −2α is an eigenvalue and the corresponding
eigenspace in A2

(1,0)(1) is spanned by z1dz2 − z2dz1. Thus the first positive
eigenvalue in this case is

(4.48) λ1 = min{1 − α,−2α}.

When n � 3, we always have 2(n − α − 2) > n − α − 1 since α < 0 and
thus λ1 = n− α− 1. The proof is complete.
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